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Abstract

In this work we investigate the capacity of
language models to generate explicit, inter-
pretable, and interactive world models of sci-
entific and common-sense reasoning tasks. We
operationalize this as a task of generating
text games, expressed as hundreds of lines
of PYTHON code. To facilitate this task, we
introduce BYTESIZED32!, a corpus of 32
reasoning-focused text games totalling 20k
lines of PYTHON code. We empirically demon-
strate that GPT-4 can use these games as tem-
plates for single-shot in-context learning, suc-
cessfully producing runnable games on unseen
topics in 28% of cases. When allowed to self-
reflect on program errors, game runnability
substantially increases to 57%. While evalu-
ating simulation fidelity is labor intensive, we
introduce a suite of automated metrics to assess
game fidelity, technical validity, adherence to
task specifications, and winnability, showing a
high-degree of agreement with expert human
ratings. We pose this as a challenge task to spur
further development at the juncture of world
modeling and code generation.

1 Introduction

Simulating the world through mental models is a
crucial component of human problem solving, in-
ference, and cognition (Barsalou, 1999; Buckner
and Carroll, 2007; Addis et al., 2009). Large lan-
guage models (LLMs) have demonstrated precur-
sors of this ability, such as encoding a wide range of
common-sense world knowledge from their train-
ing data (Li et al., 2022a). Similarly, LLMs have
been used directly as interactive world simulators
in text games like Al DUNGEON (Walton, 2019),
where their capacity to predict tokens in context is
leveraged to convert natural language user inputs
(e.g. open treasure chest) into plausible environ-
mental observations (e.g. you open the chest and
find within a glittering sword).
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Figure 1: An overview of our text game generation and
evaluation process. The model, here GPT-4, generates a
game using in-context learning with a prompt consisting
of (1) a single highly-templated example game, and (2)
the task specification for the target game to generate.
Generated games are self-reflected by providing the
model with error output from a PYTHON interpreter that
detects syntactic and API issues. The generated game
is then evaluated by an automated evaluation harness,
as well as manually by human evaluators, to measure
its technical validity, specification compliance, physical
reality alignment, and winnability.

In this work, we examine instead whether LLMs
can be used to generate explicit and task-specific
world models expressed as code, providing a more
formal and interpretable method to examine a
model’s world knowledge. We operationalize this
as a problem of generating the complete PYTHON
source code of an interactive text game that centers
around a particular common-sense task, such as
washing dishes with a dishwasher or building a
campfire. Although an interactive multi-step simu-
lation of even modest tasks typically requires sev-
eral hundred lines of code, we show that it is pos-
sible for LLMs to generate these simulations us-
ing single-shot in-context learning. This is accom-
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plished by providing the heavily-templated source
code of an existing text game as input, and tasking
models with adapting the template to a novel spec-
ification, as shown in Figure 1. The template pro-
vides a consistent, scalable, and general-purpose
code architecture by hierarchically decomposing
the simulation into object classes and sub-classes
(e.g. device and container), which can be instan-
tiated to make specific game objects (e.g. stove
and jug). The template also offers example imple-
mentations of common actions (e.g. activating
devices or opening containers) and scoring func-
tions that automatically detect task progress.
The contributions of this work are:

1. We present BYTESIZED32, a corpus of 32 world
models (expressed as text games in PYTHON) cen-
tered around tasks that require common-sense rea-
soning. The corpus includes 20k lines of code
(including detailed comments), and is suitable for
both in-context learning or producing fine-tuned
models.

2. We develop a suite of metrics to assess the qual-
ity of generated games, including measuring tech-
nical aspects of the code, whether a game contains
required content, how accurately a game models
the physical world, and whether a game is winnable.
We show that most of these metrics can be auto-
mated with a high agreement to gold human ratings,
dramatically reducing the manual labor required to
evaluate model-generated simulations.

3. We show that a model with a large input con-
text, GPT-4, can produce runnable text games for
unseen tasks in 28% of cases using in-context learn-
ing alone. When allowed to self-reflect on its own
generated code combined with PYTHON interpreter
errors that assess syntax issues or API compliance,
the model dramatically increases performance, gen-
erating runnable simulations in 57% of cases.

4. We empirically demonstrate that while cur-
rent best-generated games frequently include task-
critical objects and actions, they only accurately
model the physical world in 51% of cases, while be-
ing winnable in only 38% of cases. We pose this as
a challenge task to spur further development at the
juncture of world modeling and code generation.

2 Related Work

Text Games and Virtual Environments: Inter-
active text environments are an attractive choice

for studying embodied agents, owing to their rel-
ative simplicity compared to full 3D simulations
and ability to model complex and abstract tasks
(Jansen, 2021; Li et al., 2021). While early text
game research focused on testing agents on a small
set of extant “interactive fiction” games like Zork,
recent approaches have leaned towards procedu-
rally generating a wider set of simple text-based
games in order to evaluate agents’ ability to gen-
eralize (Coté et al., 2018; Urbanek et al., 2019;
Shridhar et al., 2020; Wang et al., 2022). These
frameworks typically rely on hand-crafted rules
and templates programmatically arranged in novel
configurations, though some efforts leverage exter-
nal data sources (Barros et al., 2016) and generative
language models (Fan et al., 2019) as well. In con-
trast, in this work we require models to produce a
novel text game as a complete program, expressed
as PYTHON code, using only a single existing game
for reference.

Code Generation: As large language models have
become more capable, interest in their ability to
generate working snippets of program code has
only grown. Several recent datasets have been
proposed to facilitate this research, covering a
wide range of programming languages and prob-
lem types (Yu et al., 2018; Lin et al., 2018; Austin
et al., 2021; Chen et al., 2021). Contemporane-
ously, improvements in model architecture and
training have led to impressive gains in code gen-
eration (Chen et al., 2021; Nijkamp et al., 2022;
Li et al., 2022b; Fried et al., 2023). The GPT-
4 language model (OpenAl, 2023), in particular,
has sparked an interest in the use of prompting for
code generation tasks, a technique which has led to
advancements problem decomposition (Pourreza
and Rafiei, 2023) and self-debugging by reflect-
ing on errors (Chen et al., 2023; Olausson et al.,
2023). Despite these gains, however, existing code
generation benchmarks tend to require short and
relatively simple programs. In contrast, here mod-
els must generate hundreds of lines of PYTHON
code to generate complete and accurate task simu-
lations. Similarly, we show that self-reflection can
substantially increase the runnability of even large
model-generated simulations.

