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Synopsis Av i an mig rat io n is amo ng the most ener g et ica l ly demanding feats observed in anim al s. Studies evaluating the phys- 
iolog ica l underp innings o f mig rat ion have repeate d ly s h own tha t migra to ry b ird s di splay numerou s ada pta tions tha t u lt imately 
supp l y the flight muscle mi tocho ndri a w ith abund ant fuel and oxyg en durin g lon g-distance flights. To make use of this high 
inpu t, the o r gan s and mit oc ho ndria o f migra nts a r e pr e dicte d to display s e vera l t raits th at m aximize their c apacit y to p rod uce 
aden osin e triph osph ate (ATP). Thi s re vie w aims to introduce reader s t o s e vera l me ch ani sms by which or gan s and mit oc hon- 
dri a c an alter their c apacit y for oxid ati ve p hosp ho rylatio n and ATP p rod uctio n. The role o f o rgan size, mi tocho ndrial vol ume, 
s ubs trat e , and oxyg en deliv ery to the ele ct ron t rans port sys tem are di scu sse d. A cent ra l th em e of this re vie w is the role of 
chan g es in ele ct ro n chain co mp lex acti v it y, mit oc h on drial m orph ology an d dyna mics, a nd su perco mplexes in a l low ing av i an 
migra nts a n d oth er taxa t o alt er t he per for mance of the ele ct ron t rans port sys tem wit h predict able shif ts in dem and. It i s my 
hope that this re vie w wi l l serve as a springboa rd f o r fu t ure st udies explor ing t h e m ech ani sms th at al ter b ioener g et ic cap acity 
across animal species. 
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ntroduction 

o migrat e , bird s mu s t s us ta in a n except iona l ly high
eve l of aden osin e triph osphate (ATP) p rod uctio n over
any hours whi le fast ing ( Jenni and Jenni-Eiermann
998 ; McWi l liams et al. 2004 ). To su ppo rt flight un-
er these co ndi tio ns, lo ng-dista nce migra n ts accum u-
 ate l ar g e fat depots p rio r to mig rat io n that su ppo rt the
ema nd f o r nu trients d uring mig rat ion, an d th ey dis-
lay s e veral ada pta tions tha t maximize oxygen delivery
 o the mit oc hondria ( Weber 2009 ). These ada pta tions
re not observed in their no n-migrato ry counter par ts.
h e con cept of sy mmor phosis s ugges ts t hat t he size
 r capaci ty o f a l l p arts of a p hysio log ica l sys tem mus t
at c h t o su ppo rt t he f unct iona l deman d of th e organ-

sm ( Wei be l et al. 1991 ). Th us, eleva ted oxygen and nu-
rient delivery to tis s ues, as o bserved in av i a n migra nts,
 h ould be met with greater oxygen and nu tri tio n al su b-
trat e u t i lizat ion and g r eater ATP pr oduction by the mi-
 dvance A ccess pu blication Jun e 6, 2024 
C Th e Auth or(s) 2024. Pu blis h ed by Oxford University Press on behalf of the
o r permissio ns, plea se e-m ai l: j ourna ls.permissio ns@ou p.co m 
 oc h on dria. Thus, re lative to non-migran ts, migra tory
ir ds ar e pr e dicte d to display t raits t hat incre ase t heir
 apacit y to produce the ATP ne e de d to s us tain flight
or extended p erio ds of time. G iv en that mit oc h on dria
r e r espo nsible fo r at least 90% o f the ATP used by
nim al s to su ppo rt essent ia l ly a l l metab olic pro cesses
 P izzorno 2014 ), a n eva luat ion of the perf orma n ce th e
it oc h on dri a v ital to these movements wi l l provide un-
 ara l lele d insigh t in to h ow som e av i an species, b ut no t
thers, are able to accomplish these amazing ener g etic
eats. 
The evol u tio n o f the mi t oc h on drion enabled multi-

el lu l arit y and the co mplexi ties o f verteb rate anim al s
 nd a rthrop o ds ( Lane 2006 ). How ev er, the div ersi ty o f
ife histories that emer g ed amon g complex anim al s ne-
essitated not merely a lar g e supply of energy but also a
eans to precisely regulate energy to match the ne e ds
f th e in div idu al organism ( Ba l lard et a l. 2007 ). To
 Society for In tegra tive and Com para tiv e B iology. All rights reserved. 
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accommodat e c han g es in ener g etic demand , mit oc hon-
dri a displ ay me taboli c flexibility . Al l eu karyot ic or-
ga nisms appea r to have the c apacit y t o alt er the vol-
ume of mit oc h on dria in cells ( Devin and Rigoulet 2004 )
an d th e rate of oxidativ e ph o sph o rylatio n (OXPH OS)
( Box 1 ) ( Devin and Rigoulet 2007 ). The rate of OX-
PHOS varies between a basal rat e , whic h ma inta ins the
p roto n motive force while at rest, and a funct iona l stat e ,
which is t ypic a l ly sufficient to su ppo rt th e ce ll’s an d or-
ga n’s dema nd f or ATP ( Nicholls and Ferguson 2013 ).
In addi tio n, eviden ce is em er gin g to sugg est that some
or ganism s hav e ev o l ve d me ch ani sms th at f urt her op-
t imize organ-spe cific ATP product ion by reversib l y al-
ter ing bas al or maxim um ca paci ty fo r ATP p rod uctio n.
These chan g es occur in respon se to trainin g, s tres s, and
predicta ble chan g es in s eas o n o r life histo ry ( Staples
2014 ; Fiorenza et al. 2019 ; Stier et al. 2019 ; Rhodes et
al. 2024 ). 

Over the last decade, an increasing number of evolu-
tiona ry a nd eco logical p hysio logi sts h ave in cluded m ea-
surements of mit oc h on dr ial per for mance in their stud-
ies ( Salin et al . 2012 ; Pic haud et al . 2013 ; Staples 2014 ;
Ivanina et al . 2016 ; Koc h et al. 2021 , among many oth-
ers). Yet, ot her t han le a k and accumu late d damage from
react ive spe cies, fe w res earc her s hav e delv ed into the
mech ani sms th at su ppo rt variatio n in the capaci ty o f the
ET S to p er for m OXPHOS. In gen eral, m easures of OX-
PHOS ar e r e lative ly repe at able wit hin indiv idu a ls ( St ier
et a l. 2019 ; Thora l et a l. 2024 ). Th ere is in creasing ev-
idence that rates of OXPHOS can be a ltere d to match
per sist ent o r p re dicte d chan g es in demand ( Smith et al.
2018 ; Memme et al. 2021 ; Staples et al. 2022 ; Rhodes et
al. 2024 , among others). 

The obj e ct ive of this re vie w is to provide a s caf-
f old f o r eval uating how organisms alter their c apacit y
fo r ATP p rod uctio n. W hile thi s m anu script i s framed
wit hin t he context of av i an mig rat ion, wh ere th e ca-
p acity to mig rate var ies wit hin an d between close ly re-
late d spe cies, thi s m anu script wa s writt en t o be u sed a s
a r esour ce for r esear c her s stud ying di verse taxa disp lay-
ing a n a rray of ener g etic ada pta tions. This re vie w has
like ly over looked kn own m ech ani sms fo r ad justing OX-
PH OS and fu ture wo rk wi l l li kely revea l ne w process es.
Thus, readers s h ou ld view this p ap er as a springb oard
rat her t han a guide fo r explo r ing t h e m ech ani sms re-
spo nsible fo r variatio n in OXPHOS. This work starts
with an overview of key processes tha t im pact the capac-
i ty fo r ATP p rod uctio n u pstream o f th e E TS, in cluding
s ubs trate deliv ery, or ga n size, a nd mit oc hondrial vol-
ume, but emph a sizes processes th a t regula te OXPHOS,
incl uding mit och on drial comp le x e nzymat ic act ivi ty ,
mitoch on drial m orph ology , mitoch on drial dyn am-
ics , and su pe r com p le x abun dan ce ( Fig. 1 ). 
Intra- and interspecific variation in the 

