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Abstract

Text-based games offer a challenging test
bed to evaluate virtual agents at language un-
derstanding, multi-step problem-solving, and
common-sense reasoning. However, speed is
a major limitation of current text-based games,
capping at 300 steps per second, mainly due
to the use of legacy tooling. In this work
we present TEXTWORLDEXPRESS, a high-
performance simulator that includes implemen-
tations of three common text game benchmarks
that increases simulation throughput by approx-
imately three orders of magnitude, reaching
over one million steps per second on common
desktop hardware. This significantly reduces
experiment runtime, enabling billion-step-scale
experiments in about one day.1 2 3

1 Introduction

One of the long standing goals of artificial intelli-
gence is to create agents that can work and reason
in embodied environments. Toward this goal, a va-
riety of virtual environments have been created that
allow simulated robots the opportunity to learn to a
variety of tasks, in settings from household environ-
ments (Kolve et al., 2017; Shridhar et al., 2020a)
to Minecraft (Guss et al., 2019). Because high-
fidelity 3D virtual environments are challenging
and resource intensive to develop, simpler 2D envi-
ronments have also been proposed (e.g. Chevalier-
Boisvert et al., 2019; Küttler et al., 2020) that allow
agents to focus on learning skills such as search or
navigation in graphically simpler environments.

Recently, text games – or environments rendered
entirely in natural language – have emerged as an
alternate research methodology for embodied agent
research, centrally due to their low barrier to entry
compared to 3D games, coupled with their ability
to easily model complex tasks at a high-level (see

1Code: github.com/cognitiveailab/TextWorldExpress
2Video: youtu.be/HLFAnRKuTlE
3Demo: marccote-textworldexpress.hf.space

Environment Simulator SPS

2D/3D Simulators4

AI2THOR (Kolve et al., 2017) 30†
MINERL (Guss et al., 2019) 180†
BABYAI (Chevalier-Boisvert et al., 2019) 3k
NETHACK (Küttler et al., 2020) 14k
MEGAVERSE (Petrenko et al., 2021) 327k†

Text Game Simulators5

TEXTWORLD (Côté et al., 2018) 300
JERICHO (Hausknecht et al., 2020) 1
SCIENCEWORLD (Wang et al., 2022) 20

TEXTWORLDEXPRESS (online, PYTHON) 32k
TEXTWORLDEXPRESS (precrawled, PYTHON) 316k
TEXTWORLDEXPRESS (online, JAVA) 212k
TEXTWORLDEXPRESS (precrawled, JAVA) 4M

Table 1: Single-thread simulation speed of common
2D, 3D, and text-game environment simulators. Speed
is measured in terms of Steps Per Second (SPS). †
symbolizes that simulation is carried out on GPUs.
TEXTWORLDEXPRESS outperforms other text game
simulators by approximately three orders of magnitude.

Jansen, 2022, for review). For example, a cooking
game might require an agent to read a recipe, find
ingredients, then prepare those ingredients to create
a meal. Text games model an agent as they navigate
an environment, rendering their observations in text
(e.g. “You are in the kitchen. You see...”). Simi-
larly, agents interact with the environment through
abstracted high-level natural language commands
(e.g. “move south”, or “pick up carrot”), rather
than lower-level actions common in 3D environ-
ments (e.g. rotate agent 2 degrees clockwise).

Text games require a variety of common-sense
knowledge to complete successfully (Ryu et al.,
2022; Murugesan et al., 2021b), including under-
standing common procedures (such as how to read
and follow instructions), as well as affordances
about the world – for example, that buildings have
rooms, containers must be opened before their con-

4Performance reported from (Zholus et al., 2022).
5Benchmark scripts provided in the code repository.
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tents can be observed or removed, and so forth. As
such, text games are still extremely challenging for
agents, with current state-of-the-art performance
at only 12% for classic interactive fiction games
such as Zork (Yao et al., 2021; Ammanabrolu et al.,
2021). Similarly, interactivity and explicit step-by-
step reasoning appears challenging for agents. For
example, there appears to be a large dissociation be-
tween a model’s ability to answer questions about
topics (e.g., science exam questions) and its ability
to perform very similar experiments in interactive
text environments, even with substantial training
(Wang et al., 2022). This suggests that explicit
interactive multi-step reasoning is still very chal-
lenging for contemporary methods like language
models, and that accurate procedural knowledge
is currently difficult to generate. Together, these
highlight the importance of using text games as a
vehicle for explicit, embodied, step-by-step reason-
ing about the world.

