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Abstract. The Bergman kernels of monomial polyhedra are explicitly computed. Mono-
mial polyhedra are a class of bounded pseudoconvex Reinhardt domains defined as sub-
level sets of Laurent monomials. Their kernels are rational functions and are obtained
by an application of Bell’s transformation formula.

1. Introduction

We will say that a bounded domain (open, connected subset) UB Ă Cn, n ě 2 is a
monomial polyhedron if there is an n ˆ n matrix of integers B such that

UB <
!

pz1, . . . , znq P Cn : for each 1 ď j ď n, |z1|b
j
1 . . . |zn|b

j
n ă 1

)

, (1.1)

where bjk P Z denotes the entry at the j-th row and k-th column of B, where it is assumed

in (1.1) that the power |zk|b
j
k is well-defined for each z P UB and each 1 ď j, k ď n, i.e., if

b
j
k ă 0 for some j, k, then zk ­< 0 for each point z P UB. We summarize the situation by
saying that B is the defining matrix of the domain UB, or simply that UB is defined by B.
Monomial polyhedra are clearly Reinhardt, and looking at their log absolute image, we see
immediately that they are also pseudoconvex. If B < I is the n ˆ n identity matrix, then
UI is the unit polydisc, which may be regarded as a trivial example. A famous nontrivial
example of a monomial polyhedron is the classical Hartogs triangle:

tpz1, z2q P C2 : |z1| ă |z2| ă 1u,

a venerable source of counterexamples in complex analysis, which is easily seen to be a

monomial polyhedron defined by the matrix

ˆ

1 ´1
0 1

˙

. Pathologies of the Hartogs trian-

gle (e.g., lack of Stein neighborhood bases) generalize to nontrivial monomial polyhedra,
explaining the importance of these domains in complex analysis. Monomial polyhedra
and domains closely associated to them have been studied extensively in complex and
harmonic analysis (see [NP09, NP20, BCEM22]).

In the last decade, there has been activity surrounding domains generalizing the Hartogs
triangle, their Bergman kernels, and the Bergman projection on these domains. (For
general information on the Bergman kernel and projection, see, e.g. [Kra13, HKZ00]).
The current interest began with the discovery in [CZ16, EM17, EM16] of remarkable Lp-
mapping properties of the Bergman projection on the Generalized Hartogs Triangle, the
domain Ωµ < t|z1|µ ă |z2| ă 1u, µ ą 0, which is a monomial polyhedron if µ happens to
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be rational. Since a first step in investigating the Bergman projection is to understand
the Bergman kernel, a series of studies have been directed toward the goal of obtaining
the Bergman kernel of various generalizations of the Hartogs triangle. The kernel of the
classical Hartogs triangle has been known for a long time and occurs explicitly in [Bre55].
In [Edh16b, Edh16a], the kernel of the Generalized Hartogs Triangle Ωµ was obtained when
µ is either a positive integer or the reciprocal of a positive integer. In [Par18], the kernel

of the domain t|z1|k1 ă |z2|k2 ă |z3|k3u Ă C3 was obtained. In [CKMM20, Che17, Zha21a]
other types of generalizations of the Hartogs triangle were studied and explicit kernels
were obtained. In each of these works, ad hoc methods based on Bell’s transformation
formula were used and led to rather complicated expressions for the kernel.

The original motivating problem of determining the values of p for which the Bergman
projection is bounded in Lp-norm can be studied once the kernel is known (see [Che17,
Zha21a, Zha21b, CEM19] etc., see also the survey [Zey20]). In [BCEM22], the problem
was studied in the context of the monomial polyhedra (1.1), using a representation of
these domains as quotients, thus avoiding the question of computing the Bergman kernel
(similar ideas are found in [CZ16, CKY20]). While the Bergman projection itself is not
bounded in Lp on a monomial polyhedron if p does not lie in a certain bounded interval,
it was shown in [CE23] how to construct an alternative bounded projection operator from
LppUBq to its holomorphic subspace.

In [BCEM22], it was shown using Galois theory that the Bergman kernels of the domains
UB are rational functions of the coordinates (this is also related to the results of [Bel84]).
The question naturally arises of explicitly computing the Bergman kernel of UB in terms of
the nˆn integer matrix B. When n < 2, this question was answered in the recent preprint
[Alm23]. However, some of the ideas of [Alm23] are specific to the two-dimensional case
and do not generalize easily to higher dimensions. In this paper, we explicitly compute
the Bergman kernel of the domain (1.1) in terms of the matrix B for any n ě 2, obtaining
formula (2.9) below. This formula is of interest from many points of view. First, it adds
infinite examples to the list of domains for which it is at all possible to write down a fully
explicit Bergman kernel, and it generalizes and simplifies the computations in the special
cases mentioned above (see below in Section 5 for some examples). The fact that the
kernel is rational is significant in view of the continuing interest in the algebraic nature of
the Bergman kernel (see [EXX21] for some recent results). Second, the explicit kernel is
essential to understanding the regularity of the Bergman projection in norms such as the
Sobolev norms (see [EM20], where the problem is studied on Generalized Hartogs Triangles
starting from the precise form of the kernel). Third, the computation uses combinatorial
and algebraic ideas which are of interest in themselves. We believe that these ideas may
be of relevance in the study of Bergman kernels of other domains obtained as quotients,
such as the domains in C2 considered in [DM23], which arise as quotients under the action
of non-Abelian finite reflection groups.

Acknowledgements. This paper reports work done in an undergraduate summer re-
search project under the mentorship of Chakrabarti and Cinzori, and partially funded
by an NSF grant. We thank Central Michigan University for providing space and other
resources for this work. We also thank Rasha Almughrabi for explaining the details of her
computation of the kernel of two-dimensional monomial polyhedra.
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2. A formula for the Bergman kernel of UB

2.1. Some notation. We introduce, following [BCEM22], some extended “multi-index”
type notation to simplify the writing of our formulas.

(1) For positive integers m,n, we let Zmˆn denote the collection of mˆn matrices with
integer entries. Similarly, Cmˆn is the space of complex m ˆ n matrices. For an n ˆ n

square matrix A with n ě 2, and for 1 ď j, k ď n, we denote:

rAsjk or ajk :< the entry of A at the intersection of the j-th row and the k-th column.
(2.1)

(2) For an nˆn matrix A, and 1 ď j ď n, we denote by aj the j-th row of A, so that aj

is a row vector of length n. Similarly, aj is the j-th column of A and is therefore a column
vector of height n. If A P Znˆn, using the definition (2.1), we can write for 1 ď j, k ď n:

aj < paj1, . . . , a
j
nq P Z1ˆn, and ak < pa1k, . . . , a

n
kqT P Znˆ1. (2.2)

(3) For a matrix M P Cnˆn , denote by adjM P Cnˆn the adjugate matrix of M . Recall
that, by definition, the entry at the j-th row and k-th column of adjM is given by

radjM sjk < p´1qj`k det pM rk, jsq , (2.3)

where M rk, js denotes the pn´1qˆpn´1q submatrix of M obtained by removing the k-th
row and j-th column of M . For M invertible, adjM < detM ¨ M´1 by Cramer’s rule.

(4) Notice that according to our convention, Z1ˆn denotes the collection of integer row
vectors of length n and Znˆ1 denotes the collection of integer column vectors of height n.
The elements of the complex Euclidean space Cn are thought of as column vectors, i.e.,
we identify Cn 3 Cnˆ1. To simplify writing, we write column vectors as transposes of row

vectors, where transposition is denoted by a superscript T :

¨

˚

˝

z1
...
zn

˛

‹

‚
< pz1, . . . , znqT .

(5) We use the standard multi-index power notation: if z < pz1, . . . , znqT P Cnˆ1 is an
n ˆ 1 column vector and ³ < p³1, . . . , ³nq P C1ˆn is a 1 ˆ n row vector, we denote

z³ <
n

ź

j“1

z
³j

j < z³1

1 . . . z³n
n , (2.4)

where each power z
³j

j is assumed to be well-defined and where we use the convention

00 < 1.
(6) We denote by N the collection of nonnegative integers. Given a matrix B P Znˆn

let B` P Nnˆn and B´ P Nnˆn be matrices given by

pb`qjk < maxtbjk, 0u, pb´qjk < maxt´b
j
k, 0u.

More succinctly, B` < maxtB, 0u and B´ < maxt´B, 0u, where the maxima are taken
elementwise and 0 denotes the nˆn zero matrix. As usual, we let pb`qj , pb´qj be the rows
of B`, B´, and a similar notation is used for the columns.

2.2. The function D. Let k, r be integers, with k ě 1. The function D, introduced in
[CKMM20] (and occurring implicitly in [Par18, Zha21a]), is defined by the relation

ˆ

1 ´ xk

1 ´ x

˙2

<
ÿ

rPZ

Dkprqxr. (2.5)
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Since the left-hand side of the above equation is a polynomial, for a fixed k ě 1 the
quantity Dkprq vanishes for all negative r and for all but finitely many positive values of
r. A computation shows that

Dkprq <

$

’

&

’

%

1 ` r, 0 ď r ď k ´ 1,

2k ´ p1 ` rq, k ď r ď 2k ´ 2,

0, r ă 0 or r ą 2k ´ 2.

