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Abstract
Server performance has always been an active field of re-
search, spanning topics including databases, network appli-
cations, and cloud computing. Tail latency is one of the most
important performance metrics for server performance. In
this work, we study how different timing components affect
server workload performance, including thread contention
and interrupt handling. We introduce a workload analysis
and generation tool: TailWAG. TailWAG relies on measured
timing components from applications to generate a synthetic
workload that mimics the original behavior. TailWAG can
help server designers and application developers explore
performance bottlenecks and optimization opportunities at
early stages.

CCS Concepts: • Computer systems organization →
Cloud computing; • Computingmethodologies→Mod-
eling and simulation.
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1 Introduction
With the current trend toward cloud computing, more and
more focus has shifted to server performance. Companies
and researchers pay increasing attention to cluster comput-
ing. Simply having a cluster with thousands of powerful
cores does not guarantee optimal performance [6]; careful
design and configuration, depending on the workload, are
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required [14][15]. But performance metrics are consistent
throughout all cases: throughput and latency. In addition to
mean latency, server applications also emphasize tail latency
(95th or 99th percentile latency, worst 5% or 1% respectively
of all requests), which is often used to specify the quality of
service requirements for Service Level Agreements (SLA) [5].

Server systems are difficult to evaluate due to complex and
fragile workload configurations. Tuning the system to run for
the best performance is very difficult and time-consuming.
Changes to one configuration parameter can lead to very dif-
ferent performances. As one example, prior work [2][21][18]
showed that using a dedicated core for interrupt handling
can isolate server threads from interrupts and reduce tail
latency.

We verified this with a sample application (silo) from Tail-
bench [18] under various scenarios. As shown in Figure 1,
assigning interrupt handling and server threads to different
cores produces lower latency at low to moderate load, but
higher loads (at the expense of latency) are possible if all
cores are used for both tasks.
However, the follow-up questions are non-trivial: How

many cores are required for dedicated interrupt handling?
Are they dynamically allocated or statically determined?
Also, more cores for interrupt handling means fewer cores
for server threads. Using dedicated core (s) is an ad hoc
solution that is not ideal for all scenarios.
Also, for any hardware features of configurations that

are not available to the native machine, simulation becomes
the only choice. Simulators provide flexibility and detailed
exploration of architecture changes, but with the cost of
extremely slow speed, such as gem5 [3][23], and are not ideal
for early-stage design exploration. ZSim [26] on the other
hand, trades off detailed microarchitectural implementation
for faster speed. There are also other tools targeting RISC-V
ISA such as firesim [17][16][25].
Server system hardware innovations and server applica-

tions are both evolving but at different paces. Hardware inno-
vation usually goes through a detailed simulation and valida-
tion stage before implementation, which requires significant
effort and a longer turnaround time; on the other hand, ap-
plications change more rapidly, and can evolve quickly via
software patches.

In this paper, we perform a detailed analysis of Tailbench
applications [18], break down timing components, abstract
details from the individual application but provide high-level
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Figure 1. Latency vs Throughput. SEP: reserving core 1
for interrupt handling improves latency at low to moderate
load, but lowers throughput; MIX: using all 4 cores for both
interrupts and server threads yields higher throughput, with
worse latency.

behavior analysis, and contribute insights on both latency
and throughput. We introduce TailWAG, a single config-
urable synthetic workload, that enables swift parameter sen-
sitivity analysis, and validate it against real hardware. The
high-level workflow is shown in Figure 2. The key advan-
tages of this synthetic workload are:

• TailWAG is simple, hardware independent, and easy
to run natively or in simulation.

• TailWAG has repeatable behavior and measurements.
• TailWAG enables exploration of future/emerging/e-
volving workloads and hardware platforms before they
exist.

System setup configuration is explored in the context of
NIC (Network Interface Controller) interrupt handling, and
potential further performance improvement is predicted for
a hypothetical interrupt accelerator.

