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Abstract

We propose an unsupervised strategy for the
selection of justification sentences for multi-
hop question answering (QA) that (a) maxi-
mizes the relevance of the selected sentences,
(b) minimizes the overlap between the selected
facts, and (c) maximizes the coverage of both
question and answer. This unsupervised sen-
tence selection method can be coupled with
any supervised QA approach. We show that
the sentences selected by our method im-
prove the performance of a state-of-the-art
supervised QA model on two multi-hop QA
datasets: AI2’s Reasoning Challenge (ARC)
and Multi-Sentence Reading Comprehension
(MultiRC). We obtain new state-of-the-art per-
formance on both datasets among approaches
that do not use external resources for training
the QA system: 56.82% F1 on ARC (41.24%
on Challenge and 64.49% on Easy) and 26.1%
EMO on MultiRC. Our justification sentences
have higher quality than the justifications se-
lected by a strong information retrieval base-
line, e.g., by 5.4% F1 in MultiRC. We also
show that our unsupervised selection of justifi-
cation sentences is more stable across domains
than a state-of-the-art supervised sentence se-
lection method.

1 Introduction

Interpretable machine learning (ML) models,
where the end user can understand how a deci-
sion was reached, are a critical requirement for
the wide adoption of ML solutions in many fields
such as healthcare, finance, and law (Samek et al.,
2017; Alvarez-Melis and Jaakkola, 2017; Arras
et al., 2017; Gilpin et al., 2018; Biran and Cotton,
2017)

For complex natural language processing (NLP)
such as question answering (QA), human readable
explanations of the inference process have been
proposed as a way to interpret QA models (Zhou
etal., 2018).

To which organ system do the esophagus, liver, pancreas,
small intestine, and colon belong?

(A) reproductive system (B) excretory system

(C) digestive system (D) endocrine system

ROCC-selected justification sentences:

1. vertebrate digestive system has oral cavity, teeth and
pharynx, esophagus and stomach, small intestine, pan-
creas, liver and the large intestine

2. digestive system consists liver, stomach, large intestine,
small intestine, colon, rectum and anus

BM25-selected justification sentences:
1. their digestive system consists of a stomach, liver, pan-
creas, small intestine, and a large intestine
2. the liver pancreas and gallbladder are the solid organ of
the digestive system

Figure 1: A multiple-choice question from the ARC dataset
with the correct answer in bold, followed by justification sen-
tences selected by our approach (ROCC) vs. sentences se-
lected by a strong IR baseline (BM25). ROCC justification
sentences fully cover the five key terms in the question (shown
in italic), whereas BM25 misses two: esophagus and colon.
Further, the second BM25 sentence is largely redundant with
the first, not covering other query terms.

Recently, multiple datasets have been proposed
for multi-hop QA, in which questions can only
be answered when considering information from
multiple sentences and/or documents (Clark et al.,
2018; Khashabi et al., 2018a; Yang et al., 2018;
Welbl et al., 2018; Mihaylov et al., 2018; Bauer
etal., 2018; Dunn et al., 2017; Dhingra et al., 2017,
Lai et al., 2017; Rajpurkar et al., 2018; Sun et al.,
2019). The task of selecting justification sentences
is complex for multi-hop QA, because of the ad-
ditional knowledge aggregation requirement (ex-
amples of such questions and answers are shown
in Figures 1 and 2). Although various neural QA
methods have achieved high performance on some
of these datasets (Sun et al., 2018; Trivedi et al.,
2019; Tymoshenko et al., 2017; Seo et al., 2016;
Wang and Jiang, 2016; De Cao et al., 2018; Back
et al., 2018), we argue that more effort must be
dedicated to explaining their inference process.
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In this work we propose an unsupervised al-
gorithm for the selection of multi-hop justifica-
tions from unstructured knowledge bases (KB). Un-
like other supervised selection methods (Dehghani
etal.,2019; Bao et al., 2016; Lin et al., 2018; Wang
et al., 2018b,a; Tran and Niedereée, 2018; Trivedi
et al., 2019), our approach does not require any
training data for justification selection. Unlike ap-
proaches that rely on structured KBs, which are ex-
pensive to create, (Khashabi et al., 2016; Khot et al.,
2017; Zhang et al., 2018; Khashabi et al., 2018b;
Cui et al., 2017; Bao et al., 2016), our method op-
erates over KBs of only unstructured texts. We
demonstrate that our approach has a bigger impact
on downstream QA approaches that use these justi-
fication sentences as additional signal than a strong
baseline that relies on information retrieval (IR). In
particular, the contributions of this work are:

(1) We propose an unsupervised, non-parametric
strategy for the selection of justification sentences
for multi-hop question answering (QA) that (a)
maximizes the Relevance of the selected sen-
tences; (b) minimizes the lexical Overlap between
the selected facts; and (c) maximizes the lexical
Coverage of both question and answer. We call
our approach ROCC. ROCC operates by first cre-
ating (Z) justification sets from the top n sen-
tences selected by the BM25 information retrieval
model (Robertson et al., 2009), where k ranges
from 2 to n, and then ranking them all by a for-
mula that combines the three criteria above. The
set with the top score becomes the set of justifi-
cations output by ROCC for a given question and
candidate answer. As shown in Figure 1, the justifi-
cation sentences selected by ROCC perform more
meaningful knowledge aggregation than a strong
IR baseline (BM25), which does not account for
overlap (or complementarity) and coverage.