capacity to migrate 

Acr oss Aves, ther e is tr em en dous variation in the sea-
sonal m ovem ents o f b irds an d, h en ce, in th e en er g etic
dem and s of migratory m ovem en ts ( Ra ppole 2013 ). In-
div idu als in many species o f b irds do not migrat e .
Among species where at least some indiv idu a ls mig rat e ,
m ovem ents vary from a series of s h ort fligh ts tha t re-
q uire lit tle chan g e in daily ener gy expenditur e r elative
to the no n-migrato ry p erio d to th e extrem e m ovem ents
across major oceans and from one side of th e plan et to
t he ot her ( Batt ley et al. 2012 ). In numerous clades of
bird s, si s ter s pecies and even s ubs pecies vary in their
use o f migrato ry m ovem ents, s ugges t ing that mig ra-
tio n in b ird s i s a high ly labi le t rait. Severa l invest iga-
t or s have s ugges ted that av i an mig rat ion evo l ved nu-
m erous tim es a t m u lt iple tax onomic lev e ls ( He l big 2003 ;
Pu lido 2007 ). Conversely, mig rat ion may have evo l ved
fewer times but with frequent losses of migratory capac-
it y ( Zink 2011 ; R oll and et al. 2014 ; Gómez-Bahamón et
al. 2020 ). 
Approac hes t o studying th e en er g etic ada pta tions

that a l low for mig rat io n have incl ude d both int raspe-
cific and int er spe cific comp arisons. Int raspe cific com-
p arisons a l low r esear c her s t o c haract erize how a p art ic-
u lar spe cies su ppo rts migrato ry dem and s. In contra st,
int er specific and even inter-s ubs pe cies comp ariso ns o f
migratory and no n-migrato ry b irds wi l l provide va lu-
a ble in sigh t not only in to how b irds differ bu t also into
th e processes m odified across g eneration s an d wh eth er
thos e process es are ass oci ated w it h shif ts in gene fre-
quency o r al t ernative mec h ani sm s. Taken tog ether, in-
vest igat ing not only what traits differ between migrants
an d n o n-migrants bu t also h ow th ose tra its a r e r egu-
l ated w ill be exceptionally valuable t o under st anding t he
source of such diversity. 
Migrato ry b ird s di splay a mix of fixed an d flexi ble

p hysio log ica l t rai ts that su ppo rt th e en er g etic dem and s
of mig rat ion ( McWi l lia ms a nd Ka ra sov 2001 ; We ber
2009 ). Comp are d with non-mig rants, mig rants persis-
tent ly have gre ater concent rat io ns o f red blo o d ce lls an d
h em oglobin in th eir blo o d, in dicating high er oxygen-
c arry ing c apacit y ( Yap et al. 2019 ; but see Minias 2019 ).
The y als o have a higher resting metabolic rate (RMR)
thro ugho ut the year than non-migrants ( Jetz et al.
2008 ). Typica l l y, indi v idu als w ith a high RMR consume
more ATP per unit of tim e, an d e levated RMR can arise
from s e veral different va ria bles, includin g higher or gan
m a ss, high er immun e costs, an d gre ater t her moregu-
lat ory demand , but it can also be associ ated w ith less
efficient mit oc h on dria l b asa l respirat ion ( Spea kman et
al. 2004 ; Jetz et al . 2008 ; Burt on et al. 2011 ). Traits that
s h ow within-in dividual flexi b ili ty in migrants include
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Box 1: A primer on OXPHOS. 

OXPHOS is the process that su ppo rts the co nversio n o f ADP to ATP by th e e le ct ron t rans port sys tem (ETS), making 
ATP available as fuel for the organism. In eukaryotes, the pro cess o ccurs within the mit oc hondr ia, where t he ETS 
p rotein co mplexes si t wi t hin t h e inn er mit oc h on drial m embran e. Th e products of carbohydrat e , lipids, and, in some 
cases, p rotein b re akdown enter t he citr ic acid cyc le , wh ere th ey are convert ed int o mole cu les th at don ate ele ct rons 
to complex I (NADH) or complex ll (FADH 2 ) of the ETS. The b reakdown o f each macro nu trient p rovides NADH 

a nd FAD H 2 , but at differen t ra tios of NAD H:FAD H 2 . Thu s, each m acro nu tr ient var ies in its relative dependence on 

OXPHOS v i a complex I versus complex II, with the breakdown of all macro nu trients su pp l ying m ore high er en ergy 
NAD H (which ca n su ppo rt the p rod uctio n o f 3 ATP per NADH mole cu le) t han t h e lower en ergy FADH 2 (which can 

su ppo rt the p rod uctio n o f 2 ATP per FADH 2 mole cu le). Once ta ken u p by co mplex I o r II, ele ct ron s mov e betw een 

the complexes of the ele ct ron t ra nsport cha in (E TC), wh ere th ey are u lt imately t ra nsf er red wit h tw o hy drog en ion s 
to an oxygen mole cu le to p rod uce water. 
Th e m ovem ent of e le ct ron s betw een complex I, III, and IV or II, III, and IV is coupled to th e m ovem ent o f p roto ns 
from the mit oc h on dria l mat rix into the interm embran e sp ace, creat ing a p roto n gradient. Co mplex V, the ATP syn- 
th a se, h a s a ch ann e l that a l lows the p roto n io ns to flo w do wn th eir con cen tra tion gradien t from the interm embran e 
sp ace b ac k int o t he matr ix, where t he p roto ns su ppo rt the addi tio n o f a p hosp hat e ion t o ADP t o p rod uce ATP 

( Stryer 1999 ; Co op er 2000 ). Wh en a ce ll is at rest, th e ATP synth a se on ly a l lows eno ugh pro tons thro ugh the ATP 

synth a se ch ann e l to su ppo rt the p rod uctio n o f th e ATP n eces sary to s u ppo rt h ouse keeping fun ct ions ( Wi l lis et a l. 
2016 ). Wit h incre a sed ATP dem and, t he ATP synt h a se i s tr ig gered to f urt her open t he p roto n chann e l, pr imar ily v i a 
calci um io n signaling ( De Marchi et a l. 2014 ; Wi l lis et a l. 2016 ), a l lowing p roto n s to mov e bac k int o t he matr ix and 
su ppo rting the synthesis of A TP. Thus, A TP p rod uctio n is fueled by demand for ATP and not by available s ubs trat e . 
Bot h t he le a k of ele ct ro ns o r p roto ns fro m th e E TS can reduce th e efficien cy an d, t hus, t he rate o f ATP p rod uctio n by 
th e E TS. Proton leak can be passive t hrough t h e inn er m embran e or active thro ugh unco u pling p roteins o r adenine 
nucle ot ide t ransloca se ( Ja st roch et a l. 2010 ). Th e leak of e le ct ro ns can co ntribu t e t o react ive spe cies format ion. Both 
p roto n an d e le ct ron lea ks are t ypic a l ly g re atest when t he avai labi lity of ele ct ron donors is high and the p roto n motive 
force is high, but the use of ele ct rons to produce water and protons to support ATP production is low ( Murphy 2009 ; 
Speakma n a nd Ga rratt 2014 ; Wi l lis et a l. 2016 ). 
Fo r a mo re detai le d descript ion, I re comm en d th e r eader r e vie w the c hapt er o n OXPH OS in college textb o oks for cell 
bio logy, animal p hysio logy, o r b iochemistry tar g et ed t o u pper-level b iology students. Then, co nsider re vie wing more 
detai le d r efer ences such as Bioch emic a l Ada pt atio ns by Somero et al. (2016) and Bioen er ge tics textb o o ks by Nicho lls 
and Ferguson (2013) . I also found the hydraulic model described by Willis et al. (2016) h e l p ful in my un derstan ding 
o f OXPH OS. Image created wi th BioRender.co m. 
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4 W. R. Hood 

