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Abstract

In this work, we introduce a self-supervised

behavior cloning transformer for text games,

which are challenging benchmarks for multi-

step reasoning in virtual environments. Tra-

ditionally, Behavior Cloning Transformers ex-

cel in such tasks but rely on supervised train-

ing data. Our approach auto-generates train-

ing data by exploring trajectories (defined by

common macro-action sequences) that lead to

reward within the games, while determining

the generality and utility of these trajectories

by rapidly training small models then evaluat-

ing their performance on unseen development

games. Through empirical analysis, we show

our method consistently uncovers generaliz-

able training data, achieving about 90% per-

formance of supervised systems across three

benchmark text games.1

1 Introduction

Complex tasks often involve decomposing prob-

lems into sequential steps to accomplish a goal.

This is particularly the case for text games, which

are interactive virtual environments where an agent

progressively selects actions until a task is com-

plete. Examples of such tasks range from cook-

ing a recipe (Côté et al., 2018), finding a treasure

(Yuan et al., 2018), executing a science experiment

(Tamari et al., 2021; Wang et al., 2022), to evaluat-

ing common sense reasoning (Shridhar et al., 2021;

Murugesan et al., 2021; Gelhausen et al., 2022).

Text game agents are frequently modeled using

reinforcement learning (e.g. He et al., 2016; Am-

manabrolu and Hausknecht, 2020; Yao et al., 2020;

Singh et al., 2021; Tuyls et al., 2022), wherein

an agent explores an environment with the goal

of learning a policy that chooses actions leading

to reward and task completion. More recently,

text game agents recast reinforcement learning as

1Released as open source: https://github.com/

cognitiveailab/pathfinding-rl
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Figure 1: An overview of our approach. Initially, game trajec-
tories from the current state are extracted up to a specified hori-
zon, which extends to the first reward. The generality of these
paths is assessed by training a compact T5 model and evalu-
ating its performance on unseen development games. High-
performing trajectories are subsequently extended through
further exploration in an iterative process until the game is
ultimately completed.

sequence-to-sequence problems using architectures

like the Behavior Cloning Transformer (Torabi

et al., 2018) to leverage the inference capability

and robustness of modern transformers (Wang et al.,

2023; Li et al., 2022; Lin et al., 2023). In this setup,

the transformer is provided with an environment ob-

servation as input, and produces a string indicating

the next action to take as output. A consequence

of this reformulation is that, rather than exploring

their environments, behavior cloning transformers

require supervised training data, necessitating gen-

erating human gold playthroughs.

In Figure 1, we present our approach to over-

come this data supervision limitation by automati-

cally crawling, grouping, and evaluating candidate

paths that can serve as useful and generalizable

training data. By rapidly evaluating these candi-
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Arithmetic Game: Your task is to solve the math problem. Then, pick up the item with the same quantity as the math problem answer, and place it in the box.

90%
on unseen games Infer this micro-action sequence is a  solution

15%
on unseen games Infer this micro-action sequence is  solution

Figure 2: Two example path groups from the Arithmetic game, emphasizing that not all high-scoring paths serve as useful
training data. Paths having the same macro-action sequence from parametric game variations are grouped together, as depicted
above. These examples underscore the concept that shorter, quicker paths, like the one at the bottom, may lack generalizability,
leading to poor model performance.

date sets of training data by training small models,

we show how the performance of those models on

unseen development games can be used as a self-

supervision signal to help guide further path crawl-

ing, and discover useful training data automatically.

This approach is validated on three benchmark

games from the TEXTWORLDEXPRESS simulator

(Jansen and Cote, 2023). Our contributions include:

(1) demonstrating generating self-supervised train-

ing data through crawling, grouping, and evaluat-

ing game trajectories, (2) using the performance

of small rapidly-trained models as self-supervision

signals, and (3) developing heuristic methods to

align and merge training data, reducing the task

search space and ultimate training costs.

2 Approach

Figure 1 provides an overview of our approach.

The goal of our work is to find a set of generaliz-

able training data that can be a substitute for hu-

man gold playthroughs of text games, and suitable

for training a behavior cloning transformer agent.

