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We report the first measurements of cumulants, up to 4𝑡ℎ order, of deuteron number distributions and proton-
deuteron correlations in Au+Au collisions recorded by the STAR experiment in phase-I of Beam Energy Scan 
(BES) program at the Relativistic Heavy Ion Collider. Deuteron cumulants, their ratios, and proton-deuteron 
mixed cumulants are presented for different collision centralities covering a range of center-of-mass energy per 
nucleon pair √𝑠NN = 7.7 to 200 GeV. It is found that the cumulant ratios at lower collision energies favor 
a canonical ensemble over a grand canonical ensemble in thermal models. An anti-correlation between proton 
and deuteron multiplicity is observed across all collision energies and centralities, consistent with the expectation 
from global baryon number conservation. The UrQMD model coupled with a phase-space coalescence mechanism 
qualitatively reproduces the collision-energy dependence of cumulant ratios and proton-deuteron correlations.
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 Introduction

One of the major goals of heavy-ion collision experiments is to study 
e phases of strongly interacting nuclear matter versus temperature 
d pressure. Experimental results have demonstrated the existence 
 a deconfined state of quarks and gluons [1–6]. The mean yields 
 hadrons produced in central heavy-ion collisions can be described 
 thermal models with a suitable choice of chemical freeze-out pa-
meters such as temperature (𝑇 ) and baryon chemical potential (𝜇𝐵). 
e typical values of 𝑇 vary from around 140 MeV at collision en-
gy (

√
𝑠NN) of 7.7 GeV to 160 MeV at the energy of 5.02 TeV [7–9]. 

owever, deuterons, tritons, and other light nuclei, which have bind-
g energies of the order of a few MeV, are also produced in heavy-ion 
llisions [10–12]. Interestingly, the yields of light nuclei can also be 
plained with temperatures similar to those extracted using hadronic 
elds [9,13,14]. The natural question that arises then is: how are light 
clei produced in a medium that freezes out at the temperature of the 
der of 100 MeV?
The production mechanism of light nuclei is commonly studied in 
o approaches: the thermal model and the coalescence model. The ther-
al model treats light nuclei as any other hadrons and their masses and 
antum numbers are inputs to the model. These model calculations 
ow good agreement with experimental data on transverse momen-
m (𝑝T) integrated mid-rapidity yields of deuterons and deuteron to 
oton yield ratios in central heavy-ion collisions [9,10]. In the coales-
nce model, light nuclei are formed by coalescing protons and neutrons 
ith a finite probability determined by their closeness to each other 
 the phase-space [15,16]. One of the signatures of the coalescence 
echanism is that the elliptic flow of light nuclei should show con-
ituent nucleon number scaling [17], and such a scaling property has 
en observed in the STAR experiment [18]. Both the thermal and co-
escence models have been fairly successful in explaining the set of 
perimental data. However, the production mechanism of light nuclei 
ill needs to be understood in detail [13,19–22]. It is not necessar-
 true that deuteron production has to happen only via one of the 
ove-mentioned mechanisms. Both mechanisms might be at work in 
3

avy-ion collisions [16]. pl
Furthermore, higher order cumulants of particle multiplicity distri-
tions are known to probe finer details of the thermodynamics of the 
stem created [23–28]. Recent studies suggest that cumulants of event-
-event deuteron number distribution might have different signatures 
 thermal and coalescence approaches and can shed light on their pro-
ction mechanism [29]. Calculations using a simple coalescence model 
edict the rise of cumulant ratios towards lower collision energies in 
ntrast to the predictions from the thermal model using Grand Canon-
al Ensemble (GCE) and the Poisson baseline, both of which are equal 
 1 across collision energies [29].
In addition to probing the production mechanism, higher moments 

 deuteron number fluctuation can potentially be sensitive to signals 
 the QCD critical point, and first-order phase transition. Even though 
uteron has a binding energy of only 2.2 MeV, its production is pre-
cted to be affected by the enhancement of pre-clustering of nucleons 
 the chemical freeze-out due to modifications in the nucleon-nucleon 
teraction near a phase transition [30,31]. Also, a certain combina-
n of the proton, deuteron, and triton yields is constructed to probe 
utron density fluctuations at the kinetic freeze-out [32] and has 
en measured by the STAR experiment. These results show an excess 
er the coalescence baseline in central collisions at 