Fig. 1 Mechanisms contributing to variation in ATP production. Organ mass and mitochondrial volume determine how many 
ATP-producing units there are in the organ, and the supply of oxygen and mitochondrial substrates to the ETS can limit ATP production 
when supplied below the capacity of the ETS. Further, the capacity of the ETS itself can be up- or do wn-regulated b y altering the enzymatic 
activity of the complexes, changing the proportion of ETS supercomplexes, altering inner membrane leak, changing mitochondrial 
morphology and dynamics, and with the accumulation of oxidative damage. Created with BioRender.com. 
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the size of the fligh t m usc les (pect oralis and supraco-
racoideus) and gas trointes tinal tract ( Evans et al. 1992 ;
P iersma a nd Gi l l 1998 ; La ndys-Cia nnelli et al. 2003 ).
Flexib ili ty in flight muscle size is associated with vari-
able muscle fiber dia meter a nd va riable n umber of n u-
clei per volume of cyt oplasm (i .e ., myonuc lea r doma in)
( Evans et a l. 1992 ; Vézina et a l. 2021 ). Flexibi lity in
th e size an d m a ss of the gas trointes tinal track s up-
po rts p remig rat ion hyperphag ia and adip ose dep osi tio n
( P iersma a nd Gi l l 1998 ; La ndys-Cia nnel li et a l. 2003 ).
Th e re lative m a ss of ga s trointes t ina l or gan s declines
d uring lo ng-distance mig rat ion and may be rebuilt at
st opover sit es before dec lining again when mig rat ion
con tin ues ( Dekinga et al. 2001 ). Bird s m ay enh ance
t heir alre ady high s ke letal musc le mit oc h on drial vol-
ume in prep arat ion for mig rat ion ( Evans et al. 1992 ). An
incre ase in t he relative skelet al musc le size , mitochon-
drial v olume , an d mitoch on drial respiratory perfor-
m an ce is co mmo n ly observe d with high-intensity train-
ing in humans ( Fiorenza et a l. 2019 ; Ca l la han et al.
2021 ). Chan g es in muscle size and mi tocho ndrial vol-
ume are init iate d in response to pho to p erio d in the
days or weeks before the onset of mig rat ion in birds
( DeMoranvi l le et a l. 2019 ; Vézina et a l. 2021 ), before
there is a n appa rent increase in time spent in flight. This
s ugges ts that chan g es in muscle size and mi tocho ndrial
volume occur in ant icip at ion of high deman d, n ot sole ly
as a response to demand, as occurs with the init iat ion of
a new training program in humans. 
These dat a sug gest t ha t migra to ry b ird s h ave phys-

iolog ica l a nd a na tomical ada pta tions tha t su ppo rt a
high rate of oxygen and nutrient delivery to demand-
ing tis s ues, s uch as the fligh t m uscles. The av i an lineage
evo l ved s e veral changes in cel lu lar met abolism t hat al-
low th e s ke letal muscles of flying birds to function near
th eir en er g et ic cap acity (i .e ., VO 2 max) ( Guglie lm o et
a l. 2002 ; McWi l liams et a l. 2004 ; Butler 2016 ). Birds
su ppo rt this high demand with a high densi ty o f mi-
t oc h on dria in their flight muscles and a high den-
si ty o f OXPH OS co mplexes per mi t oc h on drion ( Suarez
et al. 1991 ; Ra smu ssen et a l. 2004 ; Kuzmia k et a l.
2012 ). Mamm al s fuel p erio ds o f p rolo n g ed ex ercise al-
m ost entire ly w ith c arbohydra tes (respira tory quotien t,
R Q > 0.90; B rooks an d Don ovan 1983 ; O’ Br ien et al.
1993 ); in co ntrast, b irds fuel flight primarily by ox-
idizing li p ids (RQ = 0.72–0.73) ( Rothe et al. 1987 ;
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uzmi ak-Gl a ncy a nd Wi l lis 2014 ). Wh en m eta bolizin g
atty acid s, bird s drive OXPH OS wi th fewer ele ct ron
o no rs (NAD H, FAD H 2 ) in t he matr ix t han observed
n m amm al s u sing t he s am e su bstrat es; this lower s the
umber of ele ct rons p assing through th e E TS, low erin g
 he r isk t hat ele ct rons wi l l esc ape. R e duce d ele ct ron lea k
i l l resu l t in the p rod uctio n o f few er reactiv e oxyg en
pecies and lower the potent ia l for the accum ula tio n o f
xid ative d amage ( Su are z et a l. 1991 ; Barja et a l. 1994 ;
a smu ssen et a l. 2004 ; Kuzmia k et a l. 2012 ; Kuzmia k-
la ncy a nd Wi l li s 2014 ). Bird s al so u se fat more effi-
ient ly t h an m amm al s, a s indicated by a higher oxy-
en ut i lizat ion cap acity ( s tate 3 res p iratio n ) when pro-
ided succinate o r palmi toylcarni tine as an OXPHOS
 ubs trate ( Kuzmiak et al. 2012 ). Wh eth er th ese bioen-
r g etic ada pta tio ns fo r fligh t are also sufficien t to sup-
o rt lo ng-distance migrato ry m ovem ents is unkn own. 

ariables altering ATP production upstream of 
XPHOS 

h e m etabolic rate of an in div idu al is t he sum of t he
xygen ut i lize d to su ppo rt a l l metab olic pro cesses in the
 o dy. Yet, chan g es in ener gy dema nd a r e often obscur ed
rom whole anima l respirat ion m easurem en ts beca use
r gan s interact and trade-off r esour ces ( Metcalfe et al.
023 ). Th us, delving in t o the c haract er istics t hat im-
act the c apacit y of or gan s to produce ATP can pro-
 ide valu a ble in sigh t in to how a n orga nism su ppo rts the
em and s of a spe cific act iv it y. In the co ntext o f av i an
ig rat io n, lo ng-d uratio n migrato ry m ovem ents re ly on

h e con cer ted effor ts of mu lt iple or gan system s. The
un gs maximize oxyg en uptak e a n d th e rem oval of car-
on dioxide, the blood h a s high cap acit ies in carrying
xygen a nd buffering ca rbon dioxide, a n d th e diges-
 ive system at r ophies, r educing m ainten ance dem and s,
hile adipose stores are efficiently mobi lize d to sup-
ort demand ( Weber 2009 ; Ivy and Guglielmo 2023 ).
h e syn ergy of th ese or gan system s facilitates an in-
rease in available oxygen and n utrien ts alloca t ed t o the
igh t m uscles. Wit hin t his n etwor k, th e or gan s t hat be ar
h e high est en er g etic dem and s are the pe ctora lis, which
u ppo rts the downstrok e, a n d th e su p raco raco ideus,
hich su ppo rts the u pstroke . Hence , thes e mus cles pro-
 ide valu a ble tar g ets fo r eval uating the bioener g etic de-
 and s of flig ht, thoug h insig hts wi l l a lso be gaine d from
xamining other organ systems ( Jehl et al. 2015 ). For il-
ust rat i ve purposes, emp h a si s wi l l be place d on the pe c-
oralis. 
The ab ili ty o f the pecto ralis to p rod uce ATP is

ro ad ly dependent on its relative m a ss, the volume of
it oc h on dri a w it hin t he orga n, a n d th e re la tive ra te of
TP p rod uctio n by the ETS within the mit oc hondria.
ach of these va riables a n d th eir su ppo rting p rocesses
i l l deter mine t he ATP o utp ut of the orga n. Ma ny or-
a ns cha nge in m a ss relative to dem an d, un der g oin g hy-
ertroph y, h yperpl asi a, and/or atrophy. A l ar g er or gan
 rod uces mo re ATP than a sma l ler organ if mit oc hon-
rial volum e, m orph ology, an d fun ct ion are simi lar.
o reover, if o rgan m a ss i s co nstant bu t mi t oc h on drial
olume is gre ater—whet her associated with an increase
n the number of cells with the same relative mit oc hon-
rial vol ume o r m ainten ance of cell number alongside
n increase in mit oc ho ndrial vol ume per cell—there
i l l a l so be an increa se in ATP p rod uctio n. Therefo re,
rgan m a ss and mit oc ho ndrial vol ume are vi tal to un-
erst anding t he c apacit y of an organ to produce ATP.
n Gray Catbirds ( Dum e tella c arol i nensis ), mig rat ion is
ssoci ated w it h incre ase d pe ctora li s m a ss b ut no t mi-
 oc h on drial volum e ( DeMoranvi l le et al. 2019 ). In con-
ras t, European Ro bins ( Erith a cus rub ecul a ), Re e d War-
 lers ( Acroc eph al us sei rpa c eus ), and Co mmo n B lac k-
ir ds ( Tu rd us merula ) a l l di splay increa sed mit oc hon-
rial volume associated with mig rat ion (pe ctora li s m a ss
as n ot given; Lun dgren an d Kiess ling 1985 ). Evalu-
tio n o f s ke letal muscle ph en ot ype is complic ated by
 mix of different sk eletal muscle fiber types and mi-
 oc h on drial po p u lat ions that vary in function and ca-
aci ty fo r ATP p rod uctio n ( Lun dgren an d Kiess ling
988 ). As muscle fiber types are readi ly quant ifiable and
he resp irato ry perfo rmance o f mi t oc hondrial po p ula-
ions in the subsarcolemmal an d intermyofibri l lar sp ace
an be di stingui s h ed ( Kavazis et al. 2009 ), it is worth
on siderin g differences in each po p u lat ion a s h a s been
 haract er ized in ot her studies o f b ird s ke letal muscle
 Duchamp et al. 1991 ; Roussel et al. 2000 ; Teulier et al.
016 ). 
The c apacit y of mit oc h on dria to pr oduce ATP r e-