3 The BYTESIZED32 Corpus

To support the task of generating simulations in
the form of text games, we construct a corpus of
highly-templated text games written in PYTHON
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BYTESIZED32 Corpus Statistics (per game)

Lines of PYTHON code 618.1
Lines of comments 198.1
Tokens 6792
Action verbs 9.8
Valid actions 306.6
Object classes 54
Object instances 7.4
Expert path length 12.8
Total Games 32

Table 1: Corpus statistics of BYTESIZED32. Values rep-
resent average values per game. Tokenization includes
comments and was performed with tiktoken.

that can serve as examples in a few-shot generation
paradigm. Each game is between 500 and 1000
lines of code (including comments), and encodes
a task which requires either scientific or common-
sense reasoning to complete. For example, a game
might require an agent to apply a bandage, load a
dishwasher, or make a campfire. Each game has
two components: the game code itself, as well as a
detailed task specification in the form of structured
comments at the top of each game that provide a
detailed summary of the game task, critical objects,
actions, distractors, and a high-level solution plan.
These components are described below, with cor-
pus summary statistics provided in Table 1, and an
example game playthrough shown in Figure 2.

3.1 Task Specification

The task specification is a set of structured com-
ments at the start of each game in the corpus that
serve as a high-level outline for the critical compo-
nents of each game. These are intended to provide
a high-level scaffold that language models can use
to better structure games they generate. The com-
ponents of the task specification include:

Task Description: The task an agent playing the
game has to solve — for example, washing dirty
dishes using a dishwasher.

Task-Critical Objects: Names of task-critical ob-
jects, such as dishes, dish soap, and a dishwasher.

Actions: Actions that an agent playing the game
can take, such as opening or closing containers,
activating or deactivating devices, picking up or
putting down objects, and so forth.

Distractors: Objects (or actions) that limit or hin-
der task performance, or that are unrelated to the
game task — for example, adding food that an agent
can eat, that creates more dirty dishes.

Playthrough of a training set game

Task Description: Your task is to boil water.

Observation: You find yourself in a kitchen. In the kitchen, you see:
yourself
a stove that is currently off and has nothing on it.
a sink that is empty
a pot that is empty
a peanut butter
an orange

Type 'help’ for a list of possible actions.
> take pot

The pot is removed from the kitchen. You put the pot in your
inventory.
> put pot in sink

The pot is removed from the agent. The pot is placed in the sink.
> examine sink

a sink that contains the following items:
a pot that is empty
> turn on sink

The sink is now turned on.
> examine sink

a sink that contains the following items:
a pot that looks to have some water in it
> turn off sink

The sink is now turned off.
> take pot

The pot is removed from the sink.You put the pot in your inventory.
> put pot on stove

The pot is removed from the agent. The pot is placed on the stove.
> turn on stove

The stove is now turned on.
> examine stove

a stove that is currently on and has the following items on it:
a pot that looks to have some water in it
> examine stove

(water boils)

Game completed.
\

Figure 2: An example playthrough of a game whose
task requires boiling water, from the BYTESIZED32
training set.

Solution: A high-level solution to the game. For
example: opening the dishwasher, moving each
dirty dish from the kitchen into the dishwasher,
moving dish soap into the dishwasher, closing the
dishwasher, and activating the dishwasher.

3.2 Game Code

To maximize utility as n-shot training data for code
generation tasks, each game in the corpus uses a
highly-templated structure consisting of core ob-
jects and member functions, shown in Figure 3 and
described below. The core architecture and API of
these functions mirrors other text game frameworks
(Hausknecht et al., 2020) derived from the OPE-
NAI GYM specification for reinforcement learning
models (Brockman et al., 2016). These include:
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World Initialization: Initialize the game world.
For example, for the dishwasher game, create a
kitchen room that includes dirty dishes, dish soap,
a dishwasher, and any other relevant objects.

Valid Actions: Return a list of all possible valid
actions that an agent could take, given the current
state of the environment. For example, take dirty
dish, or open dishwasher.

Take Action Step: Perform a specific action in the
environment. This function returns the observation
that results from that action — for example, the fake
dirty dish action might return the observation “the
dirty dish is now in your inventory”.

Scoring: Return an agent’s current progress in
solving the game task, abstracted to an arbitrary
numerical score, and a set of boolean flags that
represent whether the game has been won or lost.

While the above methods are provided through
a main game class (TextGame), each game also in-
cludes a large number of classes representing spe-
cific game objects. Each game object derives from
a common class, GameObject, from which generic
subclasses that share common methods inherit (e.g.
Containers, that can store objects, or Devices,
that can be activated), before finally instantiating
specific game objects (e.g. Dish, Dishwasher).

4 Evaluating Generated Simulations

Evaluating model-generated text games presents
a number of challenges. First, because games are
largely open-ended and constrained only by a short
task prompt, the evaluation metrics must be robust
to a wide range of potential errors and behaviors.
Second, evaluating open-ended simulations typi-
cally requires manual human evaluation, which is
costly and labor intensive. Here, we propose a set
of fully-automatic metrics that measure both tech-
nical aspects of games — such as whether the simu-
lation runs error-free — as well as content aspects
that measure how well generated simulations ad-
here to task specifications. We then validate these
automatic instruments with human ratings.

4.1 Metrics

Evaluation metrics are described briefly below,
with additional details of their computation, val-
idation, and prompts described in the APPENDIX.