(2.6)

2.3. Two assumptions on B. It is clearly no loss of generality to assume that the integer
matrix B P Znˆn defining the bounded domain UB has the following two properties:

(1) The determinant of the defining matrix is positive, i.e.,

detB ą 0. (2.7a)

Indeed, we must have detB ­< 0 since otherwise UB is not an open set. Further, if the
rows of the matrix B are permuted, the new matrix continues to define the same monomial
polyhedron, so we may assume (2.7a) without loss of generality.

(2) The n entries of each row of B are relatively prime. We write this as

gcdpbjq < 1, 1 ď j ď n. (2.7b)

Indeed, for 1 ď j ď n, if d is a positive integer dividing each entry of the j-th row bj of

the matrix B, then dividing each entry b
j
k of this row bj by d results in a matrix which

continues to define the same domain. Therefore, we may divide each row of the defining
matrix of a monomial polyhedron by the gcd of that row to obtain a new matrix that
defines the same monomial polyhedron and whose rows now satisfy (2.7b).

2.4. The main result. In the statement of this result, as well as in the sequel, we denote
by 1 the 1 ˆ n row vector each of whose components is 1:

1 < p1, . . . , 1q P Z1ˆn. (2.8)

Theorem. Assume that the matrix B satisfies (2.7b) and (2.7a). Denoting t < pt1, . . . , tnqT

with tj < pj ¨ qj, the Bergman kernel of UB is

KUB
pp, qq <

1

Ãn ¨ pdetBqn´1
¨

ř

¿PN1ˆn

CBp¿qt¿

n
ś

j“1

ptpb´qj ´ tpb`qj q2
, (2.9)

where

CBp¿q <
n

ź

j“1

DdetB pp¿ ´ 21B´ ` 1q radjBsj ´ 1q , ¿ P Z1ˆn, (2.10)

with radjBsj P Znˆ1 being the j-th column of the adjugate matrix of B and D as defined
in (2.5). Further, we have CBp¿q < 0, except perhaps when ¿ < p¿1, . . . , ¿nq satisfies

´1 ` Àj ď ¿j ď 2
n

ÿ

k“1

ˇ

ˇ

ˇ
bkj

ˇ

ˇ

ˇ
´ 1 ´ Àj , 1 ď j ď n, (2.11)

with Àj being the ceiling

Àj <

S

1

detB
¨

n
ÿ

k“1

ˇ

ˇ

ˇ
bkj

ˇ

ˇ

ˇ

W

. (2.12)
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The kernel KUB
is a rational function of the variables t1, . . . , tn, and the representation

(2.9) is canonical in the sense that the numerator
ř

¿PN1ˆn CBp¿qt¿ and the denominator
śn

j“1ptpb´qj ´ tpb`qj q2 are polynomials in Crt1, . . . , tns without a common factor.

Remark: Geometrically, the boundary of a nontrivial monomial polyhedron has a non-
Lipschitz singularity at the origin, and the rest of the boundary is piecewise Levi-flat and
consists of smooth Levi-flat pieces that meet transversely. Since we know from [BCEM22]
that the kernel is rational, the known boundary behavior (see [Fu14]) of the diagonal
kernel KUB

pz, zq > ¶pzq´2 near smooth Levi-flat boundary points, where ¶ is the distance
to the boundary, already predicts the form of the denominator. However, it does not seem
easy to deduce information about the behavior of the kernel as z Ñ 0 without actually
computing it, and it is this behavior that is of greatest interest in applications to the
mapping properties of the Bergman projection.

3. Preliminaries

3.1. Matrix powers of vectors. Let A P Cnˆn be an n ˆ n matrix, and let z <
pz1, . . . , znqT P Cnˆ1 be an n ˆ 1 column vector. We define a “matrix power” zA P Cnˆ1

by the formal expression:

zA < pza
1

, . . . , za
n

qT . (3.1)

For each k, on a domain Uk Ă C, if we choose for each 1 ď j ď n a local branch of

zk ÞÑ pzkqa
j
k for each entry a

j
k of the column ak of the matrix A, we obtain a locally

defined holomorphic mapping formally given by z ÞÑ zA. This defines a holomorphic
mapping defined on U1 ˆ ¨ ¨ ¨ ˆ Un Ă Cnˆ1 and taking values in Cn :

ϕApzq < zA. (3.2)

If A P Nnˆn is a matrix of nonnegative integers, then zA is uniquely defined for all
z P Cnˆ1 and ϕA : Cnˆ1 Ñ Cnˆ1 is an entire holomorphic mapping. The following is
easily proved (see [BCEM22, Lemma 3.8] or [NP09, Lemma 4.1]) and can be thought to

be a generalization of the formula
d

dx
xn < nxn´1.

Proposition 3.3. Let ϕA be locally defined on some open set of Cnˆ1, as in (3.2). We
have detϕ1

Apzq < detA ¨ z1A´1.

3.2. Monomial maps. If it happens that A P Znˆn, then ϕA is a globally defined single-
valued map (except for a polar set), known as a monomial map.

To discuss the basic properties of monomial maps, we introduce some more notation.

(1) Let

C˚ < Czt0u and T < tz P C : |z| < 1u,

and note that these are groups under complex multiplication.
(2) We let exp : Cnˆ1 Ñ pC˚qnˆ1 be the componentwise exponential map

expppz1, . . . , znqT q < pez1 , . . . , eznqT .

(3) Given matrices or vectors z, w of the same size, we denote by zdw the elementwise
(or Hadamard-Schur) product of z and w, which is therefore a matrix or vector of the
same size as z and w. For example, if z, w P Cnˆ1 are column vectors of height n, then
z d w P Cnˆ1 is the column vector of height n whose j-th entry is zjwj .
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We now summarize the properties of the monomial map ϕA (for proof, see [BCEM22]).
Recall that a regular covering map Ã : E Ñ B is a covering map where the group Γ of
deck transformations acts transitively on each fiber Ã´1pxq, x P B. One can then identify
B to the topological quotient E{Γ, and identify Ã to the quotient map.

Proposition 3.4. Suppose that A P Nnˆn. Then the holomorphic mapping ϕA : Cn Ñ Cn

restricts to a regular covering map from pC˚qn to pC˚qn where C˚ < Czt0u. The deck
transformation group Γ of the regular covering ϕA is isomorphic to the group

Γ < tµ P Tn : µA < 1
T u (3.5a)

< texp
`

2ÃiA´1¿
˘

, ¿ P Znˆ1u, (3.5b)

where the action of the group Γ on Cnˆ1 is given by

pµ, zq ÞÑ µ d z, µ P Γ, z P Cnˆ1. (3.6)

The order of the group Γ is given by

|Γ| < |detA| . (3.7)

3.3. Monomial polyhedra as quotient domains. The following representation of
monomial polyhedra as quotients was first proved in [BCEM22].

Proposition 3.8. Let B P Znˆn be the defining matrix of the domain UB of (1.1).

(1) ([BCEM22, Proposition 3.2]) The matrix B is invertible, and each entry of B´1

is nonnegative.
(2) ([BCEM22, Theorem 3.12]) Let

A < adjB < detB ¨ B´1 P Nnˆn. (3.9)

Then there exists a product domain

Ω < U1 ˆ ¨ ¨ ¨ ˆ Un Ă Cnˆ1, (3.10)

with each factor Uj either a unit disc D < t|z| ă 1u Ă C or a unit punctured disc
D˚ < t0 ă |z| ă 1u Ă C, such that the monomial map ϕA : Cn Ñ Cn of (3.2)
restricts to a proper holomorphic map ϕA : Ω Ñ UB. This map further restricts
to a regular covering map

ϕA : Ω X pC˚qnˆ1 Ñ UB X pC˚qnˆ1,

whose group of deck transformations is isomorphic to the group Γ Ă Tnˆ1 defined
in (3.5a) and (3.5b), and the group Γ acts on Ω via the action (3.6).

4. Proof of the main theorem and formula (2.9)

4.1. Application of Bell’s law. The following easy-to-verify formulas will be used with-
out comment: if z is an nˆ1 column vector, ³ is a 1ˆn row vector, and P and Q are nˆn

matrices, we have pzP q³ < z³P and pzP qQ < zQP provided all quantities are well-defined.
We apply Bell’s transformation law for the Bergman kernel under a proper holomorphic

map (see [Bel82]) to the monomial map ϕA given in part (2) of Proposition 3.8. Notice
also that

detA < detpdetB ¨ B´1q < pdetBqn detpB´1q < pdetBqn´1 ą 0. (4.1)

Since Ω Ă Cnˆ1 is a product of n planar domains, each of which is either the unit disc
or the punctured unit disc, and the Bergman kernel of a domain remains unchanged on
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the removal of an analytic set, we see that KΩ < KDn . Therefore, we have by Bell’s
transformation law (with z P Ω, q P UB, each not in the branching loci):

detϕ1
Apzq ¨ KUB

pϕApzq, qq <
detA
ÿ

j“1

KDnpz,Φjpqqq ¨ detΦ1
jpqq, (4.2)

where tΦju
detA
j“1 are the locally defined branches of the inverse to ϕA, of which there are

|Γ| < detA. Let C < A´1 P Qnˆn. For each 1 ď j, k ď n, fix a local branch of

q < pq1, . . . , qnq ÞÑ pqkqc
j
k near each point of UB. This gives us a local branch of

q ÞÑ qA
´1

(4.3)

near each point of UB. Since we have a regular covering map with deck group Γ, all the
local branches of its inverse are given by

Φµpqq < qA
´1

d µ, µ P Γ. (4.4)

Now thanks to Proposition 3.3, we have detϕ1
Apzq < detA ¨ z1A´1, and

detΦ1
µpqq < detA´1 ¨ q1A

´1´1 ¨ µ1, (4.5)

where q1A
´1

is defined to be pqA
´1

q1 using the branch (4.3). Inserting these expressions,
(4.2) becomes

detA ¨ z1A´1 ¨ KUB
pzA, qq <

ÿ

µPΓ

KDnpz, qA
´1

d µq ¨ detA´1 ¨ q1A
´1´1 ¨ µ1. (4.6)

Therefore,

KUB
pzA, qq <

1

pdetAq2
¨
q1A

´1´1

z1A´1

ÿ

µPΓ

µ1 ¨ KDnpz, qA
´1

d µq. (4.7)

We introduce a change of variables z < pA
´1

, where we use the same branch of the A´1-th
power as in (4.3). Then zA < p. Further, recalling that t < pp1q1, . . . , pnqnq < p d q, we
have

q1A
´1´1

z1A´1
<

q1A
´1

¨ q´1

p1 ¨ pp´1A´1q
< t1A

´1´1.