ies on a my ri ad of processes upstream of the ETS and
r ocesses that dir e ctly a l ter OXPH OS. W hile the de-
a nd f or ATP drives the ut i lizat ion of nut rit iona l sub-
t rates ( Trive di et a l. 2015 ; Wi l lis et a l. 2016 ; Boël et a l.
020 ), the ab ili ty o f the b o dy an d ce lls to de liver su b-
trat es t o the mit oc h on dria l mat rix and ETS can con-
train ATP p rod uctio n. During migratio n, flight is p ri-
arily su ppo rted by the oxidation of fatty acids mo-
i lize d from adipose stores (but see Elowe et al. 2023
or evidence that protein catabolism can also be im-
o rtant). Su ppo rting the u tilizatio n o f fatty acid s a s
 uel, birds in t he migratory st ate u p regul ate fatt y acid
ranspo rt p roteins that carry fatty acids into the cell,
 hrough t he cyt osol , and int o the mit oc ho ndrio n. These
han g es include a higher fatty acid translocase that car-
ies fatty acids through ext racel lu la r a nd int racel lu lar
paces, a higher fatty acid binding protein that carries
atty acids through the cyt osol , and a higher carnitine
 a lmitoyl t ra nsf era se th at pr epar es fatty acids f or tra ns-
ort into the interm embran e space of the mit oc h on dria
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( Bo nnefo nt et al. 2004 ; Zhang et al. 2015 ; Young et al.
2021 ; Rupert and Kolonin 2022 ; Agellon 2023 ). There
i s al so an u p regu lat ion in the cap aci ty fo r β-oxidatio n
wit hin t he mit oc h on dria l mat rix, as indicate d by g reater
β-hydroxy lacy l CoA-dehy drog en a se ( Zh ang et al. 2015 ;
Young et al. 2021 ). β-oxid ation c a tabolizes fa tty acids
for entry into t he citr ic acid cycle and β−hydroxy lacy l
CoA-dehy drog en a se i s a key enzyme in tha t pa thway.
Thes e process es wi l l resu l t in the p rod uctio n o f mo re
NAD H a nd FAD H 2 tha n f oun d in n on-migrants , which
can be used to su ppo rt OXPH OS v i a complex I and
complex II (here af t er, complexes not ed with C, i .e ., Cl
and C l l). 

OXPHOS 

Mit oc h on dria l respirat ion m easurem ents are t ypic a l ly
completed in per me abi lize d cel l s, i solat ed mit oc hon-
dria, o r cul tured cells ( Brand and Nicholls 2011 ; Koch
et al. 2021 ). While numerous variables can be measured
in these contexts, many of which are specific to the type
of inst rument use d ( Zdrazi lova et a l. 2022 ; Wa lsh et a l.
2023 ), two co mmo n measures o f mi t oc h on dr ial f unc-
tion are state 3 and state 4 resp iratio n un der ex viv o con-
di tio ns. State 3 is a measure of the maximum respira-
to ry perfo rmance o f cou pled mi t oc h on dria given un-
limited s ubs trat e , oxygen, an d aden osin e diph osphate
(ADP); state 4 resp iratio n is a measure of b asa l respira-
to ry perfo rman ce wh en ADP h a s be en deplete d ( Brand
an d Nich ol ls 2011 ). Whi le som e differen ces occur in th e
co ndi tio ns under which state 4 m easurem ents are com-
plet ed (i .e ., wi th o r wi thou t th e inhi b i tio n o f the ATP
synth a se), state 4 i s genera l ly considere d a m easurem ent
o f leak resp iratio n ( Koch et al. 2021 ). Specifically, leak
i s a ssoci ated w it h t h e passive or in duced m ovem ents of
p roto ns fro m the interm embran e sp ace b ac k int o the
ma trix. To com pensa te for the leak, th e E TS must con-
tinuou sly u se s ubs trate and oxygen to ma inta in the pro-
ton g radient betwe en t he inter m embran e space an d th e
matr ix and, t hu s, m a inta in a minimum p roto n motive
force. Th us, sta te 4 respira tion me asures t he amount of
oxygen used to com pensa te for leak ( Koch et al. 2021 ). 

On ly thre e pu blis h e d studies have eva luate d the
resp irato ry perfo rmance o f mi t oc hondria in migra-
to ry b irds ( Toews et a l. 2014 ; Cou lson et a l. 2024 ;
Rhodes et al. 2024 ). Toews et al. (2014) compared
the resp irato ry perfo rmance o f pecto ralis mi t oc hon-
dri a bet ween Aud ubo n’s Wa rblers that ca r r ied t he mi-
t oc h on dri al haplot ype the migratory Myrtle Warbler
( Set op haga co ro nat a ) or the mit oc h on dri al haplot ype
no n-migrato ry Black-fro nted Warbler ( Set op haga ni-
grif rons ). The y found that the pe ctora lis mit oc h on drial
o f individ uals wi t h t he Myrt le Warbler hap otyp e dis-
played a higher acceptor con trol ra tio, b ut no t higher
state 3 resp iratio n, than individ uals wi t h t h e n on-
migrat ory B lac k-front ed Warbler h aplotype. A n impor-
t ant cave at in t hi s study i s th at bird s were col le cte d dur-
ing the bre e ding s eas o n, which is ou tside o f the migra-
tory p erio d. The acceptor control ratio (ACR) is a ra-
tio of state 3/state 2 resp iratio n, wi t h st ate 2 respira-
tion being a measure of mit oc h on dria l respirat ion after
the addi tio n o f py ruvate and mal ate s ubs trates but be-
fore the addition of ADP. ACR measures how efficiently
s ubs tra te oxida tio n is cou p led to ADP p hosp ho rylatio n.
This variation did not appear to be associ ated w it h var i-
ation in the enzymat ic act iv it y of complex l , whic h did
not differ betwe en g roups ( Toews et al. 2014 ). In con-
t rast, Cou lson et al. (2024) eva luate d mit oc h on drial res-
p iratio n in pecto ralis mi t oc h on dria of Yel low-rumpe d
Warblers (a.k.a. Myrtle Warblers) in a migratory ver-
sus no n-migrato ry state a nd f ound that pe ctora lis mi-
t oc h on dria from warblers in the migratory condition
dis played higher s tate 3 and s tate 4 res p iratio n when
provide d p a lmitoylcarnit in e su bstrat e , sugg estin g that
chan g es in mi tocho ndrial resp irato ry functio n are nec-
essa ry f or mig rat ion. 
In col laborat ion wit h t he Hi l l and Kavazis labs,