Technical Validity: The rechnical validity metric
measures whether the core member functions of

BYTESIZED32 PYTHON template

# Generic parent class for all game objects
# Provides getters/setters for object properties
class GameObject():

# Parent class for game objects that are containers
# Provides methods for adding/removing objects
class Container (GameObject):

# Parent class for game objects that are devices
# Provides methods for activating/deactivating a device
class Device (GameObject):

# Example object: Soap for washing dishes
class DishSoap (GameObject):

# Example object: A dish (that can contain food)
class Dish(Container):

# Example object: A dishwasher (that can contain dishes,
# dish soap, and be activated to wash the dishes)
class Dishwasher(Device, Container):

# Main Simulation Class

class TextGame():
# Creates the game world and populates with game objects
# (including the kitchen, dishes, dishwasher, etc.)
def initializeWorld ():

# Returns a string describing the game and task
def getTaskDescription ():

# Returns an array with all possible valid actions given
# the current game state
def generateValidActions ():

# Performs an action (e.g. turn on dishwasher) in the
# environment, changing the environment state.
def step(action:str):

# Calculate the current game score given progress.
def calculateScore ():

# Main Entry Point (example of a user playing)
if _name__ == "__main__":
game = TextGame ()
print("Task: " + game.getTaskDescription())
while not game.gameOver:
actionStr = input("> ")
observation, score, reward = game.step(actionStr)
print ("Observation: " + observation)
print("Score: " + score)
print("Reward: " + reward)
print ("Game Completed.")
print("Game Won: " + str(game.gameWon))

\

Figure 3: An illustration of the core classes and mem-
ber functions present in the highly-templated games of
the BYTES1ZED32 corpus. Each game consists of an
average of 618 lines of code, and the example here pro-
vides only an overview of a subset of the most important
functions.

a generated text game run without errors by call-
ing them in a PYTHON interpreter and capturing
errors. We measure errors during the game initial-
ization phase where the simulation environment
is being constructed, the valid action generation,
where the simulation provides a list of all valid
actions the agent might take given the current envi-
ronment state, and the step function, which takes
a user-requested action that modifies the environ-
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ment. The valid action generation and step func-
tions are tested by exhaustively crawling all possi-
ble trajectories (i.e. sequences of actions) an agent
could take. Because games can have up to 2000
valid actions per step, the path crawling procedure
has a limited horizon — typically 3 steps. At each
step, we also group actions by their action verb and
explore a maximum of 100 actions of each group.

Specification Compliance: This metric measures
whether the generated game includes the required
actions, objects, and distractors required in the task
specification. Compliance is measured automat-
ically by supplying the generated game and its
task specification to a GPT-4 model, which is then
asked a series of true-or-false questions about the
presence of each required component. For example,
in a boiling water game, one such question is Does
the simulation contain the object ‘Sink’?. To vali-
date this automatic metric, we compare GPT-4 rat-
ings with gold ratings generated by two expert hu-
man annotators, showing moderate-to-strong inter-
annotator agreement between GPT-4 and human
ratings (Avg. k = 0.74; Object: k = 0.96; Action:
x = 0.75; Distractor: x = 0.50).

Physical Reality Alignment: In addition to techni-
cal and specification compliance, we provide a mea-
sure of how well the actions in generated games
accurately model the constraints of the physical
world. For example, a game that lets you take
an object out of a closed container (like a fridge)
without first opening it is not respecting the con-
straints of the physical world. Because a simulation
necessarily encodes only a small subset of reality,
we restrict our measure to only the set of actions
implemented by the game and returned by the GEN-
ERATEPOSSIBLEACTIONS() function.

To measure physical reality alignment, we crawl
a given game up to a depth of 3 steps, then ran-
domly sample 100 trajectories equally distributed
across each action a game implements. These
trajectories are then provided to GPT-4, with
a prompt to provide a binary assessment as to
whether the game playthrough up to that point ad-
heres to physical reality, as well as a short text
justification for that assessment. To validate this
metric, two expert human raters produced gold la-
bels for 200 physical reality alignment judgements.
The inter-annotator agreement between human and
GPT-4 ratings is strong (Cohen’s x = 0.89),
demonstrating GPT-4 has a high agreement with
humans when making these assessments.

Winnability: A game is considered winnable if
there exists a sequence of actions that, when per-
formed in order, will lead to a winning state of
the game. Automatic evaluation of winnability
was performed by letting a GPT-4 text game agent
play through the games. This agent uses recent
prompting techniques such as ReAct (Yao et al.,
2023) and Reflexion (Shinn et al., 2023) to provide
high-level planning and problem-solving. Man-
ual evaluation was performed by a single human
evaluator. Both automatic and manual evaluators
attempted to reach the game’s winning state by
submitting actions to the game’s STEP() function.
We note that this process does not always give an
accurate measure of a game’s winnability, as it is
possible for an evaluator to fail to find a possible
winning trajectory. Nevertheless, we find empiri-
cally that in the vast majority of cases a game is
either obviously winnable or obviously impossible
to win. Overall we find that GPT-4 underestimates
game winnability, with inter-annotator agreement
between GPT-4 and the human evaluator low (Co-
hen’s k = 0.43). This suggests solving arbitrary
text games zero-shot is still beyond the capabilities
of GPT-4, a finding consistent with prior research
on LLLMs as commonsense problem solvers (Bian
et al., 2023). As such, we report human evaluations
of winnability for our experiments.

S Experiments

Here we investigate the capacity for a large lan-
guage model such as GPT-4 2 to generate the hun-
dreds of lines of code required to generate a work-
ing text game simulation centered around unseen
tasks on each of the technical and quality metrics
described above. Alongside, we examine the extent
to which these models can use reflection to increase
generation performance.

5.1 Model and Prompt

As template games contain up to 10K tokens before
including the prompt, we make use of GPT-4 (Ope-
nAl, 2023) with a context window of 32K tokens
for each of our experiments. The model prompt
includes a /-shot example (a single PYTHON ref-
erence game from the BYTESIZED32 corpus), fol-
lowed by a rask specification describing the game
the model must generate, drawn from an unseen

2See Appendix C for performance of CodeLlama (Rozigre
et al., 2023) on BYTES1ZED32 with no finetuning.
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evaluation set.> All experiments reported here use
greedy decoding. Additional model hyperparame-
ters and prompts can be found in the APPENDIX.