Since UB is a Reinhardt domain, there is a function k2 such that

KUB
pp, qq < k2pp1q1, . . . , pnqnq < k2pp d qq.

We can also write

KDnpz, wq <
1

Ãn
¨

n
ź

j“1

1

p1 ´ zjwjq2
< k1pz1w1, . . . , knwnq < k1pz d wq,

where k1pÄq <
1

Ãn
¨

n
ź

j“1

1

p1 ´ Äjq2
. Since

z d qA
´1 d µ < pA

´1

d qA
´1 d µ < tA

´1

d µ

< pµ1t
c1 , . . . , µnt

cnqT , C < A´1,
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in terms of k1 and k2, we can rewrite formula (4.7) as

k2ptq <
t1A

´1´1

pdetAq2
¨

ÿ

µPΓ

µ1 ¨ k1ptA
´1

d µq (4.8)

<
t1A

´1´1

ÃnpdetAq2
¨

ÿ

µPΓ

µ1
n

ź

j“1

1

p1 ´ tc
j
µjq2

<
t´1

ÃnpdetAq2
¨

ÿ

µPΓ

n
ź

j“1

µjt
cj

p1 ´ µjtc
j q2

(4.9)

<
t´1

ÃnpdetAq2
¨ LptA

´1

q, (4.10)

where for a column vector E < pE1, . . . , EnqT of indeterminates we set

LpEq <
ÿ

µPΓ

n
ź

j“1

µjEj

p1 ´ µjEjq2
. (4.11)

4.2. The group Γj. Consider for 1 ď j ď n the set

Γj < tµj P T : pµ1, . . . , µnqT P Γu, (4.12)

i.e., the projection of the group Γ Ă Tn onto the j-th factor of Tn. Since such a projection
is a group homomorphism, Γj is a finite subgroup of T and therefore cyclic. We compute
its order:

Lemma 4.13. For each 1 ď j ď n

|Γj | < detB. (4.14)

Proof. Writing C < A´1 P Qnˆn we can rewrite (3.5b) as

Γ <
!

pe2Ãic
1¿ , . . . , e2Ãic

n¿qT , ¿ P Znˆ1
)

.

Therefore, denoting by radjAsj the j-th row of the adjugate of A, that

Γj < te2Ãic
j¿ P T : ¿ P Znˆ1u

<

"

exp

ˆ

2Ãi

detA
¨ radjAsj¿

˙

P T : ¿ P Znˆ1

*

by Cramer’s rule

<

"

exp

ˆ

2Ãi

detA
¨ gcdpradjAsjq ¨ k

˙

P T : k P Z

*

.

It follows that the group Γj is a cyclic group of order
detA

gcdpradjAsjq
. Since

adjA < adjpadjBq < detpadjBq ¨ padjBq´1 < pdetBqn´1pdetB ¨ B´1q´1

< pdetBqn´2 ¨ B, (4.15)

we have

gcdpradjAsjq < gcdppdetBqn´2 ¨ bjq < pdetBqn´2 gcdpbjq < pdetBqn´2,
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where we use the condition (2.7b). Therefore,

|Γj | <
detA

gcdpradjAsjq
<

pdetBqn´1

pdetBqn´2
< detB.

□

4.3. Simplification of L. We now turn our attention to the function L of (4.10) and
(4.11). For each 1 ď j ď n, dividing and multiplying by p1 ´ EdetB

j q2, we write

µjEj

p1 ´ µjEjq2
<

µjEj

p1 ´ EdetB
j q2

¨
p1 ´ EdetB

j q2

p1 ´ µjEjq2

<
1

p1 ´ EdetB
j q2

¨ µjEj

ÿ

rjPZ

DdetBprjq ¨ pµjEjq
rj (4.16)

<
1

p1 ´ EdetB
j q2

¨
ÿ

rjPZ

DdetBprjqµj
rj`1E

rj`1

j ,

where in (4.16) we use (2.5) with x < µjEj , remembering that xdetB < EdetB
j since

pµjq
detB < 1, as µj P Γj and the group Γj has order detB. Therefore,

LpEq <
ÿ

µPΓ

n
ź

j“1

µjEj

p1 ´ µjEjq2

<
ÿ

µPΓ

n
ź

j“1

1

p1 ´ EdetB
j q2

¨
ÿ

rjPZ

DdetBprjqµj
rj`1E

rj`1

j

<

ř

µPΓ

śn
j“1

ř

rjPZDdetBprjqµj
rj`1E

rj`1

j
śn

j“1p1 ´ EdetB
j q2

<
ΛpEq

∆pEq
, (4.17)

where ∆ and Λ are the polynomials in the indeterminates E1, . . . , En given by

∆pEq <
n

ź

j“1

p1 ´ EdetB
j q2 (4.18)

and

ΛpEq <
ÿ

µPΓ

n
ź

j“1

ÿ

rjPZ

DdetBprjqµj
rj`1E

rj`1

j

<
ÿ

¹PZ1ˆn

˜

ÿ

µPΓ

n
ź

j“1

DdetBp¹j ´ 1qµj
¹j

¸

E¹ (4.19)

<
ÿ

¹PZ1ˆn

Λ¹E
¹, (4.20)
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where in (4.19) we have gathered all coefficients associated to each monomial E¹ to put
ΛpEq in the standard form, and consequently,

Λ¹ <
ÿ

µPΓ

µ¹
n

ź

j“1

DdetBp¹j ´ 1q. (4.21)

To simplify (4.20), we notice that for ³ P Γ, we have (recall that d stands for entrywise
multiplication of vectors)

Lp³ d Eq <
ÿ

µPΓ

n
ź

j“1

³jµjEj

p1 ´ ³jµjEjq2
<

ÿ

´PΓ

n
ź

j“1

´jEj

p1 ´ ´jEjq2
(4.22)

< LpEq,

where in the last expression in (4.22), we set ´ < ³ d µ, i.e., ´j < ³jµj , and reindex the
sum over the group Γ. Also,

∆p³ d Eq <
n

ź

j“1

p1 ´ p³jEjq
detBq2 <

n
ź

j“1

p1 ´ ³detB
j ¨ EdetB

j q2 <
n

ź

j“1

p1 ´ EdetB
j q2 < ∆pEq.

Since ΛpEq < LpEq ¨ ∆pEq it follows that for each ³ P Γ,

Λp³ d Eq < Lp³ d Eq ¨ ∆p³ d Eq < ΛpEq.

Using the representation (4.20) of ΛpEq, this is equivalent to the fact that for each ³ P Γ,
ÿ

¹PZ1ˆn

Λ¹³
¹E¹ <

ÿ

¹PZ1ˆn

Λ¹E
¹, i.e.,

ÿ

¹PZ1ˆn

Λ¹ ¨ p³¹ ´ 1qE¹ < 0.

Therefore, for ¹ P Z1ˆn, we can have Λ¹ ­< 0 only if ³¹ < 1 for each ³ P Γ, i.e., using the
representation (3.5b) for the group Γ, for each ¿ P Znˆ1, we have

1 <
`

expp2ÃiA´1¿q
˘¹

< e2Ãi¹A
´1¿ ,

which is to say that

¹A´1¿ P Z for each ¿ P Znˆ1. (4.23)

We claim that (4.23) holds if and only if

¹ < mA for an m P Z1ˆn. (4.24)

Indeed, if ¹ < mA for an integer row vector m, then for each integer column vector ¿:

¹A´1¿ < pmAqA´1¿ < m¿ P Z.

Conversely, suppose that for each ¿ P Znˆ1, we have ¹A´1¿ P Z. For 1 ď j ď n, let ej
denote the j-th standard basis vector in Znˆ1, i.e., ej is a column vector with n entries, of
which the j-th entry is 1 and the others are zeroes, and set mj < ¹A´1ej , so that mj P Z

by hypothesis. But then mj is the j-th entry of the row vector ¹A´1 and therefore this
vector is in Z1ˆn. Setting m < ¹A´1, we have ¹ < mA, as needed.