Rh odes an d oth ers in my l ab evalu a ted the respira tory
per for mance of pe ctora lis mit oc h on dria in a migratory
an d n o n-migrato ry s ubs pecies o f W hi te-crowne d Sp ar-
row ( Zono tric h ia leucoph rys ga mbe l i i and Z. l. nuttalli ,
respe ct i vel y). We eva luate d mit oc h on dr ial f unction in
bir ds fr om the migrant po p ulatio n d ur ing t he spr ing as
b irds p rep are d for mig rat ion, during fa l l mig rat ion, and
dur ing t h e winter n o n-migrato ry p erio d. We col le cte d
simil ar d ata from indiv idu als from th e n on-migrant
po p u lat io n d uring fa l l an d winter but n ot spring so as
not to incl ude rep rod ucti vel y acti ve birds in our study
( Rhodes et al. 2024 ). We found that state 3 and state
4 resp iratio n an d th e rat io betwe en t he two, t he respi-
rato ry co nt rol rat io (RCR), o f pecto ralis mi t oc h on dria
were u p regu late d just p rio r to and d ur ing t he mig rat ion
in the migran t. In terestingly, the u p regulatio n o f maxi-
mum mit oc h on dri al respiratory c apacit y was observed
r egar dless of the subst rate use d to st imu late OXPHOS,
including (1) p a lmitoylcarnit in e, as s h ow n in Fig . 2 , (2)
a mix of pyruvat e , malat e , gl u tamat e , and (3) succinate
( Rhodes et al. 2024 ). R CR also follow ed the same pat-
t ern. If c han g es in leak w er e r espo nsible fo r t he patter n,
R CR w ould hav e been similar between all gro ups, b ut
it was not. G iv en tha t pa tterns o f mi t oc h on drial respi-
rat ion were simi lar acros s s ubs trates for s tate 3 and 4
resp iratio n, we p ropose t hat t he patter n s observ ed are
a p rod uct o f a p rocess th at h a s glob a l effe cts on the ef-
ficiency of oxygen ut i lizat ion by the ETS. Thus, the up-
regu lat io n o f mi t oc h on dria l cap acity must be associated
with a mech ani sm th at e qua l ly imp acts oxygen ut i liza-
tion r egar dless of the path of the ele ct r ons thr ough the
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Fig. 2 Comparison of state 3 and state 4 respiration with 
palmitoylcarnitine substrate in isolated pectoralis mitochondria 
collected from migratory Gambel’s ( Zonotr ic hia leucophyr s gambelii ) 
and non-migratory Nuttall’s ( Z. l. nuttalli ) White-crowned Sparrows. 
Data presented includes samples collected during spring 
premigratory fattening (Spr-Pre), fall migration (Fall-Migr), and 
during winter (outside of the migratory period) for Gambel’s 
individuals and during fall and winter for Nuttall’s individuals. No 
animals w er e br eeding during an y of these periods. The letters 
above indicate the results of statistical comparisons between 
groups. If the letters are similar, the groups are statistically similar. If 
the letters are different, the groups are statistically different. Data 
adapted from Rhodes et al. (2024) . 
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it oc h on dr ia. To deduce t he adapt atio n respo nsible fo r
 his patter n, it is necess ary to delve f urt her into pro-
esses that regulate OXPHOS. 

echanisms that alter the efficiency of 
XPHOS 

tate 3 and state 4 resp iratio n, an d th eoretically, th e
unct iona lity of the mit oc h on dria in viv o , can be mod-
fied by a variety of mech ani sm s, includin g the enzy-
at ic act iv it y of the ETS complex es, chan g es in mi-
 oc h on drial m orph ology, fission an d fusion dynamics,
n d th e re lativ e a bun dan ce of E TS complexes assem-
led into supermole cu lar st ructures ca l le d su perco m-
 lexes ( Stro hm a nd Da nie ls 2003 ; Math er s et al . 2017 ;
iorenza et al . 2019 ; Hut c hinson et al. 2022 ). Th e fun c-
io n o f the mi t oc h on dri al complexes w it hin t h e E TS can
ary when there are n on-syn onym ous differen ces in th e
it oc h on drial or nuclear genes that code for proteins

h at m ake up each co mplex, wi th CI, CIII, CIV, and
V, incl uding mi tocho ndr ial and nucle a r proteins, a nd
II co mposed o f o nly nuclear-encoded proteins ( Hill
019 ). F or exam ple, b ar-heade d ge ese ( Anser i nd icus)
ha t migra te a t very high a lt itudes display lower heart
IV (cyt oc hrome oxid ase) activ it y than a lower-a lt itude
ig rant, the b arnacle goose ( B ra nta l eu copsis ). This dif-

 erence appea r s t o b e asso ci ated w i th a single-po int
 uta tion in the COX3 subunit at a point that appears

o be con serv ed across other vertebrate species ( Scott
t al. 2011 ). Th e fun ct iona lity of the complexes also
ppear s t o be modifiable by post-t ranslat iona l mod-
ficatio n (PTM) o f o ne o r mo re p roteins wi t hin t he
TS comp lexes. PT M ca n cha n g e t he per for mance of
roteins v i a p hosp ho rylatio n, acetylatio n, o r succiny-
atio n (amo ng others) o f specific amino acids ( Ho fer
 nd Wenz 2014 ; Stra m a n d Payn e 2016 ). In thirteen-
ine d g r ound squirr els ( Ict idomys t ridecem l i neatus ), a
u pp ressio n o f CIV activi ty in liver mit oc h on dria dur-
ng hibernation is due, at least in part, to a significant
ncrease in p hosp ho rylatio n o f NADH-ub iquino ne oxi-
o red uctase, CI subuni t. In co ntrast, the flavop rotein o f
II is 4.6 times more p hosp horyl ated bet ween hiberna-
io n bou ts w hen CII enzymatic ac tiv it y is also elevated
 Math ers an d Staples 2019 ). To our kn owledge, th e PTM
 f mi t oc h on dr ial or ot her proteins in t he tis s ues of mi-
rants h a s not be en eva luate d in any context. In our
tudy o f W hi te-crowne d Sp arrows, we a l so mea sured
he enzymatic perf orma nce of indiv idu al mit oc h on drial
o mplexes. Surp risingly, no ne o f th e E TS comp lexes fo l-
owed the pattern o f u p-and-dow n regul a tion tha t we
bserved for mit oc h on dria l respirat ion. How ev er, some
ifferences did occur between groups ( Rhodes et al.
024 ). Thes e obs ervation s sugg est that a chan g e in the
unctio n o f individ ual co mplexes is un li kel y to p lay a
ajor role in the consist ent c han g e in resp irato ry ca-
acity across resp irato ry states and substrat es. Inst ead ,
 lternat ive me ch ani sm(s) mu st be respo nsible fo r much
f the chan g e in mit oc h on dr ial f unction t h at en ables
ig rat ion. 

side fro m co mplex perfo rmance, mul ti ple mecha-
i sms h ave been proposed for how mit oc h on dria alter
h e re lative con cen tra tio n o f p roto ns in t he inter mem-
ra ne space a nd the rate of ele ct r on movement thr ough
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Box 2: Glossary of terms dis play ed in bold thr o ugho ut the text.. 

