THE NORMAL BUNDLE OF A GENERAL CANONICAL CURVE OF GENUS
AT LEAST 7 IS SEMISTABLE

IZZET COSKUN, ERIC LARSON, AND ISABEL VOGT

ABSTRACT. Let C be a general canonical curve of genus g defined over an algebraically closed field
of arbitrary characteristic. We prove that if g ¢ {4,6}, then the normal bundle of C is semistable.
In particular, if g =1 or 3 (mod 6), then the normal bundle is stable.

1. INTRODUCTION

Let k£ be an algebraically closed field of arbitrary characteristic. Let C be a nonsingular, irre-
ducible, non-hyperelliptic curve of genus g > 3 defined over k. Then the canonical linear system
|Kc| embeds C in P97!. The image is called a canonical curve of genus g. Canonical curves of genus
g lie in an irreducible component of the Hilbert scheme of curves of genus ¢ in P9~!. Studying the
properties of canonical curves is an essential tool in curve theory.

Given a vector bundle V on C of rank r and degree d, recall that the slope of V is defined
by u(V) = ‘T—i. The bundle V is called semistable if, for every proper subbundle W, we have
w(W) < (V). The bundle is called stable if the inequality is always strict.

Since stable bundles are the atomic building blocks of all vector bundles on a curve, it is important
to ask if naturally-defined vector bundles on canonical curves, such as the restricted tangent bundle
Tps-1|c or the normal bundle N¢, are stable. The first of the these is straightforward: the restricted
tangent bundle of a general canonical curve of genus g > 3 is always stable. In fact, the restricted
tangent bundle of a general Brill-Noether curve of any degree d and genus ¢g > 2 in P" is stable
unless (d, g) = (2r,2) [FL22]. On the other hand, the normal bundle can fail to be stable in low
genus (cf. Remark 1).

Aprodu, Farkas and Ortega [AFO16] conjectured that once the genus is sufficiently large, the
normal bundle of a general canonical curve is stable. Previously, this was only known for g = 7
[AFO16] and for g = 8 [B17]. The proofs of these two results use explicit models of low genus

canonical curves due to Mukai, and thus do not generalize to large genus. In this paper, we prove:

Theorem 1.1. Let C be a general canonical curve of genus g ¢ {4,6} defined over an algebraically
closed field of arbitrary characteristic. Then the normal bundle of C is semistable.

The rank of N¢ is g — 2 and the degree of N¢ is 2(¢g? - 1). Hence,

w(Ne) =2g+4+ .
In particular, if g—2 and 6 are relatively prime, the semistability of N implies the stability of N¢.
We thus obtain the following corollary.

Corollary 1.2. If g =1 or 3 (mod 6), then the normal bundle of the general canonical curve of
genus g is stable.
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Remark 1. When g = 3, the canonical curve is a plane quartic curve. Hence, No = O¢(4) and is
stable. When g = 5, the general canonical curve is a complete intersection of three quadrics. Hence,
N¢ = Oc(2)®3. In particular, N¢ is semistable but not stable. When g = 4 or 6, N¢ is unstable,
as we now explain. When g = 4, the canonical curve is a complete intersection of type (2,3). The
normal bundle of C' in the quadric is a destabilizing line subbundle of N¢ of degree 18. When g = 6,
the general canonical curve is a quadric section of a quintic del Pezzo surface. The normal bundle
of C in this del Pezzo surface gives a degree 20 destabilizing line subbundle of N¢.

We will prove Theorem 1.1 by specializing a canonical curve to the union of an elliptic normal
curve E of degree g and a g-secant rational curve R of degree g — 2 meeting E quasi-transversely
in g points. In §3, we describe this degeneration and the Harder-Narasimhan (HN) filtration of
Npor|r. In §4, we will prove that Ngyg|g is semistable. This suffices to prove Theorem 1.1 when g
is odd by [CLV22, Lemma 4.1], because Ngyg|r is balanced in this case. When g is even, Ngyr|r
is not balanced. However, we have an explicit geometric understanding of the HN-filtration. In
this case, we give two proofs of Theorem 1.1, one using the strong Franchetta Conjecture (see §4),
and an elementary proof using the explicit HN-filtration and induction on ¢ (in §5 and §6).

Acknowledgments. We would like to thank Atanas Atanasov, Lawrence Ein, Gavril Farkas, Joe
Harris, Eric Riedl, Ravi Vakil, and David Yang for invaluable conversations. We also thank the
referee for a careful reading of our paper and many valuable suggestions.

2. PRELIMINARIES

In this section, we collect basic facts about normal bundles of reducible curves and their stability.
We refer the reader to [CLV22| for more details.

2.1. Stability of vector bundles on nodal curves. In our argument, we will specialize canonical
curves to certain nodal curves. We recall a natural extension of the notion of stability to nodal
curves (see [CLV22, §2]). Let C be a connected nodal curve and write

v:C - C
for the normalization of C'. For any node p of C, let p; and pz be the two points of C over p.

Given a vector bundle V on C, the fibers of the pullback v*V to C over p; and ps are naturally
identified. Given a subbundle F' ¢ v*V, we can thus compare F|;, and F|3, inside v*V;, ~v*V|;,.

Definition 2.1. Let V be a vector bundle on a connected nodal curve C'. For a subbundle F' c v*V,
. adj
define the adjusted slope p~" by
dij 1 :
,UacL'J(F) = U(F) T T Z codimp (F|ﬁ1 mFlZE):
tk &
P€Csing
where codimp (F|3, n F|3,) refers to the codimension of the intersection in either F|, or F'|;, (which

are equal since dim F|;, = dim F|5,). Note that if F' is pulled back from C, then ,uacflj(F) = u(F).
We say that V' is (semi)stable if for all subbundles F' c v*V,

WIE) < m( V) = (V).
The advantage of this definition is that it specializes well.

Proposition 2.2. [CLV22, Proposition 2.3] Let € - A be a family of connected nodal curves over
the spectrum of a discrete valuation ring, and ¥V be a vector bundle on €. If the special fiber
Yo=Y is (semi)stable, then the general fiber ¥* = ¥|ax is also (semi)stable.

Lemma 2.3. [CLV22, Lemma 4.1] Suppose that C = X UY is a reducible curve and V is a vector
bundle on C such that V|x and V|y are semistable. Then V is semistable. Furthermore, if one of
Vix or Vly is stable, then V is stable.
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2.2. Elementary modifications of normal bundles. In this section, we briefly recall without
proof the definition and basic properties of elementary modifications of a vector bundle on a scheme.
For a more detailed exposition, see [ALY19, §2-6]. Other treatments can be found in [CLV22, §2.3-
2.4] and [LV22, §3.1-3.2].

Given a vector bundle V on a scheme X, an effective Cartier divisor D c X, and a subbundle
F c V|p, the negative elementary modification V[D = F'] of V along D towards F' is defined by the
exact sequence

0-V[D>F]->V->V|p/F-0.