While simply exhaustively pathcrawling all possi-

ble trajectories in a game offers a method to find

winning paths, not all winning paths are gener-

alizable (see Figure 2), so such a method would

yield poor training data, while also being compu-

tationally expensive. Here, we show that by train-

ing small models on candidate training data, and

evaluating performance on unseen development

games, we can quickly evaluate the generalizability

of that data. In terms of tractability, by iteratively

pathcrawling only up to the next reward, and then

continuing pathcrawling only from the most gener-

alizable paths, we can limit the size of the search

to only paths most likely to be generalizable and

form quality training data.

In this work, we use text games that have para-

metric variations of each task, such as different

math problems to solve for an arithmetic game,

which is standard practice for evaluating a model’s

generalization ability (e.g., Côté et al., 2018; Mu-

rugesan et al., 2021; Wang et al., 2022).

Path Crawling: Our process begins with a path

crawler exploring all potential trajectories in a

game from the start state until achieving non-zero

reward or reaching a limited horizon. This crawler

also navigates multiple parametric game variations,

each with distinct objectives, such as making a

stirfry versus baking a cake in a cooking game.
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Path Grouping into Parameterized Macro-

Action Sequences: Text game actions consist of

a command verb (e.g., take, put, open) with one

(e.g. open closet) or two (e.g. put apple in cup-

board) arguments, where a sequence of actions (i.e.

a full or partial playthrough) is called a trajectory.

When creating candidate training sets for the be-

havior cloning transformer, we attempt to group

together trajectories that – as best as we can tell

– appear to solve different parametric variations

of a game using roughly the same sequence of ac-

tions. We do this by abstracting the trajectories into

variabilized action sequences. For example, in the

TEXTWORLD COMMON SENSE game, a trajectory

such as “take hat”, “put hat on hat rack” from

one variation, and “take dirty shirt”, “put dirty

shirt in washer” from another variation, could both

be abstracted into the same parameterized macro-

action sequence “TAKE(X), PUT(X, Y)”. We call

a set of trajectories from different game variations

that can all be described using the same parameter-

ized macro-action sequence a path group. In the

experiments reported below, path groups are typi-

cally created by grouping paths from 100 training

variations of a game.

Evaluating Path Groups: The above process

yields N path groups, each representing a unique

parameterized macro-action sequence. These

groups provide the training data for a behavior

cloning model. Although N is typically large,

we’ve observed that generalizable sequences are

often among the shorter paths (though not the short-

est – Figure 2 provides a counterexample). For

efficiency, we select the K shortest path groups

and train a T5-based behavior cloning transformer

individually on each, assessing the model perfor-

mance on 100 unseen game variations from the

development set.2 The process continues until we

identify a group surpassing a predefined perfor-

mance threshold T . If no single group meets this

early stopping criterion, we attempt to merge path

groups to discover higher-scoring combinations,

detailed further in APPENDIX C.2.1.

Incremental Path Crawling: Reinforcement

learning problems can offer sparse or dense re-

wards. To minimize the search space and the total

number of path groups to evaluate, we initially

crawl and assess paths up to the first reward in-

stance. Upon identifying a path group with gener-

2An analysis of performance versus number of parametric
variations included in training is provided in the APPENDIX.

alizable performance to this point, the model con-

tinues path crawling, commencing with this macro-

action sequence and assessing generality until the

next reward signal. This cycle persists until reach-

ing a winning state, effectively segmenting the task

into subtasks demarcated by non-zero rewards.

Benchmarks: Our exploration of using path crawl-

ing for generating self-supervised training data

spans three benchmark text games. TEXTWORLD

COMMON SENSE (TWC) (Murugesan et al., 2021)

tasks agents with assigning household items (e.g.

a dirty shirt) to their canonical locations (e.g. a

washing machine). ARITHMETIC engages agents

in a math problem, followed by a pick-and-place

task using the calculated result. SORTING requires

agents to arrange objects by quantity. Each game

presents parametric variations altering the envi-

ronment and task-specific objects across episodes.

For all experiments, we generate distinct training,

development, and test sets, each with 100 varia-

tions of each game. Objects crucial to tasks are

unique across sets. Refer to the APPENDIX for

game specifics and playthrough examples.