Bioe ne rget ics is the study of the ener gy conv ersion processes across the inner mit oc ho ndrial memb rane ( Nicholls 
and Ferguson 2013 ). 
El ec t ron t ra nsport cha in (E TC ) vs. ele ct ron t rans port sys tem ( E TS). Th e E TC spe cifica l ly r efer en ces th e e le ct ron- 
t ransport ing enzymes cont ribut ing to OXPHOS in the mit oc h on dria, in cluding complex I (NADH dehy drog en a se), 
com plex II (succina te dehy drog en a se), complex III (cyt oc hr ome c r ed uctase), and co mplex IV (cyt oc hrome c oxi- 
dase). The term ETS is used when r efer encing the ETC plus the ATP synth a se (complex V). 
M itoc h on drial respiratory perform an ce. Th e re la tive ra te o f oxygen u t i lizat ion by th e E T C. (I hav e in ten t iona l ly 
u sed thi s term rather than more specific terminology in some instances because the co ndi tio ns under which mito- 
ch on dria l respirat ion is quant ifie d often vary with the instrument used for qu antify ing mit oc h on dria l respirat ion). 
M itoc h on drial volum e is the volume that mit oc ho ndria occu py wi t hin t h e ce ll o r o rgan. Bec ause indiv idu al mi- 
t oc h on dria vary in size , volume , and cr ist ae sur face are a, i t is impo rtant to consider the vol ume o f mi t oc hondria 
rat her t han t heir number. P hysiologis ts co mmo nly measure mi t oc h on drial volum e b ase d on th e re lativ e a bun dan ce 
o f ci tra te syn th a se. Th e am oun t of CS associa ted wit h e ac h mit oc h on drion wi l l vary wi th i ts cr ist a sur face are a and, 
presumab l y, the number of ETS complexes within the organelle ( Larsen et al. 2012 ; Heine et al. 2023 ). 
OXPHOS is the primary source o f ATP fo r eu karyot ic cel ls. D ur ing OXPHOS, t h e E T C complex es couple th e m ove- 
m ent e le ct ro ns wi t h t he p rod uctio n o f a p rotein gradien t tha t powers th e ph osph o rylatio n o f ADP to ATP by the 
ATP synth a se, m a king ATP avai lable as a source o f fuel fo r the o r ganism ( Stry er 1999 ; Box 1 ). 
OXPHOS s ubs trat e o r s ubs trate . In th e context of OXPHOS, a s ubs trate is an organic mole cu le use d to induce 
NAD H or FAD H 2 production that donates ele ct rons to the ETC. In vivo, ingested or stored macro nu trients are 
c atabolized to prov ide mit oc h on dri a w ith s ubs trat es t o supp l y t he citr ic acid cycle an d th e E TC. In vitr o, r esear c her s 
can use a variety of s ubs tra tes. Pyruva t e , malat e , and gl u tamate are often supplied to mit oc h on dria to support the 
p rod uctio n o f NAD H, a nd succin ate i s u se d to provide FADH 2 . Pa lmi toylcarni t ine is a ls o often us ed in av i an studies 
because of the high use of fatty acids as fuel by members of this taxo no mic grou p. It is a fa tty acid a ttac hed t o a car r ier 
protein that a l lows the fatty acid to b e transp orted into the mi tocho ndr ia, where t he fatty acid must go through β- 
oxidatio n befo re being su pplied to the T CA cy c le , wh ere th e e le ct ro n do no rs are p rod uce d ( St ryer 1999 ; Kuzmia k et 
al. 2012 ). 
Metaboli c flexibility refers to ph en otypic flexi bility in metabolic processes, with ph en otypic flexi bility defin ed as 
rapidl y reversib le chan g es in ph en otype invo l ving mu lt iple genotypes. In contrast, ph en ot ypic pl asticit y is a sig- 
nal genotype p rod ucing mul ti p le p h en otyp es in resp o nse to an enviro nment al var iable. The for mer best r epr esents 
chan g es in mi tocho ndri al phenot ype , whic h disp lay rapidl y reversib le chan g es in mi tocho ndrial resp irato ry per- 
f orma nce a nd regu lat ion by mu lt iple genes from two distinct gen om es, th e nuclea r a nd mit oc ho ndrial geno mes 
( McWi l lia ms a nd Ka rasov 2001 ; P iersma a nd Drent 2003 ). 
M itoc h on drial comp le x act ivi ty is a measurement of the cata lyt ic rate of an indiv idu al ETC co mplex o r, mo re 
spe cifica l ly, the cont rol that a complex exerts on the rate o f resp iratio n by ETC ( Villani and Attardi 2007 ). These 
m easurem ents are co mmo nly co mpleted fo r co mplex l, II, III, and lV but not V because measurements of l-IV can 

reliab l y comp let ed on fro zen tis s ue ( Sp inazzi et al. 2012 ) , bu t m easurem ents o f co mp lex V acti v it y r equir e fr esh 
tis s ue ( Vives-Bauza et al. 2007 ). 
M itoc h on drial dyn amics refers to measures o f mi t oc h on drial biogen esis (th e production of new mit oc h on dria), 
mitophagy (the disposal of damaged mit oc h on dria), mit oc h on drial fission (the dividing of a mit oc h on drion into 
t wo d a ugh t er cells, oft en associat ed w ith remov ing a d amage d port ion of the organ e lle), an d mit oc h on dr ial f usion 

(the union of two mit oc h on dria) ( Se ba stián et al. 2017 ; Tanaka et al. 2020 ). 
M itoc h on drial m orph ology refers to the mi tocho ndri a’s physic a l att ri butes, in cluding th e mit oc h on dria’s re lative 
size, the density of the inner mit oc ho ndrial memb ra ne, a nd the shape of the orga nelle a nd cr ist a wit hin it. Morp ho l- 
ogy can be influenced by fission and fusion dynamics ( Heine and Ho o d 2020 ). 
M itoc h on drial super com p le x es . Count ering the fluid/liquid-state m ode l, which s ugges ts t hat e ach of t h e E TS com- 
plex es mov es in depen dent ly t hrough t h e inn er m embran e of th e mit oc h on dria, we n ow kn ow tha t com plexes I, III, 
an d IV comm only exist in supermole cu lar st ructures ca l le d su perco mplexes. These su perco m plexes are though t to 
incre ase t he efficiency of ele ct ron t ra nsf er betw een the complex es ( D ud kina et a l. 2010 ). 
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R eactive oxy gen species (ROS) or reactive species . ROS ar e gr ou ps o f hig hly reac ti ve mo lecules that are generated 
by the re duct ion of an oxyg en-containin g mole cu le by a fre e ele ct ron. The lea k of ele ct r ons fr om th e E TS is com- 
mon ly react iv e with oxyg en to fo rm su p eroxide. Reactive sp e cies include a l l p rod ucts o f red uctio n by a free electron, 
includin g reactiv e oxyg en spe cies, react ive nit rogen spe cies, react ive ha logen spe cies, and react ive su lfur spe cies, and 
t hus, t he ter m re act ive spe cies i s u sed t o not exc lude th ese m ole cu les ( Ha l liwel l and Gutteridge 2015 ). Im portan tly, 
the p rod uctio n o f ROS is th e m ost im portan t (b ut no t necess ar il y exclusi ve) reacti ve sp ecies pro duced as a product 
of ele ct ron lea k from th e E TS ( Murphy 2009 ), an d t hus, t he p rod uctio n o f ot her re act ive spe cies is often ig nore d. 
S tate 3 resp iratio n is the maximum perf orma nce o f cou pled mi t oc h on dria wh en su bstrat e , oxygen, a nd AD P a re 
not limiting. 
State 4 respiration (i .e ., l eak ) is a me a sure of ba sal resp irato ry perfo rmance o f the mi t oc hondria when ADP h a s been 

depleted and is genera l ly considere d a m easurem ent o f leak resp iratio n ( Koc h et al . 2021 ). Specifically, (prot on) leak 
i s the pa ssive o r ind uced movements o f p roto ns fro m t he inter m embran e sp ace b ac k int o the mit oc hondria l mat rix. 
To com pensa te for the leak, th e E TS m ust con tin uou sly u se s ubs trate and oxygen to ma inta in the p roto n gradient 
between t he inter membra ne space a nd t he matr ix and, t hu s, m a inta in a minimum p roto n motive fo rce. Th us, sta te 
4 resp iratio n me asures t h e am ount of oxygen used to com pensa te for leak ( Koch et al. 2021 ). Note that when the 
ter m le ak i s u sed, it i s almost invariab l y us ed to des cribe p roto n leak, bu t ele ct rons a lso lea k from th e E TS. 
Sy mmor phosis s ugges ts that the size o r capaci ty o f a l l p arts of a p hysio log ica l sys tem mus t mat c h t o su ppo rt the 
funct iona l demands of the organism ( Wei be l et al. 1991 ). 
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h e E TS to ena ble lon g-distance mig rat ion ( Heine et
l. 2023 ). Th ese m ech ani sms include chan g es in mi-
 oc h on drial m orph ology an d associated mi tocho ndrial
 ynamics. M it oc h on dri a c an adjust th eir s hape an d th e
ensi ty o f th e inn er m embran e, fuse an d divide, m ove
it hin t h e ce ll, an d comm unica te wi th neighbo ring mi-