(2) ROCC can be coupled with any supervised QA
approach that can use the selected justification sen-
tences as additional signal. To demonstrate its ef-
fectiveness, we combine ROCC with a state-of-the-
art QA method that relies on BERT (Devlin et al.,
2018) to classify correct answers, using the text of
the question, the answer, and (now) the justification
sentences as input. On the Multi-Sentence Reading
Comprehension (MultiRC) dataset (Khashabi et al.,
2018a), we achieved a gain of 8.3% EMO with
ROCC justifications when compared to the case
where the complete comprehension passage was
provided to the BERT classifier. On AI2’s Reason-

ing Challenge (ARC) dataset (Clark et al., 2018),
the QA approach enhanced with ROCC justifica-
tions outperforms the QA method without justifi-
cations by 9.15% accuracy, and the approach that
uses top sentences provided by BM25 by 2.88%.
Further, we show that the justification sentences se-
lected by ROCC are considerably more correct on
their own than justifications selected by BM25 (e.g.,
the justification score in MultiRC was increased
by 11.58% when compared to the best performing
BM25 justifications), which indicates that the in-
terpretability of the overall QA system was also
increased.

(3) Lastly, our analysis indicates that ROCC is
more stable across the different domains in the
MultiRC dataset than a supervised strategy for the
selection of justification sentences that relies on a
dedicated BERT-based classifier, with a difference
of over 10% F1 score in some configurations.

The ROCC system and the codes for generat-
ing all the analysis are provided here - https:
//github.com/vikas95/AutoROCC.

2 Related Work

The body of QA work that addresses the selec-
tion of justification sentences can be classified into
roughly four categories: (a) supervised approaches
that require training data to learn how to select
justification sentences (i.e., questions and answers
coupled with correct justifications); (b) methods
that treat justifications as latent variables and learn
jointly how to answer questions and how to select
justifications from questions and answers alone; (c)
approaches that rely on information retrieval to se-
lect justification sentences; and, lastly, (d) methods
that do not use justification sentences at all.

In the first -category, previous works
(e.g., (Trivedi et al., 2019)) have used entail-
ment resources including labeled trained datasets
such as SNLI (Bowman et al., 2015) and MultiNLI
(Williams et al., 2017) to train components for
selecting justification sentences for QA. Other
works have explicitly focused on training sentence
selection components for QA models (Min et al.,
2018; Lin et al., 2018; Wang et al., 2019). In
datasets where gold justification sentences are not
provided, researchers have trained such compo-
nents by retrieving justifications from structured
KBs (Cui et al., 2017; Bao et al., 2016; Zhang
et al., 2016; Hao et al., 2017) such as ConceptNet
(Speer et al., 2017), or from IR systems coupled
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with denoising components (Wang et al., 2019).
While these works offer exciting directions, they
all rely on training data for justifications, which is
expensive to generate and may not be available in
real-world use cases.

The second group of methods tend to rely on
reinforcement learning (Choi et al., 2017; Lai et al.,
2018; Geva and Berant, 2018) or PageRank (Sur-
deanu et al., 2008) to learn how to select justifica-
tion sentences without explicit training data. Other
works have used end-to-end (mostly RNNs with
attention mechanisms) QA architectures for learn-
ing to pay more attention on better justification
sentences (Min et al., 2018; Seo et al., 2016; Yu
et al., 2014; Gravina et al., 2018). While these
approaches do not require annotated justifications,
they need large amounts of question/answer pairs
during training so they can discover the latent jus-
tifications. In contrast to these two directions, our
approach requires no training data at all for the
justification selection process.

The third category of methods utilize IR tech-
niques to retrieve justifications from both unstruc-
tured (Yadav et al., 2019) and structured (Khashabi
etal., 2016) KBs. Our approach is closer in spirit to
this direction, but it is adjusted to account for more
intentional knowledge aggregation. As we show in
Section 4, this is important for both the quality of
the justification sentences and the performance of
the downstream QA system.

The last group of QA approaches learn how
to classify answers without any justification sen-
tences (Mihaylov et al., 2018; Sun et al., 2018;
Devlin et al., 2018). While this has been shown to
obtain good performance for answer classification,
we do not focus on it in this work because these
methods cannot easily explain their inference.