To help support these efforts, a number of simu-
lators have recently been developed for text game
research, shown in Table 1. Current tooling for
text games is built on legacy code bases, providing
strong limitations in rendering speed – at present,
most simulators are limited to running at between
1 and 300 steps per second. This generally limits
agents from using modeling paradigms with fast it-
eration cycles and high sample requirements (such
as reinforcement learning, or evolutionary learn-
ing), and restricts users to modeling techniques
with large train and inference cycles (such as lan-
guage models) where the simulator no longer be-
comes the bottleneck in experiment runtimes.

In this work, we develop a high-speed framework
for text-based games in natural language processing
research. Our contributions are:

1. TEXTWORLDEXPRESS, a highly optimized
simulator that includes reimplementations of
three text game benchmarks focusing on in-
struction following, commonsense reasoning,
and object identification, as well as other
newer benchmarks for evaluating arithmetic,
navigation, and neurosymbolic reasoning.

2. We empirically demonstrate that this simula-
tor runs up to three orders of magnitude faster
than current tooling, reaching 300k steps per
second (SPS) on a single-thread, and exceed-
ing 1M SPS on modest multi-core desktop
hardware. This substantially reduces experi-

ment times (from weeks to hours) for sample-
heavy machine learning agents.

2 Related Work

Research Paradigm: Text games are a rapidly
expanding research paradigm for learning and eval-
uating situated natural language processing agents
on a variety of tasks, with over 100 papers writ-
ten using this paradigm in the last few years (see
Jansen, 2022, for review). This may be in part due
to language providing useful abstractions for more
efficient exploration and planning (Karch et al.,
2020; Colas et al., 2020; Mu et al., 2022; Tam
et al., 2022), making task modeling at the level of
language more easily approached than with lower-
level 3D simulations.

Agent Modeling: Agent modeling has explored a
variety of modeling paradigms, including reinforce-
ment learning approaches (Osborne et al., 2021; Xu
et al., 2021), combined with reading comprehen-
sion techniques (Narasimhan et al., 2015; Tamari
et al., 2019; Guo et al., 2020; Yao et al., 2020,
2021), commonsense reasoning (Ryu et al., 2022;
Murugesan et al., 2021b), graph-based networks
(Ammanabrolu and Riedl, 2019), and neurosym-
bolic logic (Kimura et al., 2021b; Chaudhury et al.,
2021; Kimura et al., 2021a). Most recent agents
make use of large pretrained language models (e.g.
Devlin et al., 2019), though these can pose chal-
lenges both in inference speed, as well as general-
ization to interactive environments. For example,
a model that can correctly answer 90% of multi-
ple choice elementary science exam questions fails
to solve text games that test that same knowledge
but in a step-by-step procedural setting, even with
significant training (Wang et al., 2022).

Simulation Speed: A variety of simulators cur-
rently exist for text games, typically focusing
on providing domain-general tooling for creat-
ing small procedurally generated research envi-
ronments (e.g. Côté et al., 2018), or interfacing
to the existing body of large interactive fiction
games such as Zork (Lebling et al., 1979) from
the 1980s and 1990s by providing tooling and APIs
(Hausknecht et al., 2020). Nearly all frameworks
ultimately generate and run games as Z-machine

code (e.g. Nelson, 2014), an almost 40-year-old
domain specific language designed for portability
rather than simulation speed. One of the central
challenges in building fast research tooling is valid
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action generation. Because games implement dif-
ferent sets of actions, and at different levels of gran-
ularity, nearly all contemporary agents require the
simulator to supply a list of possible valid actions
(such as put coat in closet) that could be undertaken
by the agent at a given time step. Action spaces can
be large – hundreds of thousands of action-object
combinations are frequently possible at a given
step in most games – and existing frameworks (e.g.
Hausknecht et al., 2020) built on legacy tooling per-
form valid action generation by enumerating then
running all possible action-object combinations at
each game step then recording which ones are valid.
This is extremely costly, substantially reducing sim-
ulation performance (as shown in Table 1). In this
work, TEXTWORLDEXPRESS has been built from
the ground-up using heavily optimized and pro-
filed code to quickly render environments while
simultaneously generating an exhaustive list of pos-
sible next valid actions for agents, greatly speeding
simulation time.

