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ATMOSPHERIC DYNAMICS

Large-scale self-organization in dry

turbulent atmospheres

Alexandros Alexakis'*, Raffaele Marino?, Pablo D. Mininni®, Adrian van Kan®,

Raffaello Foldes?, Fabio Feraco®®

How turbulent convective fluctuations organize to form larger-scale structures in planetary atmospheres
remains a question that eludes quantitative answers. The assumption that this process is the result of an
inverse cascade was suggested half a century ago in two-dimensional fluids, but its applicability to
atmospheric and oceanic flows remains heavily debated, hampering our understanding of the energy
balance in planetary systems. We show using direct numerical simulations with spatial resolutions of
122882 x 384 points that rotating and stratified flows can support a bidirectional cascade of energy,
in three dimensions, with a ratio of Rossby to Froude numbers comparable to that of Earth’s
atmosphere. Our results establish that, in dry atmospheres, spontaneous order can arise through an

inverse cascade to the largest spatial scales.

low structures thousands of kilometers

wide are not uncommon in the atmo-

sphere of Earth and that of other plan-

ets. The energy of these structures could

originate from processes associated with
the global atmospheric circulation but could
also originate from smaller-scale convective
turbulence. In the latter case, small-scale ed-
dies conspire to self-organize into larger struc-
tures. Such a process goes against our daily
life experience, where turbulence generates
smaller-scale erratic structures, such as those
observed when pouring milk into a cup of
coffee. It is therefore necessary to come up
with convincing mechanisms for how such
large-scale organization can take place in plan-
etary atmospheres.

One of the most important theoretical dis-
coveries in the 20th century in the field of non-
equilibrium physics is the phenomenon of
self-organization, which spontaneously creates
large-scale order out of small-scale disorder. One
of the first examples of this process was given by
Onsager with the statistical mechanics of a gas
of point vortices (I) that was later generalized
to two-dimensional (2D) turbulent flows (2-5). A
2D flow conserves an additional invariant, the
enstrophy, given by the mean squared vorticity.
The relation between energy and enstrophy
leads to an incompatibility for the simultaneous
bulk transfer of both quantities to the small
scales. As a result, vortices self-interact, trans-
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ferring enstrophy to smaller scales, whereas en-
ergy is transferred to larger scales. This process
takes place on a continuum of scales, forming
a constant flux of energy from small to large
scales in what is known as an inverse energy
cascade, as opposed to the disordered forward
energy cascade observed in 3D turbulence that
is directed to small scales.

Although planetary atmospheres are often
very thin (Earth’s atmosphere has horizontal
synoptic scales of the order of 1000 km and a
pressure scale height of 7.6 km), the corres-
ponding flows are far from being 2D. None-
theless, two-dimensionality is not imperative
for the appearance of self-organization. 3D
rotating and stratified flows (two key ingre-
dients of atmospheric dynamics) conserve a
different invariant—the potential vorticity—
that can also lead to an inverse cascade. This
happens in the quasi-geostrophic limit, where
rotation and stratification are asymptotically
strong (6) and where gravito-inertial waves
are filtered out. Inverse cascades can also be
present in rotating Rayleigh-Bénard convec-
tion (7-11), where in this case, a generalized
quasi-geostrophic limit can be considered that
partially preserves gravito-inertial modes.
However, for most planetary flows, the quasi-
geostrophic limit is, at best, a crude approxi-
mation, with gravito-inertial waves composing a
substantial part of the energy budget cascading
energy forward (12-15). Thus, an inverse cascade
in planetary atmospheres caused either by
two-dimensionality or quasi-geostrophy remains
conjectural.

Could atmospheric dynamics display an in-
verse cascade away from these limits? In recent
years it has been demonstrated that a hybrid
state can be reached such that larger scales
cascade energy inversely, whereas smaller scales
cascade energy forward in what is now known
as a bidirectional cascade (16). Bidirectional
cascades were observed early on with direct
numerical simulations (DNS) (I17-22). In ro-
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tating and stratified flows, simulations
indicate the presence of bidirectional casci....2
(23-25), though in a regime where rotation
and stratification are comparable in strength,
which is typical for the ocean but not for the
atmosphere.