2 Background
2.1 Tail Latency
Cloud computing relies on utilizing many compute nodes
across multiple layers of abstraction. Often, single requests
are broken down into multiple sub-requests, and overall per-
formance can be determined by the most poorly-performing
sub-requests, i.e., n-th percentile tail latency. Tail latency
is becoming a more important factor as a measure of the
quality of service[5]. Sriraman and Wenisch studied how dif-
ferent OS operations affect server latency by using the eBPF
tool [7][29][28]. These operations include hardware inter-
rupts, network software interrupts (both receive and trans-
mit), and scheduling actions. Not surprisingly, Active-Exe
(thread active servicing the requests) and Net (net mid-tier
latency) contribute the most to service time. Tiny compo-
nents contribute minimally to average latency but can cause
a severe cascade tail latency problem [2]. Other work such

Figure 2. TailWAG workflow.

Figure 3. Linux real-time scheduling limit. The Linux
kernel default limit for real-time tasks is 95% of total CPU
time. When real-time tasks reach the limit, they are pre-
empted for 50 ms, leading to the latency spikes shown above
(left). Over-riding this setting to unlimited CPU utilization
eliminates most of the latency spikes (right) but may cause
starvation. Hardware setup in Table 1.

as Multilate [20] and Treadmill [35] are recent studies on
load testers for evaluating server systems and looked into
pitfalls including co-location applications.
From here, there are two orthogonal paths for improv-

ing performance: application developers can work to reduce
service time, and service providers can reduce run time en-
vironmental overheads and noise. There are many system
parameters that can affect performance dramatically [18][5].
Features including sleep states and voltage/frequency scaling
are useful for energymanagement but can induce unexpected
latency to requests, distorting the tail latency distribution.
Also, Treadmill [35] pointed out client-side queuing can gen-
erate biased results and should be avoided by using multiple
clients.

Setting a real-time priority for server threads avoids com-
petition with lower-priority tasks, and can be used to ensure
lower latency. But, for safety reasons, the kernel prevents
real-time priority tasks from consuming 100% of the CPU,
leading to the latency hiccups shown in Figure 3. Server
maintainers can choose to set -1, which means there is no
limit. However, this may lead to potential starvation as in-
terrupt handling can be delayed indefinitely under heavy
load.
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Figure 4.When hardIRQ occurs during the critical section
on CPU1, CPU2 can potentially give up waiting due to spin
limit, and be forced to sleep. Tuning the spin limit (the shaded
portion of CPU2) to avoid this outcome is not trivial.

2.2 Network Interrupt Handling
Interrupt handling [9] is an important core-api layer and is
commonly defined as synchronous (exception, software) and
asynchronous (timer, driver hardware) [4]. The Linux kernel
is equipped with a mixture of interrupt and polling design,
named NAPI [8]. When a packet arrives (receiving process),
the NIC hardware interface raises an asynchronous hardware
interrupt request (IRQ); the system is notified, the CPU saves
the current program state, switches context, and enters the
interrupt handling routine (hereafter referred to as hardIRQ).
During the hardIRQ, the CPU will disable preemption and
interrupts, so only a minimal amount of work should be per-
formed: (napi_schedule) function raises NET_RX_SOFTIRQ,
schedules the software interrupt routine (hereafter softIRQ)
and clears the interrupt line. On the other hand, softIRQ
is preemptible and serves as the main function of polling
network packets into specified user buffers depending on
the protocol and applications.

Also, as part of the generic interrupt handling layer, before
the hardIRQ exits with the function call irq_exit, it always
tries to invoke_softirq if there is a softIRQ waiting and
the current time quantum has not elapsed.
These two mechanisms are designed to serve different

goals for the Linux kernel system and did not receive much
attention for immediate improvement when NAPI was intro-
duced. With either design, the asynchronous hardIRQ can
lead to unpredictable performance hiccups. As shown in Fig-
ure 4, a microsecond-scale hardIRQ can lead to millisecond-
scale latency.

2.3 Existing benchmarks and tools
For research purposes, benchmarks can be executed in a
simulated environment to examine system behavior under
different combinations of user-specified disk image, kernel,
and modification to the hardware system, and any improve-
ment or innovation can be observed and evaluated. However,
there is a noticeable gap between performance on real hard-
ware and simulation. One of the reasons is that real machines
have more unexpected background noise than the simulated
environment. It is almost impossible to replicate the same

Table 1. Server System Configuration

Model Supermicro SYS-2029GP-TR

Cores 6 Cores Intel Xeon Gold 6128, 3.5 GHz
Caches 32KB L1, 6MB L2, 19.25MB L3

Main Memory 96GB, 1333 MHz
Operating System Ubuntu 22.04 , Linux kernel 5.15.0

performance over different setups, core frequencies, cache
sizes, and Ethernet hardware.
Moreover, hardware simulation is time-consuming. For

simulation data points, one second of hardware machine
time costs hours to days of simulation time on gem5 full
system mode [23]. ZSim can provide improved speed but
with less microarchitectural detail, and still requires envi-
ronmental build and setup. Before proposing techniques to
accelerate interrupt handling, we need to demonstrate the
effects brought by these timing disturbances in a controlled
fashion.

