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We report on a search for a heavy Majorana neutrino in the decays τ− → π−νh, νh → π�l∓, l ¼ e, μ.
The results are obtained using the full data sample of 988 fb−1 collected with the Belle detector at the
KEKB asymmetric energy eþe− collider, which contains 912 × 106 ττ pairs. We observe no significant
signal and set 95% CL upper limits on the couplings of the heavy right-handed neutrinos to the
conventional standard model left-handed neutrinos in the mass range 0.2–1.6 GeV=c2. This is the first
study of a mixed couplings of heavy neutrinos to τ leptons and light-flavor leptons.
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In the standard model (SM), neutrinos are strictly mass-
less since there are no right-handed neutrino components.
However, experimental data on neutrino oscillations con-
clusively show that neutrinos aremassive [1], though neutrino
massmeasurements show that their masses are very small [2].
One approach to resolve this disagreement is to include right-
handed neutrinos, also known as sterile neutrinos, heavy

neutrinos, or heavy neutral leptons (HNL), into the model.
Such particles do not participate in any of the weak, strong,
and electromagnetic interactions; if we exclude gravitation,
the only way they interact with matter is via mixing with
left-handed neutrinos. Singlet right-handed neutrinos may
also have Majorana mass, naturally explaining the smallness
of the observed neutrino masses via the so-called “seesaw”
mechanism [3]. One example of the models realizing such a
mechanism is νMSM [4]. It introduces three right-handed
singlet HNLs, so that every left-handed particle gets its right-
handed counterpart, and manages to explain neutrino oscil-
lations, dark matter existence, and baryogenesis with the
same set of parameters. HNLs also appear in other extensions
of the SM; see a review in Ref. [5].
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In general, neutrino flavor eigenstates need not to
coincide with the mass eigenstates but may be related
through a unitary transformation, similar to that in the
quark sector:

να ¼
X
i

Uαiνi; α ¼ e; μ; τ;…; i ¼ 1; 2; 3; 4;…; ð1Þ

where Greek (Latin) indexes denote flavor (mass) eigen-
states. The coupling of the HNLs to charged or neutral
currents of flavor α is characterized by the quantities Uα4,
Uα5 etc., which we denote for convenience as Uα.
A generic HNL is denoted by νh. Its production and decay
diagrams are shown in Fig. 1. Existing experimental results
are reviewed and discussed in Ref. [5].
In our previous analysis [6] we searched for the decays of

HNLs produced in B decays. No signal was found and
upper limits on jUej2, jUμj2 and jUejjUμj as functions of the
mass of the HNL were set.
In this analysis, we reconstruct τ− → π−pνh decays, where

πp refers to the “prompt pion” and the HNL decays into
a pion-lepton pair in the detector volume: νh → π�l∓,
l ¼ e, μ (the charge-conjugate decay mode being included
throughout this Letter). Both combinations of τ and l
charges are retained for further analysis. In the final state,
we have two pions and a lepton: π−pπ�l∓.
Following [7,8], we interpret the result in terms

of the minimal realistic model with two quasidegenerate
HNLs with close masses and couplings and not trivial Uα.
When two HNL masses are not exactly the same, HNL

oscillations occur and we consider two extreme cases: the
“Dirac-like limit,” where only lepton-number conserving
final states are allowed, and the “Majorana-like limit,”
where lepton-number violating final states are also allowed
with the same branching fractions. The ratio of differentUα

is determined from the neutrino oscillation data. In the
normal hierarchy case (NH), the relative mixing coeffi-
cients xα ≡ jUαj2=jUj2, jUj2 ¼ P

α jUαj2 (α ¼ e, μ, τ) are
taken to be xe ¼ 0.06, xμ ¼ 0.48, and xτ ¼ 0.46; for the
inverted hierarchy case (IH), we use the values xα ¼ 1=3
(α ¼ e, μ, τ) [7].
A distinctive feature of the HNL is its long lifetime. We

can estimate it as cτ ∼ jUj−2MðνhÞ−5 [9]: for MðνhÞ ¼
1 GeV=c2 and jUj2 ¼ 10−4, the lifetime is cτ ∼ 20 m; thus,
a πl pair forms a vertex displaced from the interaction
point (IP). BABAR [10] and Belle [11] previously searched
for τ → lhh0 decays; however, both analyses required all
tracks to originate in the vicinity of the IP. For the long-
lived HNL, this greatly reduces the reconstruction effi-
ciency. In contrast, we do not impose such a requirement on
the HNL daughters.
Results presented here are based on all available Belle