3 Environments

TEXTWORLDEXPRESS offers high-speed versions
of three popular benchmark environments fre-
quently used in text game research, as well as a
number of newer environments for evaluating spe-
cific reasoning competencies:

CookingWorld: The CookingWorld environment
(Côté et al., 2018) tasks agents with preparing
meals by following the instructions in a recipe that
is provided in the environment.6 Agents must first
collect required food ingredients (e.g. milk, bell
pepper, flour, salt) that can be found in the environ-
ment in canonical locations (e.g. kitchen, pantry,
supermarket, garden) and containers (e.g. fridge,
cupboard). Randomly generated recipes require
agents to first use a knife to prepare food by slicing,

dicing, or chopping a subset of ingredients, then
additionally using an appropriate heating appliance
to fry, roast, or barbeque the ingredients. If all in-
gredients are prepared according to the recipe, the
agent can use an action to prepare the meal, and fi-
nally eat the meal to complete the task successfully.
Task complexity can be controlled by varying the
number of locations in the environment, the num-
ber of ingredients required for the recipe, and the
number of distractor ingredients randomly placed

6This task was used as part of the First TextWorld Prob-
lems competition (https://aka.ms/ftwp) and named by
(Madotto et al., 2020).

CookingWorld Game

North of House
You are in the kitchen. In one part of the room you see a fridge that is closed.
There is also a dining chair, that has nothing on it. You also see a dishwasher
that is closed. In another part of the room you see a trash can that is closed. In
one part of the room you see an oven. There is also a cutlery drawer that is
closed. You also see a stove. In another part of the room you see a counter
that has a cookbook, a green apple, and a red hot pepper on it. In one part of
the room you see a kitchen cupboard that is closed. To the South you see the
backyard. To the West you see the pantry.
> read cookbook

Gather all following ingredients and follow the directions to prepare this tasty
meal.
Ingredients: purple potato, yellow bell pepper.
Directions: dice the purple potato, fry the purple potato, roast the yellow
bell pepper, prepare meal.
> open cutlery drawer

You open the cutlery drawer. The cutlery drawer contains a knife.
> take knife

You take the knife.
> move south

You are in the backyard. In one part of the room you see a barbeque. There
is also a patio chair, that has nothing on it. You also see a clothes line, that
has nothing on it. In another part of the room you see a garden that has a raw
purple potato, and a yellow bell pepper on it. In one part of the room you
see a workbench, that has nothing on it. There is also a patio table, that has
nothing on it. To the North you see the kitchen.
> take purple potato

You take the purple potato.
> take yellow bell pepper

You take the yellow bell pepper.
> move north

You are in the kitchen.
> dice purple potato

You dice the purple potato.
> cook purple potato in stove

You fry the purple potato with the stove.
> cook yellow bell pepper with the oven

You roast the yellow bell pepper with the oven.
> prepare meal

The meal has been added to your inventory.
> eat meal

Game completed.

Table 2: An example CookingWorld text game, requiring
the agent to read a recipe, collect ingredients, and follow
preparation instructions. User or agent-entered actions for
the 12-step solution are italicized. Relevant task objects are
bolded, while distractor objects are underlined. Here, an easy-
level parametric game was generated consisting of 3 locations
(kitchen, backyard, pantry), 2 required ingredients (potato,
bell pepper), and 2 distractor ingredients (apple, hot pepper).

in the environment that are not required for the
recipe. The recipes and environments are paramet-
rically generated, with subsets of ingredients and
specific preparations held out between training, de-
velopment, and test sets to prevent overfitting. An
example CookingWorld task is shown in Table 2.

TextWorld Commonsense (TWC): Text game
agents frequently learn the dynamics of environ-
ment – such as the need to open a door before
one can move through it – from interacting with
the environment itself, rather than using a pre-
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existing knowledge base of common sense facts
or object affordances that would speed task learn-
ing. TextWorld Commonsense (Murugesan et al.,
2021a) aims to evaluate agents on common sense
knowledge that can not be directly learned from the
environment by providing agents a clean-up task
where the agent must place common household ob-
jects (e.g. a dirty dish) in their canonical locations
(e.g. the dishwasher) that can be found in knowl-
edge bases such as ConceptNet (Liu and Singh,
2004; Speer et al., 2017). Separate lists of objects
are used in the training, development, and test sets,
meaning the agent can not learn object locations
from the training set alone, and must rely on an
external common sense knowledge base to perform
well on the development and test sets. Murugesan
et al. (2021a) specify three task difficulty levels,
with the easiest including a single location and ob-
ject to put away, while the hard setting includes
two location and up to 7 objects.