3 Models

We assess four models to showcase the effective-

ness of the self-supervised behavior cloning trans-

former. Further model details and hyperparameters

can be found in the APPENDIX.

Supervised Behavior Cloning Transformer:

This supervised baseline employs a sequence-to-

sequence model that packs the game task descrip-

tion, current and previous observations, and prior

action into a prompt, while training it to generate

the agent’s next action. Gold paths for training are

generated by gold agents. At inference time candi-

date next-actions are generated using beam search,

and the first valid action is used. For efficiency, all

reported experiments employ the T5-BASE (220M

parameter) model (Raffel et al., 2020).

Self-supervised Behavior Cloning Transformer:

This model, the focus of our work, parallels the

supervised transformer, with the exception being

its training data is generated via the path crawling

method described in Section 2.

Additional comparisons: Although our aim is to

showcase behavior cloning self-supervision, we

offer additional baselines to contextualize the re-

sults. The DRRN (He et al., 2016) is a strong rein-

forcement learning baseline that separately encodes

5557



DRRN GPT-4 Behavior Cloned Transformer
Baseline Baseline Supervised Self-Supervised

Benchmark Score Steps Score Steps Score Steps Score Steps

Arithmetic 0.17 10 0.76 15 0.54 5 0.44 5
Sorting 0.03 21 0.04 7 0.72 7 0.59 6
TWC 0.57 27 0.90 6 0.90 6 0.89 15

Average 0.26 19 0.57 9 0.72 6 0.64 9

Table 1: Model performance across three text game benchmarks, assessed on 100 unseen parametric test set variations. The
score (0-1) represents game progress, while steps denote the average game steps taken to reach a final state—lower is better. The
self-supervised transformer closely mirrors the supervised model’s performance, marginally surpasses the GPT-4 baseline, and
significantly outperforms the DRRN reinforcement learning baseline.

observations and actions into different embedding

spaces, then learns a policy that selects actions at

each step that maximize reward. Despite its age,

the DRRN maintains near state-of-the-art perfor-

mance across many text game benchmarks (e.g. Xu

et al., 2020; Yao et al., 2020; Wang et al., 2022) –

see Jansen (2022) for a review. For further context,

we include a zero-shot GPT-4 baseline (OpenAI,

2023), a state-of-the-art model with an undisclosed

parameter size and training data. More details are

provided in the APPENDIX.

4 Results and Discussion

Table 1 shows the overall performance for all mod-

els. The DRRN reinforcement learning baseline

yields modest overall performance, scoring an av-

erage of 0.26 across all benchmark text games and

taking an average of 19 steps per game episode be-

fore completion. The supervised behavior cloning

transformer significantly outperforms this, achiev-

ing a score of 0.72 across all games, effectively

tripling task performance while also reducing the

average steps required per episode to 6 – though

at the expense of requiring gold training data. The

GPT-4 baseline underperforms at the sorting game

but excels in the other games, resulting in an av-

erage score of 0.57 and requiring 9 steps to finish.

The self-supervised behavior cloning transformer

achieves a score of 0.65, equivalent to 90% of the

supervised system’s performance, but uses entirely

self-generated training data. It substantially outper-

forms the reinforcement learning baseline (which

also lacks supervision), improving performance by

a factor of 2.5 while generating solutions that are

twice as efficient. The self-supervised behavior

cloning transformer meets or exceeds the GPT-4

baseline on two of three games, despite the signifi-

cant difference in model size, while only underper-

forming on the benchmark requiring mathematical

reasoning – for which smaller models tend to per-

form poorly (Razeghi et al., 2022).

How do the trajectories identified by self-

supervision compare to gold trajectories? As

shown in Table 2, self-supervised paths closely

match gold paths, although they occasionally in-

clude task-irrelevant actions (e.g. look around)

which diminish their efficiency. Given that the be-

havior cloning method models games as a Markov

decision process (limited by input length to depend

only on the previous state), these irrelevant actions

may hinder the agent’s recall of vital action history

information, contributing to the slight performance

drop compared to the supervised model.

How can the performance of this method ver-

sus the DRRN and GPT-4 be contextualized?

Our goal in this work is to demonstrate self-

supervision of a behavior cloning transformer us-

ing the pathcrawling method described in Section 2.