Nonetheless, the existence of self-organization
processes through a bidirectional cascade in
planetary atmospheres has become a compel-
ling possibility as recent research using satel-
lite images with cloud tracking analysis and in
situ aircraft measurements has estimated the
flux (and thus also the direction) of the energy
cascades in planetary flows in Earth’s atmo-
sphere (26, 27), the ocean (28), and the Jovian
atmosphere (11, 29). These studies have affirmed
the presence of both inverse and forward energy
cascades depending on the scale examined or on
the altitude. However, satellite images constrain
the measurements to 2D slices, thus ignoring
any processes occurring in the third direction.

Up to now, there is no definite evidence of
whether planetary atmospheric flows satisfy
the necessary conditions for a bidirectional
cascade to establish itself. The difficulty in
answering such questions lies, on the one hand,
in the fact that information from satellite images
is limited and, on the other hand, in the extreme
parameter values that are met in planetary at-
mospheres, which are hard to obtain in DNS.
However, not only has the technology to per-
form high-cadence high-resolution observations
of the atmosphere just started to come along,
but the computational power to perform DNS
of stratified atmospheres in a realistic param-
eter space has also become available. In this
work, with the use of DNS in a large grid using
40,000,000 central processing unit (CPU) hours,
we establish that the fluid model of a rotating
and stably stratified dry atmosphere described
by the nonhydrostatic Boussinesq equations can
generate a bidirectional cascade leading to large-
scale organization of the flow.

Set up

We consider a fluid in a Cartesian, triply pe-
riodic domain of vertical height H and hori-
zontal dimension L = 32H, in the presence of
gravity, a stable mean density gradient, and
solid body rotation in the vertical direction
(30). The dynamics of the system are described
by the incompressible velocity field w and the
normalized density variation ¢, governed by
the Boussinesq equations (31, 32)

Ju+u-Vu+2Q2xu=-VP —eNo+wWu+f
(1)
00 +u-Vo=Ne,-u+xV (2

where Q is the solid body rotation rate, N is
the Brunt-Viisila frequency, P is the pressure,
v is the viscosity, k is the density diffusivity,
and f is an external forcing acting at scales
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fr ~ H injecting energy at a rate e. Although
this model has some strong simplifications,
like periodicity or a simplified forcing mecha-
nism, it is the most elementary model capturing
the necessary physics to reproduce atmospheric
dynamics.

This system has four independent non-
dimensional control parameters: (i) the Reynolds
number Re, = €/3k,*®/v; (ii) the Prandtl
number Pr = v/x, that here is set to unity; (iii)
the Rossby number Ro, = '/3%}}°/Q; and
(iv) the Froude number Fr, = €/%k;)* /N (with
ky = 2n/H). We can also define dimensionless
parameters based on the domain size L and the
flow root mean square velocity U as, for example,
Re=UL/v,Ro = U/(HQ),and Fr = U/(NH),
which are closer to the definitions used in at-
mospheric measurements.

Simulations were performed at resolutions
of 122882 x 384 grid points (30, 33). As a
reference, a domain height A/ = 15 km (equal
to twice the pressure scale height in Earth’s
atmosphere) corresponds to a domain length
of 480 km (corresponding to atmospheric meso-
scales) and a vertical and horizontal resolution
of 39 m. Our simulations are characterized
by Re. = 2000, Ro. = 1, and Fr. = 0.025, or
alternatively Re ~ 2 x 10%, Ro = 0.4, and Fr =
0.01. These values are also compatible, for
example, with that of the mesosphere-lower
thermosphere (MLT) (34).

Results

Figure 1 shows visualizations of the flow and
the density field made using VAPOR (35). Struc-
tures with horizontal widths 10 times as large as

that of H can be seen by visual inspection. At the
same time, looking at the zoomed-in cross sec-
tions, it is obvious that these structures are far
from being 2D. In the larger scales, pancake
structures of alternating sign of ¢ along the
vertical and the emergence of macroscopic
cyclones and anticyclones are visible in Fig. 1 (top
right). These features are observed in weather
maps and are a landmark of larger-scale, energy-
containing structures in Earth’s atmosphere. At
the same time, smaller-scale overturning events
can be seen in the zoomed-in section that are
one-tenth the size of H (Fig. 1, bottom right) and
are also detectable sometimes in the sky as
Kelvin-Helmholtz billows. Thus, even at this
qualitative level, the presence of a bidirectional
cascade is evident.