data, including on-resonance, off-resonance and energy
scans. The collision energy is around 10.58 GeV. The
total integrated luminosity is 988 fb−1 [12] and the total
number of τþτ− pairs is calculated using direct production
cross sections [13] and ϒðNSÞ branching fractions to be
Nττ ¼ ð912� 13Þ × 106, where the error arises from the
luminosity measurement.
The Belle detector is a large-solid-angle magnetic

spectrometer that consists of a silicon vertex detector
(SVD), a 50-layer central drift chamber (CDC), an array
of aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight scintillation counters
(TOF), and an electromagnetic calorimeter comprised of
CsI(Tl) crystals (ECL) located inside a superconducting
solenoid coil that provides a 1.5 T magnetic field. An iron
flux-return located outside of the coil is instrumented to
detect K0

L mesons and to identify muons (KLM). The
detector is described in detail elsewhere [14].
To study backgrounds, we use the following

Monte Carlo (MC) simulated samples: eþe− → qq̄ (q ¼ u,
d, s, c, b), eþe−, μþμ−, τþτ− and two-photon processes
(eþe− → eþe−lþl−, eþe−qq̄). Background processes are
generated by EvtGen [15], BHLUMI [16], KKMC [17],
KKMC (ττ production) and TAUOLA (τ decay) [18],
and AAFH [19], respectively. We use signal MC samples
generated with different HNL masses of MðνhÞ ¼ 0.2 to
1.6 GeV=c2 (with 0.1 GeV=c2 step) and life times of
cτ ¼ 0.2, 0.5, and 1.0 m to study the response of the
detector and to determine its acceptance and signal effi-
ciency dependence on the neutrino mass and the distance of
the decay point from the IP. This efficiency does not depend
on cτ (jUj2). Signal MC samples are τþτ− pairs where one

FIG. 1. Feynman diagrams for HNL production (top) and decay
(bottom).
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of the τ leptons decays according to the modes under study
and the other decays generically. Signal events are gen-
erated using EvtGen; radiative corrections are included
using PHOTOS [20]. HNLs are produced and decayed
uniformly in phase space. GEANT3 [21] is used to model the
detector response.
Electrons are identified using the energy and shower

profile in the ECL, the light yield in the ACC and the
specific ionization energy loss in the CDC (dE=dx). This
information is used to form an electron (Le) and non-
electron (Lē) likelihood; these are combined into a
likelihood ratio Pe ¼ Le=ðLe þ LēÞ [22]. Muons are dis-
tinguished from other charged tracks by their range and hit
profiles in the KLM. This information is utilized in a
likelihood ratio approach [23] similar to the one used for
the electron identification.
Charged tracks with laboratory momentum greater than

0.5 GeV=c and electron likelihood ratio Pe > 0.9 or muon
ratio Pμ > 0.9 are treated as leptons. These requirements
correctly identify leptons with an efficiency of approxi-
mately 95% and a misidentification rate of less than 2%. All
charged tracks not identified as leptons and satisfying the
electron veto Pe < 0.5 are treated as pions.
HNL candidates are formed from a pion π and a lepton l

of the opposite sign. The pion and lepton are then fitted
to a common vertex. HNL candidates are combined with
a prompt pion πp. The second vertex fit of the HNL
candidate and the prompt pion is performed with a vertex
constraint to the IP, which is determined run-by-run using
charged tracks. The χ2 of both vertex fits is required to be
χ2=ndf < 25, where ndf is the number of degrees of
freedom. Kinematics of the particles are updated after the
fits are performed. For the prompt pion, we require the
closest distance to IP along the detector symmetry axis (dz)
to be jdzj < 5 cm and in the transverse plane to be
dr < 1 cm.

Since the signal τ lepton is fully reconstructed, we can
utilize the kinematic constraint of the known initial four-
momentum of the colliding eþe− pair to define ΔE≡
EðπpπlÞ − Ecm in the center-of-mass (c.m.) frame of a τ
candidate relative to the beam energy Ecm. In τ decays, ΔE
and MðπpπlÞ are highly correlated; therefore, we use an
elliptically shaped requirement, that encompasses ∼95%
efficiency as computed from the signal simulation.
In the rest of the event, we select tracks with dr < 1 cm,

jdzj < 5 cm and a transverse momentum pt > 0.1 GeV=c.