Nevertheless, other baselines offer valuable context.

The poor performance of the DRRN, a robust rein-

forcement learning baseline for text games, under-

scores the difficulty of exploring expansive search

spaces without guiding context – one of the moti-

vating factors towards the application of pretrained

language models to guide exploration more effec-

tively. On the other hand, while the GPT-4 model

performs comparably to the self-supervised behav-

ior cloning model, it is likely to be at least three

orders of magnitude larger. This highlights the

potential for small models to perform well given

suitable exploration mechanisms.

How many training examples are required to

learn a task? Figure 3 shows the performance

of the T5-agent trained with varying numbers of

gold trajectories. Generally, task performance in-

creases roughly linearly with the number of train-

ing examples provided. An exception to this is the

ARITHMETIC game, where nearly all 100 training
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Figure 3: Performance of the supervised behavior cloning
agent on each of the three benchmark games, when trained
with varying numbers of training examples. Performance is
reported on the development set.
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Figure 4: Performance of the supervised behavior cloning
agent on each of the three benchmark games, when trained
with varying proportion of gold trajectories interspersed with
randomly sampled non-gold trajectories. Error bars represent
the standard deviation of 5 runs per data point on the develop-
ment set.

examples are needed to gain moderate performance.

We hypothesize that this is a result of the pretrained

model generally performing poorly at mathemat-

ical tasks. These results suggest that, pragmati-

cally, using the self-supervised behavior cloning

transformer may be possible with less training data

on some environments, while other environments

(such as ARITHMETIC) may benefit from more

training examples. When using this self-supervised

system in practice (i.e. on environments without

gold training data), the end user may wish to tune

the number of training examples they use as a hy-

perparameter in their model – though generally, the

larger the number available, the more accurately the

path crawler will be able to estimate performance.

How effective is the data grouping method com-

pared to randomly sampled winning trajecto-

Arithmetic

SS TAKE(X), READ(X), LOOK-AROUND, TAKE(Y), PUT(Y, Z)

Gold TAKE(X), READ(X), TAKE(Y), PUT(Y, Z)

Sorting

SS TAKE(X), PUT(X, Y), TAKE(Z), PUT(Z, Y), TAKE(A), ...

Gold TAKE(X), PUT(X, Y), TAKE(Z), PUT(Z, Y), TAKE(A), ...

Text World Common Sense

SS (TAKE(X), LOOK-AROUND, PUT(X, Y))

(TAKE(X), INVENTORY, OPEN(Y), PUT(X, Y))

Gold (TAKE(X), PUT(X, Y))

(TAKE(X), OPEN(Y), PUT(X, Y))

Table 2: Paths identified by our self-supervised method (SS)
compared to gold paths for each game, showing that self-
supervised paths are nearly identical to gold paths. Paths in
parenthesis represent merged path groups.

ries? How easily can we find generalizable train-

ing data for a given game, amongst all its winning

trajectories? To investigate this, we trained models

with varying amounts of gold (generalizable) trajec-

tories, versus other randomly sampled winning (but

typically not generalizable) trajectories. At one ex-

treme, the model is trained using entirely randomly

sampled winning trajectories, while at the other

extreme, the model is trained entirely using gold

trajectories. The results, shown in Figure 4, show

that the self-supervision method provides a large

benefit, increasing performance between 15% and

43% across all games – highlighting the benefit of

our self-supervision method.

How is this method affected by training hyper-

parameters? We have observed substantial differ-

ences in performance across various training hy-

perparameters (such as number of training epochs,

or training random seed), and suspect part of the

difference between supervised and self-supervised

performance may be due to these fluctuations.

5 Conclusion

We present a self-supervised behavior cloning trans-

former for text games, that leverages a process of in-

cremental path crawling in action spaces leading to

rewards, while evaluating the generality of groups

of crawled paths on unseen games, to generate high-

quality training data. Our method achieves compa-

rable performance to models trained on gold trajec-

tories, efficiently exploring the environment with-

out needing human playthroughs or gold agents.