 oc h on dria ( Hein e an d Ho o d 2020 ). A n increa se in in-
er mit oc ho ndrial memb rane (IMM) densi ty fo r the
am e volum e of mit oc h on dri a w i l l incre ase t he sur face
 rea ava ilable f or accum ula ting OXPH OS co mplexes
n d reduce th e volum e of th e inn er m embran e space
it hin e ach cr ist a, t hus incre asing p roto n densi ty and
h e re lative con cen tra tio n o f NAD H a nd FAD H 2 in the
 atrix. These ch an g es wi l l incre ase t he avai labi lity of
AD H a nd FAD H 2 as s ubs trates for OXP H OS and p ro-
o ns fo r ATP synth a se in the fin al step o f ATP p rod uc-
ion ( Heine et al. 2023 ). Mi tocho ndrial vol ume in the
e ctora li s and supracoracoideu s mu scles in the Rufous
ummingbird ( Selasp ho r us r ufus ) is very high through-
ut the y ear, makin g up a pproxima tely 35% of muscle
ol ume, wi th 40% o f mi t oc h on dria foun d in th e su bsar-
olemma l reg io n ad j acent to c api l la ries a n d th e remain-
ng inter fibr i l lar reg ion. The density of the IMM was
xcept iona l and on ly mat c hed by flyin g in se cts ( Suare z
t a l. 1991 ). Whi le Rufou s Hummingbird s are migra-
ory, the y als o us e an except iona l ly dema nding f orm
f flight, hov erin g. Data w ere not col le cte d during mi-
 rat ion, and , t o our knowledge , no other studies have
va luate d mit oc h on drial m orph ology associated with
ig rat ion in bird s. Yet, Rauh am aki et al (2014) found

 hat t he fligh t m usc le mit oc h on dria of the red admiral
utterfly ( Van essa a talan ta ), a long-distance migrant,
ave greater cross-se ct iona l a rea a nd denser cr ist ae
nd that the mit oc ho ndria made u p a gr eater per cent-
ge of sarcop lasmic vo lume than a butter fly t h at di s-
erses s h orter distan ces, th e Gl anv i l le frit i l lary ( Meli-
aea ci nxia ). Measur es of morp ho logy, incl uding mi to-
h on drial s hape an d int ermit oc h on drial jun ctio ns, o r
le ct ro n-dense si tes b etween neighb o ring mi t oc hon-
ria, s h ou ld a lso be considere d, g iven that such chan g es
o mmo nly occ ur w hen mit oc hondria have been ex-
osed to oxidative s tres s and int ermit oc hondrial junc-
ion s hav e been s h own to in crea se a ssoci ated w ith run-
in g in la b mice ( P ica rd et al. 2013 ; Heine et al. 2021 ).
hile t he f unct iona l sig nificance of these chan g es in
 orph ology remains an active area of invest igat ion, a
ecent m ode l s ugges ts that more glo bular mit oc hon-
ria generate more ATP than elongated mit oc h on dria
 Garcia et al. 2023 ). 
Measures of mit oc h on dri al dy namics t ypic a l ly

n clude m easures o f mi t oc h on drial biogen esis, mi-
 ophagy, and mit oc ho ndrial fissio n and fusio n. Mi-
 oc h on dria biogen esis an d mit ophagy regulat e the
umber and qu alit y of mit oc h on dri a w it hin t h e ce ll.
it oc h on drial fission and fusion contribute to vari-
tion in mit oc h on drial m orph ology (as described
 bov e) and hav e the potent ia l to a lter the cap acity
o r OXPH OS fo r a given vol ume o f mi t oc hondria.
he detai le d me ch ani sms th at underlie each of these
r ocesses ar e r e vie wed els e where ( Se ba stián et al. 2017 ;
anaka et al . 2020 ). Mit oc h on dri a regul ar ly turn over
 ithin a cell, w ith half-lives vary ing from 9–24 days
n rat liver, heart, and brain ( Menzies and Gold 1971 ).
 n increa se in mit oc h on drial biogen esis in creases
he rate o f mi tocho ndri al replic ation, which c an in-
rease mit oc h on drial volum e within the cell ( Popov
020 ). R el ative exp ressio n o f peroxiso me p roliferato r-
ct ivate d re ceptor-gamma co act ivator (PGC-1 α) is a
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co mmo n ma rk er of the rate of mit oc h on drial biogen esis
( Lia ng a nd Wa rd 2006 ). The biogenesis rate responds
to dema nd a nd h a s been s h own to in crease in s ke letal
mu scle ti s s ue with exercise (p art icu lar ly intermyofibril-
lar mit oc h on dria) an d oth er or gan s in respon se to high
demand , suc h as the liver during lactation ( Hyatt et al.
2018 ) and in response to an oxidative event in the heart
( Zhang et al . 2018 ). Mit ophagy removes mit oc hondria
from the cell; thu s, it i s essent ia l for both maintaining
mit oc h on drial volum e in cell s th at are con tin uously
p rod ucing new mi t oc h on dria an d for th e se le ct ive
disposal of old and damaged mit oc h on dria ( Ma et
al. 2020 ). Dur ing migration, t he tis s ues of migrants
have been s h ow n to accumul ate oxid ative d amage
( Costantini et al. 2007 ; Jenni-Eiermann et al. 2014 ;
Eik enaa r et al. 2020 ). G iv en that mi tocho ndr ial re active
oxygen species p rod uctio n is highest at rest and low
durin g ex ercise ( Wi l lis et a l. 2016 ; Tana ka et a l. 2020 ),
the damaging reactive species in the skeletal muscle
of migra nts a re lik ely of no n-mi t oc ho ndrial o rigin,
associ ated w it h t he actio n o f oxid ative enzy mes such
a s NADPH oxida ses a nd xa nthine oxidases ( Ta naka et
al. 2020 ). Processes of mitophagy would be critical for
remov ing this d a mage a nd ma inta ining mit oc h on drial
per for mance dur ing mig rat ion. An upregu lat ion of
PTEN-ind uced pu tative kin a se protein 1 (PINK1) and
E3 ub iqui tin ligase Parkin (i .e ., Par kin) is m easured to
quantify mitophagy ( Ma et al. 2020 ). 

Processes o f mi t oc h on drial fission and fusion also
play im portan t roles in main taining mit oc h on drial
qu alit y w it hin t h e ce ll, but th ey m ay al so p lay a ro le
in regu lat ing OXPH OS. Both p rocesses o f mi t oc hon-
drial fission and fusion appear to be con tin uousl y acti ve,
pl ay ing a role in ma inta ining the con tin uous replace-
ment of mit oc h on dria over tim e . Yet, eac h can also be
a ltere d in response to energetic demand and mit oc hon-
dri al d amage . The prot eins mit ofusion 1 (Mfn1), mito-
fusion 2 (Mfn2), and o p t ic at rophy 1 (O p a1) play key
roles in the co a lescence of the outer (M fn1, M fn2) and
inn er m embran es (O p a1) o f the mi t oc h on dria wh en ad-
jacent mit oc h on dr ia f u se. Dyn amin-r elated pr otein 1
(Drp1) and mit oc ho ndrial fissio n 1 (Fis1) cleave mi to-
ch on dria an d are u p regu late d with oxidat ive st ress and
di sea se. Fi ssion appears to be the first step before re-
mov ing d amaged mit oc h on dri a v i a mitoph agy and thu s
plays a n importa nt role in ma inta inin g bioener g etic ca-
pacity ( Wu et al. 2011 ). The respo nse o f skeletal mus-
c le mit oc h on drial fission an d fu sion m a rk er s t o exer-
ci se h a s been variable. A xelrod et al. (2019) showed that
th e s ke letal muscle of humans p art icip at ing in a regular
exer cise r eg ime displaye d M fn1, M fn2, and O p a1 lev-
el s th at were similar to sedentary indiv idu als but a re-
d uctio n in Fis1 and Parkin that resu lte d in more elon-
gat ed mit oc h on dria. Fusion a l lows mit oc h on dria to ex-
chan g e mtDNA protein s, lipids, an d m et abolites. Wit h
n utrien t depletio n, elo ngated mi t oc h on dria exhi bit in-
cre ased cr ist ae density, decre ased cr ist ae widt h, and in-
cre ased dimer iza tion and activa tio n o f the ATP syn-
th a s e ( G omes et al. 2011 ; Pern a s a nd Scorra no 2016 ).
In co ntrast, Fio renza et al. (2019) s h ow t hat bot h mi-
t oc h on drial fission (Drp1) and fusion (M fn2) d ynam-
ics ma rk ers a nd OXPH OS capaci ty (state 3 for Cl and
C l l s ubs trates) were u p regu late d fol lowing regu lar high-
interva l t ra ining. Importa nt ly, t hese effects were only
observed at 40 ◦C, temperatures that may be reached
dur ing t he inten se trainin g, b ut no t at 35 ◦C, the typ-
ical tem pera ture f or sk eletal muscle at rest. Such ef-
fects were not observe d fol lowing a single bou t o f ex-
ercise in rats ( P ica rd et al. 2013 ; Yoo et al. 2019 ). Fur-
th er wor k is n e e de d t o c haract er ize t h e re lations hip
b etween mito ch on drial m orph ology, fission an d fu-
sion ma rk ers, a nd OXPHOS. G iv en that long-distance
migrants display long bouts of con tin uous fligh t with
eleva ted oxida tive s tres s, it is possible that both mi-
t oc h on drial fission an d fusion ma rk ers may be ele-
vat ed . It would be int eresting t o explore the re lations hip
b etween mito ch on dria l respirat ion and mit oc h on drial
dynamics. 
An oth er variable that has the potent ia l to increase