We write V[D > F]:= V[D > F](D) for the positive modification of V along D towards F. The
modification V[D 5 F] is naturally isomorphic to V on the complement of the divisor D. In this
way we can easily define multiple modifications V[D; - Fy][Ds - Fy] when the supports of Dy
and D» are disjoint.

When the supports of the D; meet, subbundles of V|p, are insufficient to define multiple modi-
fications. In this context, we always assume that F; extends to a subbundle of V' in an open neigh-
borhood U; of D;. If Fs|y,«p, extends to a subbundle over all of Uy then it does so uniquely and
V[Dy 5 F1][D2 > F] denotes the modification of V[D; > F;] towards this subbundle along Ds.
For example, the multiple modification V[D - F][D - F] denotes the modification of V[D & F]
along D towards the subbundle of V[D 5 F] corresponding to F', which is itself F/(D). The general
situation of multiple modification is studied in [ALY19, §2]. In this paper when we need multiple
modifications, the extension will be clear, and so we won’t need this general framework.

A simplifying special case of elementary modifications is when F' is a direct summand of V =~
F eV’ and consequently V[D > F]~ F(D)@® V'. If F is only a direct summand of V|p ~ F & G,
we still have an explicit description along D:

(1) E[D$F]|D2F®OD(D)®G.
More generally, if V sits in an exact sequence
(2) 0-S-V->0Q-0,

then we obtain an induced exact sequence with the modification V[D 5 F'] that captures how the
subbundle F' sits with respect to the sequence (2). We will only make use of the following two
special cases of this. First suppose that F'n S is flat over the base X. In this case (2) induces the
exact sequence

(3) 0> S[D5(FnS)]>V[D3 F]-Q[D% F/(FnS)] 0.

Second, suppose that X = C is a smooth curve and F' ¢ V is a line subbundle. By combining
modifications with disjoint supports, it suffices to consider the case that D = np for a point p € C.
Let k' be the order to which the fiber of F is contained in the fiber of S in a neighborhood of p. If
F is a subbundle of S, then k' = co. Let k = min(k’,n). In this case (2) induces the exact sequence

(4) 0~ S[kp > Flip] = VInp > F]1 - Q[(n~k)p~ F] -0,

where F is the saturation of the image of F' in Q. In the special cases of k' = 0 or oo the two
sequences (3) and (4) agree.

We will primarily work with elementary modifications of the normal bundle of a curve C' c P”
towards pointing bundles, whose definition we now recall. Given any linear space A c P, the
projection 7 from A, when restricted to C', is unramified on an open Up c C. If Uy is dense in
C and contains C®", then the relative tangent sheaf of the map 7 uniquely extends to a rank
(dim A + 1) subbundle of N, which we denote by N¢_a and call the pointing bundle towards A.
The pointing bundle exact sequence is

0= Nop = No = 7" Nyey(CnA) - 0.
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When A c ¥ are nested subspaces, we have an analogous pointing bundle exact sequence
(5) 0 - Ncopn = Nooww = 7" Neg_g(CnA) -0,

where W is the projection of ¥ from A. We abbreviate and write No[p > A] := No[p > No_a] for
modifications towards pointing bundles.

Suppose that C is a curve on a smooth variety X, and M is any smooth subvariety meeting C'
quasi-transversely at a point p. Then we write

Nc[p$M]::NC[p$TpM] and Nc¢[p~ M]:=Nc[p->T,M],

where T,,M maps to N¢|, via the quotient map T,X — N¢|,. Observe that when M is itself a linear
space through p, then Ng[p & M] is not isomorphic to No[p > M] because they have different
degrees. Instead, if A c M is a complementary linear space to p, then

Ncl:p % M] ~ Ncl:p 5 A] and Nc[p ~ M] ~ Nc[p - A]
If MnC ={p1,p2,...,pn}, with all points of intersection quasi-transverse, then we write
Ne[*% M) := No[p1 ~ M]-[pn ~ M].

Our interest in modifications towards pointing bundles is rooted in the following result of
Hartshorne-Hirschowitz, describing the normal bundle of a nodal curve.

Lemma 2.4 ([HH83, Corollary 3.2]). Let X UY be a connected nodal curve in P". Then
Nxuy|x = Nx[+Y].

Finally, we recall that the normal bundle of a curve can be related to the normal bundle of its
proper transform in a blowup via modifications. The simplest case is that of a smooth curve lying
on a smooth variety C c X, and a blowup §:Bly X - X along a smooth subvariety Y ¢ X meeting
C' quasi-transversely at a single point p. Then the normal bundles of C' in X, and of its proper
transform in the blowup, are related as follows:

Neypy x = Neyx[p~ Y] or equivalently  Ngyx ~ Neypy, x[p % 87 (p)]-
Via the rules for combining modifications, these formulas immediately imply several generalizations.
We will need the following case: Suppose that Y’ c Y is a smooth subvariety, also passing through

p. Write t for the natural rational map from the exceptional divisor of Blys X to the exceptional
divisor of Bly X. Then, for any smooth subvariety M of the image of ¢ meeting C' at p:

(6) Neypyy x[p & M] = Noypy, x[p & t7H(M)].

2.3. The Farey sequence. Recall that the N-Farey sequence is the sequence of fractions whose
denominators are bounded by N in lowest terms. We refer the reader to [HW79] for the properties
of the Farey sequence.

Lemma 2.5. Let V be a vector bundle of slope u(V') = § in lowest terms and suppose that
0-S-V->0Q->0

is an exact sequence of vector bundles such that either (S) is an adjacent q-Farey fraction to p(V)
with ged(deg S, vk S) = 1, or similarly for Q. If both S and Q are stable, then any destabilizing
subsheaf of V' is isomorphic to either S or Q.

Proof. Suppose that V has degree ep and rank eq for some e > 1. Then the slope of the other
bundle (u(Q) or u(S), respectively) is an adjacent eg-Farey fraction; this can be seen using the
following two standard properties of adjacent Farey fractions:
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e Two rational numbers in lowest terms, p1/q1 and p2/qq, are adjacent in the max(qi, g2 )-Farey
sequence if and only if

q1 42

e In this case, they are adjacent in the g-Farey sequence for any max(qi,q2) < g < ¢1 +¢2, and
the next fraction appearing between them is
pP1+p2
G+ g

There are four cases to consider: u(S) or pu(Q) is the next or previous eg-Farey fraction. Up to

replacing the sequence with its dual, it suffices to consider the two cases that u(S) or u(Q) is the
next Farey fraction. Let F' be any subsheaf of V. Then F' has a filtration

0-FnS—>F->Im(F-Q)-0.

det|:p1 p2] =+].

If u(S) is the next Farey fraction: Since F n S is a subsheaf of S, we have u(F nS) < u(S)
with equality only if F' contains S. Since u(V') is the previous eg-Farey fraction to u(S), if
equality does not hold, then p(F nS) < p(V). Similarly p(Im(F - Q)) < u(Q) < u(V'). Hence,
w(F) < (V) unless F' contains S. Furthermore, if F' properly contains S, then p(F') < pu(S) and
hence p(F') < pu(V) since pu(S) is the next Farey fraction.

