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Abstract

We present SCIENCEWORLD, a benchmark to
test agents’ scientific reasoning abilities in a
new interactive text environment at the level of
a standard elementary school science curricu-
lum. Despite the transformer-based progress
seen in question-answering and scientific text
processing, we find that current models cannot
reason about or explain learned science con-
cepts in novel contexts. For instance, mod-
els can easily answer what the conductivity of
a known material is but struggle when asked
how they would conduct an experiment in a
grounded environment to find the conductivity
of an unknown material. This begs the question
of whether current models are simply retriev-
ing answers by way of seeing a large number of
similar examples or if they have learned to rea-
son about concepts in a reusable manner. We
hypothesize that agents need to be grounded in
interactive environments to achieve such rea-
soning capabilities. Our experiments provide
empirical evidence supporting this hypothesis—
showing that a 1.5 million parameter agent
trained interactively for 100k steps outperforms
a 11 billion parameter model statically trained
for scientific question-answering and reasoning
from millions of expert demonstrations.12

1 Introduction

Question answering (QA) has seen rapid progress
recently. Standardized elementary and middle
school science exams have served as a challenge
task for QA (Clark et al., 2018), as these questions
require combining science-domain knowledge with
world knowledge in complex reasoning procedures
to solve. As large language models have toppled
these benchmarks (Clark et al., 2020; Khashabi
et al., 2020; Xu et al., 2021a), the focus has shifted
away from simply answering questions toward pro-
ducing human-readable explanations for a model’s

1Website: https://sciworld.apps.allenai.org
2Code: https://github.com/allenai/ScienceWorld

SCIENCEWORLD Task 3 (Test Electrical Conductivity Subtask)

Task Description

Your task is to determine if a metal fork is electrically conductive. The metal
fork is located around the kitchen. First, focus on the metal fork. If conductive,
place it in the blue box. If nonconductive, place it in the green box.

Agent starts in a random location, navigates to kitchen

Kitchen

This room is called the kitchen. In it, you see:
a fridge. The freezer door is closed.
a cupboard. The cupboard door is closed.
a table. On the table is: a glass cup (containing nothing).
a stove, which is turned o�. On the stove is: nothing.
a sink, which is turned o�. In the sink is: nothing.
a thermometer, currently reading a temperature of 10 degrees celsius
a metal fork
a counter. On the counter is: a drawer, a bowl (containing an orange, a
banana, a potato, a red apple).

You also see:
A door to the outside (that is open)
A door to the bathroom (that is open)
A door to the hallway (that is open)

Action:  focus on metal fork
You focus on the metal fork.

Action:  pick up metal fork
You move the metal fork to the inventory.

Agent navigates to room with electrical components

Workshop

This room is called the workshop. In it, you see:
a electric buzzer, which is o�
a electric motor, which is o�
a solar panel, which is o�
a table. On the table is: a blue wire, a battery, a red light bulb, which is o�,

a black wire, a switch, which is o�, a orange wire.
a blue answer box
a green answer box

You also see:
A door to the hallway (that is open)

Action:  connect battery cathode to orange wire terminal 1
cathode on battery is now connected to terminal 1 on orange wire.

Action:  connect metal fork terminal 1 to cathode in red light bulb
terminal 1 on metal fork is now connected to cathode on red light bulb.

Agent continues wiring a circuit containing the metal fork

Action:  examine red light bulb
a red light bulb, which is on.

Action:  move metal fork to blue answer box
(disconnecting metal fork) You move the metal fork to the blue box.

Task Completed.

In room with 

task object

In room with 

components

Successfully

made circuit

0.1
SCORE

0.5
SCORE

0.6
SCORE

1.0
SCORE

0.7
SCORE

Table 1: Transcript for one of the 30 tasks (testing an object’s
electrical conductivity, here a metal fork) in SCIENCEWORLD.
The agent finds the metal fork, use it to build an electrical
circuit with a red light bulb, and observe if the light turns on.
Note the transcript has been simplified to fit in available space,
and large sections have been omitted (greyed sections).
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answers (Jansen et al., 2018; Yang et al., 2018; Xie
et al., 2020; Valentino et al., 2021; Xu et al., 2021b;
Lamm et al., 2021; Aggarwal et al., 2021).

While language models are able to produce com-
pelling answers (Zoph et al., 2022) or explanations
(Jansen et al., 2021) to science questions, are they
simply retrieving (or shallowly assembling) these
answers, or can they understand and use the knowl-
edge they output in a meaningful way? Also, how
can we evaluate if a model’s explanation is correct?

In this work we explore these two questions by
reframing science exam question answering into
an interactive task where agents must complete
elementary science experiments in a simulated text-
based environment called SCIENCEWORLD (see
Table 1). Instead of simply answering a ques-
tion (e.g., Q: “What will happen to an ice cube

when placed on a stove?”, A: “it will melt”), the
agent must demonstrate its capacity to combine
declarative scientific knowledge with the procedu-
ral knowledge required to correctly complete the
experiment in the virtual environment. Similarly,
the sequence of virtual actions an agent performs
can serve as a form of procedural (“how”) expla-
nation to the question, that can be directly evalu-
ated in the virtual environment for correctness (e.g.,
whether the actions led to the ice cube melting).

The contributions of this work are:
1. We construct SCIENCEWORLD, a complex in-

teractive text environment, with simulation en-
gines for thermodynamics, electrical circuits,
chemistry reactions, and biological processes.

2. We implement 30 benchmark tasks across 10
topics spanning the elementary science cur-
riculum, including changes of state of matter
and the role of pollinators when growing fruit.

3. We evaluate 5 state-of-the-art reinforcement
learning and language model agents on this
benchmark, empirically showing that they per-
form poorly on tasks (e.g., melting ice) that
5th grade students can perform with ease.

2 Related Work

Science-domain Inference: Standardized science
exams are a challenging task for question answer-
ing due to their diverse knowledge and inference
requirements (Clark et al., 2013; Jansen et al., 2016;
Boratko et al., 2018; Clark et al., 2018). Top per-
forming models can answer more than 90% of

Figure 1: A graphical representation of an agent performing
the Electrical Conductivity Subtask in SCIENCEWORLD.

multiple-choice questions correctly (Clark et al.,
2020), typically through the use of large language
models (Khashabi et al., 2020; Zoph et al., 2022).

A number of corpora of structured and semi-
structured science exam explanations exist for train-
ing the explanation-generation task (Jansen et al.,
2018; Xie et al., 2020; Khot et al., 2020; Dalvi
et al., 2021). Evaluating explanations is challeng-
ing, and typically done by comparing generated
explanations to a single gold explanation. This
has been shown to substantially underestimate ex-
planation generation performance by up to 40%
(Jansen et al., 2021). While others have worked
to mitigate this by generating multiple alternate
explanations for each question, this is expensive,
and has only been demonstrated for adding one
or two additional explanations per question (Inoue
et al., 2020; Jhamtani and Clark, 2020). Here, we
propose a partial solution to this evaluation prob-
lem by treating the action sequences of agents as
structured manner explanations for how to solve a
task. These action sequences can be directly run
in the SCIENCEWORLD simulator to automatically
determine their correctness (i.e., whether they ac-
complish the task), independent of any variations
in their solution methods. For example, whether an
agent melts ice by using a stove, building a camp-
fire, or leaving the ice out on a kitchen counter,
the end result is the same and directly measurable
through the formal semantics of the simulator.