Coin Collector: Agents frequently find tasks such
as object search, environment navigation, or pick-
and-place tasks challenging (Shridhar et al., 2020b).
The Coin Collector game (Yuan et al., 2018) distills
these into a single benchmark where an agent must
explore a series of rooms to locate and pick up a
single coin. In the original implementation, the
game map typically takes the form of a connected
loop or chain, such that continually moving to new
locations means the agent will eventually discover
the coin – while including medium and hard modes
that add in one or more “dead-end” paths. To con-
trol for environment difficulty across games, the
TEXTWORLDEXPRESS reimplementation uses the
same map generator across environments, and gen-
erates arbitrary home environments rather than con-
nected loops. The user maintains control of other
measures of difficulty, including the total number of
rooms, and the number of distractor objects placed
in the environment.

Adding new games: New games can be added to
TEXTWORLDEXPRESS, and 4 additional games
that benchmark arithmetic, navigation, and neu-
rosymbolic reasoning have been added since its
initial release7. Adding new games takes about a
day of coding, which can be more effortful than us-
ing the domain-specific implementation languages
of existing game engines (e.g. Côté et al., 2018).

7See full list at https://github.com/cognitiveailab/
TextWorldExpress#environments.

Action Description

Generic actions

look around describe current location
inventory list agent inventory
examine OBJ examine an object
move DIR move north, east, south, or west
open OBJ open a door or container
close OBJ close a door or container
take OBJ pick up an object
put OBJ in OBJ put an object in a container

Extended actions (CookingWorld)

read OBJ read a recipe book
cook OBJ in OBJ cook an ingredient
chop OBJ chop an ingredient
slice OBJ slice an ingredient
dice OBJ dice an ingredient
eat OBJ eat an ingredient
prepare meal prepare the meal

Table 3: The action space of the environments, as well
as descriptions of each action. Actions can take zero,
one, or two object (OBJ) or direction (DIR) arguments.

3.1 Action Space and Valid Action Generation

The three benchmark games each have up to 15
different types of actions available to agents, de-
scribed in Table 3. These include common text-
game actions such as taking objects, moving lo-

cations, and opening doors, as well as domain-
specific actions such as slicing or cooking ingredi-

ents for the cooking-domain game. Actions may
take zero (e.g. look around), one (e.g. take shirt),
or two (e.g. put shirt in closet) objects as argu-
ments.

Most contemporary high-performance game
agents (e.g. Ammanabrolu and Hausknecht, 2020;
Murugesan et al., 2021a) make use of a “valid-
action handicap” – that is, at each step, they require
a list of possible valid actions that can be taken
in the environment, from which they select a sin-
gle action to undertake. For example, a kitchen
agent might wish to dice the carrot, but such an
action would only be available to the agent if it
currently possessed both a carrot and a knife in
its inventory. This valid-action detection is typi-
cally implemented overtop of existing interactive
fiction games (such as Zork) by an interface frame-
work (e.g., Jericho; Hausknecht et al., 2020) at
significant loss to the simulation framerate. In con-
trast, TEXTWORLDEXPRESS was designed from
the ground-up to provide fast valid action genera-
tion to maintain high framerates.
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Figure 1: An example of the random map generation
process, containing 11 separate locations. Locations are
iteratively placed on a 7x7 grid, then interconnected
(edges) on the four cardinal directions (north, east,

south, west) based on connection preferences. For ex-
ample, the Pantry prefers to connect to the Kitchen, and
will never connect to the Bedroom.