If 1(Q) is the next Farey fraction: Similarly, up(Im(F — Q)) < p(Q) with equality only if F - Q
is surjective. Since u(V) is the previous eg-Farey fraction to (@), if equality does not hold, then
pw(Im(F - Q)) < (V). Similarly u(F nS) < u(S) < u(V). Hence, u(F) < (V') unless F — @ is
surjective. Further, if F' - @ is not an isomorphism, then p(F) < u(Q) and hence p(F') < u(V)
since (@) is the next Farey fraction. O

Lemma 2.6. Suppose that ¥ is a family of vector bundles on a positive-genus curve C param-
eterized by a rational base B. Suppose that, for by, by € B, the specializations ¥ |y, fit into exact
sequences

0->Si>7, >Qi—0
satisfying the hypotheses of Lemma 2.5 with u(S1) = p(S2). If ¢1(S1) # ¢1(S2), then the general
fiber of ¥ is semistable.

Proof. Suppose that ¥, is unstable for b € B general. Then there exists a destabilizing subbundle
F Y. Consider the rational map
c1(F): B -» PicC.
Since B is rational, this map is constant.
On the other hand, we may specialize to the fiber over b;. As we approach along any arc, .Z|,
limits to one of S; or @; (based on which one has slope greater than (%)) by Lemma 2.5. Therefore,

c1(-#) extends to a regular map in a neighborhood of b;. Our assumption that c¢;(S1) # ¢1(52)
(and so also ¢1(Q1) # ¢1(Q2)) then gives a contradiction. O

2.4. Natural bundles on a genus 1 curve. Let F be a genus 1 curve. We say that a map
f:Pic® E - Pic? E is natural if for any automorphism 6: E - E, the following diagram commutes:

Pic" B —— Pic’ E
Pic" E —L Pic I
Lemma 2.7. If f:Pic® E - Pic’ E is natural, then a divides b.

Proof. Translation by a point of order a is the identity on Pic® E, and so must also be on Pic? E. O
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3. OUR DEGENERATION

Let E c P91 be an elliptic normal curve. Let H ~ P972 be a general hyperplane and let T' := EnH
be the hyperplane section of E. Let R be a general rational curve of degree g —2 in H, meeting F
quasi-transversely at the points of I'. Then by [LV22, Lemma 5.7], the curve FUR is a Brill-Noether
curve of degree 2g — 2 and genus g; i.e., it is a degeneration of a canonical curve.

Lemma 3.1 ([LV22, Lemma 5.8 and Proposition 13.7]). We have

O(g+1)®-2) . g odd

N ~
EuR|R {O(g) ®O(g+ 1)@(9—4) ®0(g+2) :g even.

By [CLV22, Lemma 4.1], when ¢ is odd, it suffices to show that Ng,g|g is semistable to conclude
that the normal bundle of a general canonical curve is semistable. This is addressed in Section 4.
When g is even, we will need to know that N g|g is semistable, and also that certain modifications
of Ngyr|g, related to the Harder—Narasimhan (HN) filtration of Ngyg|r, are semistable. We
conclude this section with a brief geometric description of the HN-filtration, expanding on [LV22,
Section 13].

3.1. The HN-filtration when g is even. In this section, we suppose that g = 2n+2 is even. We
first recall without proof some results we will need from [LV22, Section 13]. Suppose that E c P?"+!

is an elliptic normal curve. Let pj + --- + pan+2 be a general section of Og(1). Let q1,...,qgon+2 be
general points on P!. By [LV22, Lemma 13.1], there are exactly two degree n + 1 maps
fi E P!

sending p; to ¢; for all 1 < j <2n +2 (see also [CPS21] and [FLi22] for more general results of the
type). Together, these define a map

FE - P x P!,
which is birational onto an (n? - 1)-nodal curve of bidegree (n+1,n+1) [LV22, Lemma 13.2], none
of whose nodes lie on the diagonal. B
Let S denote the blowup of P! x P! at the n? — 1 nodes of f(F), with total exceptional divisor

F, and write f:E < S for the resulting embedding. By [LV22, Lemma 13.3], the line bundle
L=0g(n,n)(-F)=Kgs(1,1)(F) on S restricts to

Lig ~Op(1,1) ~ Op(p1 + - + pan+2)-

Write 7;: S — P! for the two projections onto each factor of P! x P, As computed in [LV22],
7 L(-F) = R'm, L(-E) = 0, and so H'(L(-E)) = H'(L(-E)) = 0 (by the Leray spectral se-
quence), and so H°(L) ~ H°(L|g). Furthermore, by [LV22, Equation (196)],

(mi)«L = (fi)«Op(p1 + - pans2) = Op1(1)®(”+1),
The map S - PHY(L) ~ ]P’HO(L|E) ~ P2+ given by || thus factors through the balanced scrolls
¥ =P[(m)«L] = P! x P"

embedded by the relative O(1), and is hence an embedding. Let R denote the diagonal of P x P!,
viewed as a divisor on S. By construction, R meets E at p1,...,pon+2. Along R, the bundle L|g
has degree 2n, and hence maps R into a hyperplane in P?"*!. The reducible curve E U R is a
degeneration of a canonical curve.

Finally, we recall a construction of Zamora [Z99, Lemma 1.1] of a rank 4 quadric in
containing F, and show that it also contains the scrolls 7 and Ys. Let s1,s9 be a basis for the
linear system giving rise to the first map fi: E — P! and let t;,t, be a basis for the linear system

]P)2n+1
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giving rise to the second map fo: E — P'. Then the s; ® t; are sections of O(1,1)|g = L|g, and we
may therefore view them as linear functions on the P?**!. Furthermore, as a section of L|®2,

S1®t; S92t
det =
€ (51 ®ty So ®t2) 0

This determinant defines a rank 4 quadric Q c P?"*! containing E. Changing the bases s, 59 or
t1,to corresponds to a row/column operation, so this quadric is independent of the choice of basis.

To see that the quadric contains ¥1, we will show that it contains every fiber P" = Span(f;*(x))
for 2 € P. Choose a basis so that the first element s; vanishes on f;!(z). Thus the linear functions
corresponding to s; ® t; and s; ® ta vanish along Span( f; L(z)) in P?"*!  and hence the quadric Q
contains this plane. Varying x, we see that () contains ;. Similarly () contains Ys. Putting all of
this together, we can summarize this situation with the following setup:

Setup 3.2. Given an elliptic curve E c P?™*! and two maps f;: E — P!, we obtain the following

inclusions:
Py
P

1
FuR —— § Q
2
Moreover, projection from Qsing induces maps ¥; — P! xP! c P3, whose composition with projection

onto the ith P! factor is the structure map for the projective bundle. In particular, the composition
of the inclusion S < @ with projection from Q™® is identified with the blowup map S — P! x P!,

The maps in Setup 3.2 give rise to a filtration of Ngg,

(7) Ngurss © Neorjg © NEug-

Proposition 3.3 ([LV22, Proposition 13.7]). The restriction of (7) to R is the HN-filtration of
NEur|r-

Remark 2. In [LV22, Proposition 13.7], the middle piece of the filtration does not have a geometric
description. Instead, it is described as “Npygr/s, + Npur/s,” — which is equal to Npyg/q since it
is contained in it, and has the same rank and degree.