Therefore, Λ¹ ­< 0 for a ¹ P Z1ˆn if and only if (4.24) holds, and consequently, the
expression (4.20) simplifies to

ΛpEq <
ÿ

¹“mA
mPZ1ˆn

Λ¹E
¹ <

ÿ

mPZ1ˆn

ΛmAE
mA <

ÿ

mPZ1ˆn

ΛmA ¨ pEAqm. (4.25)
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Using the representation (4.21) of Λ¹, we see that

ΛmA <
ÿ

µPΓ

µmA
n

ź

j“1

DdetBpmaj ´ 1q (4.26)

<
ÿ

µPΓ

pµAqm
n

ź

j“1

DdetBpmaj ´ 1q

<
ÿ

µPΓ

p1T qm
n

ź

j“1

DdetBpmaj ´ 1q (4.27)

< |Γ|
n

ź

j“1

DdetBpmaj ´ 1q

< detA ¨
n

ź

j“1

DdetBpmaj ´ 1q, (4.28)

where in (4.26), we use the fact that the j-th entry of the row vector mA P Z1ˆn is
maj P Z, where aj denotes the j-th column of the matrix A < adjB. In (4.27) we use the
characterization (3.5a) of the group Γ, and finally, in (4.28) we use the fact that Γ has
|detA| elements. Therefore, using (4.25), we have

ΛptA
´1

q <
ÿ

mPZ1ˆn

ΛmA ¨ pptA
´1

qAqm

< detA ¨
ÿ

mPZ1ˆn

n
ź

j“1

DdetBpmaj ´ 1qtm. (4.29)

We also have, using (4.18), ∆ptA
´1

q <
n

ź

j“1

´

1 ´ ptc
j

qdetB
¯2

<
n

ź

j“1

´

1 ´ tdetB¨cj
¯2

, where cj

denotes the j-th row of the matrix C < A´1 P Qnˆn. Notice that

C < A´1 < padjBq´1 < pdetB ¨ B´1q´1 <
1

detB
¨ B,

so detB ¨ cj < detB ¨
1

detB
¨ bj < bj . Therefore, we obtain

∆ptA
´1

q <
n

ź

j“1

´

1 ´ tb
j
¯2

. (4.30)

4.4. An intermediate expression for the kernel. Since by definition (4.17) we have
L < Λ

∆
, using the representations (4.29) and (4.30) in (4.10), we obtain

k2ptq <
t´1

ÃnpdetAq2
¨ LptA

´1

q <
t´1

ÃnpdetAq2
ΛptA

´1

q

∆ptA´1q

<
t´1

ÃnpdetAq2
¨
detA ¨

ř

mPZ1ˆn

śn
j“1DdetBpmaj ´ 1qtm

śn
j“1

`

1 ´ tb
j
˘2

<
1

Ãn ¨ detA
¨

ř

mPZ1ˆn

śn
j“1DdetBpmaj ´ 1qtm´1

śn
j“1

`

1 ´ tb
j
˘2

,
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which taking into account (4.1), shows that

KUB
pp, qq <

1

Ãn ¨ pdetBqn´1
¨
P ptq

Qptq
, (4.31)

where, recalling that A < adjB,

P ptq <
ÿ

mPZ1ˆn

˜

n
ź

j“1

DdetB pm radjBsj ´ 1q

¸

tm´1, (4.32)

and

Qptq <
n

ź

j“1

p1 ´ tb
j

q2. (4.33)

Notice that Q is a Laurent polynomial in the n variables t1, . . . , tn with integer coefficients
and therefore Q a rational function. Also, P is a Laurent series in these n variables. In
fact, a more careful book-keeping shows that P is also a Laurent polynomial with integer
coefficients. We will show that P {Q is in fact a rational function by representing it as the
ratio of two polynomials.

4.5. Reduction to ratio of polynomials. Recall that B` < maxtB, 0u, and B´ <
maxt´B, 0u, where maxima of matrices are taken entrywise, and consequently, B < B` ´
B´. Notice that the quantity t21B´ has two alternate representations:

t21B´ < t2
řn

j“1
pb´qj <

n
ź

j“1

t2pb´qj (4.34a)

<
n

ź

j“1

t
21pb´qj
j , (4.34b)

where in (4.34b), we have used that 1B´ < p1pb´q1, . . . ,1pb´qnq. We multiply both the
numerator and the denominator of (4.31) by the monomial t21B´ . For the denominator,
using representation (4.34a), we obtain

t21B´ ¨ Qptq < t21B´ ¨
n

ź

j“1

p1 ´ tb
j

q2 <
n

ź

j“1

t2pb´qj ¨
n

ź

j“1

p1 ´ tb
j

q2 <
n

ź

j“1

ptpb´qj ´ tpb´qj`bj q2

<
n

ź

j“1

ptpb´qj ´ tpb`qj q2, (4.35)

where in the last line we have used the fact that bj < pb`qj ´ pb´qj . Now multiplying the
numerator of (4.31) by t21B´ and using the representation (4.34b), we obtain:

t21B´ ¨ P ptq <t21B´ ¨
ÿ

mPZ1ˆn

˜

n
ź

j“1

DdetB pm radjBsj ´ 1q

¸

tm´1

<
ÿ

mPZ1ˆn

n
ź

j“1

t
21pb´qj
j ¨

n
ź

j“1

DdetB pm radjBsj ´ 1q ¨
n

ź

j“1

t
mj´1

j

<
ÿ

mPZ1ˆn

n
ź

j“1

DdetB pm radjBsj ´ 1q t
mj`21pb´qj´1

j . (4.36)
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In the outer sum of (4.36), we reindex using a new summation index ¿ < p¿1, . . . , ¿nq P
Z1ˆn by setting ¿j < mj ` 21pb´qj ´ 1 for 1 ď j ď n, or in vector notation,

¿ < m ` 21B´ ´ 1.

Notice that the mapping from m to ¿ is nothing but a translation in the integer lattice
Z1ˆn, so therefore ¿ can be used as an index of summation instead of m in (4.36). Solving
for m we obtain

m < ¿ ´ 21B´ ` 1, (4.37)

or, written in terms of the components, mj < ¿j ´ 21pb´qj ` 1, 1 ď j ď n. Reindexing,
we obtain

(4.36) <
ÿ

¿PZ1ˆn

n
ź

j“1

DdetB pp¿ ´ 21B´ ` 1qradjBsj ´ 1q t¿

<
ÿ

¿PZ1ˆn

CBp¿qt¿ , (4.38)

with CB as in (2.10). Therefore, using (4.38) and (4.35) in (4.31), we see that

KUB
pp, qq <

1

Ãn ¨ pdetBqn´1
¨
t21B´ ¨ P ptq

t21B´ ¨ Qptq

<
1

Ãn ¨ pdetBqn´1
¨

ř

¿PZ1ˆn

CBp¿qt¿

śn
j“1ptpb´qj ´ tpb`qj q2

,

which is the claimed formula (2.9), except the sum in the numerator is over ¿ P Z1ˆn

rather than the finite set given by (2.11).

4.6. Bounds on ¿j. To complete the proof, we need to show that if ¿ does not satisfy
the conditions (2.11), then we have CBp¿q < 0. Notice that the quantity Àj in (2.12) is an
integer greater than or equal to 1, since Àj is the ceiling of a positive number. Therefore,
if (2.11) has been established, then from the left inequality we would know that ¿j ě 0
for each j, and, consequently, the sum in the numerator will only have ¿ P N1ˆn, i.e., the
numerator is a polynomial.

From (2.6), we see that Dkprq < 0 for those r which do not satisfy 0 ď r ď 2k ´ 2.
Therefore, DdetB pp¿ ´ 21B´ ` 1qradjBsj ´ 1q < 0 except when we have

0 ď p¿ ´ 21B´ ` 1qaj ´ 1 ď 2 detB ´ 2, (4.39)

using the notation A < adjB introduced above in (3.9), and aj being the j-th column of
A. From the definition (2.10) of the coefficients CBp¿q, it follows that CBp¿q < 0 provided
¿ does not satisfy (4.39) for at least one j with 1 ď j ď n. To manipulate the system
of inequalities (4.39) in an efficient manner, we use the elementwise inequality notation
defined as follows: if P,Q P Rmˆn are real matrices or vectors of the same size, then

P ĺ Q means pjk ď q
j
k, 1 ď j ď m and 1 ď k ď n.

We will also write Q ľ P to mean P ĺ Q if convenient. Using this notation, we can say
that the set of ¿ for which CBp¿q ­< 0 is contained in the set of ¿ P Z1ˆn given by

0 ĺ p¿ ´ 21B´ ` 1qA ´ 1 ĺ p2 detB ´ 2q1. (4.40)
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which can be rearranged to read

³ ĺ ¿A ĺ ´, (4.41)

where ³, ´ P Z1ˆn are given by

³ < p21B´ ´ 1qA ` 1 (4.42a)

and

´ < p2 detB ´ 1q1 ` p21B´ ´ 1qA. (4.42b)

Notice that since B´ ľ 0 and B` ľ 0 by definition, we have from (4.41):

³B` ĺ ¿AB` ĺ ´B` (4.43a)

and

´´B´ ĺ ´¿AB´ ĺ ´³B´. (4.43b)

Adding (4.43a) and (4.43b) we obtain

³B` ´ ´B´ ĺ ¿ApB` ´ B´q ĺ ´B` ´ ³B´. (4.44)

To simplify (4.44), first note that since B < B` ´ B´, and A < adjB < detB ¨ B´1, we
have for the middle term

¿ApB` ´ B´q < ¿AB < ¿ ¨ pdetB ¨ Iq < detB ¨ ¿.