Note that some of the works discussed here trans-
fer knowledge from external datasets into the QA
task they address (Chung et al., 2017; Sun et al.,
2018; Pan et al., 2019; Min et al., 2017; Qiu et al.,
2018; Chen et al., 2017). In this work, we focus
solely on the resources provided in the task itself
because such compatible external resources may
not be available in real-world applications of QA.

3 Approach
ROCC, coupled with a QA system, operates in the
following steps (illustrated in Figure 2):

(1) Retrieval of candidate justification sen-
tences: For datasets that rely on huge supporting

KBs (e.g., ARC), we retrieve the top n sentences!

from this KB using an IR query that concatenates
the question and the candidate answer, similar to
Clark et al. (2018); Yadav et al. (2019). We im-
plemented this using the BM25 IR model with the
default parameters in Lucene’. For reading com-
prehension datasets where the question is associ-
ated with a text passage (e.g., MultiRC), all the
sentences in this passage become candidates.

(2) Generation of candidate justification sets:
Since its focus is on knowledge aggregation, ROCC
ranks sets of justification sentences (see below)
rather than individual sentences. In this step we
create candidate justification sets by generating (Z)
groups of sentences from the previous n sentences,
using multiple values of k.

(3) Ranking of candidate justification sets: For
every candidate justification set, we calculate its
ROCC score (see Section 3.1), which estimates the
likelihood that this group of justifications explains
the given answer. We then rank the justification sets
in descending order of ROCC score, and choose
the top set as the group of justifications that is
the output of ROCC for the given question and
answer. In MultiRC, we rearrange the justification
sentences according to their original indexes in the
given passage to bring coherence in the selected
sequence of sentences.

(4) Answer classification: ROCC can be coupled
with any supervised QA component for answer
classification. In this work, we feed in the question,
answer, and justification texts into a state-of-the-
art classifier that relies on BERT (see Section 3.2).
Because the justification sentences in the reading
comprehension use case (e.g., MultiRC) come from
the same passage and their sequence is likely to be
coherent, we concatenate them into a single pas-
sage, and use a single BERT instance for classifica-
tion. This approach is shown on the left side of the
answer classification component in Figure 2. On
the other hand, the justification sentences retrieved
from an external KB (e.g., ARC) may not form a
coherent passage when aggregated. For this reason,
in the ARC use case, we classify each justifica-
tion sentence separately (together with the question
and candidate answer), and then average all these
scores to produce a single score for the candidate
answer (right-hand side of the figure).

'In this work we used n = 20 as in Yadav et al. (2019)
https://lucene.apache.org
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Which novel did Camus write about his childhood in
Nigeria? || The First Man =

!

(SENT 0): “The driver of the Facel Vega car, Michel
Gallimard, who was Camus's publisher and close friend,
also died in the accident.", (SENT 1): "In August 2011,
the Milan newspaper Corriere della Sera reported a
theory that the writer had been the victim of a Soviet plot,
but Camus's biographer, Olivier Todd, did not consider it
credible.", (SENT 2): 'Camus was buried in the
Lourmarin Cemetery, Lourmarin, Vaucluse, France.',
(SENT 3): 'He was the second-youngest recipient, at the
age of 44, of the Nobel Prize in Literature, after Rudyard
Kipling, at the age of 42.", (SENT 4): 'He was survived by
his wife and twin son and daughter, Jean and Catherine,
who hold the copyrights to his work.", (SENT 5): "Two of
Camus's works were published posthumously.", (SENT
6): "The first, entitled A Happy Death (1970), featured a
character named Patrice Meursault, comparable to The
Stranger's Meursault.", (SENT 7): 'There is scholarly
debate as to the relationship between the two books.',
(SENT 8): 'The second was an unfinished novel, The
First Man (1995), which Camus was writing before he
died.', (SENT 9): 'The novel was an autobiographical
work about his childhood in Algeria.'

Candidate justifications retrieval

Sent 0,Sent 1
Sent 0,Sent 2
Sent 0,Sent 3

Sent 0, Sent

1, Sent 2 Sent 0, Sent

1, Sent 2,
Sent 3, Sent
....... 4, Sent 5,
Sent 6, Sent

I

I

I
Sent 0, Sent 1
1
1 7, Sent 8,
I
I
I
1
1

1, Sent 3
Sent9

Sent 7,Sent
8, Sent9

éent 8,Sent 9

Generation of candidate
justification sets

K=2 K=3 K=4 K =10
1 0
14
2
Sent 8, Sent 9 %”é
ent 8, Sen 330
RS E%o
869
o2
. . 58 o
. £E o
255
‘ g =2
r g
&
MultiRC ARC
______ T A
e LG e )
| 1 1 1
| BERT || |, BERT || BERT | BERT !