To become more quantitative, we note that
the inviscid Boussinesq equations conserve the
total energy £, given by the sum of kinetic
energy £x and potential energy Ep. Alternatively
we decomposed it into the energy of gravito-
inertial modes gy and the energy of quasi-
geostrophic modes Eq, where Er= Equr+ Eq-
Gravito-inertial modes are dispersive wave
modes due to the combined restoring force of
gravity and Coriolis, whereas quasi-geostrophic
modes balance Coriolis and gravity forces with
pressure (see materials and methods for their
exact definitions). These energies are distrib-
uted differently in the Fourier space, among
vertical wave numbers %, and horizontal wave
numbers k,. We define three different energy
spectra averaged over fixed %, £,, and
k = ,/kj + k%. We do not define a new sym-
bol for each spectrum but distinguish between

Fig. 1. Visualization of density fluctuations ¢ and of the velocity field in the computational domain.
Structures at scales much larger than the forcing (i.e., at the scale of the domain height, with wave number

kr = 2r/H) are abundant in the visible horizontal plane (left), indicative of an efficient transfer of the energy toward
the lowest modes along the perpendicular direction in Fourier space. The large-scale patterns are visible in the
flow visualization, shown by arrows in a zoomed-in view (top right). At the same time, 3D instability patterns
and small-scale features are detectable in both horizontal and vertical cuts of the zoomed-in simulation domain
(bottom right), which suggests the action of a forward turbulent cascade. See the supplementary materials for
a movie of the density fluctuations in the entire domain. Visualizations were done with VAPOR (35).
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them by their argument—i.e., E(k), E(k,), and
Efk) where i is T, K, P, GW, or QG, which
stand for total, kinetic, potential, gravito-inertial
wave, and quasi-geostrophic, respectively. In
addition, we define Ei(k, k) that shows the
spectral energy density for a given pair &, k.

The left panels in Fig. 2 show the energy
spectra Egk), E{k,), and E(k;) with the energy
component 7 as indicated in the legend. The
inset also shows the ratios Ray = Egw/Er and
Rqc = Eqa/Er- In the top panel, for k& > kg, the
spectra have been averaged over shells of width
kg because otherwise large peaks of period &y
are observed due to the strong domain anisot-
ropy, shown by the light gray lines for the total
energy spectrum. For wave numbers larger
than ky and smaller than the viscous wave
number £,, the spherically averaged spectrum
displays a power-law behavior with an ex-
ponent very close to Kolmogorov’s prediction
%% for homogeneous isotropic turbulence.
This power-law behavior, composed 70% by
gravito-inertial waves, is indicative of a for-
ward energy cascade. At & smaller than &z, a
similar power law is observed (albeit with a
smaller prefactor). This indicates the presence
of an inverse cascade. This energy at small k& is
almost exclusively Kinetic, dominated by 2D
quasi-geostrophic modes.

For Efk)), three different power laws can be
observed. First, in the range k; < k, < kg, a
J, 7% 1aw is observed, where &;, = 2r/L. This is
consistent with Earth’s atmospheric spectrum
between ~10 and 500 km (36). Second, in the
range kz < k, < kg = N/U, a steeper power law
close to &, is observed, where kj is the buo-
yancy wave number. Finally, at larger k&, a
shallower power-law slope starts to appear
with exponent close to —5/3. Finally, the last
panel of Fig. 2 shows Ey(k;) with k% and £~
power laws indicated as references, the latter
observed in the atmosphere at vertical scales
near 1 km caused by gravity waves (37).