√
𝑠NN = 19.6 and 

GeV [33]. Further, as deuterons carry two baryons, their fluctua-
n may add to the understanding of the baryon number fluctuations 
 heavy-ion collisions.
In this paper, we report the first measurements of the cumulants of 
e deuteron multiplicity distribution and the proton-deuteron number 
rrelation from Au+Au collisions recorded by the STAR detector [34]
 Relativistic Heavy Ion Collider (RHIC) from the years 2010 to 2017. 
e data are presented for Au+Au collisions at 

√
𝑠NN = 7.7, 11.5, 14.5, 

.6, 27, 39, 54.4, 62.4, and 200 GeV corresponding to a wide range 
 baryon chemical potential from 420 to 20 MeV [7,35]. These re-
lts are compared to several model calculations: a thermal model using 
rand Canonical and Canonical Ensembles (GCE and CE) [36], the Ul-
arelativistic Quantum Molecular Dynamics (UrQMD) model [37,38]
mbined with a phase-space coalescence mechanism [39], and a sim-

e coalescence model from Ref [29].



Th

Ta

To

co

√

E

2.

de

ca

be

an

de

𝐶

𝐶

𝐶

𝐶

Th

𝑀

w

an

tio

𝜎

𝑀

Th

tie

𝜒3
𝜒𝑛

at

la

ex

m

be

de

𝐶

𝜎

w

co

fic

im

tw

3.

A

de

tio

to

te

ar

pa

va

si

cl

(𝜂

re

se

an

su

co

ity

an

nu

er

an

to

si

or

(D

w

cl

(P

is

an

de

ity

co

lo

in

ca

pa

co

ra

pu

re

be

to

w

0.
ic

in

co

id

in

re

fo

co

ity

co

m

te

in

sy

an

nu

su

un

re

al

de

ce

st

at
e STAR Collaboration

ble 1

tal number of minimum bias events for Au+Au collisions analyzed for various 
llision energies obtained after all the event selection cuts are applied.
𝑠𝑁𝑁 (GeV) 7.7 11.5 14.5 19.6 27 39 54.4 62.4 200

vents (Millions) 2.2 6.6 12 14 30 83 520 37 220

 Observables

Distributions can be characterized by their cumulants of various or-
r. A general expression to find any order cumulants of a distribution 
n be found in [40]. The cumulants (𝐶𝑛) up to order 𝑛 = 4 are defined 
low. We use 𝑁 to represent the number of deuterons in one event 
d ⟨𝑁⟩ for the average value over the entire event ensemble. Then the 
viation of 𝑁 from its event average is given by 𝛿𝑁 =𝑁 − ⟨𝑁⟩.

1 = ⟨𝑁⟩ (1)

2 = ⟨(𝛿𝑁)2⟩ (2)

3 = ⟨(𝛿𝑁)3⟩ (3)

4 = ⟨(𝛿𝑁)4⟩− 3⟨(𝛿𝑁)2⟩2 (4)

e moments can be expressed in terms of the cumulants:

= 𝐶1 , 𝜎2 = 𝐶2 , 𝑆 =
𝐶3

𝐶
3∕2
2

, 𝜅 =
𝐶4

𝐶2
2

, (5)

here 𝑀 is the mean, 𝜎 is the standard deviation, 𝑆 is the skewness 
d 𝜅 is the kurtosis.
To eliminate the system volume dependence of cumulants, their ra-
s are usually constructed as follows [41]:
2
=