A synthetic workload can be representative, easy to tune,
and quick to converge, making it ideal for early-stage design
exploration. Similar work in other domains includes Syn-
Full [1] for evaluating NoC traffic and STMBench7 [10] for
software transactional memory.

Also, in addition to targeting application execution itself,
this work also includes insights into runtime policy and
network activities. TailWAG is easy to run in simulation,
but in this work, all workload analysis and generation are
performed on a native server machine.

3 Workload Analysis
First, we describe the applications and the setup from Tail-
bench [18]. There are eight applications with varying at-
tributes: silo [30], which is an in-memory transaction data-
base; specjbb [27], which is a Java middleware warehouse
server benchmark;masstree [24], which is a key-value store
database with mycsb-a dataset (50% get and 50% set); img-
dnn, image recognitionwithMNIST dataset [22]; xapian [33],
an online search engine with Wikipedia English version;
shore [11], on disk transaction databasewith TPC-C; sphinx
is speech recognition with CMU AN4 alphanumeric data-
base [32];moses [19] is real-time translation, fed with open-
subtitles.org English-Spanish corpus snippets.
The Tailbench harness provides three configurations: in-

tegrated (single process handles both server and client, com-
municating via memory mapped buffers); loopback (separate
server and client process on same node communicating via
TCP using localhost); and networked (server and client are
on different nodes, communicating via Ethernet). All of the
analysis experiments are conducted on a networked setup,
and TailWAG uses the integrated setup for simplicity. Server
system hardware setup is listed in Table 1.
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Figure 5. Service Time Distribution: Blue line shows the measured service distribution; Red line shows distribution coverage
used in TailWAG workload generation. Python Scipy is used for distribution fitting.

For all experiments, both the round trip latency and service
time of every single query are collected from the server
system. Afterward, analysis and generation can be performed
on any machine. Python Scipy [31] library was used for
analysis.

3.1 Service Time Distribution
First, we break down application service time, which con-
sists of active CPU time spent on computation, memory
access such as caches, and I/O. CDF ( Cumulative Distribu-
tion Function) was reported in the Tailbench paper [18]. To
better understand and analyze the difference statically, we
use PDF (Probability Density Function). This also helps us
abstract characteristics into TailWAG parameters. As shown
in Figure 5, we can build PDF from:

• one centralized (low variance) continuous sample dis-
tribution: silo, over 99% are under 40 µs; masstree, over
99.9% are within 75 – 150 µs; img-dnn, all service times
are within 0.35 – 0.45 ms.

• one wide continuous sample distribution: xapian, span-
ning across 0 – 4 ms; moses, over 99% ranging from
around 0.6 – 3 ms; sphinx, ranging up to 3 s.

• two distributions: specjbb, around 94% are under 25
µs, 3% are between 25 – 40 µs; shore, in which around
50% are less than 200 µs, 45% are within 300 – 800 µs.

• additional distributions, to give 100% coverage, for
instance for specjbb: around 3% of requests are within
150 – 250 µs. Details are listed in Table 2.

1/(Service time) indicates the theoretical upper bound
for how many requests the server can handle, i.e. shorter
service time leads to a higher achievable load QPS (queries
per second).

In addition to service time, round trip latency in networked
configurations includes TCP stack and NIC (Network Inter-
face controller) latency. The round-trip latency starts when
the query is generated on the client side and ends when the
client receives the response from the server.

Figure 6. Thread Scaling (95th tail) for 1/2/4 server threads.
Dashed lines show TailWAG, and solid lines are measured.
TailWAG matches behavior well in all cases except moses,
where it reflects an upper bound without its memory bottle-
neck. TCP contention impacts scaling for silo.

Networking activities affect the server as load increases
and can lead to cascading effects.