Our model excels over a robust reinforcement learn-

ing baseline and attains about 90% of supervised

models’ performance, emphasizing the potential of

efficient exploration mechanisms, even for smaller

models.
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Limitations

We present a method for generating self-supervised

training data for behavior cloning transformer mod-

els, presented in the context of text games. Be-

havior cloning transformers (Torabi et al., 2018)

and other frameworks for modeling reinforcement

learning problems with transformers (including De-

cision Transformers (Chen et al., 2021) and Trajec-

tory Transformers (Janner et al., 2021)) can outper-

form other reinforcement learning models in spe-

cific contexts, but still face a number of central chal-

lenges and limitations that depend upon the com-

plexity of the problem space. The self-supervised

behavior cloning transformer we present in this

work has similar limitations, as well as other limita-

tions that result from the computational complexity

of path crawling.

Large Action Spaces: At each time step, the envi-

ronment simulator provides a set of valid actions

that are possible to take. In text games, this action

space frequently contains ten or more actions, each

of which typically takes one or two arguments that

represent objects in the environment – while ex-

treme cases can contain 70 or more actions, and up

to 300 action templates (Hausknecht et al., 2020).

As such, action spaces can quickly become large,

containing thousands (or hundreds of thousands) of

possible valid action-object combinations per step.

While reinforcement models typically struggle with

exploring these large action spaces resulting in low

model performance, the path crawling model pre-

sented in this work would struggle to crawl very

large action spaces, and may fail to find any win-

ning paths within a given time budget. In practice,

with the current model, we have found that action

spaces containing approximately 500 valid actions

per step are intractable to crawl beyond 3 steps (i.e.

above 108 states per episode).

Sparse Rewards: Tasks with sparse rewards are

frequently challenging for reinforcement learning

models. This work separates path crawling and

next-action generation, making problems with mod-

erately sparse rewards (i.e. within 4-5 steps) gen-

erally quick to find. However, for tasks with large

action spaces and extremely sparse rewards, the

path crawling procedure would become intractable.

Complex, Varied Trajectories: To evaluate path

generality, this work groups paths by abstracted pa-

rameterized macro-action sequences. In the three

benchmark tasks investigated in this work, the tasks

can be solved by merging a small set of groups

(for example, for TEXTWORLD COMMON SENSE,

two groups are required: (1) TAKE(X) OPEN(Y)

PUT(X,Y), which picks up an object, opens its

container, then places it in the container, and (2)

TAKE(X) PUT(X, Y), for cases where a container

doesn’t need to be opened, like a table). For more

complex tasks that require a large number of dif-

ferent actions to solve across game episodes, this

technique would require increasing the amount of

training data provided, proportional to the number

of groups estimated to be required to solve the task.

Ethics Statement

Broader Impacts: Large language models typi-

cally perform complex multi-step inference in a

manner that isn’t easily possible to inspect or eval-

uate. Framing tasks as text games in embodied vir-

tual environments helps make the inference steps

explicit, such that the choices a model makes at

each step are auditable and interpretable. This

helps expose potential issues in reasoning in mod-

els. For example, language models can correctly

answer more than 90% of multiple choice science

exam questions, suggesting they can perform com-

plex reasoning, but fail to answer most of those

same questions when they are reframed as text

games that require explicit multi-step reasoning

(Wang et al., 2022).

Intended Use: This work presents a self-

supervised system that generates its own training

data based on paths that a language model finds

generalizable. If applied more broadly to general

reinforcement learning problems apart from text

games, the model has the potential to find shortcuts

through the action space that lead to task solutions

based on a language model’s existing competen-

cies, but to do so through biased or harmful means.

As such, for tasks that have the possibility of pro-

ducing harm to specific groups, the training data

produced by self-supervision should be manually

inspected by a human to evaluate for bias or other

potential harms. Because this work groups solu-

tions into abstracted sequences of actions (i.e. path

groups with similar solution methods, instantiated

with different specific arguments, it may offer a

means of inexpensively manually evaluating self-

supervised training data – helping speed the identi-

fication of bias by streamlining the review of self-

supervised training data for tasks modelled using

self-supervised behavior cloning models.
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A Additional Experiment Information

The heuristic method we employ investigates

shorter paths (i.e. macro-action sequences that take

fewer actions to reach reward states) first. After

grouping paths, the number of initial groups to

explore for each game is 112 for TWC, 220 for

ARITHMETIC, and 7 for SORTING.