Let us denote |B| < B` ` B´, so that the entry at the j-th row and k-th column of |B|

is
ˇ

ˇ

ˇ
b
j
k

ˇ

ˇ

ˇ
. For the leftmost term of (4.44), we have

³B` ´ ´B´ < pp21B´ ´ 1qA ` 1qB` ´ pp2 detB ´ 1q1 ` p21B´ ´ 1qAqB´

< 21B´AB` ´ 1AB` ` 1B` ´ 2 detB ¨ 1B´ ` 1B´ ´ 21B´AB´ ` 1AB´

< 21B´ApB` ´ B´q ´ 1ApB` ´ B´q ` 1pB` ` B´q ´ 2 detB ¨ 1B´

< 21B´AB ´ 1AB ` 1 |B| ´ 2 detB ¨ 1B´

< 2 detB ¨ 1B´ ´ detB ¨ 1 ` 1 |B| ´ 2 detB ¨ 1B´

< 1 |B| ´ detB ¨ 1.

For the rightmost term in (4.44) we have

´B` ´ ³B´ < pp2 detB ´ 1q1 ` p21B´ ´ 1qAqB` ´ pp21B´ ´ 1qA ` 1qB´

< 2 detB ¨ 1B` ´ 1B` ` 21B´AB` ´ 1AB` ´ 21B´AB´ ` 1AB´ ´ 1B´

< 2 detB ¨ 1B` ´ 1pB` ` B´q ` 21B´ApB` ´ B´q ´ 1ApB` ´ B´q

< 2 detB ¨ 1B` ´ 1 |B| ` 21B´AB ´ 1AB

< 2 detB ¨ 1B` ´ 1 |B| ` 2 detB ¨ 1B´ ´ detB ¨ 1

< 2 detB ¨ 1pB` ` B´q ´ 1 |B| ´ detB ¨ 1

< p2 detB ´ 1q ¨ 1 |B| ´ detB ¨ 1.

Putting together the three obtained expressions, (4.44) becomes

1 |B| ´ detB ¨ 1 ĺ detB ¨ ¿ ĺ p2 detB ´ 1q ¨ 1 |B| ´ detB ¨ 1.

Since detB ą 0 by hypothesis, this is equivalent to

´1 `
1

detB
¨ 1 |B| ĺ ¿ ĺ ´1 `

ˆ

2 ´
1

detB

˙

¨ 1 |B| .
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In terms of components this takes the form

´1 `
1

detB
¨

n
ÿ

k“1

ˇ

ˇ

ˇ
bkj

ˇ

ˇ

ˇ
ď ¿j ď ´1 `

ˆ

2 ´
1

detB

˙

¨
n

ÿ

k“1

ˇ

ˇ

ˇ
bkj

ˇ

ˇ

ˇ
, 1 ď j ď n. (4.45)

Since ¿j is an integer, we can replace the leftmost member by its ceiling, and the rightmost
member by its floor to obtain valid inequalities in terms of integers. Recalling the definition
(2.12) of Àj , notice that the ceiling of the leftmost member is

S

´1 `
1

detB
¨

n
ÿ

k“1

ˇ

ˇ

ˇ
bkj

ˇ

ˇ

ˇ

W

< ´1 ` Àj , (4.46a)

and the floor of the rightmost member is
[

´1 `

ˆ

2 ´
1

detB

˙

¨
n

ÿ

k“1

ˇ

ˇ

ˇ
bkj

ˇ

ˇ

ˇ

_

< ´1 ` 2
n

ÿ

k“1

ˇ

ˇ

ˇ
bkj

ˇ

ˇ

ˇ
`

[

´
1

detB
¨

n
ÿ

k“1

ˇ

ˇ

ˇ
bkj

ˇ

ˇ

ˇ

_

< ´1 ` 2
n

ÿ

k“1

ˇ

ˇ

ˇ
bkj

ˇ

ˇ

ˇ
´ Àj , (4.46b)

where we use the fact that t´xu < ´rxs. Plugging in (4.46a) and (4.46b) into (4.45), the
inequalities (2.11) follow.

4.7. Canonicity of the representation. To complete the proof of the main theorem,
we will now show that the representation (2.9) as the ratio of two polynomials is canonical,
in the sense that there is no common irreducible factor of the numerator and denominator.

To see this, first, recall (see [Fu94]) that if Ω Ă Cn is a bounded pseudoconvex domain
and p P bΩ is a boundary point in a neighborhood of which bΩ is smooth, then there is a
neighborhood U of p and a constant C ą 0 such that

KΩpz, zq ě
C

¶pzq2
for each z P U X Ω, (4.47)

where ¶pzq denotes the distance from the point z to bΩ. This is clear in the case n < 1, by
comparing KΩpz, zq with the diagonal Bergman kernel of a disk in Ω tangent to bΩ, and
the general case follows by an inductive argument, using the famous Ohsawa-Takegoshi
L2-holomorphic extension theorem in the induction step.

To complete the proof, we use the following algebraic fact whose proof is postponed to
the end of the section:

Lemma 4.48. For 1 ď k ď n, the polynomial pkptq < tpb´qk ´ tpb`qk is irreducible in
Crt1, . . . , tns.

Assuming the lemma for the moment, suppose that the rational function KUB
is not

in canonical form. Then, there is a j with 1 ď j ď n such that pj divides the numerator
ř

¿PN1ˆn CBp¿qt¿ in the ring Crt1, . . . , tns. We can remove this common factor, leaving us
with a denominator containing pj to at most the first power. Now, let q ­< 0 be a point

on the face Fj < tpjp|z1|2 , . . . , |zn|2q < 0u Ă bUB which does not belong to any other face

Fk, k ­< j. Notice that the polynomial function rpzq < pjp|z1|2 , . . . , |zn|2q is a defining
function of the domain UB near the smooth boundary point q, and so, since pjptq occurs
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in the denominator at most to the first power, from (2.9), there is a neighborhood V of q
and a constant C 1 ą 0 such that

KUB
pz, zq ď

C 1

rpzq
, z P V X UB. (4.49)

However, shrinking V if needed, we have that r is comparable to ¶, the distance to the
boundary, so using (4.47) we have that there is a constant C2 ą 0 such that

KUB
pz, zq ě

C2

rpzq2
, z P V X UB,

which contradicts (4.49) for z close enough to q, thus showing that pj is not a factor of
the numerator, and therefore the representation (2.9) is already in its lowest terms.

Proof of Lemma 4.48. Denote ³ < pb´qk, ´ < pb`qk P N1ˆn so that bk < ´ ´ ³ and

pkptq < t³ ´ t´ < t³1

1 ¨ ¨ ¨ t³n
n ´ t

´1

1 ¨ ¨ ¨ t´n
n . Since detB ­< 0, each row of B has at least one

nonzero entry and at least one of ³, ´ is nonzero. Therefore, renaming t1, . . . , tn, we can
assume that ³1 ­< 0. Further, the assumption (2.7b) means that

gcdt³1, . . . , ³n, ´1, . . . , ´nu < 1.

Also, by definition of B`, B´, we have the property

³j ­< 0 ñ ´j < 0, and ´j ­< 0 ñ ³j < 0. (4.50)

Let F denote the rational function field Cpt2, . . . , tnq, the field of fractions of the UFD
R < Crt2, . . . , tns. Identifying Crt1, . . . , tns with Rrt1s it follows by Gauss’s Lemma that
the polynomial pk in Rrt1s is irreducible in Rrt1s provided it is primitive in Rrt1s and
irreducible in F rt1s. Notice that since ³1 ­< 0, it follows that pk is a polynomial of degree
³1 ě 1 as an element of either Rrt1s or F rt1s.

Recall that a polynomial in Rrt1s is primitive if the gcd of its coefficients in R is 1.
Since ³1 ­< 0, it follows that ´1 < 0 by (4.50), and we can write pkptq < Pt³1

1 ´Q. We can

factor the coefficients into irreducibles of R as Q < t
´2

2 . . . t
´n
n P R and P < t³2

2 . . . t³n
n P R.

Since t2, . . . , tn are irreducible in the UFD R, it follows from these factorizations that
gcdpP,´Qq < 1, and therefore pk is primitive in Rrt1s.

In F rt1s, we can write pkptq < P pt³1

1 ´ P´1 ¨ Qq, so that we only need to show that
the polynomial qpt1q < t³1

1 ´ P´1 ¨ Q is irreducible in F rt1s. This is obvious if ³1 < 1, so
assume that ³1 ě 2. We now claim that P´1 ¨ Q P F is not a d-th power in F for any
d ě 2 that divides ³1. Indeed, we have a factorization of P´1 ¨Q into irreducible elements
of R

P´1 ¨ Q < t
´2´³2

2 . . . t´n´³n
n <

n
ź

j“2

t
bkj
j ,

and since gcdpbkq < 1, it follows that if d ě 2 is a divisor of ³1 < bk1, then there is at least
one 2 ď j ď n such that d does not divide bkj . This means that P´1 ¨Q is not a d-th power

in F , since one of its irreducible factors tj is raised to a power bkj not divisible by d.