3.2 Thread Scaling
Server applications are written as multithreaded applica-
tions for higher throughput, utilizing multiple cores or even
multi-node server systems. Even with well-designed multi-
threaded applications, it is difficult to achieve linear scaling
on performance due to resource contention. There are un-
avoidable minimum penalties that can be as small as micro-
seconds.
Not all Tailbench applications scale up well for different

reasons. Half of the applications have close to linear scal-
ing: masstree, img-dnn, xapian and sphinx, since they have
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Figure 7. NIC disturbance (95th tail): Effect of IRQ Handling
Noise on Tail Latency using TailWAG. TailWAG can capture
effects from different applications, and also predict a memory
bottleneck for moses.

longer service and less critical section sharing within the ap-
plication. Due to open loop configuration (multiple clients to
multiple server threads), using more threads can hide some
longer service requests. Figure 6 shows selected examples.

Applications that are not scaling well include silo, specjbb,
shore, and moses. Moses was reported to have a memory bot-
tleneck in Tailbench [18]. Shore was only provided with a sin-
gle warehouse database, which cannot scale as intended. Silo
and specjbb share the same root cause as TCP send()/recv()
behave as a high-contention critical section due to very short
service times.
Executing TCP stack code as part of the harness can be

easily overlooked when deployed. Multiple threads share a
server port in the Tailbench harness, requiring serialization.
Measurements show that networking system calls including
recv() and send() cost from 3 µs to over 10 µs, depending on
the size of the request and response. This latency is harmless
for applications that have mean latency at a millisecond scale
but can be crucial for small service time applications, such
as specjbb and silo, where mean service latency is under 100
µs.

3.3 NIC Interrupts
As shown in Figure 4, server threads are perturbed by asyn-
chronous interrupts, which we refer to as NIC noise. How-
ever, the effects are heavily workload-dependent. Here, we
expand the analysis to include three more applications run-
ning on four cores, but with different allocation strategies:
MIX, where interrupt handling is bound to the same core as
server threads; and SEP, where interrupt handling is bound to
a dedicated core. Results are shown in Figure 7. Applications
like silo and img-dnn, with low variance service time, are

1 void doRun(){

2 //setup parameters

3 ...

4 //each iteration is one query

5 while (true) {

6 recvRequest ();

7

8 lock(recvLock);

9 spin(recvLockCycles);

10 unlock(recvLock);

11

12 p=uniform_random (0.001% ,100%);

13 if p < prob1

14 distCycles=log_random(mean1 ,var1);

15 else if p < prob1+prob2

16 distCycles=log_random(mean2 ,var2);

17 else

18 distCycles=log_random(mean3 ,var3);

19 spin(distCycles);

20

21 //can be multiple noise injection

22 spin(noiseCycles);

23

24 lock(sentLock);

25 spin(sentLockCycles);

26 unlock(sentLock);

27

28 sendResponse ();

29 }

30 }

Listing 1. Generated Workload Pseudocode. Each loop
represents a request sequential timing behavior.

more sensitive to interrupts; on the other hand, xapian and
moses, with higher variance service time, are less sensitive
to interrupts.

4 TailWAG Generation and Validation
TailWAG does not try to capture all the details of each ap-
plication from Tailbench, including data movement, cache
accesses, loop constructs, or other control flow. Instead, we
use the timing distributions that are learned as discussed in
Section 3. Each target application run with the networked
setup is treated as a black box, and only service time and
total time are captured as metrics.

The generated workload is written as an individual appli-
cation that occupies the CPU and exhibits the same charac-
teristics as the real workload in terms of CDF (cumulative
distribution function) of round trip service time, as shown
in Listing 1. For each query, it spins for cycles specified by
different components, representing occupying CPU. It also
acquires and releases a lock to represent a critical section.
Key parameters are:
Main execution distributions: these are the main param-

eters that determine the active service time for a request.
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Table 2. Parameters used for workload generation

Application Distribution 1 Distribution 2 Distribution 3 Critical Section 1 Critical Section 2
Mean (Variance) Probability, Mean (Variance) Probability, Mean (Variance) Mean (Variance) Mean (Variance)