I
! .

KL

Answer classification
model

Candidate score

Figure 2: An example of the ROCC process for a ques-
tion from the MultiRC dataset. Here, ROCC correctly
extracts the two justification sentences necessary to ex-
plain the correct answer.

3.1 Ranking of Candidate Justification Sets

Each set of justifications is ranked based on its
ROCC score, which: (a) maximizes the Relevance
of the selected sentences; (b) minimizes the lexical
Overlap between the selected facts; and (c) max-
imizes the lexical Coverage of both question and

answer (Cyues, Cans). The overall score for a given
justification set F; is calculated as:

S(P) = (e+C(4))-(e+C(Q)) (D)

e+O0O(F)

To avoid zeros, we add a small constant (¢ = 1
here) to each component that can have a value of 0.
We detail the components of this formula below.

Relevance (R) We use the Lucene implementa-
tion* of the BM25 IR model (Robertson et al.,
2009) to estimate the relevance of each justifica-
tion sentence to a given question and candidate
answer. In particular, we form a query that concate-
nates the question and candidate answer, and use as
underlying document collection (necessary to com-
pute document statistics such as inverse document
frequencies (IDF)) either: sentences in the entire
KB (for ARC), or all sentences in the correspond-
ing passage in the case of reading comprehension
(MultiRC). The arithmetic mean of BM25 scores
over all sentences in a given justification set gives
the value of R for the entire set.

Overlap (O) To ensure diversity and complemen-
tarity between justification sentences, we compute
the overlap between all sentence pairs in a given
group. Thus, minimizing this score reduces redun-
dancy and encourages the aggregated sentences to
address different parts of the question and answer:

[t(si) Nt(s;)]
20 2 LD

5;,€8 5;€5—s;
('3)

where S is the given set of justification sentences;
s; is the 4" sentence in S; and t(s;) denotes the
set of unique terms in sentence s;. Note that we
divide by (‘g ‘) to normalize across different sizes
of justification sets.

o(5) = 2)

Coverage (C) Complementing the overlap score,
this component measures the lexical coverage of
the question and the answer texts by the given set
of justifications S. This coverage is weighted by
the IDF of question and answer terms. Thus, max-
imizing this value encourages the justifications to
address more of the meaningful content mentioned

30ur R score relies on BM25, which is larger than 0 on
the top n sentences.

*https://lucene.apache.org/core/7_
0_1/core/org/apache/lucene/search/
similarities/BM25Similarity.html
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in the question (X = () and the answer (X = A):

Ci(X) = | tX)nisi) (3)
;€S
|Ce (X))
C(X) — t=1 |It(D)g[|Ct(X)[tH (4)

where ¢(X) denotes the unique terms in X, and
Cy(X) represents the set of all unique terms in X
that are present in any of the sentences of the given
justification set. C'(X) gives the IDF weighted
average of Cy(X) terms.

3.2 Answer Classification

As indicated earlier, we propose two flavors for the
answer classification component: if the sentences
in a justification group come from the same pas-
sage and, thus, are likely to be coherent, they are
concatenated into a single text before classification,
and handled by a single answer classifier. If the sen-
tences come from different texts, they are handled
by separate instances of the answer classifier. In the
latter case, all scores are averaged to produce a sin-
gle score for a candidate answer. In all situations
we used BERT (Devlin et al., 2018) for answer
classification. In particular, we employed BERT
as a binary classifier operating over two texts. The
first text consists of the concatenated question and
answer, and the second text consists of the justifi-
cation text. The classifier operates over the hidden
states of the two texts, i.e., the state corresponding
to the [CLS] token (Devlin et al., 2018).°

We observed empirically that pre-training the
BERT classifier on all n sentences retrieved by
BM25, and then fine tuning on the ROCC justifi-
cations improves performance on all datasets we
experimented with. This resembles the transfer
learning discussed by Howard and Ruder (2018),
where the source domain would be the BM25 sen-
tences, and the target domain the ROCC justifica-
tions. However, one important distinction is that,
in our case, all this knowledge comes solely from
the resources provided within each dataset, and is
retrieved using unsupervised method (BM25). We
conjecture that this helped mainly because the pre-
training step exposed BERT to more data which,
even if imperfect, is topically related to the corre-
sponding question and answer.

>We used the following hyper parameters with BERT
Large: learning rate of le-5, maximum sequence length of
128, batch size = 16, number of epochs = 6.

Question + answer text ‘ Justification set

Animal cells obtain energy
by || absorbing nutrients

1) obtain water and nutrient by
absorbing them directly into
plant cell

2) the animal obtain nourish-
ment by absorbing nutrient
released by symbiotic bacteria

Table 1: Example of a justification set in ARC which was
scored by annotator with a precision of % because the first jus-

tification sentence is not relevant, and a coverage of % because
the link between nourishment and energy is not covered.