Environments: Interactive text environments are
becoming a vehicle for research in natural lan-
guage processing (see Jansen (2021) for a review),
primarily because of their reduced development
costs relative to 3D environments, combined with
their ability to easily implement high-level tasks
with large action spaces. In spite of these bene-
fits, implementation costs can still be substantial
for large complex environments, and text agents
are frequently evaluated on a small set of exist-
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ing interactive fiction games such as Zork (Lebling
et al., 1979) using an unified interface like Jeri-
cho (Hausknecht et al., 2020). A few purpose-built
environments provide simple tasks for studying
text agents, typically on procedurally generated
pick-and-place or object-combination tasks (e.g.,
cooking, Yin and May, 2019). Kitchen Cleanup
(Murugesan et al., 2020b) and TextWorld Common
Sense (Murugesan et al., 2020a) require agents to
tidy up one or more rooms in a house environment
by putting objects in their typical locations (e.g., a
hat should be placed on the hat rack), testing an
agent’s declarative knowledge of common object
locations with the procedural knowledge required
for this pick-and-place task. The closest existing
interactive text environment to SCIENCEWORLD

is TextLabs (Tamari et al., 2021) which simulates
chemistry wet-lab protocols with actions such as
pipetting and centrifuging. Compared to these ex-
isting environments, SCIENCEWORLD is generally
a larger and more dynamic environment, populated
with more complex objects with greater depth of
physical simulation. This simulation depth enables
more complex tasks associated with elementary sci-
ence (e.g., thermodynamics, electrical circuits, etc.)
to be tested, and a greater variety of solutions.

Simulators: Nearly all text-based world simu-
lations are currently implemented as Z-machine
games (Infocom, 1989; Nelson, 2014), frequently
through higher-level application-specific languages
(such as Inform7, Nelson, 2006) that compile to
Z-machine code. TextWorld (Côté et al., 2018) cre-
ates environments using linear-logic statements that
specify action preconditions and postconditions
(Martens, 2015) and generate Inform7 code. Exist-
ing tooling is designed for simpler simulations than
SCIENCEWORLD, with primarily agent-centered
state changes that make modeling autonomous
physical processes (e.g., thermodynamics) difficult.
As such, in this work we build a novel simulator to
model physical processes in text environments.

Agents: A variety of agent models have been
proposed for reasoning in interactive text envi-
ronments. Most approaches frame reasoning as
a partially-observable Markov decision process
(POMDP), and model inference using reinforce-
ment learning (RL). This includes RL-based mod-
els that learn a policies to pick relevant actions
from lists of candidate actions (He et al., 2016),
or models that mix RL with knowledge graphs
(Ammanabrolu and Hausknecht, 2020) or language

models (Yao et al., 2020) to aid in next-action se-
lection. Action selection has also been modelled
using case-based reasoning (Atzeni et al., 2021), or
directly as a sequence-prediction imitation learning
task, using language models trained on gold action
sequences to predict the next action given the cur-
rent state (Torabi et al., 2018; Ammanabrolu et al.,
2021, 2022). In general, agent performance on
solving interactive fictions is still modest, with only
easier games close to completion (Jansen, 2021).

In this work, we benchmark state-of-the-art
agents on SCIENCEWORLD as well as introduce
novel agents. We empirically show that these el-
ementary science tasks are difficult for current
agents, and also that smaller and simpler agents
can outperform billion-scale parameter language
models trained on gold sequences, highlighting the
difficulty of this task for transformer-based models.

3 SCIENCEWORLD

SCIENCEWORLD is a simulation of the world ab-
stracted through a complex interactive text environ-
ment in English with many objects, actions, and
simulation engines. The framework consists of 40k
lines of SCALA (speed) with a PYTHON interface.

The SCIENCEWORLD environment contains 10
interconnected locations (see Figure 1), populated
with up to 200 types of objects, including devices,
instruments, plants/animals, electrical components,
substances, containers, and common environment
objects such as furniture, books, and paintings.
The SCIENCEWORLD action space contains 25
high-level actions, including both science-domain
actions (e.g., using thermometer) and common
actions (e.g., moving, opening containers, pick-
ing up items), with approximately 200k possible
action-object combinations per step (though only
a limited subset of these will be meaningful). See
Appendix A for details about SCIENCEWORLD, in-
cluding the object model, actions, and input parser.

3.1 Simulation Engines

SCIENCEWORLD supports actions commonly
found in interactive text environments – for ex-
ample, objects can be moved or examined, foods
can be eaten, and books can be read. In addition,
the environment contains a number of elementary
science-domain specific processes that either occur
automatically (e.g., thermodynamics) or are cou-
pled to actions (e.g., devices, mixing chemicals).
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Those simulation engines3 are:

Thermodynamics: All objects have temperatures
and other thermal properties based on their materi-
als. All objects within a container are considered in
thermal contact with each other, and transfer heat
energy using a simplified conductive heat model.
The proportion of heat transferred between objects
at each step is mediated by the object’s thermal

conduction coefficient, allowing thermal conduc-
tors (like metal pots) and insulators (like ceramics)
to be modelled. Every material has phase transition
points (i.e., melting point, boiling point) and com-

bustion points populated based on the best-known
or approximate physical values for those materials.
Objects that move past these thresholds will change
state of matter (e.g., from a solid to a liquid), or be-
gin a combustion process that ultimately ends in the
object turning to ash unless its fire is put out. Con-
vective heat transfer is also modelled in the form
of heat sources (e.g., oven, stove) and heat sinks
(e.g., fridge, freezer) that transfer heat energy to
or from objects. Rooms also transfer ambient heat
energy to/from the objects they contain.

Electricity: The simulator models simple series
electrical circuits, where electrically-powered de-
vices (e.g., light bulb, motor) can be powered by
being connected to electrical energy sources (e.g.,
battery, solar panel) through electrical conduc-
tors (nominally, wires). Polarized and unpolarized
components are modelled, with each object having
exactly two terminals (anode and cathode for polar-
ized; terminals 1 and 2 for unpolarized). Connec-
tion happens through explicit terminal-to-terminal
connection actions (e.g., connect battery anode

to blue wire terminal 1). Every non-electrical
object in SCIENCEWORLD has virtual unpolarized
terminals, allowing circuits to be build with valid
electrical conductors (e.g., using a metal fork in
place of a wire), and for the agent to build circuits
that test conductivity by (for example) observing if
a light bulb illuminates when a plastic versus metal
fork is used in the circuit.

Devices: Many objects are also considered devices,
that can be activated or deactivated by the agent
(e.g., stove, electrical switch), or may have
environment-specific conditions to being activated

3For tractability, simulation engines are implemented with
fidelity at the level of elementary science. Thermal transfer
uses a simplified equation, biological changes happen in stages
rather than gradually, only simple series circuits are simulated
(no resistance, inductance, or any advanced topics), etc.

(e.g., a light bulb will only activate if it is prop-
erly electrically connected; a solar panel will
only produce power if it is outside). Objects can
also be used with other objects in specific contexts
(e.g., a thermometer, to measure an object’s tem-
perature; a shovel, to dig soil from the ground).

Chemistry: A subset of specific chemical reac-
tions are modelled, where mixing a set of sub-
stances together in a container will produce a re-
sultant substance (e.g., salt and water mix to pro-
duce salt water). Common chemical reactions
taught in elementary science (e.g., water reactions,
rust, food reactions, paint mixing) are modelled.

Life Stages: Living things (plants and animals)
progress through life stages (e.g., seed, seedling,
juvenile plant, adult plant, reproducing plant, dead
plant). Progression through life stages happens
over time by continuing to meet the needs of that
living thing (e.g., water, soil). If the needs are
not met (e.g., a plant is not watered, is removed
from soil, or becomes too hot), then it dies.