5.2 Evaluation Set

In addition to the 32 training games in the BYTE-
S1ZED32 dataset, we also provide an evaluation set
in the form of task specifications for 16 additional
unseen games. Each game in the evaluation set is
explicitly crafted to have highly similar or highly
dissimilar characteristics to specific games found
in the training set, such as similar or dissimilar
objects, actions or distractors.

5.3 Reference Game Selection

To improve diversity in generation, we randomly
pair each game specification in the evaluation set
with six different reference games. Half of these
reference games are chosen to have at least some
similarity to the evaluation game (i.e., they share
a similar object, action, or distractor), while half
are chosen to minimize similarity.* With 16 game
specifications in the test set, this results in a total
of 96 model-generated games.

5.4 Reflection

Similar to other code generation tasks (Lehman
et al., 2022), we hypothesize that self-reflection —
that is, providing the model with error output, and
allowing it to iteratively correct its generated code
— will increase overall generation performance. As
such, during generation, we provide any error mes-
sages generated by the PYTHON interpreter during
the technical validity evaluation back to the model,
in a self-reflection prompt that requests the model
to correct the error. This reflection step is repeated
until the game passes all technical validity checks,
or a maximum number of self-reflection steps is
reached. In the experiments reported here, the max-
imum number of reflection steps is 3.

6 Results

Here, we evaluate all generated games (N = 96)
across each metric, reporting results both before
and after self-reflection. The results of the technical

*We empirically observe that without providing the tem-
plated example, GPT-4 generates games that exhibit limited
state space (i.e., less challenging), and lack a coherent API for
the development of a consistent automatic evaluation metric.
We leave 0-shot game generation as future work.

*These pairings between evaluation and reference games
are provided with the BYTESIZED32 corpus.

Technical Validity Number of Reflections
Measurement 0 1 2 3
Game Initialization 85.4% 854% 89.6% 88.5%
Valid Actions 80.2% 833% 87.5% 88.5%
Runnable Game 28.1% 42.7% 51.0% 57.3%

Table 2: Technical validity measurements of generated
games before reflection (0), and after up to three reflec-
tion steps. Values represent the proportion of games
(N = 96) passing a given test after a given number of
reflection steps.

Reflection
Measurement Before After A
Specification Compliance
Task-critical objects  100.0% 100.0%  0.0%
Task-critical actions  93.8% 93.8% 0.0%
Distractors 21.9% 18.8% -3.1%
Winnability 30.2% 37.5% +7.3%

Table 3: Specification compliance and winnability mea-
surements for generated games before and after reflec-
tion. Specification compliance is measured automati-
cally, while winnability is measured manually by human
experts. Overall, each measure shows small increases
or decreases post-reflection.

validity evaluation are shown in Table 2. Model per-
formance on creating game initialization methods
is strong overall, beginning at 85%, and increas-
ing to 89% after reflection. Similarly, generating a
method that enumerates valid actions for a given
step occurs in 80% of generated games before re-
flection, increasing to 89% after reflection. Gen-
erating fully runnable games, which successfully
run an exhaustive path crawl of all possible game
trajectories up to 3 steps without error, occurs in
only 28% of games before reflection, but increases
to 57% after reflection — a substantial increase of
29% gained from the self-reflection process. We
show examples of GPT-4 fixing bugs in code via
reflection in APPENDIX Table 7.

Self-reflection also increases physical reality
alignment, with a histogram of automatically mea-
sured physical reality alignment scores shown in
Figure 4. Before reflection, average physical reality
alignment across games is 43%, which indicates
that GPT-4 finds 43% of randomly sampled paths
to fully comply with its expectations of physical
reality. After reflection, this increases to 51%, a
moderate increase of 8%. Though measured au-
tomatically, the strong inter-annotator agreement
between human and GPT-4 raters in Section 4 sug-
gests this improvement to be genuine, though it is
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Figure 4: A histogram of automatically measured physi-
cal reality alignment scores, both before (red) and after
(blue) reflection. Asterisks represent average scores
(0.43 pre-reflection, 0.51 post-reflection).

likely due — at least in part — to an overall increase
in non-zero physical reality alignment scores due
to more games becoming runnable after reflection.
When zero scores are removed from the analysis,
the average physical reality alignment scores be-
fore and after reflection are 58% (N = 71) and
62% (N = 80), respectively — or in other words,
the effect size of reflection decreases to 4%.

Similarly, self-reflection increases the winnabil-
ity of games. As shown in Table 3, the winnabil-
ity of all generated games pre-reflection is 30.2%
when measured manually by human experts, with
this increasing to 37.5% post-reflection — a gain of
7.3%.

Self-reflection does not improve every metric we
evaluate. Each of the submeasures of specification
compliance, including generating task-critical ob-
Jjects, task-critical actions, and game distractors
observes a small decrease or no difference post-
reflection when measured automatically — suggest-
ing that self-reflecting on technical validity mea-
sures affords limited utility to these measures of
simulation content. Still, we observe strong over-
all performance in specification compliance, with
generated games including task-critical objects in
nearly every case, task-critical actions in 93.8% of
games, while struggling with distractors — generat-
ing these in only 18.8% of games.

7 Discussion

To what extent can GPT-4 generate long struc-
tured text games using single-shot in-context
learning? At a high level, our results indicate that
GPT-4 is frequently capable of generating syntacti-
cally valid, templated, and playable programs that

Playthrough of a model-generated game

Task Description:

Your task is to protect yourself from mosquitoes by putting on
mosquito repellent, then move to the forest, take an apple, and
move back to the house to put the apple in a box.

Initial Observation:
You find yourself in a house. In the house, you see:
yourself
a bottle of mosquito repellent
a bottle
a box
You also see:
a way to the forest

Type 'help’ for a list of possible actions.

> take mosquito repellent
The mosquito repellent is removed from the house. You put the
mosquito repellent in your inventory.

> use mosquito repellent
You use mosquito repellent on yourself.

> move to forest
You move from house to forest.

> take apple
The apple is removed from the forest. You put the apple in your
inventory.

> move to house
You move from forest to house.

> put apple in box
The apple is removed from the agent.The apple is placed in the
box.