4 Empirical Evaluation

We evaluated ROCC coupled with the proposed
QA approach on two QA datasets. We use the
standard train/development/test partitions for each
dataset, as well as the standard evaluation measures:
accuracy for ARC (Clark et al., 2018), and F1,,
(macro-F1 score), F1, (micro-F1 score), and EMO
(exact match) for MultiRC (Khashabi et al., 2018a).

Multi-sentence reading comprehension
(MultiRC): this is a reading comprehen-
sion dataset implemented as multiple-choice
QA (Khashabi et al., 2018a). Each question is
accompanied by a supporting passage, which
contains the correct answer. We use all sentences
from such paragraphs as candidate justifications
for the corresponding questions.

AlI2’s Reasoning Challenge (ARC): this is a
multiple-choice question dataset, containing ques-
tions from science exams from grade 3 to grade
9 (Clark et al., 2018). The dataset is split in two
partitions: Easy and Challenge, where the latter
partition contains the more difficult questions that
require reasoning. Most of the questions have 4 an-
swer choices, with <1% of all the questions having
either 3 or 5 answer choices. Importantly, ARC in-
cludes a supporting KB of 14.3M unstructured text
passages. We use BM25 over this entire KB to re-
trieve candidate justification sentences for ROCC.

4.1 Justification Results

To demonstrate that ROCC has the capacity to se-
lect better justification sentences, we also report the
quality of the extracted justification sentences. For
MultiRC, we report precision/recall/F1 justification
scores, computed against the gold justification sen-
tences provided by the dataset.® For ARC, where
gold justifications are not provided, we used an

SWe use these gold justifications only for evaluation, not
for training, since ROCC is an unsupervised algorithm.
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# External Supervised  Method Fl,, Fl, EMO  Justification
resource? selection of P R F1
justifications?
DEVELOPMENT DATASET
Baselines
0 No No Predict 1 (Khashabi et al., 2018a) 61.0 599 0.8 -
1 No No IR(paragraphs) (Khashabi et al., 2018a) 643 600 14 -
2 No No SurfaceLLR (Khashabi et al., 2018a) 66.5 632 11.8 -
3 No No Entailment baseline (Trivedi et al., 2019) 51.3 504 - -
Previous work
4 Yes Yes EERppr + FT Wang et al. (2019) 70.5 67.8 133 -
5 Yes Yes Multee (GloVe) (Trivedi et al., 2019) 71.3 683 179 -
6 No Yes Multee (ELMo) (Trivedi et al., 2019) 703 673 228 -
7 Yes Yes Multee (ELMo) (Trivedi et al., 2019) 73.0 69.6 228 -
8 No Yes RS (Sun et al., 2018) 69.7 67.9 169 -
9 Yes Yes RS (Sun et al., 2018) 73.1* 70.5* 21.8 -
BERT + IR baselines
10 No No BERT + entire passage 65.7 627 17.0 17.4 100.0 29.6
11 No No BERT + BM25 (k = 1 sentence) 66.2 628 179 61.0 27.1 375
12 No No BERT + BM25 (k = 2 sentences) 68.1 64.8 21.0 51.6 456 484
13 No No BERT + BM25 (k = 3 sentences) 69.1 657 21.6 42.6 56.1 484
14 No No BERT + BM25 (k = 4 sentences) 70.05 66.7 223 369 64.6 47.0
15 No No BERT + BM25 (k = 5 sentences) 712 67.7 234 327 71.1 448
BERT + parametric ROCC
16 No No BERT + ROCC (k = 2 sentences) 69.8 66.8 2277 5477 48,5 514
17 No No BERT + ROCC (k = 3 sentences) 7277 69.7 252 48.0 63.5 54.7
18 No No BERT + ROCC (k = 4 sentences) 722 69.0 25.0 40.6 71.0 51.6
19 No No BERT + ROCC (k = 5 sentences) 71.6 68.7 22.7 350 765 48.1
BERT + non-parametric ROCC
20 No No BERT + AutoROCC (k € {2, 3,4}) 720 69.0 219 489 66.5 56.3
21 No No BERT + AutoROCC (k € {2,3,4,5}) 72.0 68.8 235 483 677 564
22 No No BERT + AutoROCC (k € {2,3,4,5,6}) 72.1 69.2 253 482 682 564
23 No No BERT + BM25 (k from best AutoROCC) 71.1 674 23.1 438 612 51.0
24 No No BERT + AutoROCC (k € {2,3,4,5,6}, pre-trained) 72.9 69.6 24.7 482 682 56.4
Ceiling systems with gold justifications
25 Yes Yes EERy; + FT (Wang et al., 2019) 723 70.1 192 --
26 No Yes BERT + Gold knowledge 79.1 754 37.6 100.0 100.0 100.0
27 - - Human 86.4 83.8 56.6 -
TEST DATASET
28 No No SurfaceLLR (Khashabi et al., 2018a) 669 635 12.8
29 Yes Yes Multee (ELMo) (Trivedi et al., 2019) 73.8 704 245 -
30 No No BERT + AutoROCC (k € {2, 3,4, 5, 6}, pre-trained) 73.8 70.6 26.1