𝐶2
𝐶1

, 𝑆𝜎 =
𝐶3
𝐶2

, 𝜅𝜎2 =
𝐶4
𝐶2

. (6)

ese ratios can be connected to the ratios of number susceptibili-
s calculated in thermal models [24] as 𝐶2∕𝐶1 = 𝜒2∕𝜒1, 𝐶3∕𝐶2 =
∕𝜒2, and 𝐶4∕𝐶2 = 𝜒4∕𝜒2. The 𝑛-th order number susceptibility is 
= 𝑑𝑛[𝑃∕𝑇 4]∕𝑑(𝜇∕𝑇 )𝑛, where 𝑃 , 𝑇 , and 𝜇 are the pressure, temper-
ure, and chemical potential, respectively.
If the particle multiplicity follows the Poisson distribution, cumu-

nts of all orders are equal and therefore their ratios are unity. Poisson 
pectations are used as the statistical baselines for the measured cu-
ulant ratios.
The Pearson correlation coefficient measures the linear correlation 
tween two variables. The correlation coefficient between proton and 
uteron numbers can be defined as follows:
(1,1)
(𝑝,𝑑)

𝑝𝜎𝑑
=

⟨(𝛿𝑁𝑝𝛿𝑁𝑑 )⟩
𝜎𝑝𝜎𝑑

=
⟨𝑁𝑝𝑁𝑑⟩− ⟨𝑁𝑝⟩⟨𝑁𝑑⟩

𝜎𝑝𝜎𝑑
, (7)

here 𝑁𝑝 and 𝑁𝑑 are proton and deuteron numbers, respectively. The 
rrelation coefficient ranges from −1 to 1. A positive sign of the coef-
ient implies that two variables are correlated while a negative sign 
plies an anti-correlation. A zero value of the coefficient implies that 
o variables are uncorrelated.

 Analysis methods

The results presented here are measured in minimum-bias [7]
u+Au collisions at 

√
𝑠NN = 7.7 to 200 GeV recorded using the STAR 

tector at RHIC. Collision events are selected having the vertex posi-
n (𝑉𝑧) within ± 30 cm (± 40 cm for 

√
𝑠NN = 7.7 GeV) with respect 

 the nominal center of the STAR Time Projection Chamber (TPC) de-
ctor along the beam direction (𝑧 axis). Events at each collision energy 
e further divided into centrality classes using the produced charged 
4

rticle multiplicity as a measure. Central collision events have higher of
Physics Letters B 855 (2024) 138560

lues of charged particle multiplicity compared to peripheral colli-
on events. The charged particle multiplicity used for the centrality 
assification is selected using the TPC detector with pseudorapidity 
) within −1 to +1. Protons, deuterons, and their anti-particles are 
moved from the definition of collision centrality. This avoids the 
lf-correlation effect between deuterons used to calculate cumulants 
d particles included in the centrality definition [40,42–44]. The re-
lts presented here correspond to three event classes: most central 
llisions (events from the top 5% of the above-mentioned multiplic-
 distribution), mid-central (events from 30-40% of the distribution), 
d peripheral collisions (events from 70-80% of the distribution). The 
mber of analyzed events for minimum bias collisions at each en-
gy is provided in Table 1. The charged tracks used for the cumulant 
alysis are required to have more than 20 space points in the TPC 
 ensure good track momentum resolution and the ratio between as-
gned to total possible space points is taken to be greater than 0.52 in 
der to minimize track splitting. The distance of the closest approach 
CA) of the selected tracks to the primary vertex is required to be 
ithin 1 cm in order to suppress contamination from secondary parti-
es [45,46]. To identify deuterons and protons, particle identification 
ID) selection criteria are further applied to the charged tracks. PID 
 done via ionization energy loss (𝑑𝐸∕𝑑𝑥) measured in the TPC [47]
d mass squared (𝑚2) obtained from the Time Of Flight (TOF) [48]
tectors. Panel (a) in Fig. 1 shows the measured ⟨𝑑𝐸∕𝑑𝑥⟩ vs. rigid-
 (i.e. momentum/charge) of particles in |𝜂| < 1.0. Various bands 
rresponding to particles of different masses are clearly separated at 
w momentum. An extension of PID to higher 𝑝T is achieved by us-
g the TOF detector. Panel (b) in Fig. 1 shows the distribution of 𝑚2