Game completed.
Game Won: True

\

Figure 5: An example playthrough of a GPT-4 gener-
ated game centered around the task of protecting ones
self from mosquito bites. The reference game used
during generation was centered on using sunscreen to
protect from sunburns.

are hundreds of lines in length, such as the game
shown in Figure 5. Of the generated games, nearly
all implement at least one task-critical object, 88%
implement at least one task-critical action, and a
full 38% allow a user or agent to reach a winning
state. A more nuanced interpretation of these
results suggests that the model has best learned
to successfully replicate the high-level structure
of the highly-templated BYTESIZED32 game
API — as model performance begins to degrade
once we examine the minute details: only 58% of
games are robust to a 3-step exhaustive trajectory
search, and only 19% of games include a required
distractor despite their presence in the reference
games. Similarly, while the average training
game includes 4396 code tokens, the average
model-generated game contains only 3368 code
tokens — or 77% of the length of training games —
suggesting that model-generated games are not yet
able to replicate the full level of simulation fidelity
provided in the training corpus.
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How does self-reflection assist game gen-
eration? Self-reflection — that is, iteratively
providing an LLM with error messages from the
PYTHON interpreter when running generated
games, then asking it to correct those errors (Chen
et al., 2023) — dramatically increases generation
performance, most notably in terms of technical
validity. We find that three steps of self-reflection
increases the generation rate of runnable games
from 28% to 57%. Gains from self-reflection are
typically largest when detailed and specific error
feedback is possible (Olausson et al., 2023). This
indicates that similar gains might be achievable on
errors in specification compliance, physical reality
alignment, and winnability by using the output of
our automatic evaluation process. However, the
feasibility of this approach is constrained by the
time and expense involved in querying the model
for reflection — our results indicate that a single
game could include hundreds of small and large
errors in total. The cost of reflection might be
lowered by the use of code diffs for edits (Lehman
et al., 2022) or through batching multiple errors
into a single reflection request — though our pilot
experiments on applying these techniques to the
long generated programs here indicates that current
models might require specialized fine-tuning to
do so. Alternatively, open source code generation
models are quickly approaching GPT-4 perfor-
mance in both generation length and accuracy
(Li et al., 2023; Luo et al.,, 2023; Gunasekar
et al., 2023; Roziere et al., 2023), suggesting that
fine-tuning on the entire BYTESIZED32 corpus
may become viable in the near-term, potentially
reducing the number of errors when generating
high-fidelity simulations, and reducing dependence
on self-reflection.

Can we use LLMs to automatically evaluate
the output of their own simulations? Automatic
evaluation of model outputs is a vital prerequisite
for large-scale experiments in world model gener-
ation, where manual evaluation of even a single
simulation can require a prohibitive amount of time.
The complexity of the task, however, precludes the
use of most simple automatic metrics. We find
that using language models to automatically crawl
and evaluate generated simulations is a viable
alternative to time-consuming human annotation
for certain measures. This automatic evaluation

is valid as long as the inter-annotator agreement
between the LLM and human annotators is
high. By presenting models with game code
or trajectories and requesting targeted, binary
judgements, we find it is possible to automatically
and reliably rate measures of game specification
compliance and physical reality alignment. At
the same time, we show that certain metrics
remain challenging for automation. Determining
winnability of a generated game, in particular,
essentially requires a model to solve arbitrary text
games — an active area of research (Jansen, 2021).
The automated agent currently underestimates
game winnability by about half compared to expert
human judgements, though it is plausible that this
gap will narrow as the reasoning capabilities of
LLMSs continue to improve.

Can we observe the internal world mod-
els of LLMs through the simulations they
generate? Generating world models as code
provides a formal and interpretable means to
explicitly assess how LLMs understand the world.
For instance, the GPT-4 model generated a
game that involved burying a box of treasure in a
hole but required placing soil back into the hole
before placing the treasure box inside. In another
generated game, an agent was able to directly place
water in its inventory without using any containers.
These failure modes indicate situations in which
the language model was unable to accurately
realize the world knowledge presumably contained
within its pretraining data. Even after reflection,
only 51% of short 3-step trajectories in GPT-4
generated games accurately modeled the physical
world, indicating that constructing correct and
explicit world models in code remains a formidable
challenge for LLMs.

8 Conclusion

In this work, we present BYTESIZED32, a corpus
of small world models expressed as text games cen-
tered around specific common-sense tasks. Using a
simulation as code generation paradigm, we show
that it is possible to use these games, expressed as
hundreds of lines of PYTHON code, as templates
for in-context learning, and generate novel simu-
lations for unseen tasks. We futher show that it
is possible to iteratively self-reflect on these large
simulations, and improve on fechnical validity and
physical reality alignment metrics by as much as
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29% and 8% respectively. While manually evaluat-
ing simulations is labor intensive, we empirically
demonstrate that a number of measures of simula-
tion accuracy can be automatically evaluated with
moderate-to-strong agreement with expert human
ratings. We release this work as open source, and as
a challenge task at the intersection of world mod-
eling and code generation, to spur further devel-
opment in expressing the knowledge contained in
language models in more formal and interpretable
forms.

Limitations

This work examines the ability of LLMs to gener-
ate abstract text-based world models and the BYTE-
S1ZED32 corpus is designed to facilitate that task.
As such, games in the corpus are not designed to
resemble extant text games or to be entertaining.

We perform our experiments in a single-shot
regime and do not examine the possibility of in-
cluding more than one game from the corpus could
within the 32k token context window of our GPT-4
MODEL. We also do not test recent models with
similar context sizes like COLTS (Ainslie et al.,
2023), UNLIMIFORMER (Bertsch et al., 2023), or
CLAUDE-100K (PBC, 2023). Both of these are
valuable directions for future work.

Finally, we perform reflection by regenerating
the complete program at each step and target only a
single error at a time. This process could be made
more efficient by outputting only a code diff and
batching multiple errors at once.

Broader Impact

Generating Simulations: We provide an initial
investigation of formalizing the knowledge
captured by language models into interactive
simulations expressed as code. This process can be
used to inspect and evaluate language models, and
the ability to generate simulations on-the-fly has
potential applications in games and science.