Table 2: Performance on the MultiRC dataset, under various configurations. k indicates the size(s) of the sets of justification
sentences. In parametric ROCC, k is a hyper parameter; in AutoROCC, k is selected automatically. The pre-trained ROCC
configurations pre-train BERT on the entire passage corresponding to the question, before fine tuning it on the ROCC sentences.
Bold values with * indicate state-of-the-art results that used external labeled resources or other supervised methods for the
selection of justification sentences. Italicized bold values show state-of-the-art results from experiments that do not use any

external labeled resources.

external annotator to annotate the justifications for
a random stratified sample of 70 questions, with
10 questions selected from each grade (3 —9).The
annotator reported two scores: precision, and cov-
erage. Precision was defined as the fraction of justi-
fication sentences that are relevant for the inference
necessary to connect the corresponding question
and candidate answer. Coverage was defined as 1 if
the justification set completely covers the inference
process for the given question and answer, 1/2 if
the set of justifications partially addresses the in-
ference, and O if the justification set is completely
irrelevant. Table 1 illustrates these scores with an
actual output from ARC.

4.2 Question answering results

In addition to comparing ROCC with previously
reported results, we include multiple baselines: (a)
the BERT answer classifier trained on the entire
passage of the given question (MultiRC), to demon-
strate that ROCC has the capacity to filter out ir-
relevant content from these paragraphs; (b) BERT
trained without any justification sentences (ARC),
to show that ROCC has the capacity to aggregate
useful information from large unstructured KBs,
and (c) BERT trained on sentences retrieved using
BM25, to demonstrate that ROCC performs better
than other unsupervised approaches. Note that the
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# External Supervised  Method Challenge Easy All Justification
resources selection of P, Coverage
used? justifications?

Baselines

0 No No AI2 IR Solver (Clark et al., 2018) 59.99 23.98 >0

1 No No Sanity Check (Yadav et al., 2018) 58.36 26.56 >0

2 Yes No Tuple-Inf (Clark et al., 2018) 60.71 23.83 >0

3 Yes No DGEM (Clark et al., 2018) 58.97 27.11 >0

Previous work

4 Yes - Bi-LSTM max-out (Mihaylov et al., 2018) 33.87 34.26 =0

8 No No AHE (Yadav et al., 2019) 33.28 63.22 5331

9 No - Reading Strategies (Sun et al., 2018) 35.40 63.10 53.94 =0

10 Yes - Reading Strategies (Sun et al., 2018) 42.30* 68.90* 60.19" =0

BERT + IR baselines

11 No - BERT 35.11 5275 46.94

12 No No BERT + BM25 (k = 1 sentence) 33.87 56.23 48.85

13 No No BERT + BM25 (k = 2 sentences) 38.65 60.50 53.29

14 No No BERT + BM25 (k = 3 sentences) 41.04 63.19 55.89

15 No No BERT + BM25 (k = 4 sentences) 37.9 63.49 53.90

16 No No BERT + BM25 (k = 5 sentences) 38.01 61.28 53.60

BERT + parametric ROCC

17 No No BERT + ROCC (k = 2 sentences) 36.65 60.59 52.69

18 No No BERT + ROCC (k = 3 sentences) 39.29 62.97 55.16

19 No No BERT + ROCC (k = 4 sentences) 40.39 61.13 54.29

20 No No BERT + ROCC (k = 5 sentences) 40.62 59.96 53.58

BERT + non-parametric ROCC

21 No No BERT + AutoROCC (k € {2, 3,...20}) 40.73 63.64 56.09 48.04,62.50

22 No No BERT + BM25 (k from best AutoROCC) 39.24 61.01 53.83 42.55,55.88

23 No No BERT + AutoROCC (k € {2, 3,...20}, pre-trained) 41.24 64.49 56.82 48.04,62.50

Table 3: Performance on the ARC dataset, under various configurations. Notations are the same as in Table 2.

BM25 baseline has an additional hyper parameter:
the number of sentences to be considered (k).