The right panels of Fig. 2 show the energy
fluxes across different surfaces in wave number
space: across constant k& spheres I7(k), con-
stant %, cylinders I7,(k,), and constant %
planes 71 (k). As with the spectra, we distin-
guish between fluxes based on their arguments.
Here, 7 is T, K, or P, which stand for total,
kinetic, and potential energies, respectively.
Positive values imply a flux of energy toward
larger wave numbers, whereas negative values
indicate a flux toward smaller wave numbers.
IT1[k) flux is positive for k& > kg, which
indicates a forward cascade. However, a small
fraction, corresponding to 5% of the total
energy injection rate, cascades toward larger
scales. This is seen in the negative flux ob-
served at k < k. This flux is also constant for
more than a decade of wave numbers almost
up to k;. The inset in Fig. 2 shows the ampli-
tude of this negative flux measured from dif-
ferent simulations varying only Re. The flux
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Fig. 2. Energy spectra and fluxes. (Left) Spherically (top), cylindrically (middle), and plane (bottom) averaged energy spectra, for all energy components. Insets show the
ratios of energy components Rgw = Equ/E7 (pink) and Rog = Eqa/Er (green). (Right) Energy fluxes across spheres (top), cylinders (middle), and planes (bottom) in
spectral space. Total energy flux (black line), energy flux of kinetic energy (blue line), and energy flux of potential energy (red line) are shown. The forcing wave number kg = ky
(where energy is injected), the buoyancy wave number kg = N/U, and the dissipation wave number k, (where energy is dissipated) are indicated by vertical dashed lines.

increases with Re and saturates at the largest
Re. IT+(k)) is also positive for k, > ky and
negative for k&, < k. However, in this case, the
fraction of energy that cascades toward smaller
k. is five times as large as IT,(k). I[17(ky) is
positive everywhere.

Although in 1D spectra and fluxes it is easier
to identify power laws, the energy distribution
depends on k; and %, independently. In Fig. 3,
we show color-shaded plots of Er(k,, k) and
RGW = EGW (kr,ku )/ET(k‘i,k‘H ) The arrows in-
dicate the direction of the energy transfers
based on the fluxes in Fig. 2. A part of the in-
jected energy is transferred to larger k&, (purple
arrows), producing the %, spectrum observed
in the ky < k, < kgrange. Rgw (k., k) indicates
that this forward transfer takes place through
GW modes (green arrow). The peak of E(k_, &)
is observed at &, ~ 2k, and k) ~ 2k, formed by
an inverse transfer indicated by the black
arrow and dominated by QG modes. This
energy is responsible for the formation of the
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k, scaling at small &, in Fig. 2. When rotation-
dominated scales are reached at 2Qk| = Nk,
(black dotted line), QG modes transfer their
energy to GW modes that cascade it back to
small scales. Of the energy that has moved to
smaller k,, a finite amount is transferred
(cyan arrow) below the smallest dashed white
line (k> + kﬁ = k%,). The energy in these modes
forms the E(k) o< k™ spectrum for % < k. This
component of the energy is the only one that
escapes to the largest scales £ — 0 and corres-
ponds to a true inverse cascade.

Conclusions

‘We have shown that dry turbulent atmospheres
modeled by the nonhydrostatic Boussinesq
equations can lead to a bidirectional energy
cascade. The results showed that there is a
flux of energy directed to the small wave num-
bers k, corresponding to 5% of the total energy
injection rate at the largest Reynolds num-
ber. This flux, albeit small, is shown to per-
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sist up to the largest scales of the system and
is Re-independent as large values of Re are
reached.

Our analysis provides a detailed description
of how energy is transferred across scales and
between different modes. These transfers, in-
dicated by the arrows sketched in Fig. 3, sum-
marize the results in this work. Stratification,
rotation, and the geometric constraint of finite
H all play a role in the formation of this in-
verse cascade. In physical terms, at the scale of
the forcing, stratification is dominant, con-
straining a large fraction of the energy to QG
modes. This leads to the formation of pancake
structures, known in stratified turbulence (38),
that move energy to smaller %, and larger %;.
This process ceases at wave numbers where
stratification is comparable to rotation, Nk, o<
2QF;. Rotation, which tends to bidimensionalize
the flow (39), prevents larger k; modes from
appearing, and energy is converted to gravito-
inertial mode energy that cascades back to
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larger k. This is true for all & except for the & =
0 modes that are unaffected by rotation. These
modes, which follow 2D dynamics, cascade the
energy to ever smaller k&, . Their stability against
3D perturbations is assured by rotation and the
finiteness of H that leads to the &; = 0 modes
being isolated (16). As a result, they cascade
energy to ever smaller £, with no channel to
return this energy back to the small scales.