Reproduction and Genetics: Living things can
have genes that express traits (e.g., flower colour,
seed shape, leaf size). Genes are inherited from
the alleles of both parents, and genotype is deter-
mined at the time of reproduction using a Punnett
square. Phenotype (expressed, visible traits) are
determined based on which genes are dominant
versus recessive. Currently, traits are only popu-
lated for selected plants to reproduce Mendelian-
genetics experiments. Plants reproduce by exchang-
ing pollen (containing their genes) between flowers,
typically by a pollinator (such as a bee). Pollinated
flowers eventually wilt and turn into fruits contain-
ing seeds of genetic descendants.

Friction (Inclined Plane): Forces are a significant
part of an elementary science curriculum, but dif-
ficult to incorporate without 2D or 3D simulation.
SCIENCEWORLD models the forces of gravity and
friction in the specific context of 1-dimensional in-
clined plane experiments. Objects placed at the top
of an inclined plane will slide down the plane at a
speed proportional to the plane’s angle, and the fric-
tion coefficient of its surface material. The position
is described to the agent (e.g., “an inclined plant

with a block 60% of the way down the plane”), al-
lowing experiments to determine either the relative
angle or friction coefficients of different inclined
planes based on the speed the object moves down
a given plane.
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Containers: Containers can be always open (e.g.,
a metal pot) or closeable (e.g., a cupboard). Ob-
jects contained inside containers are not visible
until the container is open. Some effects spread be-
yond a container – for example, a wooden cupboard
with a hot object inside may combust, causing other
objects in the kitchen to also increase temperature.

4 Experiments

To understand how contemporary approaches to
text agents perform at SCIENCEWORLD tasks, we
benchmark a selection of recent architectures.

Tasks. To support our goal of generating a di-
verse set of tasks, we identified a candidate set
of 10 broad science exam topics from the list of
400 fine-grained science curriculum topics of Xu
et al. (2020). Topics were chosen that would be
amenable to text-based simulation, and that did not
have critical fine-grained spatial reasoning require-
ments, and include: changes of state, temperature
measurement, electrical circuits, friction, object
classification, chemical mixtures, plants and polli-
nators, life spans, life stages, and Mendelian genet-
ics. Each topic was further divided into between
2 and 4 specific tasks for agents to perform, pro-
ducing a total of 30 science-domain tasks. These
topics and tasks are described in Appendix B.2.

To prevent overfitting and encourage generaliza-
tion, each subtask contains between 10 and 1400
parametric variations (with 7200 total variations
across all 30 subtasks). Variations change criti-
cal task objects (e.g., the specific substance to be
melted), the agent’s starting location in the environ-
ment, as well as randomly vary the contents of the
environment itself (e.g., whether the living room
contains a bookshelf, or a painting, or both).

Train, Development, Test sets: For a given sub-
task, variations are split into 50% training, 25%
development, and 25% test sets. Variations are
sorted such that critical unseen variations (e.g., sub-
stances, animals, or plants unseen during training)
are found in development and test sets.

Goals and Rewards. To reduce reward sparsity,
each task includes between 2 and 15 optional sub-
goals (such as turning on the stove, or the substance

increasing in temperature by 10C) that help nudge
agents in the direction of canonical solutions, if
desired. Meeting required and optional subgoals in-
creases the agent’s score on a given subtask. Scores
for all tasks are normalized to between 0 and 1.

Oracle Agents To support imitation learning, we
provide gold trajectories from 30 hand-coded ora-
cles on all subtasks and variations. For tractability
these solutions represent canonical solution meth-
ods (e.g., using a stove to boil water), rather than
all possible solution methods that lead to the goal
state (e.g., building a campfire to boil water).

Learning Agents. An interactive text envi-
ronment can be cast as a partially observable
Markov decision process (POMDP) defined by
⟨S, T,A,R,O,Ω, γð representing the set of pos-
sible states (S), conditional transition probabili-
ties between states (T ), available text commands
(A), reward function (R ∶ S × A → R), set of
possible text observations (O), observation condi-
tional probabilities (Ω ∶ S → O), and discount
factor (γ ∈ [0, 1]). The goal for a learning agent
is then to learn a policy πθ(o) → a that chooses
or generates a text command a ∈ A given the
text observation o ∈ Ω(s) of state s ∈ S that
maximizes the expected discounted sum of re-
wards E[∑t

γ
t
R(st, at)]. In SCIENCEWORLD,

the agent is also provided with a task description d.
To provide a fair comparison, all models were

run using identical experiment configurations when
possible. Reinforcement learning models were run
with identical training regiments (8 environment
threads at 100k steps per thread). Training episodes
reset after meeting an end state (success or failure),
or after reaching a maximum number of steps (we
used 100 in all experiments). Additional model
details are provided in Appendix C.

Random Baseline: At each time step t, this base-
line randomly chooses an action a from the set of
valid actions At obtained from the simulator.

DRRN (He et al., 2016): The Deep Reinforcement
Relevance Network (DRRN) learns separate rep-
resentations of the observation space and action
space of an environment, then trains a policy that
selects from At the action that is the most rele-
vant given the current text observation ot (which
also includes the description of the current room
o

look
t and the current agent inventory o

inv
t ) and that

would lead to an increased reward. The DRRN is
a strong baseline with near state-of-the-art perfor-
mance on many medium-to-hard interactive text
environments (Hausknecht et al., 2020).

KG-A2C (Ammanabrolu and Hausknecht, 2020):
This model represents the state space with a knowl-
edge graph built dynamically from the text observa-
tions ot using OpenIE triples (Angeli et al., 2015)
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such as (glass bottle, contains, water), while
the action space is represented using action tem-
plates with placeholders (e.g., open OBJ) obtained
from SCIENCEWORLD. The model learns a policy
that selects relevant action templates then populates
them with objects from the knowledge graph.

CALM (GPT2) (Yao et al., 2020): We collect
transcripts of expert demonstrations for the train
variations of the tasks using the oracle agents, then
use them to fine-tune a pre-trained language model
(GPT-2, Radford et al. (2019)). At runtime, the
language model is provided with the current ob-
servation ot, last observation ot−1, and last action
at−1, then generates a shortlist of 30 possible ac-
tions to take. This shortlist serves as input to an
RL model similar to the DRRN, which re-ranks the
actions and chooses the next action to perform.

Behavior Cloning (Torabi et al., 2018): We follow
the methodology of Ammanabrolu et al. (2021) in
adapting the popular imitation learning method of
behavior cloning from observations to text agents.
We used the same transcripts of demonstrations as
the CALM (GPT2) agent to extract 211,092 train-
ing examples with (d, ot−1, at−1, ot) as inputs and
at as targets. We fine-tune a transformer-based
text-to-text model with a T5 architecture (Raf-
fel et al., 2020) initialized with the weights of a
Macaw (Tafjord and Clark, 2021) model designed
to answer science questions.

At test time, the agent performs zero-shot infer-
ence online in the simulator by generating a fixed
number of actions with beam search on the unseen
test variations for each task. Despite training on
a large number of demonstrations, the generated
actions are often invalid or not useful—resulting in
zero scores. Thus, we treat the beam search’s out-
put as a ranked-list and run the highest-ranked ac-
tion appearing in At, similar to the language-model-
to-valid-action aligner of Huang et al. (2022).

Text Decision Transformer: Inspired by the De-
cision Transformer (Chen et al., 2021), we cre-
ate a novel text game agent that models the entire
POMDP trajectory as a sequence and has the ability
to potentially predict actions that maximize future
long term expected reward. We again used the
same transcripts of demonstrations as the two pre-
vious agents to extract 224,902 training examples
with (d, ot−1, R̂t−1, at−1, ot, R̂t) as inputs and at
as targets. Here R̂ is the returns-to-go (i.e., sum
of future rewards) R̂ = ∑T

t
′
=t
rt′ where rt′ is the

future reward obtained by the expert at step t
′—

enabling models to predict actions that maximize
future expected rewards. The architecture, pre-
training, parameter sizes, and test inference are
otherwise similar to the behavior cloning agent.