Self-Evaluation of GPT-4: In spite of re-
cent criticisms of the ability of GPT-4 to evaluate
its own output, we empirically validate that this
is possible in some cases where strict binary
judgements of relatively straight-forward common-
sense tasks are required. Automatic evaluation
is a critical component of any effort at scalable
environment generation, as it vastly reduces the
amount of human labor required to validate and

grade outputs. At the same time, strict binary
measures may not be desirable for some metrics,
and we leave creating and validating more granular
metrics for future work.

Self-Reflection:  Self-reflection is a rapidly
emerging tool for iteratively improving the
accuracy and quality of code generated by large
language models. Here we show that with targeted
feedback, self-reflection is possible and helpful for
large (several hundred line) simulation programs.
This potentially enables the generation of increas-
ingly complex programs without sacrificing code
quality.

Intended Use: The games included in the
BYTES1ZED32 corpus have been designed to
study LLMs and there is no guarantee they will be
entertaining or useful outside this scope.
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A Details on Code Generation

In this work, we make extensive use of OpenAl’s
API. We use the ChatCompletion mode without
system prompt. In all our experiments, we keep the
following hyperparameters constant:

* temperature=0.0

* top_p=1

* frequency_penalty=0.0

* presence_penalty=0.0

A.1 Game Generation

To generate the new games, we use the gpt-4-32k
model and the following prompt.

GPT-4 Game Generation Prompt

You are DeveloperGPT, the most advanced Al developer tool on
the planet. You answer any coding question, and provide real
useful example code using code blocks. Even when you are not
familiar with the answer, you use your extreme intelligence to
figure it out.

Your task is to write a program that: is a text-based simulation.
The program should be written in Python. It should be challenging
to the user, testing their common-sense knowledge, and take
multiple steps to complete. If possible, there should be distractor
objects and actions that do not help progress, to measure whether
the user really knows what they're doing. You should name all
target objects and distractor objects with common-sense names.
Your code must contain a class named TextGame. The TextGame
class should have the following member functions:

__init__(self, randomSeed), getTaskDescription(self),
generatePossibleActions(self), step(self, actionStr), calculateScore
(self)

Here is a specification of the task that your code should simulate.

**# Task: Create a micro—simulation that models how to heat
milk to a temperature that is suitable for a baby using a stove.

# Environment: kitchen

# Task—critical Objects: Stove, Pot, Milk, Fridge, Thermometer

# High—level object classes: Device (Stove, Fridge), Container (
Stove, Pot, Fridge)

# Critical properties: temperature (Milk),
temperature_increase_per_tick (Stove),
temperature_decrease_per_tick (fridge), max_temperature (Stove)
, min_temperature (fridge)

# Actions: look, inventory, examine, take/put object, open/close
container, turn on/off device, use thermometer on object, feed
baby with milk

# Distractor Items: None

# Distractor Actions: drink milk

# High-level solution procedure: open fridge, take pot containing
milk, put the pot on the stove, turn on the stove, use the
thermometer to moniter the milk temperature till the temperature is
suitable for a baby to drink, feed baby

Here is an example of a text-based simulation on a different topic
that you can use as a template:
{GAME_CODE}

\. J

Depending on the length of prompt and the code
to generate and the API traffic, each game may
require 5-10 minutes to generate. We use stream
generation which allows us to recover from a GPT-
4 API timeout. The code in the response of GPT-4
is wrapped in a Markdown Python code block (i.e.,
enclosed with three backticks) which makes it easy
to extract. We only keep the code part and discard
the rest.

A.2 Reflection

During validity check, when the code encounters
an error from the Python interpreter, we use the
error message to reflect. For the reflection we use
the standard GPT-4 model (i.e., with 8k context)
and the following prompt.

GPT-4 Reflection Prompt

You are DeveloperGPT, the most advanced Al developer tool on
the planet. You answer any coding question, and provide real
useful example code using code blocks. Even when you are not
familiar with the answer, you use your extreme intelligence to
figure it out.

Your task is to correct a program that is a text—-based simulation.
Here is the code of the simulation

{GAME_CODE}

Here is the error message from a Python interpreter.
{ERROR_MESSAGE}
You should respond all the code with your fix. Do not respond
anything else.

\

B Additional Notes on Evaluation Metrics

B.1 Technical Validity

Validity measurements are reported in order, such
that failure of a function called earlier in the API
implies failure for all subsequent tests. We note,
however, that the game initialization functions are
evaluated only once, at the beginning of the game,
while the GENERATEPOSSIBLEACTIONS() and the
STEP() function are necessarily evaluated at each
step.

B.2 Specification Compliance

The full GPT-4 prompt used to generate the true-
or-false evaluations of specification compliance is
provided below:

GPT-4 Specification Compliance Prompt

You are DeveloperGPT, the most advanced Al developer tool on
the planet. You answer any coding question, and provide real
useful example code using code blocks. Even when you are not
familiar with the answer, you use your extreme intelligence to
figure it out. Your task is to evaluate a program that is a text-based
simulation.

Here is a specification of the simulation: {GAME_SPEC}
Here is the code of the simulation: {GAME_CODE}

Answer the following question based on the given specification
and the simulation code: {EVAL_QUESTION}

Answer 'Yes' or 'No' first and briefly explain your answer.
\
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Manual  Automatic
Measurement (Human) (GPT-4) A
Specification Compliance
Task-critical objects 97.2% 100.0% 2.8%
Task-critical actions 87.5% 93.8% 6.3%
Distractors 37.5% 18.8% 18.7%
Winnability 37.5% 17.8% 19.7%

Table 4: Manual (human) and automatic (GPT-4) evaluation
results of the best-generated games (i.e. games after reflection,
N = 96) for both specification compliance and winnability.
Difference scores reflect the difference between automatic
and manual ratings, showing a moderate overall agreement
for specification compliance (Avg. x = 0.74; Object: kK =
0.96; Action: k = 0.75; Distractor: £ = 0.50) and modest
agreement for winnability (x = 0.43).