Proposition 3.4. Fizing a line bundle Og(1) of degree 2n + 2 on an elliptic curve E, the set of
possible S, R,31,%9,Q in Setup 3.2 varies in a rational base.

Proof. The data in (3.2) is determined by the following choices:

(1) A basis (up to common scaling) for H%(Og(1)), which determines the embedding F c P?"*2,
The choice of a basis of a vector space depends on a rational base.

(2) An unordered pair of line bundles f;Op1(1) that sum to Og(1). The space of line bundles
of a fixed degree on F can be identified with E. This choice corresponds to the fiber of the
map a: (E x E)/S2 - E given by addition over Og(1). The surface (E x E)/S3 is a ruled
surface over F/, so this choice is rational.

(3) Two sections (up to common scaling) of each of these line bundles (defining f;: E — P!). As
in (1), this choice depends on a rational base.

We conclude that the set of possible S, R, 1,2, Q in Setup 3.2 varies in a rational base. O
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4. SEMISTABILITY OF THE RESTRICTION TO F

In this section, we show that the restricted normal bundle Ngygr|g, where EU R c P91 is the
degenerate canonical curve introduced in Section 3, is semistable.

Theorem 4.1. If g ¢ {4,6}, then Npugr|g is semistable.

We will first show that Ngyg|g is “close-enough-to-semistable” that no naturally defined desta-
bilizing subbundles could exist. We have that

1
M =g + 3 + .
g-2 g-2
The fractional part of the slope depends on g modulo 6. Write

t(Neurle) =

g—2=06k+e¢ where 0<e<6.

Lemma 4.2. The bundle Ngyr|g has no subbundles of slope greater than g+3+% and no quotient

bundles of slope less than g+ 3 + ﬁ

We will deduce this from taking m = 0 in the following more general statement.
Lemma 4.3. Suppose that E € P91 is an elliptic normal curve and R is a general g-secant rational
curve of degree g—2. Let 0 <m <5. Write g—2=(6-m)k+¢€ for 0<e<6—m. Then
Ng[p1+ -+ pg-m ~ R]
has no subbundles of slope greater than g+3+%, and no quotient bundles of slope less than g+3+ﬁ.

In the course of proving Lemma 4.3, we will need the following result.

Lemma 4.4. Let n > 2 be an integer and suppose that A c P9™' is a quasi-transverse n-secant
(n—1)-plane to E. Let q € A be a general point. Suppose that R c A is a general rational curve of
degree n—1 through EnA and q. Let y be a general point on E. Then the modified pointing bundle

Np-a[* R][y = q]
1s stable of slope g+ 3 + %

Proof. We will prove this by induction on n. Specialize ¢ to one of the points p where R meets FE.
If n > 2, then the pointing bundle exact sequence (5) towards p induces the sequence

0~ Npop(y) = Np-a[* R][y > p] » Ng_z[> R](p) -0,

as in (3) and (4). The subbundle Ng_,,(y) is isomorphic to Og(1)(2p+y), which is stable of slope
g+3. The quotient is a twist of another instance of our problem in P9~2. We may therefore assume
by induction that it is stable of slope g + 3 + % Since ¢1(Og(1)(2p +y)) depends on the choice
of the point p, we conclude by Lemma 2.6 that the general fiber is semistable (and hence stable)
as desired.

It suffices, therefore, to treat the base case of n = 2. In this case, R = A is a 2-secant line pp’,
and after specializing as above, the pointing bundle exact sequence towards p is

0= Ngop(y +p') > Ne-alp > 010" = plly > p] - N5, (2p) > 0.
In this case the subbundle and quotient bundles are stable line bundles of slopes g + 4 and g + 3

respectively. Again, applying Lemma 2.6, we conclude that the general fiber is semistable (and
hence stable) as desired. O

Proof of Lemma 4.3. Our argument will be by backwards induction on m. The base case of m =5
is Lemma 4.5 below, so we suppose m < 4.

We first prove the upper bound on the slope of a subbundle by exhibiting a degeneration that
lies in an exact sequence with a subbundle that is stable of slope exactly g + 3 + % and quotient
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which satisfies our inductive hypothesis. Let A; ~ P*~' c P97 be the span of the first k points
Pi,...,pp of ENR. Let Ay ~ P97%72 be the span of the last g — 1 — k points pj.o, . . . ,Dg. Since the
remaining point p,q is constrained to lie in the hyperplane spanned by the other points, there is
a unique line L through pg,1 that meets both A; and As.

Let z1 and z2 denote the points where L meets A; and Ao, respectively. Let R; be a general
rational curve in A; of degree k —1 through p1,...,pr,z1, and let Ry be a general rational curve in
As of degree g — k — 2 through pii2,...,pg, x2. Then

R° IZLURluRQ

is a degeneration of R. It suffices to prove that Ng[pi + -+ pg-m % R°] has no subbundles of slope
greater than g+3+% to prove the lemma. Consider the pointing bundle exact sequence for pointing
towards the subspace Aj:

0 = N, [ Ri][prs1 > 21] > Ng[pi++pg-m > R°] = Ng[prso+ - -+Dg-m > Ro](p1++++py) = 0.

In order to use Lemma 4.4 to show that Ng_a,[¥ Ri][pr+1 = 71] is stable of slope g + 3 + %,
we need that, as the points py.1,...,py vary, the point x; is general in Ay. That is, there are no
obstructions to lifting a deformation of the point x; to a deformation of the plane A} := Ao,y
(maintaining the necessary incidences with E). These obstructions live in H!(A}, N), where the
bundle N is the kernel of the map

g
NA/2 — NA/2 leB EB NA’ szEi

i=k+1

The key numerical input is 2k < g, which follows from m < 4. Since A}, is the complete intersection
of the k hyperplanes spanned by A and all but one of the tangent lines T, E for k+1<i<2k<g,
the bundle N sits in the exact sequence

2k

0~ & Ny g, B ® ovpeav-upivupy > N = P =0,
i=k+1 ¢

where P is a punctual sheaf (and hence h!(P) = 0). Moreover, the evaluation map ev in

0- N /A Ip. E ® jinpkHU Up;U-Upg OA’ (1) _> OA’ (1)ix1upk+1u UP;U-Upg > 0

is surjective on global sections, since the points x1 Upy41 U---UP; U---Up, form a basis for the plane
5, and hl(OAIQ(l)) = 0. Therefore

1
H (NA,/A Tpl ®f$1Upk+1U -Up;U- Upg) 07

and hence H'(N) = 0.
In the quotient, Ng[pg+2 + -+ + Dg—m ~» R2] is another case of our inductive hypothesis with one

fewer modification occurring at the points of incidence of Ry with E (with a larger value of k if
e =5-m). The result now follows from our inductive hypothesis.