𝑠𝑖𝑙𝑜 16.14 µs (0.288) 0.1%, 59.6 µs (0.085) NA 3.5 µs (0.15) 3.5 µs (0.15)
𝑠𝑝𝑒𝑐 𝑗𝑏𝑏 11.1 µs (0.39) 3%, 30.73 µs (0.066) 3%, 200 µs (0.049) 3.9 µs (0.1) 3.9 µs (0.1)
𝑚𝑎𝑠𝑠𝑡𝑟𝑒𝑒 105 µs (0.06) 0.001%, 1400 µs (0.05) NA 3.5 µs (0.2) 3.5 µs (0.2)
𝑖𝑚𝑔 − 𝑑𝑛𝑛 395 µs (0.007) NA NA 6.4 µs (0.5) 6.4 µs (0.5)
𝑠ℎ𝑜𝑟𝑒 92.8 µs (0.163) 45%, 432 µs (0.24) 4.2%, 1900 µs (0.124) 3.9 µs (0.1) 3.9 µs (0.1)
𝑥𝑎𝑝𝑖𝑎𝑛 532 µs (0.3) 37.8%, 1800 µs (0.35) NA 4.2 µs (0.1) 4.2 µs (0.1)
𝑚𝑜𝑠𝑒𝑠 840 µs (0.133) 85.7%, 1525 µs (0.14) 0.05%, 11450 µs (0.54) 4.9 µs (0.1) 4 µs (0.1)
𝑠𝑝ℎ𝑖𝑛𝑥 624.28 ms (0.510) 3%, NA NA 50 µs (0.6) 50 µs (0.6)

Figure 8. Single-threaded TailWAG Validation: Dashed lines show TailWAG. Numbers next to the application report latency
error at 20%/50%/70% load, with an average error of 6.2%/1.9%/7.3% respectively.

During the study, we are using three distribution compo-
nents derived from characterizing the applications. These
are represented as a vector of distributions, with correspond-
ing means, variances, and probabilities (summing to one).
We found three are enough for these applications, but this
can easily be expanded to more if necessary. Statistical func-
tions from the Python Scipy package provide continuous
probability function fitting [31], giving the best estimation
of mean and variance for a set of data.

Threads: using multiple worker threads helps with system
utilization, keeping fewer resources idle, and increasing over-
all application throughput in the ideal case [18]. However,
more threads also increase the possibility of lock contention.
Critical execution time: There are shared resources be-

tween threads, corresponding to critical execution time as
we discovered (tcp send and recv time). After the non-critical
section, every request will try to acquire the lock. A hybrid
lock was added that will spin for a fixed time, then go to
sleep. After successfully grabbing the lock, the thread will

remain busy until it expends the critical section execution
time.

Timing disturbance: a timing disturbance happens within
the service section. There can be multiple timing distur-
bances. Small timing disturbance range from tens to hun-
dreds of microseconds, emulating hardware interrupts as the
example illustrated in Figure 4. It can also be over millisec-
onds to seconds, emulating rare events such as I/O, runtime
policies (example shown in Figure 3), and garbage collection,
discussed more in 5.3.

With proper selection and tuning of parameters, TailWAG
can mimic the latency distribution from real applications.
Parameter values are listed in Table 2, and behavior for single-
thread configurations is plotted against measured results in
Figure 8 with dash lines. Overall, TailWAG closely matches
measured results for both latency (mean, 95th, 99th) and
throughput, with the exception of specjbb 99th tail latency,
which is caused by background threads that are not modeled
by TailWAG. Further validation results are shown in Figure 6
and Figure 7 (dashed vs. solid lines).
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(a) DNN evolution: Increased model com-
plexity (orange), vectorization (green), hard-
ware accelerator (red) affect mean latency.

(b) NIC IRQ: SEP/MIX with hardIRQ Ac-
celerator affect 95th tail latency, with same
application (silo). The optimal case needs
an additional (5th) core.

(c) Java GC: Parallel (plgc, throughput ori-
ented) and Zero (zgc, latency oriented) af-
fect mean and 99th tail latency.

Figure 9. Three case studies. Dashed lines from TailWAG.

5 Case Study and Discussion
TailWAG can now represent a variety of applications using
different sets of parameters, and the workflow is shown in
Figure 2. Moreover, these parameters can be dependent or
independent, upon user specification. Workload generation
by changing one of the parameters allows designers and
programmers to explore potential changes without fully im-
plementing them. Below, we showcase how to use TailWAG
to explore: changes in service time due to algorithm complex-
ity or hardware innovation for img-dnn; NIC IRQ handler
acceleration for silo; and infrequent timing hiccups (garbage
collection) for specjbb.