3.2 Map Generation

Navigation tasks – such as exploring an environ-
ment, or navigating to a specific location – are
typically challenging for contemporary text game
agents. Because of this, games typically reduce the
burden of navigation by providing simplified maps.
At one end of the extreme, the original TextWorld

Commonsense uses small maps containing only one
or two locations, while at the other extreme Cook-

ingWorld creates maps with over a dozen locations
interconnected in common ways (i.e. a kitchen is
usually connected to a pantry, backyard, and/or cor-

ridor, but is never directly connected to a supermar-

ket). To control for the difficulty of the navigation
task across environments, TEXTWORLDEXPRESS

uses the same map generator across all three bench-
mark games, while allowing the user to specify
parameters such as the number of map locations to
control the difficulty of the navigation task.

Environments can consist of up to 11 locations,
consisting of locations common to both the TWC

and CookingWorld games. Maps are randomly gen-
erated at the start of each game, and allow naviga-
tion on four cardinal directions (north, south, east,
west). Optionally, rooms may be connected with
doors that an agent is required to open before allow-
ing passage, increasing task complexity. Figure 1
shows an example map produced by the generator.

3.3 Object Library

Task objects, room objects, and distractor objects
are populated from the object libraries provided by
the TextWorld Commonsense and CookingWorld
games. This results in approximately 500 possible
objects that can populate environments, including
containers (e.g. fridge, shelf, countertop), and mov-
able objects (e.g. red onion, dirty shirt).

3.4 Parametric Variation

To reduce overfitting, generated tasks and environ-
ments vary in their requirements and presentation.
Tasks typically vary in task-critical objects, such
as the specific objects that need to be cleaned up in
TextWorld Commonsense, or the recipe, ingredients,
and their locations in CookingWorld. Environments
parametrically vary, centrally in the environment
map (how the rooms are interconnected), while also
allowing different numbers of distractor objects to
be generated in different randomized locations in
the environment. Critically, games are determinis-
tic and the generation is repeatable and controlled
by a single random seed, such that the same game
can be regenerated during agent training and eval-
uation. To create independent train, development,
and test sets, in addition to each game having spe-
cific task objects that are unique across training and
evaluation sets, we also assign blocks of random
seeds to the train, development, and sets. This al-
lows generating thousands of possible parametric
variations for each set, while ensuring that the tasks
and environments remain unique.

3.5 Scoring

At each time step, the simulator provides the agent
a score that signifies the agent’s progress in solving
a given task. Games typically assign rewards for
critical task steps, such as picking up correct ingre-
dients, or preparing ingredients correctly. Because
the total score required to complete a game can
vary both across games and across task complexity,
scores are provided both as raw counts, as well
as normalized to between zero (no task progress)
and one (task completion). Each game has specific
success and failure criterion, which are automati-
cally detected by the simulator, and provided to the
agent by the API. For example, if a recipe requires
a carrot to be chopped, but the agent instead slices

it, this will cause a task failure, and can be used
as a reward signal for the agent model to use in
adjusting its action policy.
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4 Speed Comparison

4.1 Online and Precrawled Generation

To enable extremely fast simulations,
TEXTWORLDEXPRESS supports two game
generation modes: normal (online) generation,
and precrawled generation. In online generation,
games are parametrically generated and played at
runtime, allowing a large number of parametric
game variations to be generated, and games to be
played up to any number of steps. Conversely,
where speed is of critical importance, the simulator
supports precrawling all possible paths an agent
might take in a given environment, and pre-caching
these to disk as a JSON file. This allows extremely
fast game playing – at essentially the speed of
updating a pointer to a particular node in the
precrawled state tree – at the expense of generating
and loading large files, that pragmatically limit
the total number of steps that can be crawled and
precached in the environment.8 Precrawling is a
unique feature offered by TEXTWORLDEXPRESS,
as games taking minutes to crawl in this framework
can take days or weeks to crawl in TEXTWORLD.

4.2 Evaluating Simulation Speed

We empirically compare the simulation speed of
TEXTWORLDEXPRESS with three frameworks.

TextWorld (Côté et al., 2018) is a framework for
generating parametric text games for natural lan-
guage processing research. Games are specified
using predicate logic (to define action rules) and
a context-free grammar (to generate text), which
TextWorld reformulates into Inform7 code (Nel-
son, 2006), that is then ultimately compiled to a
Z-Machine game (Nelson, 2014). The three bench-
mark games reimplemented in TEXTWORLDEX-
PRESS were originally implemented in TextWorld.