lculated using the information (path length and time of travel by the 
rticle) from the TOF detector. The kinematic region for deuterons 
vers the full azimuth range, mid-rapidity (|𝑦| < 0.5), and the 𝑝T
nge is from 0.8 to 4 GeV/𝑐. Both TPC and TOF are used to get good 
rity, above 98%, of the deuteron sample. For proton-deuteron cor-
lation measurement, protons are identified at mid-rapidity with 𝑝T
tween 0.4 and 2.0 GeV/𝑐. To ensure good efficiency for the pro-
n sample, for the 𝑝T range 0.4 < 𝑝T < 0.8 GeV/𝑐, only TPC is used 
hile both TPC and TOF detectors are simultaneously used for the range 
8 < 𝑝T < 2.0 GeV/𝑐 [40]. For the momentum ranges studied, the typ-
al value of the TPC tracking (TOF matching) efficiency for deuterons 
 0-5% most central collisions at 

√
𝑠NN = 7.7 GeV is 81% (69%). The 

rresponding values at 
√
𝑠NN = 200 GeV are 63% (64%). Protons are 

entified with similar values of detection efficiencies [40].
The cumulants are corrected for finite track reconstruction efficiency 

 the TPC and track matching efficiency in TOF detectors. The cor-
ction is performed assuming a binomial response of both detectors 
r deuteron and proton efficiencies [50]. In addition, cumulants are 
rrected for their dependence on multiplicity by using the Central-
 Bin-Width Correction (CBWC) method [42] for each centrality. This 
rrection suppresses the effect of initial volume fluctuations on the 
easured cumulants arising due to fluctuations in the impact parame-
r of collisions.
The statistical uncertainties on the measurements are calculated us-
g a Monte Carlo approach called the Bootstrap method [51,52]. The 
stematic uncertainties are estimated by varying the track selection 
d particle identification criteria. Track quality cuts such as DCA, the 
mber of space points in the TPC, and PID criteria such as cuts on mea-
red 𝑑𝐸∕𝑑𝑥 and 𝑚2 values are considered as the sources of systematic 
certainty [40]. In addition, a ±5% uncertainty associated with the 
construction efficiency of the detector is also included in the over-
l systematic uncertainty. For each source of systematics, the standard 
viation from the default set of results is calculated. The systematic un-
rtainty is determined from the square root of the quadratic sum of the 
andard deviations coming from different sources. The typical system-
ic errors, for example in 0-5% most central collisions at 7.7 GeV, are 

 the order of 5% for 𝐶1 , 𝐶2, and 𝐶3 and 6% for 𝐶4. The uncertainty in 
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Fig. 1. ⟨𝑑𝐸∕𝑑𝑥⟩ and 𝑚2 distribution of charged particles for |𝜂| < 1.0 in Au+Au collisions at √𝑠NN = 27 GeV. Panel (a): The ⟨𝑑𝐸∕𝑑𝑥⟩ distribution of charged 
particles from TPC [47] as a function of rigidity (𝑝∕𝑍). The dashed curves represent the expected values of ⟨𝑑𝐸∕𝑑𝑥⟩ calculated using the Bichsel function [49] for 
the corresponding particles. Panel (b): Mass squared of charged particles as a function of momentum from TOF [48]. The dashed lines represent the mass squared 
values for the corresponding particles.
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g. 2. Cumulants (𝐶𝑛, 𝑛 = 1 − 4) of the deuteron distributions as a func-
n of collision energy for most central, mid-central, and peripheral Au+Au 
llisions as measured by STAR. Cumulants are corrected for finite detector 
ciencies [50] and centrality bin-width effect [42]. Uncertainties on the cu-
ulants are smaller than marker symbols. Results for most central, mid-central, 
d peripheral collisions are shown using solid circle, open cross, and open 
uare markers, respectively. Bar and cap symbols represent the statistical and 
stematic uncertainties, respectively. The transverse momentum range for the 
easurements is from 0.8 to 4 GeV/𝑐 and the rapidity range is −0.5 < 𝑦 < 0.5.

e reconstruction efficiency estimation makes the biggest contribution 
 the systematics.