Both the Behavior Cloning and Text Decision
Transformer agents learn to perform SCIENCE-
WORLD tasks offline from demonstrations once
pre-trained for scientific QA. They use the prevail-
ing paradigm for achieving state-of-the-art on many
language benchmarks (e.g., QA (Khashabi et al.,
2020; Tafjord and Clark, 2021), language under-
standing (Raffel et al., 2020; Brown et al., 2020)).

Results. Performance for all agents across each
SCIENCEWORLD task is shown in Table 2. Over-
all, these tasks are challenging for current models,
with the best model (DRRN) achieving an aver-
age score of 0.17 across all 30 subtasks. Models
that rely on the valid action detection aid gener-
ally perform better than those that learn to generate
valid actions in addition to learning what actions
to pick to increase task performance. All models
relying on large language model for action selec-
tion (CALM, BC-T5, TDT-T5) generally achieve
low performance as they tend to generate few valid
actions in their candidate action lists.

Figure 2 shows episode reward curves for four
selected tasks (with reward curves for all tasks in-
cluded in Appendix C). These four tasks include
the current best-performing task (Task 4-2: Find a

non-living thing), which requires an agent to focus
on any non-living thing in the environment, pick it
up, and place it in a specific container (typically in a
different location than the agent’s starting location).
Most RL models quickly solve the majority of this
task, but struggle with picking up and moving the
object to the final container. In contrast, other more
open-ended tasks (such as Task 1-4, which requires
agents to perform any state-of-matter change to
a specific substance) are performed poorly by all
models. Finally, SCIENCEWORLD includes pairs
of identical tasks where one can be solved by re-
trieving some critical component of the answer,
while the other requires conducting the experimen-
tal procedure successfully. For example, in Task

3-3, an agent could look up that a metal fork is an
electrical conductor and solve the task with com-
paratively fewer steps then in its paired Task 3-4,
where the substance name is randomly generated
(e.g., unknown substance B) and the experiment
must be completed to get the answer. We do not yet
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# Topic Task Random-Valid DRRN KG-A2C CALM BC TDT

Rely on Test Time Valid Action Detection Aid ✓ ✓ ✓ ✓

1-1 Matter Changes of State (Boiling) 0.00 0.03 0.00 0.00 0.00 0.00
1-2 Matter Changes of State (Melting) 0.00 0.04 0.00 0.00 0.00 0.01
1-3 Matter Changes of State (Freezing) 0.00 0.01 0.04 0.00 0.01 0.00
1-4 Matter Changes of State (Any) 0.00 0.03 0.00 0.00 0.00 0.00
2-1 Measurement Use Thermometer 0.00 0.10 0.06 0.01 0.04 0.04
2-2 Measurement Measuring Boiling Point (known) 0.00 0.08 0.11 0.01 0.01 0.02
2-3 Measurement Measuring Boiling Point (unknown) 0.00 0.06 0.04 0.01 0.01 0.02
3-1 Electricity Create a circuit 0.01 0.13 0.07 0.05 0.03 0.07
3-2 Electricity Renewable vs Non-renewable Energy 0.01 0.10 0.04 0.07 0.02 0.05
3-3 Electricity Test Conductivity (known) 0.01 0.07 0.04 0.02 0.05 0.05
3-4 Electricity Test Conductivity (unknown) 0.00 0.20 0.04 0.02 0.04 0.05
4-1 Classification Find a living thing 0.03 0.26 0.18 0.10 0.29 0.16
4-2 Classification Find a non-living thing 0.63 0.56 0.44 0.54 0.19 0.17
4-3 Classification Find a plant 0.01 0.19 0.16 0.10 0.17 0.19
4-4 Classification Find an animal 0.01 0.19 0.15 0.08 0.21 0.19
5-1 Biology Grow a plant 0.07 0.09 0.06 0.02 0.08 0.03
5-2 Biology Grow a fruit 0.02 0.16 0.11 0.04 0.03 0.05
6-1 Chemistry Mixing (generic) 0.01 0.20 0.17 0.03 0.06 0.10
6-2 Chemistry Mixing paints (secondary colours) 0.01 0.29 0.19 0.06 0.16 0.20
6-3 Chemistry Mixing paints (tertiary colours) 0.00 0.11 0.04 0.03 0.05 0.07
7-1 Biology Identify longest-lived animal 0.02 0.48 0.43 0.06 0.26 0.20
7-2 Biology Identify shortest-lived animal 0.03 0.47 0.32 0.10 0.14 0.16
7-3 Biology Identify longest-then-shortest-lived animal 0.01 0.31 0.23 0.04 0.02 0.20
8-1 Biology Identify life stages (plant) 0.00 0.09 0.05 0.04 0.04 0.02
8-2 Biology Identify life stages (animal) 0.00 0.10 0.10 0.00 0.02 0.07
9-1 Forces Inclined Planes (determine angle) 0.01 0.13 0.04 0.00 0.05 0.04
9-2 Forces Friction (known surfaces) 0.00 0.13 0.04 0.03 0.05 0.04
9-3 Forces Friction (unknown surfaces) 0.01 0.13 0.04 0.02 0.04 0.04
10-1 Biology Mendelian Genetics (known plants) 0.01 0.19 0.11 0.02 0.06 0.06
10-2 Biology Mendelian Genetics (unknown plants) 0.01 0.17 0.11 0.02 0.13 0.05

Average 0.03 0.17 0.11 0.05 0.08 0.08
Param. Count ×10

6 – 1.5 5.5 131* 11,000 11,000

Table 2: Zero-shot performance of the agents on test variations of across all tasks. All online RL-trained agent performances are
averaged over 5 independent random seeds. Results across seeds tend to have low variance, with 80% of standard deviations
below 0.05, and 95% of standard deviations below 0.10. Performance for RL agents is averaged over the last 10% of evaluation
episodes, while T5 performance represents average task score across all test variations of a task.∗ signifies that the value of 131M
parameters includes the number of the parameters of the pre-trained GPT-2 action generator model. Only 6.9 million policy
parameters are updated in RL training.
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Figure 2: Episode reward curves for the DRRN, KGA2C, and CALM models on the unseen test set as a function of the number
of training environment interactions. (left) An example of an easier task, where the agent must pick up any non-living thing,
and place it in a specific box in the environment. (center-left) An example challenge task, where the agent must perform any
change of state (melt, boil, freeze) on a specific substance. (right) Performance on two variations of a task where the agent must
determine whether a specific substance is electrically conductive or not. In one variation (center-right), the substance is named
(e.g. metal fork), while in the other variation (right) the substance is randomly generated (e.g. unknown substance B).

observe this behavior with the agents under exami-
nation. They generally struggle with commonsense
level tasks (e.g., navigation) and are unable to reach
a point where the language models (either GPT-2
in CALM, or T5 initialized with Macaw in BC and
TDT) are able to leverage their internal knowledge
to solve these tasks through retrieval.

5 Discussion

Elementary science tasks are challenging for

text agents. With top-performing agents reach-
ing normalized average scores of 0.17 across tasks,
performance on SCIENCEWORLD is comparable
to the current best-performing agents on medium-
difficulty interactive fiction games such as Zork
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(Ammanabrolu et al., 2020; Yao et al., 2021). Much
as in interactive fiction games, examining agent tra-
jectories reveals that while agents appear to strug-
gle with science-domain inference procedures such
as how to heat a substance or how to grow a seed,
they also currently lack a fluency with common-
sense skills such as navigating the environment or
storing liquids in containers. This underscores the
need for models that can incorporate commonsense
and science-domain knowledge, and integrate that
declarative knowledge into actionable procedures
to progress towards goals in the environment.