Now let c be an ³1-th root of P´1 ¨ Q in an extension field. Since by the above claim,
P´1 ¨ Q is not an ³1-th root, it follows that c R F . More generally, we have

cs R F, 1 ď s ă ³1. (4.51)

We already know this for s < 1, so consider the smallest s with 2 ď s ă ³1 for which
cs P F . We claim that s divides ³1. Let s1 be the remainder in dividing ³1 by s, so that
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cs
1

< pcsq´T ¨ c³1 P F for some positive integer T , which contradicts the minimality of s,
since s1 ­< 1. But then cs is an ³1

s
-th root of P´1 ¨ Q, contradicting the fact that P´1 ¨ Q

is not a d-th power in F for each divisor d of ³1.

In the ring F pcqrt1s, the polynomial qpt1q splits completely as t³1

1 ´ P´1 ¨ Q <
³1
ź

j“1

pt1 ´ c Éjq,

where É < e
2πi
α1 P C. If qpt1q has a nontrivial divisor Apt1q in F rt1s, there is a subset

H ­< S Ĺ t1, . . . , nu and a ¼ P F such that Apt1q < ¼
ś

jPSpt ´ c ¨ Éjq. Looking at the
constant term of A we see that

¼
ź

jPS

cÉj < ¼ ¨ c|S| ¨ É
ř

jPS j P F.

Since ¼ P F and É
ř

jPS j P C Ă F , it follows that c|S| P F . But this contradicts (4.51),
showing that qpt1q is irreducible in F rt1s and completing the proof of the lemma.

□

5. Special cases

5.1. Domains birational to the unit polydisc. When detB < 1, the map ϕA : Ω Ñ
UB of Proposition 3.8 is a biholomorphism, and the formula (2.9) takes a simple form:

Proposition 5.1. Let B P Znˆn be such that detB < 1. Then

KUB
pz, wq <

1

Ãn

t1|B|´1

n
ś

j“1

ptpb´qj ´ tpb`qj q2
, with |B| < B` ` B´. (5.2)

Proof. When detB < 1, the denominator of (2.9) and (5.2) are the same, so we need

to show that
ř

¿PN1ˆn CBp¿qt¿ < t1|B|´1. We use the bounds (2.11) to find the val-
ues of ¿ for which CBp¿q ­< 0. Using (2.12), we have, for each 1 ď j ď n, that

Àj <

S

n
ÿ

k“1

ˇ

ˇ

ˇ
bkj

ˇ

ˇ

ˇ

W

<
n

ÿ

k“1

ˇ

ˇ

ˇ
bkj

ˇ

ˇ

ˇ
, so the inequalities (2.11) become

´1 ` Àj ď ¿j ď 2
n

ÿ

k“1

ˇ

ˇ

ˇ
bkj

ˇ

ˇ

ˇ
´ 1 ´

n
ÿ

k“1

ˇ

ˇ

ˇ
bkj

ˇ

ˇ

ˇ
< ´1 ` Àj ,

which means that if CBp¿q ­< 0, we have ¿j < ´1 `
řn

k“1

ˇ

ˇ

ˇ
bkj

ˇ

ˇ

ˇ
, i.e., ¿ < 1 |B| ´ 1. Notice

that if detB < 1, then adjB < detB ¨ B´1 < B´1, so BradjBsj < ej , where ej is the
column vector with zeros everywhere except in the j-th spot. Therefore, we have by (2.10)

CBp1 |B| ´ 1q <
n

ź

j“1

D1 pp1pB` ` B´q ´ 1 ´ 21B´ ` 1q radjBsj ´ 1q

<
n

ź

j“1

D1 p1BradjBsj ´ 1q <
n

ź

j“1

D1 p1ej ´ 1q <
n

ź

j“1

D1p0q <
n

ź

j“1

1 < 1,

using (2.6) to compute D1p0q. Therefore
ÿ

¿PN1ˆn

CBp¿qt¿ < CBp1|B| ´ 1qt1|B|´1 < t1|B|´1.

□
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5.2. Almughrabi’s formula for n < 2. We will now recapture the following result:

Proposition 5.3 (see [Alm23]). Let B P Z2ˆ2 satisfy (2.7a) and (2.7b). Then denoting
tj < pj ¨ qj , j < 1, 2, we have

KUB
pp, qq <

1

Ã2 ¨ detA
¨

gpt1, t2q
´

t
a1
2

2 ´ t
a2
2

1

¯2 ´

t
a2
1

1 ´ t
a1
1

2

¯2
, (5.4)

where a
j
k indicates the element in the adjugate matrix A < adjB of B at the j-th row and

k-th column. The numerator gpt1, t2q is a polynomial given by

gpt1, t2q <
ÿ

¿PN1ˆ2

DdetAp·1p¿qqDdetAp·2p¿qqt¿1t¿2 (5.5)

where ·jp¿q < a1j¿1 ` a2j¿2 ´ 2pa21a
1
j ` a12a

2
j q ` pa1j ` a2j ´ 1q.

Proof. Notice that A <

ˆ

a11 a12
a21 a22

˙

< adjB <

ˆ

b22 ´b12
´b21 b11

˙

. By part (1) of Proposition 3.8,

we have A < adjB ľ 0, i.e. the entries of A are nonnegative. Consequently, we have from
the above that b11 ě 0, b22 ě 0, b12 ď 0 and b21 ď 0. Consequently, we have

B` <

ˆ

b11 0
0 b22

˙

, B´ <

ˆ

0 ´b12
´b21 0

˙

<

ˆ

0 a12
a21 0

˙

.

Therefore, we have, for ¿ P Z1ˆ2,

¿ ´ 21B´ ` 1 < p¿1, ¿2q ´ 2p1, 1q

ˆ

0 a12
a21 0

˙

` p1, 1q

< p¿1 ´ 2a21 ` 1, ¿2 ´ 2a12 ` 1q. (5.6)

Using the above computations, with n < 2, the formula (2.9) becomes

KUB
pp, qq <

1

Ã2 ¨ detB
¨

ř

¿PN1ˆ2

CBp¿qt¿

ptpb´q1 ´ tpb`q1q2ptpb´q2 ´ tpb`q2q2

<
1

Ã2 ¨ detB
¨

ř

¿PN1ˆ2

2
ś

j“1

DdetBp·jp¿qqt¿

ptp0,´b1
2

q ´ tpb1
1
,0qq2ptp´b2

1
,0q ´ tp0,b2

2
qq2

<
1

Ã2 ¨ detB
¨

ř

¿PN1ˆ2

DdetBp·1p¿qq ¨ DdetBp·2p¿qqt¿11 t¿22

´

t
´b1

2

2 ´ t
b1
1

1

¯2 ´

t
´b2

1

1 ´ t
b2
2

2

¯2
(5.7)

<
1

Ã2 ¨ detA
¨

ř

¿PN1ˆ2

DdetAp·1p¿qq ¨ DdetAp·2p¿qqt¿11 t¿22

´

t
a1
2

2 ´ t
a2
2

1

¯2 ´

t
a2
1

1 ´ t
a1
1

2

¯2
, (5.8)

where (5.8) is obtained from (5.7) using the fact that detA < pdetBqn´1 < detB for
n < 2, the relation A < adjB, and where, using (2.10) and (5.6), we have

·jp¿q < p¿ ´ 21B´ ` 1q radjBsj ´ 1 < p¿1 ´ 2a21 ` 1, ¿2 ´ 2a12 ` 1q

ˆ

a1j
a2j

˙

´ 1

< a1j¿1 ` a2j¿2 ´ 2pa21a
1
j ` a12a

2
j q ` pa1j ` a2j ´ 1q.
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□

5.3. Comments on general formulas for n ě 3. Given the matrix B P Z2ˆ2 defining
a two-dimensional monomial polyhedron UB, using part (1) of Proposition 3.8, we have

B` <

ˆ

b11 0
0 b22

˙

and B´ <

ˆ

0 ´b12
´b21 0

˙

. So the decomposition into the positive and

negative parts of the matrix B is unique, and this leads to the unique expression (5.4) for
the Bergman kernel in its canonical form as the ratio of two coprime polynomials.

If n ě 3, this is not the case. For example, consider the matrices
¨

˝

1 0 ´1
0 1 0
0 0 1

˛

‚ and

¨

˝

1 ´1 1
0 1 ´1
0 0 1

˛

‚.

Both of these have inverses with nonnegative entries and therefore define monomial poly-
hedra. Thus, the Bergman kernels are represented in canonical form by different formulas.
However, it is possible to write the kernels as rational functions using the same general
formula in terms of the matrix B as we saw in (4.31). The possible sign patterns can be
determined using methods described in [Joh83].

5.4. Symmetries of D. The following lemma will be used below:

Lemma 5.9. The function Dk of (2.5) has the following properties:

(1) for integers k ě 1 and r, we have Dkprq < Dkp2k ´ 2 ´ rq.
(2) for k1, k2 positive integers and each integer r we have

Dk1k2pk2pr ` 1q ´ 1q < k2Dk1prq.

Proof. Part (1): Using (2.5), we have

ÿ

rPZ

Dkprqxr <

ˆ

1 ´ xk

1 ´ x

˙2

<

ˆ

xkp1 ´ px´1qkq

xp1 ´ x´1q

˙2

< x2k´2 ¨

ˆ

p1 ´ px´1qkq

p1 ´ x´1q

˙2

< x2k´2
ÿ

rPZ

Dkprqpx´1qr

<
ÿ

rPZ

Dkprqx2k´2´r <
ÿ

¼PZ

Dkp2k ´ 2 ´ ¼qx¼,

where the last expression is obtained by reindexing the sum using ¼ < 2k ´ 2 ´ r. Upon
comparing coefficients of the same degree, we get the result.