th e efficien cy of e le ct ron t ra nsf er wit hin t h e E TS is mi-
t oc h on drial supercomp lexes. M it oc h on drial complexes
co mmo nl y assemb le into supermo le cu lar st ructures
ca l le d su perco mplexes. Su perco mplexes fo rm linkages
between CI/CIII/CIV in the resp iraso me, as well as
Cl/CIII and CIII/CIV ( Novack et al. 2020 ). Close as-
so ciation b etw een complex es is thought to increase
the rate of ele ct ron t ra nsf er betw een the complex es,
an d both in crease th e efficien cy o f resp iratio n and de-
cre ase t he rate of formation of reactiv e oxyg en species
( Gen ova an d Len az 2014 ; Huerta s et al. 2017 ). In hu-
mans, th e re lative abun dan ce of CIII an d CIV in super-
co mplexes increases wi th exercise . Further, stat e 3 res-
p iratio n stro ngly co rrel ates w i th su perco mplex abun-
dan ce in s ke letal muscle in humans ( Greggio et al.
2017 ). In thirte en-line d g r ound squirr els, complex III
is found in 3 co nfiguratio ns: associ ated w ith CI and
CIV (i .e ., the resp iraso me), CIV o nly, o r wi t h anot her
CIII co mplex fo rming a dimer; i t i s a ssoci ated w ith
the resp iraso me o r CIV app roximately 50–75% o f the
t ime. Its associat io ns shift wi t h arous al fro m to rpo r,
wit h t h e re lat ive dist ribut ion CIII in brown adipose
mit oc h on dri a associ ated w it h t h e respirasom e being
low er and CIV bein g higher a fter a r ousal fr o m to r-
po r than i t was d uring to rpo r. Thi s ch an g e ma y pla y
a role in the release of mit oc h on dria from a sup-
pres sed s t ate dur ing hiber nation ( Hut c hinson et al .
2022 ). Wh eth er chan g es in th e re l ative associ atio n o f
ETS co mplexes wi th su perco mp lexes p lay a ro le in av i an
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ig rat ion is unknown but could be a f r uit fu l avenue of
nvest igat ion. 

dentifying the mechanisms that underlie the 

ability of migration in birds 

 y crossin g different po p u lat io ns o f B lac k cap wa rblers
 Sylvi a atri capi l la ) that varied in their migratory path,
erthold et al. (1992) une quivoca l ly s h owed t hat t he
ire ct ion a nd dista nce of mig rat ion were her it able.
ev eral inv estigat or s have searc h ed for gen es associ-
ted wit h var iation in migratory be havior ( Mue ller et
l. 2011 ; De lm ore et al. 2016 ; Lun d berg et al. 2017 ;
oews et al. 2019 ; De lm ore et al. 2020 , 2020 ). Desp i te
he co mplexi ty o f mig rat io n, i t is notewo rt hy t hat in
ach of these studies, few genes were different ia l ly ex-
resse d betwe en mig ra nts a n d n on-migrants. Furth er,
 nly o ne h a s ident ifie d a gene th at m a y pla y a role in
ioener g et ic cap acity or efficiency. Spe cifica l ly, Toews
t al. (2019) foun d distin ct differen ces in vacuolar pro-
ein sortin g 13A (VPS13A) betw een g olden-win g ed
nd blue-win g ed warblers that vary in migratory dis-
 ance, wit h t he for mer moving from North America to
out h Amer ica and t he l atter fly ing fro m No rth Amer-
ca to Cent ra l America. Whi le Toews et al. (2019) noted
h at VPS13A h a s ro les in l ys os oma l deg radat ion and
i p id tra nsf er to the ER and spe cu late d t hat t his gene
ou ld mit iga te differences in oxida tiv e damag e betw een
pecies, a more recent paper s ugges ts that VPS13A
lso plays a role in mit oc h on drial m orph ology an d mi-
oph agy ( Yesh aw et al. 2019 ). 
Exer cise r egulates the PTM for numer ous pr oteins

hat alter the efficiency of OXPHOS, p art icu lar ly th ose
ssoci ated w i th mi tocho ndri al dy na mics ( Ta na ka et a l.
020 ). G iv en t heir put ative role in improving the ATP
 rod uctio n capaci ty o f s ke letal muscle in response to
xer cise, PTMs ar e a lso li ke ly to be comm on in proteins
odify ing OXPHOS w ith mig rat ion in birds. PTMs can
eversib l y or per manent ly modify t he co nfiguratio n, lo-
a lizat ion, an d fun ct iona l cap acity of proteins follow-
n g tran slatio n, co ntribu ting a greater diversi ty o f p ro-
ein ph en otypes t han t her e ar e gen es en coding for th em
 Baer and Mi l lar 2016 ). As describe d in t he t hirteen-
ine d g r ound squirr el a bov e ( Mathers and Staples 2019 ),
uc h c han g es can be s eas onal and may have dramatic
mpacts on the c apacit y to produce ATP. It wi l l be in-
 eresting t o see if PTM t o prot eins that modify ATP
 rod uctio n co rrel ate w it h t he u p regu lat io n o f OXPH OS
 hat occurs pr ior to the onset of mig rat ion, as ob-
erved in W hi te-cr owned Sparr ows. G iv en that PTMs
re thought to represent a fast er mec h ani sm for the
eneratio n o f ph en otyp ic diversi ty th an ch an g es in the
en om e ( Bradley 2022 ), PTMs could be im portan t tar-
ets fo r u p- and dow n-regul atin g bioener g etic c apacit y
n migratory songbirds. 
onclusions 
urt her rese arc h int o mit oc h on dria l respirat ion cou-
led with the eva luat ion of variables th at h ave the po-
ent ia l to u p-o r-dow n-regul ate OXP HOS, s uch as mi-
 oc h on drial complex activ it y, mit oc h on drial m orph ol-
gy a nd dyna mics, a nd su perco mplex abund ance, w i l l
e valuable in deducing the mech ani sms th at underlie
he c apacit y f or a nd lab ili ty o f avian mig rat ion. I hope
his re vie w wi l l enco urage o ther s t o consider quantify-
ng OXPHOS an d th e m ech ani sms th at un der lie differ-
nces in OXPH OS perfo rman ce wh en eva luat ing flex-
ble variation in the ener g etic dem and s of or ganism s.
 iv en the co mplexi ty o f many o f the p hysio log ica l mea-
urem ents descri bed h erein, thi s i s an ideal topic for
nterdi sciplin ary col laborat ion, bot h in t he co mpletio n
f the p hysio log ica l m easurem ents descri bed h erein
nd eva luate d the genomic ba si s for the patterns ob-
erved . Suc h co mpariso ns will provide a more com-
lete picture of how av i a n migra nts a nd a nim al s within
t her t axo no mic grou ps su ppo rt and evo l ve the fas-
inating array of energet ic st rateg ies that we observe
oday. 
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