Because we observe variance in GPT-4’s answer
on a few games, even when using a temperature of
zero, we run the same measure 31 times and take
the final result as the majority vote.

The upper part of Table 4 shows the manual and
GPT-4 automatic evaluation results of specifica-
tion compliance. The inter-annotator agreement
between GPT-4 and the human evaluators are high
(average Cohen’s k = 0.71). We note that the
manual evaluation differs from the automatic eval-
uation in only 8 of the 96 games, indicating that
automatic evaluation is a viable substitute for costly
human evaluation of these metrics. We also note
that the automatic evaluation most frequently dif-
fered from the manual evaluation in the distractors
section, which is also the section that proved the
most difficult in terms of generation.

B.3 Physical Reality Alignment

The process of generating sample trajectories for
automatic evaluations occurs in two steps. First, we
perform a breadth-first crawl of the game using the
action strings returned at each step by the GENER-
ATEPOSSIBLEACTIONS() function. At each step
we maintain a list of counts for each action “verb,”
which is extracted from a valid action string by tak-
ing the first token. When we perform a recursive
search from a given step, we keep only 10 paths for
each action verb. We restrict our search to a maxi-
mum depth of 3 actions and stop after 25,000 paths
have been generated. In addition, if the game pro-
duces an error, then the error message is recorded
as the observation from that step and the search
continues.

After the initial set of paths has been generated,
we group the set by the last action verb used in
each path. We then generate a subsample of 100

paths by taking an even number of paths from each
group. For instance, if the actions TAKE, PUT, and
MOVE occur as the last actions in our set of 25,000
paths then we subsample 33 paths for each action
and 1 path randomly. Each subsampled path is sent
to GPT-4, along with the game’s task description,
which is then asked to determine whether every
action in the path and its accompanying observation
align with physical reality. The GPT-4 evaluation
prompt is provided below:

GPT-4 Physical Reality Alignment Prompt

In the playthrough of the text game below, | would like you to
describe whether the game engine (i.e. the observations it returns
in response to actions) are physically accurate models of the world
or whether they don't make sense.

An example of not making sense would be being able to take an
action from a container (like a fridge) without having opened it first.
In addition, if an action produces an error from the game, then it
automatically fails to accurately model the world and does not
make sense.

Please restrict your evaluation only to the short playthrough, and
the specific actions chosen, without speculating about other
actions.

Note: Objects can be manipulated by the agent without first being
explicitly picked up, as long as they are in the environment, and
readily accessible (e.g. not in a closed container).

The evaluation should be binary ("yes" or "no"), except in the
cases where the code generated an error, when the evaluation
should be "error".

Here is an example output format: {"evaluation":"no",
"short_justification": "could take an object (banana) from the
closed fridge without having to first open the fridge"}

Game Task: {GAME_TASK}

Here is the playthrough to evaluate: {PATH}

. v

B.4 Winnability

The initial prompt given to GPT-4 to act as a text
game agent is provided in Figure 6. The GPT-4
agent was used to evaluate 96 games, and the re-
sults were broken down as follows: in 17 games,
agent reached the end of the game as determined
by the game’s CALCULATESCORE() function. In
16 games, the GPT-4 agent finished by outputting
“done,” but the game’s CALCULATESCORE() did
not indicate that a terminal state had been reached.
In 34 games, the GPT-4 agent finished by out-
putting “bug” (see Figure 7 for an example). In the
remaining 29 games, the game crashed before the
GPT-4 agent finished execution.

The bottom part of Table 4 shows the manual and
GPT-4 automatic evaluation results of winnability.
The inter-annotator agreement between GPT-4 and
the human evaluators are low (average Cohen’s
k = 0.43). As a result, we report the manual
results of winnability in the main paper.
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GPT-4 Winnability Prompt

You are playing a text-based games. Interact with the environment
to solve a task.

Here is an example.
{IN_CONTEXT_EXAMPLE}

The game you are about to play only understands one command
at a time from the following list of commands:
{POSSIBLE_ACTIONS}

Prepend your thoughts with 'think:' when planning your next steps.
When you think the task is completed, say 'done'. If you think the
task can't be completed at all, say 'bug'.

\. J

The IN_CONTEXT _EXAMPLE used in the

GPT-4 Winnability Prompt

Task Description: Your task is to make ice cubes.

Initial Observation: You find yourself in a kitchen. In the kitchen,
you see:

yourself

a freezer that is currently closed

a sink that is currently off and that is empty

a pot that is empty

a peanut butter

aorange

> think: I will need some container to make the ice cubes
in. I will need to fill the container with water and then
put it in the freezer. I will need to wait for the water to
freeze. I will need to remove the ice cubes from the
container.

> think: I will start by looking for a container

> open freezer

The freezer is now open.

> examine freezer
a freezer that is currently open and contains the following items:
an ice cube cray that is empty

> take ice cube tray
The ice cube tray is removed from the freezer. You put the ice
cube tray in your inventory.

> think: I will need to fill the ice cube tray with water
Based on the possible commands, I have to move the ice cube
tray to the sink and then turn on the sink.

> put ice cube tray in sink

The ice cube tray is removed from the agent.

The ice cube tray is placed in the sink.

> look
You find yourself in a kitchen. In the kitchen, you see:
yourself
a freezer that is currently open and empty
a sink that is currently off and that contains one or more
items.
a pot that is empty
a peanut butter
a orange

> examine sink
a sink that is currently off and that contains the following items:
an ice cube cray that is empty

> turn on sink
The sink is now turned on.

> examine sink
a sink that is currently on and that contains the following items:
an ice cube cray that looks to have some water in it

> turn off sink
The sink is now turned off.

think: | will need to put the ice cube tray in the freezer and wait for
the water to freeze.

> take ice cube tray

The ice cube tray is removed from the sink. You put the ice cube
tray in your inventory.

> look

You find yourself in a kitchen. In the kitchen, you see:
yourself
a freezer that is currently open and empty
a sink that is currently off and that is empty
a pot that is empty
a peanut butter
aorange

> put ice cube tray in freezer
The ice cube tray is removed from the agent.
The ice cube tray is placed in the freezer.