Table 2 reports comprehensive results on
MultiRC, including both overall QA performance,
measured using F1,,, Fl1,, and EMO, as well as
justification quality, measured using standard preci-
sion (P), recall (R), and F1. Note that the bulk of the
results are reported on the development partition.
The last row in the table reports results on the test
partition, computed using the official submission
portal which can be accessed only once per model
(including its variants). To understand ROCC'’s be-
havior, the table includes both the parametric form
of ROCC, where the size of the justification sets
(k) is manually tuned as well as the non-parametric
ROCC, where k is automatically selected in the
third step of the ROCC algorithm (see Figure 2) by
sorting across all sizes of justification sets together,
instead of sorting within each value of k. Table 3
lists equivalent results on ARC.

We draw several observations from these tables:

(1) Despite its simplicity, ROCC combined with
the BERT classifier obtains new state-of-the-art per-
formance on both MultiRC and ARC for the class
of approaches that do not use external resources to
either train the justification sentence selection or
the answer classifier. For example, ROCC outper-

forms the previous best result in MultiRC by 2.5
EMO points on the development partition (row 24
vs. row 6), and 1.6 EMO points on test (row 30 vs.
row 29). In ARC, ROCC outperforms the previous
best approach by 5.8% accuracy on the Challenge
partition, and 2.9% overall (row 23 vs. row 9).

(2) On both datasets, the non-parametric form of
ROCC (AutoROCC) slightly outperforms the para-
metric variant. Importantly, it always achieves
higher justification scores compared to the paramet-
ric ROCC. In MultiRC, AutoROCC outperforms
our baseline of BERT + entire passage (row 10 vs
22) by 8.3% EMO, indicating that AutoROCC can
filter out irrelevant content. In ARC, AutoROCC
outperforms the baseline with no justification sen-
tences by 9.1% (row 21 vs row 11), demonstrating
that ROCC aggregates useful knowledge.

(3) The results of the parametric forms of ROCC
(rows 16 — 19 in Table 2 and rows 17 — 20 in
Table 3) indicate that performance continues to
increase until £ = 4 in MultiRC and ¥ = 3 in
ARC. This indicates that: (a) knowledge aggrega-
tion is beneficial for these tasks; (b) ROCC can
robustly handle non-trivial cases of aggregation
with larger values of k; and (c) similar to other QA
methods (Chen and Durrett, 2019), performance
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train/test Science | Fiction | News | Wiki | wikiMovie | Society, | All
textbook articles | Summaries | Law and
Justice
AutoROCC 54.57 53.88 | 54.32 | 60.49 57.10 61.06 56.44
BERT+AII passages 55.15 5546 | 68.77 | 65.14 57.39 58.79 60.90
BERT+Science textbook 55.67 41.01 | 51.45 | 50.06 54.96 48.84 | 50.79
BERT+Fiction 45.16 57.60 | 63.05 | 63.13 59.98 50.94 | 58.31
BERT+News 44.11 50.77 | 68.82 | 65.45 57.01 58.30 | 59.30
GPT-2 (Wang et al., 2019) - - - - - - 60.7

Table 4: Domain robustness of the non-parametric ROCC vs. a supervised sentence selection model, evaluated on
the gold justification sentences from MultiRC. Each column represents a section of the MultiRC development set.
Each row after AutoROCC represents a justification sentence selection component trained only on the specified
section of MultiRC (these sections are listed in descending order of the number of passages in the training data).

decreases for large values of k, suggesting that
knowledge aggregation remains an open research
challenge.

(4) The justification scores in both datasets are con-
siderably higher than the equivalent configuration
that uses BM25 instead of ROCC (i.e., row 24 vs.
row 23 in Table 2, and row 23 vs. row 22 in Ta-
ble 3). This confirms that the joint scoring of sets
of justifications that ROCC performs is better than
the individual ranking of justification sentences per-
formed by standard IR models such as BM25.

4.3 Domain Robustness Analysis

To understand ROCC’s domain robustness, we
compared it against a supervised BERT-based clas-
sifier for the selection of justification sentences, as
well as against GPT-2 (Wang et al., 2019). For this
experiment, we used MultiRC, where gold justifi-
cations are provided. We used this data to train a
classifier for the selection of justification sentences
on various domain-specific sections of MultiRC.
The results of this experiment are shown in Table 4.
Unsurprisingly, training and testing in the same do-
main (e.g., Fiction) leads to the best performance
on sentence selection. However, ROCC is more
stable across domains than the supervised sentence
selection component, with a difference of over 10
F1 points in some configurations. This suggests
that ROCC is a better solution for real-world use
cases where the distribution of the test data may be
very different from the training data.