Larger models are not necessarily better. While
larger models generally perform better in question
answering tasks (e.g., Raffel et al., 2020), here
we observe that larger models do not always in-
crease performance. Our best-performing model,
the DRRN, has only 1.5 million parameters – four

orders of magnitude less than the T5 models. Both
models also receive the same number of gradient
updates (106) with respect to SCIENCEWORLD

training tasks—though the T5 models have the
added benefit of pre-training both from science
exam QA and a large number of expert demon-
strations.4 This underscores that how a model
approaches modeling state spaces and action se-
quences may be more important than the scope of
its pre-training. Online, interactive training enables
models such as the DRRN and KG-A2C to per-
form tasks requiring long action sequences more
efficiently in terms of both samples and parameters.

Limitations of agents and environments. While
agents still find text environments challenging, it
is important to recognize that even this modest
performance is achieved through a number of sim-
plifying properties. For example, because agents
frequently generate plausible but invalid actions, all
but two agents benchmarked here depend on SCI-
ENCEWORLD’s valid action detection aid at test
time, substantially simplifying their search prob-
lem in the action space. Similarly, while SCIENCE-
WORLD achieves a high environment fidelity for
a text simulation, this is still tempered by prag-
matic concerns, such as generating comparatively
short descriptions of environments that can fit into
the sequence lengths of most transformer models.
As such, even environments with complex physi-
cal, chemical, and biological processes underlying

4See the APPENDIX for additional experiments evaluating
performance versus model size.

their simulations (such as SCIENCEWORLD) still
ultimately must limit the vividness of their descrip-
tions, until these technical limitations in modelling
can be surpassed. Hybrid environments (e.g., Shrid-
har et al., 2020) that concurrently model the same
environment as both a high-fidelity 3D world and
comparatively low-fidelity text-based simulation
have shown that text environments can be used to
provide useful task pre-training that can transfer
back to the 3D environment with relatively low
simulation compute cost.

Explanations as action sequences. Explanations
take on a variety of roles (Lombrozo, 2006; Gilpin
et al., 2018), from detailed human-readable descrip-
tions of classification processes that describe how

a decision was made (e.g., Ribeiro et al., 2016), to
higher-level appeals to scientific processes to ex-
plain why an answer is correct (e.g., Jansen et al.,
2018; Dalvi et al., 2021). Here, the action pro-
cedures generated by agents act as manner expla-
nations for how to solve a particular task – but
while they describe how to accomplish something,
they don’t explain at a high-level why those ac-
tions accomplish the task. For example, action
sequences lack high-level goal information such as

“melting a substance requires heating it, so first the

agent needs to heat the substance with a heating

device, like a stove.”. Similar to how cuing agents
to answer contextual questions can help improve
their task performance (Peng et al., 2021), cuing
agents to generate these explanatory scaffolds may
help future agents increase task performance, while
structuring their action sequence explanations for
better human interpretability.

6 Conclusion

Despite recent progress in both interactive text
agents and scientific text processing via transform-
ers, current models are unable to reason about
fundamental science concepts in a grounded and
reusable manner—calling into question how much
they are actually understanding the tasks at hand.
To better measure such scientific reasoning abilities,
we introduce SCIENCEWORLD, an interactive text
environment derived from an elementary school
science curriculum—with tasks ranging from elec-
trical conductivity to Mendelian genetics.

We evaluate three state-of-the-art reinforcement
learning text game agents: DRRN, KG-A2C,
and CALM; and further introduce two large-scale
transformer-based agents inspired by recent ad-
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vances such as Behavior Cloning and the Decision
Transformer and trained for scientific reasoning
in SCIENCEWORLD. While we find that overall
performance on unseen tasks that require using
science-domain knowledge is low across all agents,
our results also suggest that agents that learn in-
teractively in a grounded environment are more
sample and parameter efficient than large language
models that learn offline by reading text from static
sources. The best agent performance is still modest
— and on-par with medium-difficulty interactive fic-
tion environments such as Zork — highlighting the
need for agents that can integrate declarative scien-
tific and world knowledge with procedural action
sequences in virtual environments.

7 Broader Impacts

Interactive text environments can provide a faster
and cheaper alternative to 3D environments to
teach agents how to plan via sequential deci-
sion making. They allow better control over the
level of abstraction desired to approach a task
(i.e., go to kitchen, vs. put hand on door’s

knob, turn knob clockwise, pull door, let go

of the knob, walk through the door). We be-
lieve making a plan in this abstract language space
is simpler and more interpretable.

With respect to risks, we consider this current
work as exploratory only. ScienceWorld is primar-
ily intended for training agents to learn reasoning
capabilities in the science domain, with limited im-
mediate utility to human science students. Agents
trained on ScienceWorld should not be used to pro-
vide advice for the real world. The environment
in ScienceWorld has been made safer compared to
the real world. For instance, the agent can’t acci-
dentally burn itself while boiling a substance on
a campfire, and its actions should not be taken as
demonstrations of safe procedures for students.
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A SCIENCEWORLD Description

SCIENCEWORLD is a simulation of the world ab-
stracted through a complex interactive text envi-
ronment with many objects (Sec. A.2), actions
(Sec. A.3), and simulation engines (Sec. A.4). The
object-oriented (Sec. A.1) simulator is written in
SCALA and offers a PYTHON interface to interact
with it. SCIENCEWORLD’s flexibility makes it sim-
ple to create new science-domain tasks (Sec. B.2)
and to evaluate the correctness of agents’ solutions
(App. B.4).

A.1 Object Model

Objects in SCIENCEWORLD are represented using
an object-oriented model and are implemented as
classes. SCIENCEWORLD objects can be thought
of as collections of sets of properties (e.g., material
properties, life properties, device properties, etc.).
All objects implement common functions, such as
those that produce textual descriptions of the ob-
ject, or that provide one or more possible referents
for the object based on its current state (e.g., the
water substance in the solid state could generate
the referents ice, solid water, and substance,
each of which could be used by the agent to refer
to that object in an action). Similar to Z-machine
games (Infocom, 1989), objects are stored in an ob-
ject tree representing the object’s current container
(its immediate parent object in the tree), and any
objects it contains (child nodes in the tree).

A.2 Environment and Objects

SCIENCEWORLD is composed of a map of 10 lo-
cations centered around a house theme (kitchen,
bathroom, workshop, art studio, greenhouse,
outside, etc.), as shown in Figure 1. While the
rooms and how they interconnect is static, the envi-
ronment is randomly populated with different com-
binations of relevant contextual items each time it
is initialized – for example, in one run, the living
room may have a bookcase with three books. In
other runs, the bookcase may have different books,
no books, or not be present in the environment.
This parametric variation discourages agents from
memorizing the specific environment, and encour-
ages robustness in task performance.

The environment is populated with up to 195
specific types of objects (excluding variations of
those objects that change names or task proper-
ties, i.e., red wires and black wires belong to
the same object type). This includes 23 animals, 11

Action Description

open/close OBJ open/close a container
de/activate OBJ activate/deactivate a device
connect OBJ to OBJ connect electrical components
disconnect OBJ disconnect electrical components
use OBJ [on OBJ] use a device/item
look around describe the current room
look at OBJ describe an object in detail
look in OBJ describe a container’s contents
read OBJ read a note or book
move OBJ to OBJ move an object to a container
pick up OBJ move an object to the inventory
put down OBJ drop an inventory item
pour OBJ into OBJ pour a liquid into a container
dunk OBJ into OBJ dunk a container into a liquid
mix OBJ chemically mix a container
go to LOC move to a new location
teleport to LOC

∗ teleport to a specific room
eat OBJ eat a food
flush OBJ flush a toilet
focus on OBJ signal intent on a task object
wait [DURATION] take no action for some duration
task describe current task
inventory list agent’s inventory

Table 3: The 25 actions in the action space of SCIENCE-
WORLD. Actions can take up to two parameters, referencing
objects the action should interact with. ∗ signifies that the
teleport action is only available to agents in a simplified mode.

plants, 25 substances, 10 canonical liquid contain-
ers (like tin cups or glass jars), 13 electrical
components (such as light bulbs, motors, wires,
and generators), 16 devices (including a stove,
thermometer, and stopwatch), and 15 common
pieces of furniture. To support these objects, the
simulator includes a variety of other properties, in-
cluding (for example) plant/animal life cycles, and
80 material properties (including water, glass, iron,
and wood) that pure substances or physical objects
(e.g., tables) can be made from.