Text World Common Sense (TWC) Game

Task Description: Your task is to pick up objects, then place them in their

usual locations in the environment.

You are in the bedroom. In one part of the room you see a wardrobe that

is closed. There is also a desk chair, that has nothing on it. You also see

a dressing table, that has nothing on it. In another part of the room you see

a chest of drawers that is closed. In one part of the room you see a bed, that

has nothing on it. There is also a desk, that has nothing on it. You also see

a night stand, that has nothing on it. In another part of the room you see a

clean brown shirt.

Inventory:

Your inventory is currently empty.

> take clean brown shirt

You take the clean brown shirt.

Inventory:

a clean brown shirt

> open wardrobe

You open the wardrobe. It’s empty inside.

Inventory:

a clean brown shirt

> put clean brown in wardrobe

Game completed.

Table 3: An example of a TEXTWORLD COMMON

SENSE (TWC) game. Actions for the solution are itali-

cized. Relevant task objects and target locations are

bolded, while distractor locations are underlined.

B Environments

B.1 Text World Common Sense (TWC)

TEXTWORLD COMMON SENSE (Murugesan et al.,

2021) is a common sense reasoning benchmark in

which the agent needs to collect items in a house-

hold environment and put them in their cannon-

ical (“common-sense”) locations. In the experi-

ments reported in this paper, we generate paramet-

ric episodes containing a single room with one tar-

get item in it, roughly corresponding to the “easy”

setting in Murugesan et al. (2021). The agent re-

ceives a score of 0.5 for picking up the target item,

then an additional 0.5 score for putting that object

in the correct location. An example playthrough

of TEXTWORLD COMMON SENSE is shown in

Table 3.

B.2 Arithmetic

The ARITHMETIC game requires the agent to read

then answer an arithmetic question (e.g. add

42 and 9), then put an item from the environ-

ment whose quantity matches the answer (e.g. 51

pineapples) into a container called the answer box.

Each episode contains a number of distractor items

whose quantity corresponds to performing the arith-

metic incorrectly (e.g. 33 peaches, corresponds to

subtracting 9 from 42). The agent receives a score

of 0.5 for first reading the math problem, and will
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Arithmetic Game

Task Description: Your first task is to solve the math problem. Then, pick up

the item with the same quantity as the math problem answer, and place it in

the box.

You are in the laundry room. In one part of the room you see a bench that

has 378 apples on it. There is also a laundry basket that has 51 pineapples,

4 bananas, and 16 oranges on it. You also see a work table that has 33 peaches,

and 26 strawberries on it. In another part of the room you see a washing

machine that is closed. In one part of the room you see a box, that is empty.

There is also a math problem. You also see a clothes drier that is closed.

Inventory:

Your inventory is currently empty.

> take math problem

You take the math problem.

Inventory:

a math problem

> read math problem

Your task is to solve the following math problem: add 42 and 9 . Then, pick

up the item with the same quantity as the answer, and place it in the box.

Inventory:

a math problem

> take 51 pineapples

You take the 51 pineapples.

Inventory:

a math problem

51 pineapples

> put 51 pineapples in box

Game completed.

Table 4: An example ARITHMETIC game. Actions for

the solution are italicized. Relevant task objects are

bolded, while distractor objects are underlined.

receive a full score of 1.0 for placing the correct

item into the answer box, regardless of whether it

first reads the math problem or not. Placing incor-

rect items into the answer box will immediately

result in task failure. An example playthrough of

ARITHMETIC is shown in Table 4.

B.3 Sorting

In the SORTING game, the agent needs to place

items of different quantities into a specical con-

tainer (the answer box) in ascending order. For

most parametric episodes, the item quantities in-

clude the additional challenge of containing differ-

ent units (e.g. 23mg of oak vs 2g of marble) that

the agent needs to interpret and normalize to cor-

rectly solve the task. Episodes randomly contain

between 3 and 5 items that need to be sorted. The

agent receives a partial reward (1/#items) each

time it places the correct object (i.e. next-largest

quantity) into the answer box. The task fails any

time it places items in the answer box in an incor-

rect order. An example playthrough of SORTING is

shown in Table 5.