Jericho (Hausknecht et al., 2020) provides a re-
search interface to the existing body of interactive
fiction games, such as Zork (Lebling et al., 1979),
that were originally written for the Z-Machine in-
terpreter. Critically, Jericho provides facilities for
action template extraction and valid-action genera-
tion, to reduce the difficulty of interfacing classic
interactive fiction games with language agents.

ScienceWorld (Wang et al., 2022) is a science-
domain text game simulator that provides the abil-

8As an example, a 1GB file can typically store precrawled
game trees for a single game variation up to between 8 and 12
steps, depending on the complexity of the action space.

ity to train and evaluate agents on scientific tasks
normally learned by elementary science students,
such as changes of states of matter (melting, boil-
ing, freezing), life cycles of plants and animals,
and basic chemistry. Supporting this is a series of
complex simulation engines (e.g., thermodynamics,
electrical conductivity, genetics) which increase
simulation fidelity at the cost of speed. Similar
to TextWorld and Jericho, ScienceWorld supports
generating valid actions at each time step.

The results of this evaluation, using random
agents to traverse the environments, are shown in
Table 1. The highly optimized TEXTWORLDEX-
PRESS is able to simulate games in online genera-
tion mode at an average of 212k frames per second
per thread, or nearly three orders of magnitude
faster than other frameworks.9 This varies between
256k steps per second for the fastest environment
with the least complex action space (Coin Collec-

tor), to 155k steps per second for the most complex
action space (CookingWorld). On an 8-core work-
station, this enables million-step experiments to be
simulated per second, with billion-step experiments
possible in approximately one hour.10 In contrast,
one billion steps would take approximately 38 days
using the original TextWorld implementations. In
precrawled mode, where game states are precached,
single-thread speeds of up to 4 million steps per
second are possible. Our fastest multi-threaded
benchmark on desktop hardware (an AMD 3950X
16-core, 32-thread CPU) reaches 34M steps per
second, enabling billion-step-scale simulations in
approximately 30 seconds.

5 Conclusion

We present TEXTWORLDEXPRESS, a fast simula-
tor for text-game research that reimplements three
benchmark environments while running three or-
ders of magnitude faster than their original imple-
mentations. New games can be added using ex-
isting games as templates, and four new games
benchmarking specific reasoning competencies like
arithmetic and navigation have been added since
its initial release. The simulator supports com-
mon features (such as valid action detection), while
providing new enabling features, such as quickly
precrawling entire game state trees. This work is
released as open source.

9PYTHON performance is 10X slower than JAVA/SCALA

performance due to the speed of PYTHON-JVM binders.
10Using pre-crawled paths, we managed to run billion-game

experiment on a 32-core server in about a day.
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6 Broader Impacts

Embodied agents require a variety of common-
sense reasoning skills and competencies about the
world in order to successfully perform tasks. Text
games distill task learning to a high level of abstrac-
tion, allowing conceptual-level procedural knowl-
edge to be acquired without simultaneously learn-
ing challenging low-level perceptual or motor tasks
as in 3D simulators (e.g. Shridhar et al., 2020a;
Petrenko et al., 2021), while reducing the com-
putational requirements to run experiments from
expensive GPU servers to common desktop hard-
ware. Futher, Shirdhar et al. (2020b) have em-
pirically demonstrated that agents can be inexpen-
sively pretrained on tasks in a text world environ-
ment, then transfer much of their performance to
more realistic 3D environments, speeding train-
ing. TEXTWORLDEXPRESS, which increases the
speed of text game experiments by three orders of
magnitude, enables running experiments faster, at
greater scale, or using alternate sample-heavy ma-
chine learning frameworks than currently available
simulators.

7 Limitations

TEXTWORLDEXPRESS has two main limitations
compared to existing simulators. TEXTWORLD-
EXPRESS gains much of its speed by developing
a highly-profiled simulator with hard-coded im-
plementations of text games. Unlike the original
TEXTWORLD simulator, which is designed to al-
low new environments to be implemented with
a domain-specific language, adding new environ-
ments to TEXTWORLDEXPRESS is more effortful
and requires coding in SCALA, a derivative of JAVA.
Similarly, for speed, the TEXTWORLDEXPRESS

user input parser is simplified, and it only recog-
nizes valid actions as it presents them to the agent,
without facilities for alternate surface forms, mis-
spellings, or other variations. While it is common
for agents to select actions from a valid action list,
the lack of a diverse input parser limits utility for
human participants who might choose to play these
games.
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