Now we turn to the lower bound on the slope of any quotient. We will exhibit a specialization
that lies in an exact sequence with a subbundle that is stable of slope exactly g + 3 + m and a
quotient bundle which satisfies our inductive hypothesis. We will modify the same argument by
letting A1 be the k-dimensional span of p1, ..., prs1 and letting Ay be a the (g — k — 3)-dimensional
span of pi43,...,pg. As above, there is a unique line L through the remaining point py.2 that meets
both A; (at a point z1) and Ay (at a point x3). We define R; and Ry analogously to above. In the
pointing bundle exact sequence towards Aj:

0= Ng_a, [* Ri][pg+2 > 21] > Ng[m +"'+pg m > R°] > Np[pres+-+pg-m ~ Ra](p1+++ps1) — 0,

the subbundle is stable of slope g + 3 + by Lemma 4.4 (using the same argument to ensure

k+1
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generality of 2;), and the quotient is a twist of another case of our inductive hypothesis in P9=*~2
(with a smaller value of k if € = 0), with one fewer modification occurring along Rs.

This completes the inductive step. All that remains is therefore to verify the base case, which is
Lemma 4.5 below. U

Lemma 4.5. Suppose that E c P97 is an elliptic normal curve, and R is a degree g — 2 rational
curve meeting I at p1,...,py quasi-transversely. Then
Ng = Ng[p1 + - +pgs5 > R]
1s stable of slope g+ 3 + 9—12.
Proof. We will prove this by induction on g. The base case is g = 5, in which case N, = N is stable
by [EiL92]. Otherwise, when g > 6, the bundle N}, is modified at p;. Let A ~ P973 be the span of
P2,...,Pg-1. Let L be the line through p; and p, that meets A at a point z. Let R’ be a rational
curve of degree g —3 through ps,...,ps-1,2. Then R° = R'UL is a degeneration of R. Consider the
specialization
Ng[p1 + - +pg-s ~ R°]
of Nj,. Consider the pointing bundle exact sequence for pointing towards pg:
0> Npop, (p1) = Ng[p1 + -+ pg-s & R°] > Ng(pg)[p2 + -+ + pg—5 > R'] - 0.

The subbundle has slope g + 3 exactly. Since R’ is a rational curve of degree g — 3 meeting F at

D2, -.,Pg-1,%, the quotient bundle is a twist of an instance the same problem in P92, By induction
it is stable. Moreover, c1(Ng-p,(p1)) depends on the ordering of p1,ps,...,p,. Hence by Lemma
2.6, the general fiber Ny, is semistable (thus stable) as desired. O

We complete the proof by appealing to the naturality of the maximal destabilizing subbundle,
and using the following purely combinatorial lemma.

Lemma 4.6. Let k>0 and 0 < e <6 be integers with

(k,€) ¢ {(0,2),(0,4)}.

Then there are no integers r,d satisfying

(8) 1<r<6k+e, and
1
9) 6k+5+6+6k6+e<g§6k+5+6+g’ and
1 _
(10) 6k +5+¢€+ §(6k+5+e)(6k‘+e)+6 d, o
k+1 6k +e—r
(11) (6k+2+¢€)|d.

Proof. Suppose such integers d and r exist. Clearing denominators, (9) and (10) yield:

(6k +€)d— (6k +e+2)(6k+e+3)r>0

—kd+ (6k* + ke +5k+1)r >0

—~(k+1)d+ (6k*+ ke + 11k +€+6)r > e —6.

Adding 6 — € times the second of these inequalities to € times the third yields
(6k +¢e)d— (6k+e+2)(6k+e+3)r<e(6-¢).
Combined with the first, we learn that the integer
X = (6k+¢€)d - (6k +e+2)(6k +e+3)r

satisfies
0<X <e(6-¢).
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On the other hand, by (11),
X =(6k+e)d-(6k+e+2)(6k+e+3)r=0 mod 6k +¢+2.

It follows that €(6 —€) > 6k + € + 2, or upon rearrangement, 6k +2 < €(5 —¢€). Since € is an integer
with 0 < e <5, we have €(5—¢€) <6, and so 6k +2 < 6, which implies k = 0. Moreover, if e =0 or € = 5,
then €(5 —¢€) =0, in violation of 6k + 2 < €(5 —€). The cases (k,€) = (0,2) and (0,4) are excluded
by assumption, so the only remaining cases are (k,e) = (0,1) and (0, 3):

e When (k,e) = (0,1), we have 1 <r <6k + e = 1, which is a contradiction.
e When (k,¢e) =(0,3), we have 0 < X <9 and X =0 mod 5. Therefore 3d-30r = X =5, which
is a contradiction by looking mod 3.

This completes the proof. ]

Proof of Theorem 4.1. Let (d,r) be the degree and rank of the maximal destabilizing subbundle
of Ngug|g. Since this naturally-defined bundle depends only on the choice of Og(1) plus choices
varying in a rational base, its determinant gives a natural map Pic? E — Pic?E. By Lemma 2.7,
the degree d is divisible by g. By Lemma 4.2, the slope d/r is at most g + 3 + %, with quotient
bundle having slope at least g + 3 + ﬁ By Lemma 4.6, no such integers d and r exist, and hence
no destabilizing bundles exist, when g ¢ {4,6}. O

Proof of Theorem 1.1 in odd genus. Let C' be a general canonical curve of odd genus g > 3.
By [CLV22, Lemma 4.1], semistability of N¢ follows from the semistability of Ng,r|g and Ngur|r.
The first of these is Theorem 4.1; the second is Lemma 3.1. O

Proof of Theorem 1.1 in even genus using the Strong Franchetta Conjecture. The proof
of Theorem 1.1 in even genus is considerably harder. Here we will give an argument using the
Strong Franchetta Conjecture proved by Harer [H83] and Arbarello and Cornalba [AC87, AC98|
in characteristic 0 and Schréer [S03] in characteristic p. In next two sections, we will give an
elementary proof.

Suppose that the normal bundle of the general canonical curve is unstable. Specialize to FUR as
in Section 3. If g > 8, then N pr|p is semistable by Theorem 4.1, and any destabilizing subbundle
of Npug|r of rank r has slope at most u(Ngug|r) + % by Lemma 3.1. Consequently, if g > 8, then
the maximal destabilizing subbundle F' of N would satisfy

1
u(Ne) < u(F) < u(Neg)+ - where r=rkF.
T

On the other hand, by the Strong Franchetta Conjecture, det F' is a multiple of the canonical
bundle. We conclude that the degree of F' is s(2g — 2) for some integer s. Since the slope of the
normal bundle of a canonical curve is (g +1)(2g —2)/(g - 2), we obtain the inequality

(9+1)(29-2) _5(9-2) (9+1)(29-2) 1
g—2 r - g—2 T

I

Oor upon rearrangement,

g—2

0<(s—r)(g—2)—37“£2 <1

Since (s-7)(g—2)-3r is an integer, this is a contradiction. Hence, N¢ is semistable for the general
canonical curve. OJ
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5. DEGENERATION SO THAT Qgng MEETS E

In order to give an elementary proof of Theorem 1.1 in the even genus case using the explicit
description of the HN-filtration given in Section 3.1, we will show in Section 6 that it suffices to
bound the slopes of subbundles of N E/Q[2F 5N E/ 5]- To achieve such a bound, we will utilize a
further degeneration in which £ meets the singular locus Qsing of the rank 4 quadric ) described in
Section 3.1 in two points {x1,z2}. The basic inductive strategy will be to degenerate in this way,
and then examine the sequence obtained by projection from the line z1x2. If we do this carefully,
the quotient will be another instance of our Setup 3.2 in P?"~!. In this section, we construct this
degeneration and prove that the projection exact sequence behaves as desired. In the next section,
we will use this to complete our inductive proof of Theorem 1.1 in the even genus case.