An important outcome from this picture is
that energy fluxes obtained from horizontal
averages can significantly overestimate the
inverse energy flux. In the presently examined
simulation, 77,(k,) was five times as large as
the true inverse flux I7,(k). This result limits
the observational estimates of I7,{k). Most
present estimates of the inverse flux are based
on averages of 2D slices obtained by satellite
images. They thus contain no information on
the fields’ variations in the third direction, and
as a result, it is /7,(k,) that is measured and
not I7{k), which represents the true inverse
flux. As a reference, and for comparisons with
observations, we provide as supplementary
materials [fig. S1 (30)] spectra and third-order
structure functions along horizontal tracks, such
as those resulting from airplane or satellite
measurements. The structure functions display
a change in sign indicative of an inverse cas-
cade but overestimate the inverse flux, just as
horizontal averages do. Thus, these estimates
of the inverse flux could be significantly larger
than their true values.

Although our model is not designed to cap-
ture the full complexity of Earth’s atmosphere,
which also has energy sources at planetary scales
larger than our computational domain, it re-
produces some known features in the mesoscale
range. Global models indicate that the atmo-
spheric spectrum varies with altitude, with
observations showing that planetary and
synoptic scales follow a &2 spectrum at scales
larger than 500 km. This is attributed to a
direct cascade originating at planetary scales,

Er(ky, ky)
100
102
-2
. y 10
+ \
i_ 101! E 10
~ :
i 1076
100 i 108

100 102

(k, +k)/k,

which are not part of our domain. At scales
smaller than 500 km, which are considered in
our model, and down to =10 km, the observed
spectrum follows %% scaling, which agrees
with our simulation. The dynamics producing
this observed scaling, and whether it originates
from a forward or an inverse cascade, have
been long debated (40). An inverse cascade
acting on those scales was proposed as an
explanation (41, 42), but it was later discarded
(23, 40) because purely stratified turbulence
develops no inverse cascade. Our simulation
shows that the combination of a realistic
aspect ratio with realistic parameters gives rise
to upscaling of energy with a &> spectrum
even at scales as small as 15 km. Although weak,
the persistence of the inverse cascade makes a
few percent of the flux enough to account for
the observed mesoscale energy (42). But unlike
the transfer to gravity waves hypothesized by
Lilly (42), the inverse transfer we observe feeds
the QG modes. At even smaller scales (<10 km),
model parameterizations and the lack of
observations with simultaneous high spatial
coverage and resolution, especially in the upper
atmosphere, prevent us from drawing defini-
tive conclusions about spectral slopes and their
origins. The spectrum in this range is still
anisotropic, displays variability, and is sensi-
tive to atmospheric conditions and to the local
energy dissipation rate (43). It is difficult to
make direct comparisons with the simulation
in this range, but some common features can
be identified, such as the prevalence of gravity
waves and the occurrence of two horizontal
Kolmogorov subranges above 10 km and below
1 km with different amplitudes mediated by a
steeper spectrum, as has sometimes been re-
ported in observational campaigns (43, 44).
Our work presents a spectral energy distribu-
tion from the mesoscales down to the smallest
turbulent scales as a direct outcome of the
physical mechanisms in the model and the
parameter range examined. As such, it pro-

Rew(K ., Ky)

102
0.8
—
+ 0.6
X 101
::10 0.4
0.2
100E 0.0

102
(k, +k)/k,

Fig. 3. 2D energy spectra in log-log scale. White dashed lines indicate isotropic contours (i.e., modes with
constant wave number k). The solid white line indicates the maximum resolved wave numbers. (Left) Total
energy spectrum. (Right) Gravity wave energy spectrum ratio. The black dotted lines marks 2Qk;, = Nk,

where inertial wave frequency matches gravity wave frequency. The arrows indicate the direction of the flux

of energy (see text for a description).
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vides a link between theory and field ob-
servations that can help validate or discard
theoretical explanations.
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