A.3 Action Space

The simulator implements 25 actions, shown in
Table 3, including generic actions common in in-
teractive text environments (e.g., opening a door,
moving to a location), as well as science-domain
specific actions (e.g., connecting electrical compo-
nents, chemically mixing items, pouring liquids).
Five actions take two arguments, 16 take one argu-
ment, and four actions take zero arguments. Given
the approximately 200 possible objects (exclud-
ing parametric variations) in SCIENCEWORLD, the
action space can naively be estimated to be approx-
imately 200,000 possible unique action possibil-
ities at each step, though only a small subset of
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these would be meaningful. Similar to the Jericho
framework, the simulator can provide valid action
detection as an aid to agents (such as the DRRN)
that require selecting their next action from a list
of possible known-valid actions at a given step.

Input Parser At each step, an input parser at-
tempts to parse user or agent input into a single
unique action. Actions are specified as templates
that can take on a variety of surface forms (e.g.,
move to LOCATION or go to LOCATION), and that
include placeholders for object referents. At run-
time, the parser examines all valid referents for
visible objects from the agent’s point of view, and
if a given input string can produce more than one
valid action, the parser will ask for clarification5.

A.4 Simulation Engines

SCIENCEWORLD supports actions commonly
found in interactive text environments – for ex-
ample, objects can be moved or examined, foods
can be eaten, and books can be read. In addition,
the environment contains a number of elementary
science-domain specific processes that either occur
automatically (e.g., thermodynamics) or are cou-
pled to actions (e.g., using devices, mixing chemi-
cals). Those simulation engines are:6

Thermodynamics: All objects have temperatures
and other thermal properties based on their materi-
als. All objects within a container are considered in
thermal contact with each other, and transfer heat
energy using a simplified conductive heat model.
The proportion of heat transferred between objects
at each step is mediated by the object’s thermal

conduction coefficient, allowing thermal conduc-
tors (like metal pots) and insulators (like ceramics)
to be modelled. Every material has phase transition
points (i.e., melting point, boiling point) and com-

bustion points populated based on the best-known
or approximate physical values for those materials.
Objects that move past these thresholds will change
state of matter (e.g., from a solid to a liquid), or be-

5For example, if the agent is in a room with two apples,
one on a table and one in a bowl, the command take apple
will cause the parser to ask the agent to clarify which apple
they mean by selecting possible alternatives from a numbered
list.

6To maintain tractability in implementation, simulation
engines are implemented with a fidelity at the level of an
elementary science curriculum. Thermal transfer uses a sim-
plified equation, biological changes happen in stages rather
than gradually, only series instead of arbitrary electrical cir-
cuits are simulated (and without the concepts of resistance,
inductance or other advanced topics), etc.

gin a combustion process that ultimately ends in the
object turning to ash unless its fire is put out. Con-
vective heat transfer is also modelled in the form
of heat sources (e.g., oven, stove) and heat sinks
(e.g., fridge, freezer) that transfer heat energy to
or from objects. Rooms also transfer ambient heat
energy to/from the objects they contain.

Electricity: The simulator models simple series
electrical circuits, where electrically-powered de-
vices (e.g., light bulb, motor) can be powered by
being connected to electrical energy sources (e.g.,
battery, solar panel) through electrical conduc-
tors (nominally, wires). Polarized and unpolar-
ized components are modelled, with each object
having exactly two terminals (either an anode and
cathode for polarized components, or terminals 1
and 2 for unpolarized components). Connection
happens through explicit terminal-to-terminal con-
nection actions (e.g., connect battery anode to

blue wire terminal 1). Every non-electrical ob-
ject in SCIENCEWORLD has virtual unpolarized
terminals, allowing circuits to be build with valid
electrical conductors (e.g., using a metal fork in
place of a wire), and for the agent to build circuits
that test conductivity by (for example) observing if
a light bulb illuminates when a plastic versus metal
fork is used in the circuit.

Devices: Many objects are also considered devices,
that can be activated or deactivated by the agent
(e.g., stove, electrical switch), or may have
environment-specific conditions to being activated
(e.g., a light bulb will only activate if it is prop-
erly electrically connected; a solar panel will
only produce power if it is outside). Objects can
also be used with other objects in specific contexts
(e.g., a thermometer, to measure an object’s tem-
perature; a shovel, to dig soil from the ground).

Chemistry: A subset of specific chemical reac-
tions are modelled, where mixing a set of sub-
stances together in a container will produce a re-
sultant substance (e.g., salt and water mix to pro-
duce salt water). Common chemical reactions
described in elementary science questions (e.g.,
water reactions, rust, food reactions, paint mixing)
are modelled.

Life Stages: Living things (plants and animals)
progress through life stages (e.g., seed, seedling,
juvenile plant, adult plant, reproducing plant, dead
plant). Progression through life stages happens
over time by continuing to meet the needs of that
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living thing (e.g., water, soil). If the needs are
not met (e.g., a plant is not watered, is removed
from soil, or becomes too hot), then it dies.

Reproduction and Genetics: Living things can
have genes that express traits (e.g., flower colour,
seed shape, leaf size). Genes are inherited from
the alleles of both parents, and genotype is deter-
mined at the time of reproduction using a Punnett
square. Phenotype (expressed, visible traits) are
determined based on which genes are dominant
versus recessive. Currently, traits are only popu-
lated for selected plants to reproduce Mendelian-
genetics experiments. Plants reproduce by exchang-
ing pollen (containing their genes) between flowers,
typically by a pollinator (such as a bee). Pollinated
flowers eventually wilt and turn into fruits contain-
ing seeds of genetic descendants.

Friction (Inclined Plane): Forces are a significant
part of an elementary science curriculum, but dif-
ficult to incorporate without 2D or 3D simulation.
SCIENCEWORLD models the forces of gravity and
friction in the specific context of 1-dimensional in-
clined plane experiments. Objects placed at the top
of an inclined plane will slide down the plane at a
speed proportional to the plane’s angle, and the fric-
tion coefficient of its surface material. The position
is described to the agent (e.g., “an inclined plant

with a block 60% of the way down the plane”), al-
lowing experiments to determine either the relative
angle or friction coefficients of different inclined
planes based on the speed the object moves down
a given plane.

Containers: Containers can be always open (e.g.,
a metal pot) or closeable (e.g., a cupboard). Ob-
jects contained inside containers are not visible
until the container is open. Some effects spread be-
yond a container – for example, a wooden cupboard
with a hot object inside may combust, causing other
objects in the kitchen to also increase temperature.

B Tasks and Competencies

To support our goal of generating a diverse set of
tasks, we identified a candidate set of 10 broad sci-
ence exam topics from the list of 400 fine-grained
science curriculum topics of Xu et al. (2020). Top-
ics were chosen that would be amenable to text-
based simulation, and that did not have critical
fine-grained spatial reasoning requirements. These
topics and tasks are described in Section B.2.