We will construct this degeneration from an instance (E,R,S,Q) of Setup 3.2 in P?"~!. The
basic strategy will be to construct a degenerate instance of Setup 3.2 by specializing the smooth
elliptic curve of type (n+1,n+1) on (the blowup of) P! x P! to the union of a smooth elliptic curve
of type (n,n) union a (1,0) curve and a (0,1) curve. Write I = E n R. Recall that via the given
maps 71 and ?2, E maps to P! x P'; R corresponds to the diagonal in P! x P!. We illustrate this
below.

&

We take 21,29 € E so that f1(x1) = fo(x2), and write p = (f1(x1), fo(x2)). Let Ly = f;(x1) x P!
and Ly = P! x fy(x2) denote the corresponding lines of the ruling (which meet at p). Let A denote
the remaining set (not including {x1,z2}) of points where one of the L; meets E, together with p
and the nodes of E. Construct the blowup S° of P! x P! at A, and write

R° = proper transform of R
E° = proper transform of E

L; = proper transform of L;

For g € A, write F, for the exceptional divisor over q. Set p; = L; N F),.

The pair (S, E') consisting of a surface S and divisor E as in Setup 3.2 admits a degeneration to
(S°, E°u L1 U Ls) as an abstract pair of a surface with a divisor. Under the complete linear series
|Og0(n,n) (= Lyen Fy)l, the lines L; get contracted to the points x;; thus, in P*"*!, the curve F limits
to E° embedded in P?"*! as an elliptic normal curve. In the limit, the linear series corresponding
to the maps f; acquire basepoints at x; on £°. Blowing up at x1 and z2 to extend the maps across
the central fiber, the limiting maps have degree n on E° and 1 on the corresponding exceptional
lines L;. Equivalently, they are induced by projection of E°uU L; U Ly onto the two P! factors.

We now show that [Oge (n,n) (= ¥ 4ea Fy)| is basepoint free. Let A denote the nodes of E. By the
discussion in §3.1, the linear series [Og(n - 1,n-1)(- ¥ & Fy)| is basepoint free. Pulling back to
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S°, we conclude that |Oge(n-1,n-1)(-% N F,)| is basepoint free. Multiplying by the equations
of the lines L1 and Ls, we see that any basepoints of [Oge(n,n)(~ Xgea Fy)| must lie on the lines
L;. Since Ogo(n,n)(= Y 4en Fy)lr, has degree zero, if there is a base point on L;, then the linear
series must identically vanish on L;. An easy dimension count rules this possibility out.

Under this complete linear series [Oge (1, 1) (= X4en Fy)l, the image of R° is of degree 2n -1, and
F, is mapped to the line which meets E° at 1 and z2 (and which also meets the other component
R°). The images of E°, R° U F,, and S°, along with the cone Q° over Q with vertex Zizs, give a
degeneration of (E, R, S, Q) in our Setup 3.2 as subschemes of P?"*1,

Consider (E, R, S, Q) limiting to (E°, R°UF},,5°,Q°). The above description shows that z; and
x9 are limits of points 71, T2 € I' := EnR. Write I'_ = T'\ {Z1,%2}. The limit of T'_ is identified with
T. Our next task is to determine the flat limit of the bundles

NE/Q[QF_ + T + 7o 5 NE/S] = NE/Q[QF_ 5 NE/S][@\I + T & R]

o

This is subtle precisely because E° passes through Qg,,
NEo/Qo[Qf 5 Npoge][x1 + 22 & R°]). To do this, define

B:=Blg,,Q and  B°:=Blg Q°.

sing

(in particular the flat limit is not just

Explicitly, B is the graph of the rational map Q -> P! x P! given by projection from Qsing, and
similarly for B°. As in Setup 3.2, the composition of the map S — @ with this projection is the
blowup map S — P! x P!, and similarly for S°. The exceptional divisor of B is isomorphic to

[Qsing ~ PQn—S] - Pl % Pl,

and similarly for B°.
The line T7x2 naturally embeds in @

sing
naturally embed in P! x P!. The flat limit of the (proper transform of) E in B specializes to the
curve E°uU LU Ly in B°. In this limit, the points Z; and Z» limit to p1 € L1 and ps € Lo, where, as
above, p; = L; n F,. This setup is illustrated in the following picture. The points in the limit of I’
(namely, T U {p1,p2}) are circled.

(coinciding with the image of F),) and the lines L;

o XP1><P1

sing
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Lemma 5.1. Let (E,R,S,Q) be a general instance of Setup 3.2 in P*"*1. Then
Ngjgl2I'- 5 Ngsl[T1 + 72 % R]
admits a specialization to
N°:= Npo/po[2L > Npojgo][@1 % T1aa x L1 ][22 > T1@z x La].
Proof. Since E does not meet Qsing, we have
Npql2T- > Ngs][#1+ %2 & R] = Ngp[2I'- > Npgjs][@1 + 72 > R].
This bundle fits into a flat family N whose central fiber is
N :=Nlo = Ngeur,onape[2T 5 Ngoysel[p1 +p2 & Fp).

The L; are lines in the exceptional divisor of types (0,1,0) and (0,0,1), respectively. In partic-
ular, their normal bundles in the exceptional divisor are trivial, and so their normal bundles in B°
®§T72) ® Or,(-1). The restriction

are O
Nlp, = Np,pelzi &~ E°][pi & Fp]

is obtained by making two positive modifications. Since the restriction of the projection from Q

[e]
sing

to E° has degree 2n (i.e., equal to the degree of E) by construction, £° must meet Qsing at x1 and
o, both with multiplicity 1. In the blowup, E° is therefore transverse to the exceptional divisor

at the x;, so the positive modification at x; is transverse to Oi(rﬂ). Therefore
Nz, = 05" e 0, (1).

To identify the positive subbundle, note that there is a unique subbundle of N|z, that is isomor-
phic to Or, (1), and that one such subbundle is Ny, /zrzzxr, (Pi)-
Consider the modification

N = N[L1 = N, mmser, (01) [ L2 = Ni, zrzsxr, (02)]-

Away from the central fiber, we have N’ ~ N. The central fiber N'|y therefore gives another
flat limit of the bundle Ng/g[2I'- & Ngg][T1 + T2 ~ R]. But by construction, N’|o has trivial
restriction to Ly and Lo by (1). Blowing down L; and Lo, we conclude that a flat limit of the
bundles Ng/o[2I'- % Ng/s][Z1 + T2 ~ R] is therefore

N° =N,|Eo ~ NEo/Bo[Zfi> NEo/So][l'l 5 19 X Ll][l‘g & 19 X LQ]. O

Our final goal is to relate this to projection from the line 7173. By construction, this projection
map sends (E°, R°,5°,Q°) in P>"*! to (E,R,S,Q) in P**!. We accomplish this by rewriting N°
in terms of the normal bundle of the proper transform of E° in

BS = Blm QO.