 Results and discussion

Fig. 2 shows the deuteron cumulants (𝐶𝑛, 𝑛 = 1 − 4) as a function 
 
√
𝑠NN for most central (0-5%), mid-central (30-40%), and peripheral 

0-80%) Au+Au collisions. The cumulants 𝐶1 to 𝐶4 of deuteron distri-
tions for most central Au+Au collisions smoothly increase with de-
easing 

√
𝑠NN. This indicates an enhanced production of deuterons to-

ards the high baryon density region (corresponding to low 
√
𝑠NN [7]). 

e effect of high baryon density on deuteron production can be un-
rstood using a thermal model. In the thermal model, baryon density 
pendence is given by the factor ∼ exp[(𝐵𝜇𝐵 − 𝑚𝑑 )∕𝑇 ], where 𝐵 and 
𝑑 are the baryon number and mass of the deuteron, respectively. 
s light nuclei carry multiple baryons, the contribution of the above 
ctor is especially enhanced in the high baryon density region [53]. 
mulants in the mid-central and peripheral collisions show a simi-
r 
√
𝑠NN dependence as seen for the most central collisions. For any √
5

ven 𝑠NN, the cumulants of any order increase from peripheral to la
g. 3. Cumulant ratios of deuteron distributions and proton-deuteron correla-
n shown as a function of collision energy. Red circle and open square markers 
present measurements for most central (0-5%) and peripheral (70-80%) colli-
ns, respectively. Bar and cap symbols represent the statistical and systematic 
certainties, respectively. The gray dashed line is the Poisson baseline (unity 
r cumulant ratios and zero for correlation). All model results presented in the 
ure correspond to the most central (0-5%) collisions. Calculations from an 
QMD coupled with a phase-space coalescence model [39] are shown using 
e orange color-filled band (the width of the band represents the statistical 
certainty). Thermal-FIST [36] calculations for GCE are shown using a ma-
nta dashed line. The cyan color-filled band represents the CE thermal model 
sults corresponding to the range of canonical correlation volume (𝑉𝑐 ) from 
𝑉 ∕𝑑𝑦 to 4𝑑𝑉 ∕𝑑𝑦. CE thermal model results for 𝜒2 minimum fit of the above-
entioned four observables is shown using a cyan color dashed line. In panel 
), predictions for one of the assumptions in a simple coalescence model from 
f. [29] are shown using a blue dashed line.

ntral collisions. For 
√
𝑠NN = 27 GeV and above, in any given colli-

on energy and centrality, 𝐶1 to 𝐶4 values are close to each other and 
most independent of order (𝑛) of the cumulant. This implies that the 
ent-by-event deuteron number distribution at higher 

√
𝑠NN exhibit 

near-Poissonian behavior. Fig. 3 shows the collision energy depen-
nce of the cumulant ratios and the proton-deuteron number Pearson 
rrelation coefficient for most central 0-5% and peripheral 70-80% 
+Au collisions. The cumulant ratios 𝜅𝜎2, 𝑆𝜎, and 𝜎2∕𝑀 in cen-
al collisions show smooth dependence on collision energy. At higher 
lliding energies (

√
𝑠NN ≥ 27 GeV), most central 0-5% cumulant ra-

s are close to the Poisson baseline (unity) and deviate from unity as 
𝑠NN decreases. In low-energy collisions, cumulants are increasingly 
ppressed with increasing order 𝑛, resulting in the 𝜅𝜎2 showing the 

rgest deviation from unity compared to the other two ratios which 
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volve lower-order cumulants. Note that the scales of the y-axis are 
fferent in different panels. The observed suppression of cumulant ra-
s might arise because of global baryon number conservation, which 
n notably affect the measurements performed at mid-rapidity in low-
ergy collisions. In low-energy collisions (