Subtasks and Masked Objects: Each of the 10
broad curriculum topics is further subdivided into
between 2 and 4 specific subtasks that test specific
reasoning capacities (e.g., melting, boiling, and

freezing subtasks for the change-of-state task), or
ask the agent to perform the same task but with
names of critical task objects masked. Some tasks
are possible to partially solve by looking up crit-
ical task information (e.g., knowing that white

flowers are a dominant trait of pea plants for
the Mendelian genetics task). We include two
versions of tasks, one with using masked names
(e.g., growing Unknown Plant B instead of a Pea

Plant) while simultaneously randomly generating
the properties of those objects to provide an instru-
ment to measure when agents are solving tasks by
performing the experimental procedure, and when
they are directly looking up answers.

Task Formats: Task goals are structured with the
broad goal of both (a) accomplishing a task, and
(b) doing so intentionally. Tasks typically include
preliminary subgoals where the agent must signal
their intent to perform the task on a specific object
by first “focusing” on the object they intend to per-
form the task with (e.g., for a boiling task, focusing
on water they intend to boil) before they perform
the task.

Tasks take on two main forms: Perform a task:

the agent must directly perform a task, that pro-
duces some measurable change in the environ-
ment (e.g., growing a fruit through pollination) that
can be directly measured as an end-state. Forced-

choice: The agent must perform a task that requires
making an inference (e.g., whether an object is
an electrical conductor or insulator), and provide
their answer by placing the task object in a spe-
cific container (i.e., an “answer box”) if the object
is conductive, and a different container if it is an
insulator.

Task Variations: To prevent overfitting and en-
courage generalization, each subtask contains be-
tween 10 and 1400 parametric variations of that
subtask (with 7200 total variations across all 30 sub-
tasks). Variations change critical task objects (e.g.,
the specific substance to be melted), the agent’s
starting location in the environment, as well as ran-
domly vary the contents of the environment itself
(e.g., whether the living room contains a bookshelf,
or a painting, or both).

Task Simplifications: Agents find different com-
petencies that SCIENCEWORLD tests to be chal-
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lenging. Tasks can be made easier by enabling
any of 5 environment simplifications (or choosing
“easy” mode, which enables all the simplifications).
Examples of simplifications include a teleport ac-
tion that lets agents instantly move to any location,
and having all containers open by default.

B.1 Scoring and Evaluation Protocol

Goals and Reward Shaping: Each subtask con-
tains a small number of method-agnostic required
goals to be met (such as focusing on the substance

to melt, and causing that substance’s state of matter

to change from a solid to a liquid for the melting
task). In addition, to make rewards less sparse
for agents learning these tasks, each task includes
between 2 and 15 optional subgoals (such as turn-

ing on the stove, or the substance increasing in

temperature by 10C) that help nudge agents in the
direction of canonical solutions, if desired. Meet-
ing required and optional subgoals increases the
agent’s score on a given subtask. Scores for all
tasks are normalized to between 0 and 1.

B.2 Specific Tasks

Changes of State: The agent must find a named
substance (e.g., ice), and change the state of mat-
ter of that substance (solid, liquid, gas) using the
heating and cooling devices (e.g., stove, freezer)
available in the environment. Subtasks require spe-
cific phase changes (melting, boiling, freezing, or
the agent’s choice). Variations change the sub-
stance, and ablate common devices (e.g., the stove
becomes disabled) so that the agent must find alter-
nate methods of heating or cooling.

Measurement Instrument: The agent must find
a thermometer and use it to measure the tempera-
ture of a named object. In two additional subtasks,
the agent must use the thermometer to measure the
melting point of a named substance by heating it
and continually monitoring the temperature. An-
swers are modelled as a forced-choice task, where
the agent is given a predetermined temperature
threshold at the start of the task (e.g., 50◦C), and
must focus on one answer box if the melting point
is above the threshold, and the other answer box
if the melting point is below the threshold. Varia-
tions change the substance to be measured, and the
preset temperature threshold.

Electrical Circuits: The agent must build a work-
ing series electrical circuit by connecting vari-
ous electrical components including power sources

(e.g., battery, wind mill, gas generator), dif-
ferent coloured wires, and active components (e.g.,
lights, motors). Subtasks include (a) powering a
named component, (b) powering using renewable
versus nonrenewable energy, and (c) measuring
whether named or unknown substances are elec-
trically conductive. Variations change available
components, colours of wire, and specific task ob-
jects required to be used in the circuit.

Classification: In four subtasks, the agent must
find an object in the environment belonging to a
specific category (living things, non-living things,
plants, or animals), and place it in an answer box.
Variations change the location and description of
the answer box.

Growing plants: The agent must grow a named
plant (e.g., a peach tree) from seed. To do this,
they must place the seed and soil in a flower pot,
and provide regular water as the plant progresses
through life stages into adulthood. Failure to water
appropriately causes the plant to perish. In a sub-
task, the agent must grow a fruit by growing several
plants, then releasing pollinators (i.e., bees) that
cross-pollinate flowers on the plants, which will
eventually produce fruits. Variations change seed
type, and soil location (either provided in the pot,
provided in the room, or must be gathered outside
using a shovel).

Chemistry: The agent must create a specific sub-
stance by mixing two or more input substances in
a container. In the generic subtask, a recipe docu-
ment that can be read by the agent is provided some-
where in the environment. In two paint-themed sub-
tasks, the agent is given primary colours of paint
(red, green, yellow), and must mix secondary (e.g.,
orange) or tertiary (e.g., orange-yellow) colours
through several steps. Variations change the re-
quired output substance.

Life Spans: In three task variations, the agent
must find 3 animals in the environment, then select
either the shortest-lived (e.g., bee), longest-lived
(e.g., turtle), or shortest-then-longest lived (bee-
then-turtle). Variations change which animals are
populated in the environment from a list of long,
medium, and short-lived animals.

Life Stages: The agent must find a named plant or
animal, and focus on its life stages, from earliest
(e.g., seed) to latest (e.g., reproducing adult plant).
Variations change the plant or animal involved.
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Forces: The agent must use inclined planes and
masses (e.g., a block) for experiments about forces.
In one subtask the agent is given two planes, and
must determine which has the steepest or shallow-
est angle based on the time the block takes to move
down the plane. In two other subtasks, the agent
must find which of two planes has a surface of high-
est or least friction, from either named (e.g., plastic,
steel) or unknown surfaces. The agent can measure
time internally (in terms of number of steps for
a block to fall), or measure this explicitly with a
provided stopwatch. Variations change inclined
plane angles (first task) or surface material types
(remaining tasks).

Mendelian Genetics: The agent must determine
whether a named trait (e.g., white flower colour)
is a dominant or recessive trait in a plant. Two
seeds are provided (one with the trait as domi-
nant, one recessive), and the agent must grow two
generations of plants and count how often it ob-
serves a given trait in successive generations to
determine whether it is dominant or recessive. Sub-
tasks change whether the plant is known (the pea

plant, as in Mendel’s experiments) or a randomly
generated plant, while variations change the trait
under investigation.

B.3 Commonsense Competencies

In addition to science-domain competencies, the
agent must demonstrate fluency with common-
sense knowledge and procedures to complete tasks
successfully. Agents must know the locations of
common objects (e.g., water comes from a sink,
orange juice is typically found in a fridge), the
affordances of common objects (a sink can be
turned on to create water, a cup can be used to
carry a liquid), navigation (a world is made of dis-
crete rooms that can be traversed through doors),
containers need to be opened to observe or use their
contents, and so forth.