Because T3 Qging, there is a natural map from the exceptional divisor of B° to the exceptional
divisor of B°. Write M; for the preimage of 122 x L; in the exceptional divisor of B°. Then by
(6) in Section 2.2, we have

N°® = Ngeoype[20 5 Npojge|[21 ~ Mi][xg & My].

Explicitly, the exceptional divisor of B° is isomorphic to T1Z3 x Q, with M; = T123 x M;, where the
M; are the (2n - 3)-planes of the rulings of Q corresponding to L;.

Note that Tizs x p is contained in M; and My, and is contracted to the point p € @ under
projection. Moreover, M; is transverse (not just quasi-transverse!) to E at z;. Projection from
T122 therefore induces the exact sequence

(12) 0— Opo(1) (1 +22)%? - N° - Nggl2l = Nggl(a1 +a2) - 0.
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6. COMPLETING THE PROOF IN EVEN GENUS

Let g = 2n + 2 be even. We consider the degenerate canonical curve £ u R c P?**! introduced

in Section 3. In this section, we leverage the geometric description of the HN-filtration of Ngyr|r
given in Section 3.1 and the semistability of Ngygr|g proved in Section 4 to prove that the normal
bundle of a general canonical curve of even genus is semistable.

Let S, 31, X9, and @ be as in Setup 3.2. We first reduce to proving a bound on the slopes of
certain subbundles of Np g/olE-

Condition 6.1. For a general £ U R c P?"*! every subbundle F ¢ Ngurjgle with

Ngorysle € Flr

satisfies

3 1
F)<2 54+ — - ——.
w(F) nr +n rk F’

Condition 6.2. For a general £ U R c P?"*!  every subbundle F ¢ Ngjol2T' 5 Ng/g] satisfies

3 2n+1
F)<2n+5+—+ .
w(F) " n rk F

Lemma 6.3. Condition 6.2 implies Condition 6.1.

Proof. If F is a subbundle of Ngg/gle = Ngjo[l' > Ng/s] with Ngug/slr ¢ Flr, then the modifi-
cation F[I' 5 Np/g] is a subbundle of Ngo[2I' > Ng/g] with

2n + 2
rk F

Proposition 6.4. Suppose that Condition 6.1 is satisfied. Then Ngugr is semistable.

u(F[L = Ngys]) = p(F) +

Proof. Let v:Eu R - E U R denote the normalization, and G € v* Ngur be any subbundle. By
Lemma 3.1 and Theorem 4.1, we have

1 3
w(Glr) <2n+3+ and  u(Glg) < p(Ngurlp) =2n+5+ —.
rk G n

Combining these, we have

. 3 1
(G < u(G) = w(Glr) + (Glg) < dn+8+ =+ —,
n tkG

with the stronger bound
adi 3
pY(G) <4n+ 8+ = 1(NEuR)

unless G is actually a subbundle of Ng g and NEuR/s|R cGlrc NEUR/Q|R- In other words, we are
immediately done unless G is a subbundle of Ng g and G|g contains the positive factor Opi (g +2)
and is contained in next piece of the HN-filtration Opi(g +2) @ Opi(g + 1)~ We therefore
assume that these hold. The restriction G|g is thus a subbundle of Ngygr|p with Ng, R/sh“ c Glp.
Write G' for the kernel of the map from G|g to Ng|g:

0 ———— Npurjgle ———— NEeurle — Nglp 2 Og(2) —— 0

J ]

keI‘(G’E — NQ‘E) =G — G‘E
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If G|g + G, then the map G|p/G" — Op(2) factors through Og(2)(-T"), which is stable of slope
2n + 2. On the other hand, the kernel G’ ¢ Ngurjgle has slope

3 3 1
G<2n+5+ = - <M+5+ = — ——,
N AR
by Condition 6.1. Thus G|g also has slope bounded by 2n + 5 + % - ﬁ Hence
1 3 1
G) = (G Glg)<(2n+3+— n+5+————|=u(N
H(G) = (Gl + 1(Glg) < (2034 =)o (20455 2 = =) = u(Npun).
and Ngyg is semistable. O

Our goal is therefore to prove that Condition 6.1 holds for all n > 3. In fact, we will prove that
Condition 6.2 holds for all n > 3, since this implies that Condition 6.1 holds. While Condition 6.2 is
stated for all subbundles of Ngq[2T' 5 Ng /5], it suffices to check the slope bound for the finitely
many Harder—Narasimhan pieces.

Lemma 6.5. Let N be a vector bundle on an irreducible curve C' with HN-filtration
0OcVicVoc-cV,,=N.

Let B(r,d) be any (affine) linear function whose coefficient of d is nonnegative. If B(0,0) <0 and
B(rkV;,degV;) <0 for all i, then B(rk F,deg F) <0 for all subbundles F c N.

Proof. The points
{(0,-00),(0,0), (rk V1,degV7),..., (tk V,,,deg Vi) }
form the vertices of a convex polygon in the (r,d) plane. For any subbundle F' ¢ N, the pair

(rk F,deg F) is in this polygon. The assumption that B(r,d) < 0 for all vertices implies that it is
also true for any point of the convex polygon. O

Corollary 6.6. Suppose that for each HN-piece V' of Np,q[2T 5 Ngjs] we have

3 2n+1
V)y<2n+5+— .
w(V)y<2n+5+ - + AT
Then Condition 6.2 holds.
Proof. Apply Lemma 6.5 with
B(T,d):d—(2n+5+§)r—(2n+1). O
n

The final input is the specialization of (E, R, S, Q) constructed in Section 5, giving rise to the
exact sequence (12). Using this, we will prove the following numerical proposition, which is the
heart of our inductive proof.

Proposition 6.7. Let n> 3. If Condition 6.2 holds in P?"~1, then it holds in P?"*1.

Proof. We will use the notation and results of Section 5. In particular, let (£, R, S, Q) be a general
instance of Setup 3.2 in P?*!. Let x1,x5 be points on E such that f;(z1) = fo(22). Then in
Section 5 we constructed a specialization (E°, R° U F},, S°,Q°) of a general instance (E, R, S, Q) of
Setup 3.2 in P?"*!, such that E° meets Qging in the points x1,x2. We write T1, %2 for points on E
limiting to z1,x9.