√
𝑠NN < 27 GeV), due to 

 increase in the number of net baryons at mid-rapidity [54] and 
e acceptance cuts which include a larger fraction of the phase space, 
e observes an enhanced effect of baryon number conservation [55]. 
s the fraction of net baryons in the measurement acceptance over 
e total net-baryon numbers produced in the collision increases, the 
ent-by-event fluctuations of deuterons become constrained. A model 
lculation with the canonical effect implemented via local conserva-
n of baryon number is shown to have a small impact on higher order 
t-proton cumulants [56]. However, model studies with global baryon 
mber conservation show that the suppression increases with the order 
 the cumulants and also increases with decreasing collision energies, 
 observed in our measurements [55]. Corresponding results in 70-80% 
ripheral centrality show a weak dependence on collision energy and 
e close to unity. Cumulant ratios for peripheral collisions are found to 
 least affected by the global baryon number conservation. Cumulant 
tio values in 30-40% centrality lie between those for most central and 
ripheral collisions.1
Calculations from the Thermal-FIST [36] model for the most cen-

al 0-5% collisions are also shown in Fig. 3. This model assumes an 
eal gas of hadrons, resonances, and light nuclei in thermodynamic 
uilibrium. Excited states of light nuclei which decay to protons and 
uterons could also be included in the particle list for the thermal 
odel. However, as seen in Ref. [57], the contribution from excited 
clei feed down is very small for 

√
𝑠NN ≥ 7.7 GeV, and is not taken 

to account in our model calculation. Thermal model calculations are 
rformed for both grand canonical and canonical ensembles and the 
perimental acceptances have been taken into account. The input pa-
meters of the model such as chemical freeze-out temperature, chemi-
l potentials, and kinetic freeze-out conditions are taken from Ref. [7]
hich are extracted from thermal model fits of hadronic yields and 
-spectra measured in the STAR experiment. Results for the cumulant 
tios from the GCE framework of the Thermal-FIST model are close to 
ity across all collision energies.
The GCE model seems to fail to describe the ratios for 

√
𝑠NN ≤

GeV. The CE thermal model which incorporates baryon number con-
rvation, predicts the suppression of cumulant ratios as observed in 
e data. Note that in the CE model, only the canonical effect due to 
e conservation of baryon number is considered for light nuclei fluc-
ations. The canonical ensemble in the Thermal-FIST model uses an 
ditional volume parameter called the canonical correlation volume, 
, over which the exact conservation of the baryon number is imple-
ented. The shaded band represents the results for 𝑉𝑐 in the range of 
to 4 times the 𝑑𝑉 ∕𝑑𝑦, where 𝑑𝑉 ∕𝑑𝑦 is the chemical freeze-out vol-
e per unit rapidity that is obtained from the thermal model fit of 
dronic yields [7]. The model parameter 𝑉𝑐 is also varied at each col-
ion energy for a reasonable agreement with the measured values of 
2, 𝑆𝜎, 𝜎2∕𝑀 , and the Pearson coefficient. The line shows the results 
rresponding to minimum 𝜒2 fits by scanning the 𝑉𝑐 parameter in the 
odel. 𝑉𝑐 values are found to vary from 2𝑑𝑉 ∕𝑑𝑦 at the lowest energy 
 4𝑑𝑉 ∕𝑑𝑦 at the highest RHIC collision energy. A slightly higher range 
 𝑉𝑐 is obtained at LHC energies for measurements from the ALICE col-
boration [58,59]. The higher value of canonical correlation volume 
plies that the part of the system under measurement is approaching 
e grand-canonical limit [58]. This also highlights the importance of 
e canonical ensemble thermal model at lower collision energies.
Physics mechanisms such as decay of resonances [60] and transport 

 beam protons to mid-rapidity [61] also could affect the cumulants. 