Part (2): Again, using (2.5), we have

ÿ

µPZ

Dk1k2pµqxµ <

ˆ

1 ´ xk1k2

1 ´ x

˙2

<

ˆ

1 ´ pxk2qk1

1 ´ xk2

˙2 ˆ

1 ´ xk2

1 ´ x

˙2

<
ÿ

¼1PZ

Dk1p¼1qxk2¼1 ¨
ÿ

¼2PZ

Dk2p¼2qx¼2

Fix r P Z and set µ < k2pr ` 1q ´ 1. Equating coefficients of the same degree, we see that

Dk1k2pk2pr ` 1q ´ 1q <
ÿ

k2¼1`¼2“k2pr`1q´1

Dk1p¼1qDk2p¼2q. (5.10)
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The linear Diophantine equation k2¼1 `¼2 < k2pr`1q´1 for the integer unknowns ¼1, ¼2,
has the general solution ¼1 < pr ` 1q ´ À, ¼2 < ´1 ` k2À, À P Z. Thus, (5.10) becomes

Dk1k2pk2pr ` 1q ´ 1q <
ÿ

ÀPZ

Dk1ppr ` 1q ´ ÀqDk2p´1 ` k2Àq.

By (2.6), the function Dk2 vanishes outside r0, 2k2 ´ 2s. Therefore, the only value of À for
which Dk2p´1 ` k2Àq is nonzero is À < 1, so that we have

Dk1k2pk2pr ` 1q ´ 1q < Dk1ppr ` 1q ´ 1qDk2p´1 ` k2 ¨ 1q < Dk1prqk2,

where we have used the fact that Dkpk ´ 1q < k from (2.6). □

5.5. Formula for “signature 1 domains”. Let k1, . . . , kn be positive integers with
gcdpk1, . . . , knq < 1. In [CKMM20], the Bergman kernel of the domain

Hk < tpz1, ..., znq P Dn : |z1|k1 ă |z2|k2 ¨ ¨ ¨ |zn|knu

was computed. We now recapture this result starting from (2.9).

Proposition 5.11 (See [CKMM20]). We have

KHk
pp, qq <

1

Ãn ¨ L
¨

ř

¿PN1ˆn

Ep¿qt¿

˜

n
ś

j“2

t
kj
j ´ tk11

¸2

¨
n

ś

j“2

p1 ´ tjq2

, (5.12)

where t < pt1, . . . , tnqT with tj < pj ¨ qj, and

Ep¿q < DKp2K ´ ℓ1pv1 ` 1q ´ 1q ¨
n

ź

j“2

Dℓj pℓjpvj ` 1q ` ℓ1pv1 ` 1q ´ 2K ´ 1q (5.13)

with

K < lcmpk1, ..., knq, ℓa <
K

ka
for 1 ď a ď n, and L <

n
ź

a“1

ℓa. (5.14)

Proof of Proposition 5.11. The domain Hk is the monomial polyhedron with the defining
matrix

B <

¨

˚

˚

˚

˝

k1 ´k2 ¨ ¨ ¨ ´kn
0
...
0

In´1

˛

‹

‹

‹

‚

, so that A < adjB <

¨

˚

˚

˚

˝

1 k2 ¨ ¨ ¨ kn
0
...
0

k1 ¨ In´1

˛

‹

‹

‹

‚

,

where In´1 is the identity matrix of size n ´ 1. Splitting B < B` ´ B´, we see that:

n
ź

j“1

´

tpb´qj ´ tpb`qj
¯2

< ptp0,k2,...,knq ´ tpk1,0,...,0qq2 ¨ ptp0,...,0q ´ tp0,1,0,...,0qq2 ¨ ... ¨ ptp0,...,0q ´ tp0,..,1qq2

< ptk22 tk33 ...tknn ´ tk1q2 ¨ p1 ´ t2q2 ¨ ... ¨ p1 ´ tnq2

<

˜

n
ź

j“2

t
kj
j ´ tk11

¸2

¨
n

ź

j“2

p1 ´ tjq
2.
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Consequently, the denominator of KHk
given by (2.9) is the same as that in (5.12). There-

fore, the expression given in (2.9) will be the same as that in (5.12) provided:

CBp¿q

pdetBqn´1
<

Ep¿q

L
, ¿ P N1ˆn.

Now, using the fact that detB < k1, we have

L

pdetBqn´1
<

n
ś

a“1

pℓaq

pk1qn´1
<

Kn

n
ś

a“1

ka

¨
1

pk1qn´1
<

Kn

pk1qn
¨

1
n

ś

a“2

ka

< pℓ1qn ¨
1

n
ś

a“2

ka

.

So it will suffice to show that

pℓ1qn ¨ CBp¿q <

˜

n
ź

a“2

ka

¸

¨ Ep¿q, ¿ P N1ˆn. (5.15)

To compute the LHS of (5.15), denoting by 0n´1ˆn the matrix of size n ´ 1 ˆ n with
zero entries, we have

1B´ < p1, . . . , 1q

ˆ

0 k2 ¨ ¨ ¨ kn
0n´1ˆn

˙

< p0, k2, . . . , knq.

Therefore, for ¿ P N1ˆn, ¿ ´ 21B´ ` 1 < p¿1 ` 1, ¿2 ´ 2k2 ` 1, . . . , ¿n ´ 2kn ` 1q, and
consequently, using detB < 1, we have from (2.10)

ℓn1 ¨ CBp¿q < ℓn1

n
ź

j“1

Dk1 pp¿ ´ 21B´ ` 1q aj ´ 1q

< ℓ1 ¨ Dk1pp¿ ´ 21B´ ` 1qa1 ´ 1q ¨ ℓn´1
1 ¨

n
ź

j“2

Dk1 pp¿ ´ 21B´ ` 1q aj ´ 1q

< pℓ1Dk1p¿1qq ¨
n

ź

j“2

pℓ1 ¨ Dk1pp¿1 ` 1qkj ` p¿j ´ 2kj ` 1qk1 ´ 1qq . (5.16)

Now, notice that

DKp2K ´ ℓ1p¿1 ` 1q ´ 1q < Dk1ℓ1p2K ´ 2 ´ pℓ1p¿1 ` 1q ´ 1qq (5.17a)

< Dk1ℓ1pℓ1p¿1 ` 1q ´ 1q (5.17b)

< ℓ1Dk1p¿1q, (5.17c)

where (5.17a)ñ(5.17b) is by part (1) of 5.9, and (5.17b) ñ(5.17c) is by part (2) of 5.9.
Notice also that

kjDℓj pℓjp¿j ` 1q ` ℓ1p¿1 ` 1q ´ 2K ´ 1q

< Dkjℓj pkjppℓjp¿j ` 1q ` ℓ1p¿1 ` 1q ´ 2K ´ 1q ` 1q ´ 1q (5.18a)

< DKpkjpℓjp¿j ` 1q ` ℓ1p¿1 ` 1q ´ 2Kq ´ 1q (5.18b)

< DKpKp¿j ` 1q ` kjℓ1p¿1 ` 1q ´ 2Kkj ´ 1q

< Dk1ℓ1pk1ℓ1p¿j ` 1q ` kjℓ1p¿1 ` 1q ´ 2k1ℓ1kj ´ 1q (5.18c)

< Dk1ℓ1pℓ1pk1p¿j ` 1q ` kjp¿1 ` 1 ´ 2k1qq ´ 1q

< ℓ1Dk1pk1p¿j ` 1q ` kjp¿1 ` 1 ´ 2k1q ´ 1q, (5.18d)
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where in (5.18a) and (5.18d), we apply part (2) of 5.9, and in (5.18b), we use the definition
of ℓj to rewrite kjℓj as K, and in (5.18c) to rewrite K as k1ℓ1.