Applying Corollary 6.6, it suffices to check that Condition 6.2 holds for each piece of the HN-
filtration of Ngq[2I'  Np/s]. Since the HN-pieces are natural, their degrees are multiples of 2n.+2
by Lemma 2.7. Let Fp ¢ Ngo[2I' 5 Ng /5] be any such subbundle of rank 7 and degree a multiple of
2n+2. Let F ¢ Ngo[2I' -1 -T2 > Np/g] be the intersection of Fy with N o[2I' %1 -F2 - Np/s].
We have

2
Fo) < u(F)+ ——
/.L( 0)—:“( )+I'kF7
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so it suffices to show
2n -1

rtk F

We now utilize the specialization constructed in Section 5. Write N° for the bundle appearing
in Lemma 5.1, which is a flat limit of the bundle Ngo[2T -1 - Z» - Npg/g]. This bundle sits in
the exact sequence

3
w(F)<2n+5+ —+
n

0 > Ope(1) (21 + 22)®2 - N° 2> Ng g2l 5 N 5] (a1 +22) - 0.
Let F° ¢ N° be the saturation of the flat limit of F'. Then rk F° =rk F' = r and deg F*° > deg F.
Case 1: F° intersects ker ¢ nontrivially. We obtain an exact sequence
0->F - F° - F"-0,
where F' ¢ Ogo(1)(x1 + 22)®% and F" ¢ [2T & Ng5l(21 + 22). Since Ope(1)(21 +29)®? is
semistable, we have that

E/Q
p(F") < u(Opo (1) (1 + 22)%%) = 2n + 4.

By our inductive hypothesis, we have that

2n -1
u(F")y<2n+5+ Tt LIF” .
n- r
We conclude that
1 -1 3 2n-1 3r—-2- 2n -1
(13) u(F°) < —(2n+4 + T on 454 il = +5+ 2 Ul
r r n-1 r-1 r(n—-1) T

If n > 3, then 6n -3 < n?+2n. Since r < rk(Ngq[2T > Npgys]) = 2n -1, we have the inequality
3r < n? + 2n, which implies that

w < § if n > 3.
r(n-1) " n
Substituting into (13), we get
3 2n-1
W(F) < p(F°)<2n+5+ 2+ 22
n r

which proves the proposition when F' intersects the kernel of ¢ nontrivially.

Case 2: F*° is isomorphic to its image under ¢. Identifying F° with its image under ¢, we
have
F°c NE/@[QF 5 Nﬁ/g](xl +x2) and 7<2n-3.
By the inductive hypothesis, we have that
2n -1
+

n-1 T

u(F°)<2n+5+

)

and hence for the general fiber we have

deg(Fp) < deg(F)+2<deg(F°)+2<(2n+5)r+ 3

+2n + 1.
n-1

We would instead like to show the stronger inequality
3

(14) deg(Fp) < (2n+5)r+—r+2n+1.
n

To do this, we will use the fact that naturality of the HN-pieces implies that 2n + 2 divides
deg(Fp). If there are no integers k satisfying the inequality
3r 3r

(15) Z<k< ,
n n-1




18 1ZZET COSKUN, ERIC LARSON, AND ISABEL VOGT

then (14) holds, as deg(Fp) is an integer. Hence, we assume that there is an integer k satisfying
(15).

First, suppose n > 6. We claim that the width of the interval (15) is strictly less than 1. Indeed,
since r < 2n -3 and n > 6,

3r 3r 3r 6n-9
_ = <

<1.

n-1 n n?2-n" n2-n

If (14) does not hold, then
3r+k-1=2n+5)r+k+2n+1=deg(Fp)=0 (mod 2n +2),

i.e., we may write 3r+k—1 = (2n+2)¢ for an integer ¢. Plugging this back into (15), and subtracting

2¢ from each term, we obtain

20-k+1 40-k+1

—<k-20< ——.

n n—1
If £ —2¢<0, the left inequality is violated. If k£ —2¢ > 1, then the left fraction is nonpositive, which
contradicts our observation that the width of this interval is strictly less than 1.
For 4 <n <5, we complete the proof by checking directly that there are no integers k satisfying

the conditions

(16) 3—r<kS 37‘17 O<r<2n and 3r+k-1=0 (mod 2n+2).
n n -

The following three tables summarize the possible values of k for each value of r and compute
3r+ k-1 (mod 2n +2) in the two cases n =4 and n = 5, respectively.

r 112314 ) 6
n=4 k 1(2(3|4|4o0rd5|50r6
3r+k-1(mod10) 3|7 |1]5|8o0r9|2or3
r 1{2]3(4[5(6|7| 8
n=>5 k d|@|2|3|a|4|/5|50r6
3r+k—1 (mod 12) 10| 2 9(1|4or5
We see that when n > 3, there are no integers k satisfying (16). O

To finish, it suffices to deal with the base case:
Proposition 6.8. Condition 6.2 holds in P".

Proof. In this case n = 3 and we want that every subbundle F' of Ng /Q[2F 5N E/ 5] has slope at
most 12 + # To prove this, we use the normal bundle exact sequence for E c S c (). Since S is

the complete intersection of ¥1 and ¥, in (), we have that

Nsjqle = Nsys,|E ® Ngjs, |5
Since 4 is not divisible by 8, by Lemma 2.7, the degree 4 maps giving rise to the scrolls 31 and o
are exchanged by monodromy. Hence the two scrolls are exchanged by monodromy, and therefore
the two bundles Ng/s, |r have degree 24 and the same profile of Jordan-Hélder factors. We will
first show that Ng/s,|r is semistable of slope 12.

The bundle Ng[T' > Ng/g] = Ng[* R] has slope 12 and satisfies interpolation by [LV22] (in the
language of that paper, this is the inductive hypothesis 1(8,1,7,0,1) and the tuple (8,1,7,0,1) is
good). Because any bundle with integral slope that satisfies interpolation is semistable, this bundle
is semistable (see, for example, [V18, Remark 1.6].) Consider the normal bundle exact sequence

0 Ng/s(I') > Ngso[l' = Ngys] = [Nsjgle = Nsjs, |5 ® Ng/s,|5] - 0.

The line subbundle N, s(T") has degree 8. First suppose that one (and hence both) of Ng/5, | had
a line subbundle of slope at least 15. Then the full preimage in Ng /Q[F % Ng / 5] would be a bundle
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of slope at least 38/3 = 12+2/3. Since this is also a subbundle of Ng[I' % Ng/g], it contradicts the
semistability of Ng[I' > Ng/g]. Hence every line subbundle of Ng/s, | is of degree at most 14. It
suffices, therefore, to rule out the possibility that N, S/E,-| E is a direct sum of line bundles of degrees
14,10 or 13,11. In either of these cases, the sum of the two positive subbundles would be of degree
28 or 26. Since 8 does not divide 28 or 26, this is impossible by Lemma 2.7. Hence N, 5/2i| E is
semistable.

We now turn to the normal bundle exact sequence involving the double modification

00— NE/S(2F) - NE/Q[QF 5 NE/S] - [NS/Q|E o NS/ZI|E@NS/ZQ|E] -0,

and consider how F' sits with respect to this sequence. If F' does not contain Npg/g(2I'), then
w(F)<12<12+ % If F' contains Npg;g(2T), then

1 KF -1
u(F) <16 (—) +12 (r—) <12+
T

<12+
k F rk F’

rk F’ rk F-
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