Sorting Game

Task Description: Your task is to sort objects by quantity. First, place the

object with the smallest quantity in the box. Then, place the objects with the

next smallest quantity in the box, and repeat until all objects have been placed

in the box.

You are in the living room. In one part of the room you see a TV stand that

has 23mg of oak on it. There is also a coffee table, that has nothing on it. You

also see a book case, that has nothing on it. In another part of the room you

see a box, that is empty. In one part of the room you see a sofa that has 2g of

marble on it. There is also a end table that has 38mg of marble on it. You

also see a arm chair that has 39mg of wood on it. In another part of the room

you see a wastepaper basket that is closed. In one part of the room you see a

side table that has 9g of oak on it.

Inventory:

Your inventory is currently empty.

> take 23mg of oak

You take the 23mg of oak.

Inventory:

23mg of oak

> put 23mg of oak in box

You put the 23mg of oak in the box.

Inventory:

Your inventory is currently empty.

> take 38mg of marble

You take the 38mg of marble.

Inventory:

38mg of marble

> put 38mg of marble in box

You put the 38mg of marble in the box.

Inventory:

Your inventory is currently empty.

> take 39mg of wood

You take the 39mg of wood.

Inventory:

39mg of wood

> put 39mg of wood in box

You put the 39mg of wood in the box.

Inventory:

Your inventory is currently empty.

> take 2g of marble

You take the 2g of marble.

Inventory:

2g of marble

> put 2g of marble in box

Game completed.

Table 5: An example SORTING game. Actions for the

solution are italicized. Relevant task objects are bolded.

C Baselines

C.1 Supervised Behavior Cloning

Transformer

The input (prompt) of the T5 model is formatted as:

d </s> OBS ot </s> INV oinvt </s> LOOK olookt

</s> <extra_id_0> </s> PACT at−1 </s> POBS ot−1 </s>

where </s> is the special token for separator and

<extra_id_0> is the special token for the mask of

text to generate used by the T5 model. d is the

task description. ot, o
inv
t , olookt , at−1, and ot−1 rep-

resent the current observation, current inventory

information, current room description obtained by
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the action "look around", last action, and last ob-

servation respectively. The separators OBS, INV,

LOOK, PACT, and POBS are their corresponding

special tokens.

During development, we train the behavior

cloning T5-BASE model from 2 to 20 epochs, then

choose the model that achieves the highest devel-

opment score for testing. The models are tested on

100 unseen test variations to get the final perfor-

mance. All three game environments have a step

limit of 50 steps, which means if an agent does

not complete within 50 steps, the score at the last

step will be considered as the final score and the

environment will be reset.

The T5 model is trained on gold paths generated

by gold agents provided by the TEXTWORLDEX-

PRESS simulator. At inference time, the a prompt is

encoded from the observation of the current game

state, and possible candidate next-actions are gen-

erated using beam search. We use a beam size of 8

and select the first valid action. If no valid actions

are present, the model picks the valid action from

the game environment with the highest non-zero

unigram overlap to the candidate actions generated

during beam search.

C.2 Self-supervised Behavior Cloning

Transformer

During the group evaluation stage, we take the top

10 shortest paths to evaluate for all three games.

To vastly reduce computation time, the behavior

cloning T5-models are not tuned but rather trained

statically for 20 epochs for each path group. Per-

formance is evaluated on 100 unseen development

variations. The input strings are formatted the same

as the supervised behavior cloning transformer. A

group that achieves a development score higher

than a threshold T will be accepted. In our exper-

iments, we use T = 0.95 for the TEXTWORLD

COMMONSENSE, T = 0.4 for the ARITHMETIC

game, and T = 0.5 for the SORTING game. In

practice, one cycle of training a behavior cloning

agent on a candidate set of paths then evaluating

on 100 unseen development variations takes ap-

proximately 12 minutes on desktop hardware (i.e.

RTX 4090), allowing experiments to complete in

approximately 2 to 4 hours.