5.1 DNN evolution
Machine learning evolves rapidly with algorithm, model,
and hardware changes appearing regularly. img-dnn within
this suite would be affected by such changes. The baseline
img-dnn runs on a Xeon CPU. TailWAG abstracts hardware
details, replacing them with timing components (main distri-
bution of mean 395 µs, from Table 2) reflecting performance.
Here we evaluate two changes to the model: Increasing com-
plexity of the ML model for better accuracy and robustness,
with more burden on computation; [12] reported there is
an annual increase of 1.46X on FLOPs in CNN-based image
recognition within Google. Second, hardware innovations
that speed up the ML workload; [13] measured there is 1.6x
to 70x speedup (compare to CPU) when GPU or TPU are used
for running CNN models. TailWAG can capture these trends:
GPU/TPU innovation reduces the mean service time by 1.7x
to 320 µs or 70x to 7.75 µs. Here, TailWAG only predicts the
impact of this particular change, providing insight on other
important behaviors (contention, tail latency distribution,
etc.). Using our model, we can predict performance benefits
as in Figure 9a. As performance increases, img-dnn moves

into a realm where microsecond-scale timing disturbances
are important, such as thread contention, lock implementa-
tion and interrupt handling, similar to silo and specjbb.

5.2 NIC hardIRQ Accelerator
As previously discussed and shown in Figure 1, reserving
a core for interrupt handling (SEP vs. MIX) can improve
tail latency at the cost of lowered throughput. Here we use
TailWAG to examine the SEP and MIX cases and compare
them to a hypothetical IDEAL case where interrupts do not
perturb the server threads at all, as well as a hypothetical
hardIRQ accelerator that services the interrupt with minimal
overhead (around 0.5 µs) using a tightly-coupled accelerator
(TCA) attached to the CPU core. The TailWAG results in
Figure 9b show that such an accelerator has the potential
to bridge much of the performance gap to the optimal case,
while likely requiring much less hardware than a dedicated
core. Detailed exploration of a hardIRQ accelerator is left to
future work.

5.3 Garbage Collection
Many applications are written in high-level programming
languages that provide garbage collection, such as specjbb
in our test suite. Garbage collection itself is a non-trivial
problem: there is no single garbage collector that is best for
every application, and it should be chosen with trade-offs
in mind [34]. There are several garbage collectors used in
java; here we picked plgc (parallel, throughput-oriented) and
zgc (latency-oriented) to showcase TailWAG. Here, single
thread specjbb is modeled in Figure 9c: plgc case has better
service latency, but worse "stop the world" events, around
50 ms every 10 seconds; zgc has worse mean service time
(around 10%), since garbage collection runs concurrently,
but has better "stop the world" events, less than 1ms each,
leading to better tail latency distribution.
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6 Conclusions and Future work
Tail latency is a crucial performance metric for server work-
loads. Benchmarks exist, but suffer from limitations and
require a significant amount of effort to run as they suffer
from run-to-run variation and experimental noise. In this
work, we propose TailWAG, a workflow that analyzes tail
latency-sensitive workloads, extracts a set of parameters
that describe timing behavior; then generates a synthetic
workload that closely mimics real application performance,
both single load cumulative distribution, and trends under
different loads. TailWAG performs well overall, with average
6.2% errors on mean, 1.9% on 95th tail and 7.3% on 99th tail
latency respectively. Moreover, using the generated work-
load and parameter sweeping, we can explore the design
space of hardware/software innovations and assess runtime
configuration impacts with minimal implementation effort.

Future directions for this work include adding and evaluat-
ing additional parameters that may lead to better matches to
application behavior and automating the parameter search
process by using machine learning techniques. One of the
potential additional parameters is QPS-dependent variance,
leading to more performance hiccups when the system is
at a higher load: longer latency for higher load; higher vari-
ance for higher load; higher chance of noise for higher load.
Moreover, in addition to the current log distributions, more
distributions can be added for generating all latency-related
randomization, including uniform and geometric distribu-
tions. Shared resource access is limited to two locks (recv
and sent) in this paper. In more complicated and detailed
cases, lock contention within the application may not be
adequately captured. Different threads are not always ac-
cessing the same critical section, and an array of locks could
represent different shared resources. Both the length of the
lock array and the probability of accessing the same lock can
be tuned.
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