> close freezer
The freezer is now closed.

> look

You find yourself in a kitchen. In the kitchen, you see:
yourself
a freezer that is currently closed
a sink that is currently off and that is empty
a pot that is empty
a peanut butter
aorange

> look

You find yourself in a kitchen. In the kitchen, you see:
yourself
a freezer that is currently closed
a sink that is currently off and that is empty
a pot that is empty
a peanut butter
aorange

> open freezer
The freezer is now open.

> examine freezer
a freezer that is currently open and contains the following items:
an ice cube cray that looks to have some ice in it

Current step: 18
Score: 1

Reward: 0

Game Over: True
Game Won: True

Figure 6: Prompt used for the automatic evaluation of the winnability of generated games.
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Technical Validity Number of Reflections

Measurement 0 1 2 3

Game Initialization 604 521 521 562
Possible Actions Generation 60.4 52.1 52.1 52.1
Runnable Game 20.8 20.8 20.8 20.8

Table 5: Technical validity measurements of games
generated with CodeLlama before reflection (0), and
after up to three reflection steps. Values represent the
proportion of games (N = 96) passing a given test after
a given number of reflection steps.

Reflection
Measurement Before  After A

Specification Compliance

Task-critical objects  96.9%  78.1% -18.8%
Task-critical actions  100%  90.6%  -9.4%
Distractors 18.8% 9.4% -9.4%

Winnability 4.2% 4.2% 0%

Table 6: Specification compliance and winnability mea-
surements for games generated with CodeLlama before
and after reflection. Specification compliance is mea-
sured automatically, while winnability is measured man-
ually by human experts. Overall, each measure shows
non negligible decreases post-reflection due to CodeL-
lama’s difficulty with performing meaningful reflection
on large pieces of code.

C Open-Source Language Model

We report here the results when using the
open source language model CODELLAMA-34B-
INSTRUCT (Roziere et al., 2023) served using
vLLM (Kwon et al., 2023) with maximum context
length of 32k and a dynamic RoPE scaling factor
of 2. We opted for CodeLlama because of it can ex-
trapolate up to context size of 100k tokens. While
its one-shot code generation performance is decent
with 20.8% runnable games compared to 28.1%
for GPT-4, this result is tempered by CodeLLlama’s
apparent difficulty with performing meaningful re-
flection on these large pieces of code. As shown in
Table 5, some of the revised games degrade right af-
ter the first reflection and never fully recover. The
two main failure cases for doing reflection with
CodeLlama is 1) partial code generation and 2)
generating the full code but without including the
fix even though CodeLlama’s responses mention
the issue and how to fix it.
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D Qualitative Examples

Example of GPT-4 agent detecting an issue

\

Here is the task:

You find yourself in a room. In the room, you see: . a
vending_machine. a quarter coin. a dime coin. a nickel coin. a
penny coin. yourself.

Your task is to buy a snack from the vending machine using the
coins available in the room.

> think: I need to collect the coins and use them in the
vending machine to buy a snack. The task does not specify
which snack to buy, so any snack will do.

OK.

> take quarter
The quarter is removed from the room. You put the quarter in your
inventory.

> take dime
The dime is removed from the room. You put the dime in your
inventory.

> take nickel
The nickel is removed from the room. You put the nickel in your
inventory.

> take penny
The penny is removed from the room. You put the penny in your
inventory.

> think: Now that I have all the coins, I need to use them
in the vending machine to purchase a snack.

OK.

> put quarter in vending_machine
You put the quarter in the vending machine. Total money in the
vending machine: $0.25

> put dime in vending_machine
You put the dime in the vending machine. Total money in the
vending machine: $0.35

> put nickel in vending_machine
You put the nickel in the vending machine. Total money in the
vending machine: $0.40

> put penny in vending_machine
You put the penny in the vending machine. Total money in the
vending machine: $0.41

> select chocolate
Not enough money in the vending machine to buy the chocolate.
You need $1.59 more.

> select chips
Not enough money in the vending machine to buy the chips. You
need $0.59 more.

> think: I don't have enough money to buy any snack. Task
can't be completed.

OK.

> bug

Figure 7: An example of using GPT-4 agent to detect
issue with a generated game.
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Game |

0512_action_test_9_p_gpt-4-32k_volume_generation.py

Error ‘ invalid syntax (line 293)
293 defstep(self, actionStr): | def step(self, actionStr):
Code diff | ---
338 reward = self.score - lastScore | reward= self.score - lastScore
Game | 0512_distractor_test_15_p_gpt-4-32k_dishwasher_generation.py
Error \ ’TextGame’ object has no attribute ’actionInventory’
290 > def actionInventory(self):
291 > inventory = self.agent.contains
292 > if len(inventory) ==
293 > return "You have nothing in your inventory."
. 294 > else:
Code diff 295 > inventory_str = \
"In your inventory, you have:\n"
296 > for item in inventory:
297 > inventory_str += "\t" + \
item.makeDescriptionStr() + "\n"”
298 > return inventory_str
Game \ 0512_distractor_test_16_p_gpt-4-32k_plant-tree_generation.py
Error \ local variable ’measuring_cup’ referenced before assignment
457 > stone = None
458 > measuring_cup = None
459 > scale = None
468 > if stone is not None and measuring_cup is \
not None and scale is not None:
469 if stone.parentContainer == measuring_cup: | if stone.parentContainer == measuring_cup:
Code diff | 470 self.score += 1 | self.score += 1
471 if stone.parentContainer == scale: | if stone.parentContainer == scale:
472 self.score += 1 | self.score += 1
473 if measuring_cup.getProperty("”containsLiquid”): | if measuring_cup.getProperty("”containsLiquid”):
474 self.score += 1 | self.score += 1
475 if self.score == 3: | if self.score ==
476 self.gameOver = True | self.gameOver = True
477 self.gameWon = True | self.gameWon = True

Table 7: Examples of GPT-4 fixing bugs via reflection. Note our reflection approach generates the entire code
rather than the patches, we show difference between code before and after reflection for clarity purpose.
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