Data points for 30-40% centrality are not presented in Fig. 3 to avoid clutter. 
6

wever, the relevant results can be found in the HEPData database. pr
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r this, we compare results from the UrQMD model (v3.4 in default 
scade mode) combined with a phase-space coalescence mechanism 
 the experimental data. The UrQMD model is a hadronic transport 
de which takes into account many physics mechanisms including 
ose from transport of beam protons to mid-rapidity, resonance de-
ys, binary scattering of hadrons, string dynamics, and conservation 
 net-baryon number [62]. Phase space information of protons and 
utrons at the kinetic freeze-out surface from the UrQMD model are 
ed as inputs to the coalescence mechanism to form deuterons. In the 
alescence model, proton-neutron pairs with relative momenta within 
285 GeV/𝑐 and position space separations within 3.575 fm are consid-
ed as candidates for deuteron formation. These parameters in model 
udies [39] are found to provide a good description of experimen-
l data on deuteron yields. The UrQMD model combined with the 
alescence mechanism, also reproduce the energy dependence trend 
served in data and show a fair agreement with the measured cumu-
nt ratios.
In panel (d) of Fig. 3, we observe that the Pearson correlation co-
cient between proton and deuteron numbers is negative across all 
llision energies and centralities presented, which implies that the 
oton and deuteron numbers are anti-correlated with each other. At 
wer colliding energy, anti-correlation becomes stronger for most cen-
al 0-5% Au+Au collisions. These measurements for peripheral Au+Au 
llisions do not show any energy dependence and are close to the sta-
tical expectations. In the GCE thermal model, protons and deuterons 
e uncorrelated. However, the CE thermal model calculation correctly 
edicts the sign and energy dependence trend of the measured corre-
tion. Predictions from a simple coalescence model from Ref. [29] are 
so shown for the most central Au+Au collisions. For simplicity, the 
thors of Ref. [29] assume Poisson distributions for both protons and 
utrons, with their numbers fluctuating independently. Note that this 
odel does not take into account the details of the phase space infor-
ation of coalescing protons and neutrons. On the other hand, the fair 
reement of predictions from the UrQMD model combined with the 
ase-space coalescence mechanism [39] with the experimental data in 
ost central 0-5% collisions suggests that the phase space information 
 constituent nucleons is important for the deuteron formation pro-
ss in the coalescence mechanism. The ALICE collaboration recently 
ported measurements on proton-deuteron correlation in Pb+Pb col-
ions at 

√
𝑠NN = 5.02 TeV. The Pearson correlation coefficient was 

und to have small negative values and is mostly constant for all col-
ion centralities [63]. Similar to the observations of this study, the 
 thermal model calculations with baryon number conservation im-
emented also explain the ALICE data for suitable choices of model pa-
meters. The negative sign of the Pearson correlation coefficient across 
e range of collision energies (GeV to TeV) and centralities (central 
 peripheral) establishes the importance of baryon number conserva-
n in baryon-nucleus correlations. The nature of the agreement of the 
oton-deuteron correlation data with the CE thermal model calcula-
n suggests a canonical thermal effect over a coalescence mechanism. 
 the same time, there is reasonable scope for improvements in both 
e production models discussed here.
As deuterons carry two baryons, it is important and interesting to 
vestigate how their cumulant ratios differ from those of the protons. 
g. 4 shows the comparison of 𝜅𝜎2 of the deuteron multiplicity distri-
tion to those of protons [40] for most central 0-5% Au+Au collisions. 
r the 𝜅𝜎2 of protons, the larger statistical uncertainties are attributed 
 the larger width of proton multiplicity distributions as compared to 
e deuteron distributions [51]. Within the current uncertainties, the 
oton 𝜅𝜎2 (similar to that of net-proton) shows a non-monotonic 

√
𝑠NN

pendence [44] in most central Au+Au collisions. This feature is sim-
r, at a qualitative level, to the theoretical predictions near the QCD 
itical point. The 𝜅𝜎2 for deuterons, however, shows a weaker depen-
nce on collision energy compared to that for protons. This could be 
e to deuterons having a very low event-by-event yield compared to 

otons, resulting in reduced sensitivity to any possible critical point 
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g. 4. 𝜅𝜎2 of deuteron and proton distribution for most central (0-5%) Au+Au 
llisions. Red circle and black triangle markers represent deuteron and proton 
ta [40], respectively. The gray dashed line is the Poisson baseline (unity). 
2 of deuterons show a smooth dependence on the collision energy in contrast 
 protons.