C.2.1 Merging Multiple Solution Paths

Frequently, games may not be solvable with paths

from a single group. For example, in TEXTWORLD

COMMON SENSE, some items require that their

container be opened before they can be placed in-

side (i.e. TAKE(X) OPEN(Y) PUT(X, Y)), while

others can be directly placed in their winning loca-

tions (e.g. TAKE(X) PUT(X, Y)). Where a sin-

gle path group does not solve all development

variations, we take training data from the highest-

performing variations of multiple path groups, and

use these to assemble a final higher-performing

training set.

We take the top 5 performing groups based on

their development scores and combine each two

of them to get 10 merged groups (i.e.
(

5

2

)

). Triv-

ially combining the training data from multiple

groups does not work well, because each of these

groups may contain both generalizable paths, as

well as paths that fail to generalize on episodes

where another group of data is effective. Instead,

we combine groups by choosing individual trajec-

tories from each group that perform well on their

respective development episodes. If two groups

have paths that perform well for a given develop-

ment episode, we choose the trajectory that has

the highest development score. While this method

has the benefit of being pragmatic (i.e. it chooses

to combine paths that perform well empirically),

it presents the challenge of potentially overfitting

on the unseen development set, which may limit

ultimate generality when the model is eventually

evaluated on the test set. To mitigate this, when

groups need to be merged, we flip the training and

development sets, so that the path crawler is always

generating hypotheses on one set, and evaluating

them on a different, unseen set. We ultimately

choose the merged group with the highest score on

the development set as the final training set, and

use this to generate final performance figures on

the unseen training set.

C.3 Deep Reinforcement Relevance Network

(DRRN)

We make use of an existing benchmark implemen-

tation of the DRRN model3. At each time step,

the task description, observation, agent inventory

information, and room description are appended

into a single string (as in the case of the behavior

cloning models) and encoded by a GRU. Valid ac-

tions at each step are encoded by a separate GRU.

A Q-network, which consists of two linear layers,

estimates the Q-value of each action using the en-

coded observation-action pair. The action with the

3
https://github.com/microsoft/tdqn
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highest estimated Q-value will be chosen as the

next action. We trained the DRRN for 100K steps.

16 environments are trained in parallel. The fi-

nal results represent the average performance of

5 different models trained using different starting

random seeds.

C.4 GPT-4

The prompt of the GPT-4 agent includes the all the

information in the behavior cloning transformer’s

prompt, which are the task description, the current

observation, current inventory information, current

room description obtained by the "look around"

action, the last action, and the last observation. We

also offer a full list of valid actions at each step and

ask GPT-4 to choose one action from the list. An

example of the prompt used for the GPT-4 agent

is found below:

GPT-4 Agent Prompt

You are playing a text game. Choose the proper action from the list
of valid actions to win the game.

Task description:
Your first task is to solve the math problem. Then, pick up the item
with the same quantity as the math problem answer, and place it
in the box.

Observation:
You take the math problem.
You are in the supermarket. In one part of the room you see a box,
that is empty. There is also a showcase that has 29 blueberries,
42 avocados, 22 cabbages, 88 eggplants, 46 peas, and 17
peppers on it.

Inventory:
a math problem

Previous observation:
You are in the supermarket. In one part of the room you see a box,
that is empty. There is also a math problem. You also see a
showcase that has 29 blueberries, 42 avocados, 22 cabbages, 88
eggplants, 46 peas, and 17 peppers on it.

Previous action:
take math problem

Here are all the valid actions. Your response should be one of
them:
inventory,take 88 eggplants,put math problem in box,take 29
blueberries,take 46 peas,look around,take 22 cabbages,take 17
peppers,take 42 avocados,read math problem,put math problem in
showcase

D Additional Error Analyses

Why does GPT-4 perform poorly in the SORT-

ING game? In the SORTING game, an agent needs

to put 3-5 objects into the answer box in order.

In most of its error cases, the GPT-4 agent puts

the first one or two objects into the answer box

correctly, but it forgets what it did later and takes

objects from the answer box out and put them back

in a wrong order. This suggests that this GPT-4

agent does not have a good long-term memory of

the task.

Why does the self-supervised model need much

more steps to win in the TWC game? In the

TWC games, agents will not fail immediately if it

puts an object at a wrong location. While the self-

supervised achieved a similar score on the TWC

task, it makes more wrong decisions during the pro-

cess, resulting in a larger number of steps required

to complete the task.
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