B.4 Scoring and Evaluation Protocol

Goals and Reward Shaping: Each subtask con-
tains a small number of method-agnostic required
goals to be met (such as focusing on the substance

to melt, and causing that substance’s state of matter

to change from a solid to a liquid for the melting
task). In addition, to make rewards less sparse
for agents learning these tasks, each task includes
between 2 and 15 optional subgoals (such as turn-

ing on the stove, or the substance increasing in

temperature by 10C) that help nudge agents in the
direction of canonical solutions, if desired. Meet-
ing required and optional subgoals increases the
agent’s score on a given subtask. Scores for all
tasks are normalized to between 0 and 1.

Train, Development, Test sets: For a given sub-
task, variations are split into 50% training, 25%
development, and 25% test sets. Variations are
sorted such that critical unseen variations (e.g., sub-
stances, animals, or plants unseen during training)
are found in development and test sets.

B.5 Task Simplifications

Agents find different competencies that SCIENCE-
WORLD tests to be challenging. Tasks can be made
easier by enabling any of 5 environment simplifi-
cations (or choosing “easy” mode, which enables
all the simplifications). Examples of simplifica-
tions include a teleport action that lets agents in-
stantly move to any location; self-watering flower-
ing flower pots that mean plants do not have to be
frequently watered; and having all containers open
by default.

C Experiment Details

C.1 Reinforcement Learning Models

For each reinforcement learning model, we ran
8 environment threads at 100k steps per thread.
Training episodes reset after meeting an end state
(success or failure), or after reaching 100 steps. For
KG-A2C and CALM, the training episode will also
reset if stuck by invalid actions for 100 steps (in-
valid actions are not counted by the environment).
We did evaluation on the test variations every 1000
steps per environment thread. We randomly chose
10 test variations and run 1 episode of testing for
each chosen variation during each evaluation pe-
riod and reported the average score of the 10% test
steps scores.

DRRN: We use the DRRN architecture from
https://github.com/microsoft/tdqn, with
embedding size and hidden size set as 128. The
learning rate we use to train DRRN is 0.0001.
The memory size is 100k, and priority fraction is
0.50. The tokenizer for the input text is a uni-gram
subword tokenizer model adapted from Kudo
(2018).

KG-A2C: We make two major changes to the orig-
inal KG-A2C model to function with SCIENCE-
WORLD. (1) We replace the OpenIE knowledge
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graph extractor with a heuristic extractor. The
heuristic extractor uses regular expressions to parse
the text of the “look around” and “agent inventory”
information into (subject, relation, object) triples.
This heuristic functionally extracts the ground truth
knowledge graph representation of the observable
environment for the agent. (2) We change the KG-
A2C agent to generate object types instead of refer-
ences to specific objects. After selecting the action
template and object type fillers that the agent has
the highest confidence in, we ground those object
types (e.g. apple) with specific object referents in
the agent’s current visible environment. If more
than one referent meets that type, one is chosen
at random. The learning rate we use to train the
KG-A2C agent is 0.003 and the tokenizer used is
the same as the DRRN agent.

CALM-GPT2: Following the original CALM pa-
per (Yao et al., 2020), we use a 12-layer, 768-
hidden, 12-head GPT-2 model. We use the de-
fault pre-trained weight offered by the Hugging-
face Transformers library (Wolf et al., 2020). We
fine-tune this GPT-2 model on complete action se-
quences generated by the oracle agents. The GPT-2
input prompt is formed as “[CLS] d [SEP] ot [SEP]
o

look
t [SEP] oinv

t [SEP] ot−1 [SEP] at−1 [SEP]” and
targets to predict at, where d stands for the task de-
scription and ot, o

look
t , oinv

t , and at stand for the ob-
servation (excluding the look around and inventory
information), the output of a “look around” action
at the agent’s current location, the agent inventory,
and the action at time step t. We use beam search
for generation, generating 16 beams representing
candidate actions for the agent to select from. We
set the diversity penalty to 50.0 to encourage the
GPT-2 model to generate different actions. For the
GPT-2 training we use a batch size of 12 and train
for 20 epochs with a learning rate of 0.00002. The
learning rate we use to train the CALM agent is
0.0001 and the input tokenizer is the same as that
used in the original GPT-2 paper.

Due to the high computation cost of the CALM
model, and modest overall performance, perfor-
mance for each task is the average of only 3 ran-
dom seeds instead of the 5 used for training the
DRRN and KGA2C models. During development,
a small error was found in the prompt. Pilot ex-
periments suggested this resulted in a negligible
(±0.01) change in performance, so the full experi-
ments (requiring up to 6000 GPU hours) were not
regenerated.

Episode reward curves: Episode reward curves
for each model across all 30 subtasks in SCIENCE-
WORLD are shown in Figure 3.

C.2 Behavior Cloning and Text Decision

Transformer

The T5 models used to train both of these models
are initialized with weights and tokenizers from
the trained Macaw-11b model released at https:
//github.com/allenai/macaw. They are trained
on a v3-32 TPU pod with a batch size of 16 and
32-way model parallelism for 100k gradient update
steps.

At inference time, we use the model to gener-
ate actions given the observation of current and
previous step. We use beam search with a beam
size 16 to get the top 16 generations. We set the
diversity penalty to 50.0 to encourage diversity in
generation. For each subtask, we run one episode
on each of its test variations and report the average
score. We do not update weights of the T5 model
during evaluation.

C.3 Resources

Model GPU Runtime

Online RL Models
DRRN 4gb 12h
KG-A2C 16gb 20h
CALM-GPT2 16gb 40h

Offline Transformer Models
Model Pre-training v3-32 TPU Pod 60h
BC-T5 3x 48gb 2h
TDT-T5 3x 48gb 2h

Table 4: Approximate computational resources per model.
Online RL and Offline Transformer model reflect runtimes for
one full run of one subtask at one seed. Runtime estimates
should be multiplied by the number of tasks (30) and number
of random seeds (5) to obtain full runtime estimates. All GPU-
based runs were completed on P100, V100. or A6000 GPUs.
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Figure 3: Episode reward curves for the DRRN, KGA2C, and CALM models on the unseen test set as a function of

the number of training environment interactions (steps).
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C.4 Impact of Model Size and Pre-training

Methodology on Performance

Average Model
Model Performance Parameters

DRRN 0.17 1.5M
KGA2C 0.11 5.5M

CALM 0.05 131M
*

Behavior Cloned
T5-Large 0.15 770M
Macaw-Large 0.17 770M
Macaw-11B 0.08 11B

Decision Transformer
T5-Large 0.13 770M
Macaw-Large 0.15 770M
Macaw-11B 0.08 11B

Table 5: Average model performance versus model parameter
size across all tasks and random seeds. For SCIENCEWORLD

tasks, larger models do not necessarily perform better, and in
some cases appear to show inverse scaling.

∗

signifies that
the value of 131M parameters includes the number of the
parameters of the pre-trained GPT-2 action generator model.
Only 6.9 million policy parameters are updated in RL training.

To examine the effect of model size on behav-

ior cloned and decision transformer model perfor-

mance, we ran two model sizes for the T5 models,

shown in Table 5. We first observe that pre-training

specifically for scientific question answering on a

curated dataset (Macaw) outperforms T5 general

language model pre-training. Further, we note that

T5-Large and Macaw-Large, with 14 times fewer

parameters (770m each), out-perform the larger

11 billion parameter models by approximately a

factor of two. These results suggest that while SCI-

ENCEWORLD can benefit from external scientific

knowledge, it may also present an inverse scaling

problem
7
, where increasing model size can some-

times decrease overall task performance. However,

these results are only suggestive of an inverse scal-

ing problem rather than a concrete demonstration.

Due to the high cost of training and inference for

these models, we can’t currently rule out that these

differences may be due to hyperparameter differ-

ences. We leave this verification as future work.

C.5 Attribution

Graphical visualization makes use of RPG game

assets developed by @Noiracide.

7
https://github.com/inverse-scaling/

prize
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