ysics. To test the effect of low event-by-event yield on the cumulant 
tios, a simple statistical simulation is utilized by using the measured 
uteron to proton yield ratios [10] and proton cumulants [40] as 
puts. Using a two-component function, which is a superposition of 
isson and binomial distributions (originally developed in Ref. [64]
r a different purpose), the proton distribution is modeled in order 
 reproduce the measured proton cumulants in most central 0-5% 
u+Au collisions. Then deuteron multiplicity on an event-by-event ba-
s is sampled from the above-mentioned proton distribution using the 
𝑝 ratio [10] as the binomial probability of success to form a deuteron. 
e 𝜅𝜎2 calculated from this resultant deuteron distribution (shown in 
g. 4 as a blue dashed line) is near unity and close to the experimental 
ta. This test shows that the low deuteron multiplicity likely is respon-
ble for the deuteron 𝜅𝜎2 being close to 1.

 Summary

We have presented measurements of deuteron cumulants, their ra-
s, and proton-deuteron number correlation performed in Au+Au col-
ions with the STAR detector at RHIC, covering a wide range of baryon 
emical potential (𝜇𝐵 from ∼ 20 to 420 MeV). The cumulant ratios of 
uterons in most central collisions vary smoothly as a function of the 
llision energy and are suppressed below the Poisson baseline as the 
lliding energy decreases. The peripheral collision results, however, 
main overall flat as a function of 

√
𝑠NN. Anti-correlation between 

oton and deuteron numbers is observed across all collision energies 
d centralities studied. This anti-correlation becomes stronger for most 
ntral Au+Au collisions as the beam energy decreases. Cumulant ratios 
d correlations in mid-central collisions show a weaker dependence on 
llision energies compared to central collisions. These measurements 
r peripheral Au+Au collisions do not show a significant energy de-
ndence and are close to the Poisson baseline.
Important observations from the comparison of our measurements 

 the different model calculations can be summarized as follows. In 
ost central Au+Au collisions, for thermal models: (i) GCE and CE rea-
nably describe the deuteron number fluctuation measurements above 
llision energies of 20 GeV. Only the CE model correctly predicts the 
gative sign of the proton-deuteron correlation. (ii) The thermal model 
ith CE qualitatively agrees with the cumulant ratios for collision ener-
es below 20 GeV, while the thermal model with GCE fails. As the CE 
odel explicitly conserves the baryon number, this study reflects the 
portance of the role of conservation in fluctuation studies at lower 
7

llision energies. [
Physics Letters B 855 (2024) 138560

The UrQMD model coupled with a phase-space coalescence mech-
ism also describes the deuteron number fluctuation and deuteron-
oton correlation measurements across all collision energies. A simple 
odeling of the coalescence process without taking into account the 
ase-space information of constituent nucleons fails to describe the 
easured proton-deuteron number correlation.
The 𝜅𝜎2 of the deuteron number distribution shows a smoothly de-
easing trend with decreasing collision energy in contrast to protons. A 
mple statistical test suggests that the low deuteron multiplicity may be 
sponsible for the observed near-Poisson behavior of deuteron cumu-
nt ratios. Such trends as observed in the data currently do not support 
scenario of enhanced formation of pre-clusters that might arise due to 
e presence of a CP/first-order phase transition. Our measurements can 
 utilized further to study the chemical freeze-out thermodynamics of 
uterons and to constrain the light nuclei production model parame-
rs. In the future, with higher event statistics and improved acceptance 
hieved in phase-II of BES and fixed-target collision datasets, 𝑝T and 
pidity differential measurements with better statistical and systematic 
ecision are possible. Further, fluctuations and hadron-nuclei correla-
n measurements can be performed for light nuclei species such as the 
iton, 3He, and 4He. This has the potential for a major improvement in 
e discriminating power of comparisons with model calculations and 
ight help resolve the nuclei production puzzle in high-energy heavy-
n collisions.
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