Therefore, we have

(5.16) < DKp2K ´ ℓ1p¿1 ` 1q ´ 1q
n

ź

j“2

kjDℓj pℓjp¿j ` 1q ` ℓ1p¿1 ` 1q ´ 2K ´ 1q

<

˜

n
ź

a“2

ka

¸

¨ DKp2K ´ ℓ1p¿1 ` 1q ´ 1q
n

ź

j“2

Dℓj pℓjp¿j ` 1q ` ℓ1p¿1 ` 1q ´ 2K ´ 1q

<

˜

n
ź

a“2

ka

¸

¨ Ep¿q,

completing the proof. □

5.6. The Park-Zhang formula for Generalized Hartogs Triangles. Let p1, . . . , pn
be positive integers such that gcdpp1, . . . , pnq < 1. In [Par18, Zha21a], the domain

G < Gp1,...,pn < tpz1, . . . , znq P Cn : |z1|p1 ă ¨ ¨ ¨ ă |zn|pn ă 1u (5.19)

was called the Generalized Hartogs Triangle, its Bergman kernel was determined, and the
regularity of the Bergman projection in Lp-spaces was studied. To state their formula for
the kernel, we introduce the following notation:

P <
n

ź

j“1

pj , p1
j <

P

pj
, dj < gcdppj , pj`1q, with dn < pn. (5.20)

In [Par18, Zha21a], p1
j was denoted as kj . Notice that we have p1p

1
1 < ¨ ¨ ¨ < pnp

1
n. Let

K <
n

ź

j“1

p1
j <

Pn

śn
j“1 pj

< Pn´1, (5.21)

and also let for 1 ď j ď n ´ 1

k
pjq
j <

p1
j

gcdpp1
j , p

1
j`1q

, k
pjq
j`1 <

p1
j`1

gcdpp1
j , p

1
j`1q

,

where we take p1
n`1 < 1. Since gcdpp1

j , p
1
j`1q < gcd

ˆ

P

pj
,

P

pj`1

˙

<
P

lcmppj , pj`1q
, we obtain

k
pjq
j <

p1
j

gcdpp1
j , p

1
j`1q

<

P

pj
P

lcmppj , pj`1q

<
lcmppj , pj`1q

pj
<

pj`1

gcdppj , pj`1q
<

pj`1

dj
, (5.22)

where pj and dj are as in (5.20). In a similar manner, one sees

k
pjq
j`1 <

pj

dj
. (5.23)
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Proposition 5.24. With t as in (2.9):

KGpp, qq <

N1
ř

³1“0

¨ ¨ ¨
Nn
ř

³n“0

¿pP1q ¨ ¨ ¨ ¿pPnqt³

ÃnKp1 ´ tnq2
n´1
ś

j“1

ˆ

t
k

pjq
j`1

j ´ t
k

pjq
j

j`1

˙2
, (5.25)

where we have, with 1 ď j ď n,

(1) mj,j`1 < lcmpp1
j , p

1
j`1q (with mn,n`1 < p1

n),

(2) N1 <

Z

2m1,2 ´ 1 ´ p1
1

p1
1

^

, Nj <

[

2mj´1,j ` 2mj,j`1 ´ p1
j ´ 2

p1
j

_

,

(3) P1 < 2m1,2 ´ p1
1 ` 1 ´ p1

1³1, Pj < 2mj,j`1 ´ p1
j ´ p1

j³j ` Pj´1,

(4) ¿pPjq <

$

’

&

’

%

Pj ´ 1, 2 ď Pj ď mj,j`1 ` 1,

2mj,j`1 ´ Pj ` 1, mj,j`1 ` 2 ď Pj ď 2mj,j`1,

0, Pj ă 2 or Pj ą 2mj,j`1.

Proof. From p2q and p4q, we see that ¿pPjq < 0 unless 0 ď ³j ď Nj . Therefore, we
can replace the sum in the numerator of 5.25 with one over all natural numbers. We let

Λ <
n

ś

j“1

dj , d
1
j < Λ

dj
. One sees easily that G is a monomial polyhedron defined by the upper

triangular matrix

B <

¨

˚

˚

˚

˚

˚

˝

p1
d1

´p2
d1

p2
d2

´p3
d2

. . .
. . .
pn´1

dn´1
´ pn

dn´1
pn
dn

˛

‹

‹

‹

‹

‹

‚

, so that adjB <

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

p1
1

d1
1

p1
1

d1
2

¨ ¨ ¨ ¨ ¨ ¨
p1
1

d1
n

p1
2

d1
2

¨ ¨ ¨ ¨ ¨ ¨
p1
2

d1
n

. . .
. . .

...
. . .

...
p1
n

d1
n

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Therefore we have B` < diag
´

p1
d1
, . . . , pn

dn

¯

, and

B´ <

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 p2
d1
. . .

. . .

. . .
. . .
. . . pn

dn´1

0

˛

‹

‹

‹

‹

‹

‹

‹

‚

, so 1B´ <

ˆ

0,
p2

d1
,
p3

d2
, . . . ,

pn

dn´1

˙

.

From the expressions for B` and B´, we have

n
ź

j“1

´

tpb´qj ´ tpb`qj
¯2

<
n´1
ź

j“1

˜

t

pj`1

dj

j`1 ´ t

pj

dj

j

¸2

¨

ˆ

1 ´ t
pn
dn
n

˙2

< p1 ´ tnq2
n´1
ź

j“1

˜

t

pj`1

dj

j`1 ´ t

pj

dj

j

¸2

< p1 ´ tnq2
n´1
ź

j“1

ˆ

t
k

pjq
j`1

j ´ t
k

pjq
j

j`1

˙2

using (5.22) and (5.23),
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where in the first line we have used that dn < pn. Since detpBq < P
Λ
, (2.9) gives

KGpp, qq <
1

Ãn ¨

ˆ

P

Λ

˙n´1
¨

ř

³PN1ˆn

CBp³qt³

n
ś

j“1

ptpb´qj ´ tpb`qj q2
,

which, since K < Pn´1, coincides with the Park-Zhang expression for the kernel (5.25) if
and only if for each ³ P N1ˆn

Λn´1 ¨ CBp³q < ¿pP1q ¨ ¨ ¨ ¿pPnq. (5.26)

We now claim that:

¿pPjq < d1
j ¨ DP

Λ

˜

1

d1
j

«˜

j
ÿ

i“1

p1
i³i

¸

´ 2

˜

j´1
ÿ

i“1

P

di

¸

`

˜

j
ÿ

i“1

p1
i

¸ff

´ 1

¸

. (5.27)

To see this, first observe that for 1 ď j ď n, we have mj,j`1 < lcm
´

p1
j , p

1
j`1

¯

<

lcm
´

P
pj
, P
pj`1

¯

< P
dj
, and also by (2.6):

Dmj,j`1
pPj ´ 2q <

$

’

&

’

%

Pj ´ 1, 0 ď Pj ´ 2 ď mj,j`1 ´ 1,

2mj,j`1 ´ Pj ` 1, mj,j`1 ď Pj ´ 2 ď 2mj,j`1 ´ 2,

0, Pj ´ 2 ă 0 or Pj ´ 2 ą 2mj,j`1 ´ 2

< ¿pPjq. (5.28)

Using our description of ml,l`1, we have P1 < ´p1
1³1 ` 2 P

d1
´ p1

1 ` 1, so upon expanding

the recursion in part (3), we find Pj < ´
´

řj
i“1 p

1
i³i

¯

` 2
´

řj
i“1

P
di

¯

´
´

řj
i“1 p

1
i

¯

` 1.

Therefore, we conclude, applying 5.28, that

¿pPjq < D P
dj

˜

´

˜

j
ÿ

i“1

p1
i³i

¸

` 2

˜

j
ÿ

i“1

P

di

¸

´

˜

j
ÿ

i“1

p1
i

¸

´ 1

¸

< D P
dj

˜

2
P

dj
´ 2 ´

«˜

j
ÿ

i“1

p1
i³i

¸

´ 2

˜

j´1
ÿ

i“1

P

di

¸

`

˜

j
ÿ

i“1

p1
i

¸

´ 1

ff¸

< D P
dj

˜˜

j
ÿ

i“1

p1
i³i

¸

´ 2

˜

j´1
ÿ

i“1

P

di

¸

`

˜

j
ÿ

i“1

p1
i

¸

´ 1

¸

(5.29)

<
d1
j

d1
j

D P
dj

˜˜

j
ÿ

i“1

p1
i³i

¸

´ 2

˜

j´1
ÿ

i“1

P

di

¸

`

˜

j
ÿ

i“1

p1
i

¸

´ 1

¸

< d1
j ¨ D P

djd
1
j

˜

1

d1
j

«˜

j
ÿ

i“1

p1
i³i

¸

´ 2

˜

j´1
ÿ

i“1

P

di

¸

`

˜

j
ÿ

i“1

p1
i

¸

´ 1 ` 1

ff

´ 1

¸

(5.30)

< d1
j ¨ DP

Λ

˜

1

d1
j

«˜

j
ÿ

i“1

p1
i³i

¸

´ 2

˜

j´1
ÿ

i“1

P

di

¸

`

˜

j
ÿ

i“1

p1
i

¸ff

´ 1

¸

,
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where 5.29 follows from part 1 of 5.9 and 5.30 from part 2 of 5.9. Using the expression for
1B´ and that detB < P

Λ
, for ³ P Z1ˆn, we have by (2.10):

CBp³q <
n

ź

j“1

DP
Λ

pp³ ´ 21B´ ` 1q radjBsj ´ 1q

<
n

ź

j“1

DP
Λ

ˆˆ

³1 ` 1, ³2 ´ 2
p2

d2
` 1, . . . , ³n ´ 2

pn

dn´1

` 1

˙

radjBsj ´ 1

˙

<
n

ź

j“1

DP
Λ

˜

1

d1
j

ˆ

p1
1p³1 ` 1q ` p1

2p³2 ´ 2
p2

d2
` 1q ` ¨ ¨ ¨ ` p1

jp³j ´ 2
pj

dj´1

` 1q

˙

´ 1

¸

<
n

ź

j“1

DP
Λ

˜

1

d1
j

ˆ

pp1
1³1 ` ¨ ¨ ¨ ` p1

j³jq ´ 2P

ˆ

1

d1
` ¨ ¨ ¨ `

1

dj´1

˙

` pp1
1 ` ¨ ¨ ¨ ` p1

jq

˙

´ 1

¸

<
n

ź

j“1

1

d1
j

¿pPjq <
1

Λn´1
¨

n
ź

j“1

¿pPjq, using 5.27,

which is what we wanted to prove. □
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