Compared to BERT, the unsupervised Auto-
ROCC achieves almost the same or better perfor-
mance in the majority of the domains except Wiki
articles and News. We conjecture this happens be-
cause the BERT language model was trained on
a large text corpus that comes from these two do-

# Ablations ARC |MultiRC| MultiRC
EMO |Justification
F1
0 |Full AutoROCC |56.09| 25.29 56.44
1 —IDF 54.11| 24.65 54.19
2 -C(A) 54.90| 21.82 52.93
3 -C(Q) 54.66| 23.61 52.09
4 -0 55.88| 24.03 55.97
5 R* 53.90| 23.40 44 .81

Table 5: Ablation study, removing different compo-
nents of ROCC. The scores are reported on the ARC
test set and MultiRC dev set. R* denotes the best ap-
proach that relies just on the R score. The hyper param-
eter k£ in R*, was tuned on the development partition of
the respective dataset.

mains. However, importantly, AutoROCC is more
robust across domains that are different from these
two, since it is an unsupervised approach that is not
tuned for any specific domain.

The ARC dataset does not provide justification
sentences, so we instead ask how well our question-
answering models do on a related inference task,
the SciTail entailment dataset (Khot et al., 2018).
We trained three QA classifiers on the ARC dataset:
BERT with no justification, BERT with BM25
(k = 4) justifications, and BERT with AutoROCC
justifications. We tested these on SciTail, and
achieved 64.49%, 69.70%, and 73.46% accuracy,
respectively, indicating that AutoROCC’s knowl-
edge aggregation is a valid proxy for entailment.

4.4 Ablation Analysis

Table 5 shows an ablation of the different compo-
nents of ROCC. Row 0 reports the score from the
full AutoROCC model. In row 1, we remove IDF
weights from coverage calculations (see eq. (4))
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Question type Precision ‘ Recall ‘ F-1 score
True/False/Yes/No | 54.1 68.9 60.6
Verbatim 49.7 71.2 58.5
Non-verbatim 47.3 68.7 56.0

Table 6: Justification selection performance of Auto-
ROCC on different types of questions, in the MultiRC
development dataset.

of both question and answer text. In row 2, 3 and
4, we remove the coverage of answer, coverage of
question, and overlap from the ROCC formula (see
eq. (1)) respectively. In all the cases, we found
small drops in both performance and justification
scores across both the datasets, with the removal of
either C'(A) or C(Q) having the largest impact.

4.5 Error Analysis

We analyzed ROCC'’s justification selection per-
formance on three different types of questions in
MultiRC: True/False/Yes/No, Verbatim, and Non-
verbatim (Khashabi et al., 2018b). As shown in
Table 6, AutoROCC achieves higher recall scores
on Verbatim questions, where the answer text is
likely to appear within the given justification pas-
sage, and worse recall on question types where
such overlap does not exist, e.g., Non-verbatim and
True/False. This suggests that the C'(A) compo-
nent of ROCC is important for the extraction of
meaningful justifications.

4.6 Alignment ROCC

To understand the dependence between ROCC and
exact lexical match, we compare the justification
selection performance of ROCC when its score
components are computed based on lexical match
(the approach used throughout the paper up to this
point) vs. the semantic alignment match of Yadav
et al. (2018). The latter approach relaxes the re-
quirement for lexical match, i.e., two tokens are
considered to be matched when the cosine similar-
ity of their embedding vectors is larger than 0.95.”
As shown in Table 7, the alignment-based ROCC
indeed performs better than the ROCC that relies
on lexical match. However, the improvements are
not large, e.g., the maximum improvement is 1.6%
(when k£ = 4), which indicates that ROCC is robust
to a certain extent to lexical variation.

"This threshold was tuned on the MultiRC development
set. We used 100-dimensional GloVe embeddings for this
experiment, which performed similarly to larger embedding
vectors (300), but allowed for faster experiments.

ROCC (k sentences) Lexical | Align.
ROCC | ROCC
ROCC (k = 2 sentences) 51.4 51.4
ROCC (k = 3 sentences) 54.7 55.5
ROCC (k = 4 sentences) 51.6 53.2
ROCC (k = 5 sentences) 48.1 49.2

Table 7: Justification selection performance of the
ROCC configuration that uses lexical match (BM25) to
retrieve candidate justifications (Lexical ROCC), com-
pared against a ROCC variant that uses the semantic
alignment approach of Yadav et al. (2018) to retrieve
candidates (Align. ROCC). This experiment used the
MultiRC development dataset.

5 Conclusion

We introduced ROCC, a simple unsupervised ap-
proach for selecting justification sentences for ques-
tion answering, which balances relevance, overlap
of selected sentences, and coverage of the ques-
tion and answer. We coupled this method with a
state-of-the-art BERT-based supervised question
answering system, and achieved a new state-of-
the-art on the MultiRC and ARC datasets among
approaches that do not use external resources dur-
ing training. We showed that ROCC-based QA
approaches are more robust across domains, and
generalize better to other related tasks like entail-
ment. In the future, we envision that ROCC scores
can be used as distant supervision signal to train
supervised justification selection methods.
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