We classify clusters in the ECL not associated with charged
tracks as photons and require EðγÞ > 0.05 GeV in the
barrel (32.2° < θ < 128.7°), EðγÞ > 0.1 GeV in the for-
ward end cap (12.4° < θ < 31.4°) and EðγÞ > 0.15 GeV in
the backward end cap (130.7° < θ < 155.1°). Events are
separated into two hemispheres by the plane perpendicular
to the thrust axis  nT [24], defined to maximize the thrust
magnitude value

VT ¼
P j  p�

i ·  nT jP j  p�
i j

; ð2Þ

where  p�
i are momenta of the selected tracks, photons,

and τ daughters in the c.m. frame. We require the signal
hemisphere to contain no additional tracks besides τ
daughters, and the opposite side to contain one or three
tracks with a total charge opposite that of the prompt pion.
We select well-vertexed HNL candidates using dϕ,

the angle between the momentum vector and decay-
vertex vector of the HNL candidate; dzvtx, the distance
between the daughter tracks at their closest approach in the
direction parallel to the beam; and dr for each track.
Requirements vary depending on the presence of SVD hits
on the tracks and on the HNL candidate flight length. These
are summarized in Table I. The four event types in the Table
are I: both neutrino daughter tracks have recorded hits in
SVD, II: one of the neutrino daughter tracks has recorded
hits in SVD, III: none of the neutrino daughter tracks have
recorded hits in SVD, with MðνhÞ ≥ 0.8 GeV=c2, and
IV: no SVD hits and MðνhÞ < 0.8 GeV=c2. There is a
large contamination from the conversion photons γ → ee in
the last category.
Figure 2 shows the efficiency of HNL reconstruction

with all requirements applied as a function of the recon-
structed travel distance l for several mass hypotheses.
The number of neutrinos detected by this method is

(in units where ℏ ¼ c ¼ 1) [25]

nðνhÞ ¼ 2NττBðτ → πνhÞBðνh → πlÞmΓ
p

Z
exp

�
−
mΓl
p

�
εðm; lÞdl

¼ jUτj2jUlj22Nττf1ðmÞf2ðmÞm
p

Z
exp

�
−
mΓl
p

�
εðm; lÞdl; ð3Þ

TABLE I. Summary of the vertex requirements.

Type dϕ, rad zvtx, cm dr, cm

I < 0.02 < 0.06 > 0.07
II < 0.024 < 1.5 > 0.08
III < 0.16 < 3.0 > 0.1
IV < 0.16 < 3.0 >1.0
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where Nττ is the number of ττ pairs, Bðτ → πνhÞ is the
branching fraction for νh production, Bðνh → πlÞ is the
branching fraction of the reconstructed decay, m, p and
Γ ¼ Γðm;UÞ are the mass, momentum and full width of
the HNL, respectively, and εðm; lÞ is the reconstruction
efficiency of the HNL of mass m decaying at a distance l
from the IP. The momentum p is approximated by the
mean value for a given mass, determined from the signal
MC simulation. To factor out the jUlj2 dependence, we
define functions f1;2ðmÞ as jUτj2f1ðmÞ≡ Bðτ → πνhÞ and
jUlj2f2ðmÞ≡ Γðνh → πlÞ ¼ Bðνh → πlÞΓ, where l de-
notes the flavor (e, μ) of the charged lepton produced in
the νh decay. Integration is performed over the full volume
used to reconstruct the HNL vertex. The expressions for
Bðτ → πνhÞ, Γðνh → πlÞ and the full neutrino width Γ are
taken from Ref. [26] and require only general assumptions
(i.e., they are not specific to the νMSM model). In the
Majorana case Γðνh → πlÞ is twice that in the Dirac case.
Given number of observed events, we solve Eq. (3) for the
variable jUj2 using the relative mixing coefficients xα
defined above.
The systematic uncertainties in number of events calcu-

lated according to Eq. (3) are enumerated in Table II. We
estimate the systematic uncertainties of event selection
criteria from the differences in their efficiencies obtained
in data and MC simulation. Since all particles used in the
systematic uncertainty study decay relatively close to the IP
compared to the expectation for an HNL, we require where
possible that the decay vertices be farther than 4 cm from
the IP in the transverse plane to put more weight on large
decay lengths. To estimate the systematic uncertainty due
to tracking, we compare the number of fully and partially

reconstructedD�þ decays in the decay chainD�þ → D0πþ,
D0 → K0

Sπ
þπ−,K0

S → πþπ−, where in the latter case one of
the pions from the K0

S is explicitly left unreconstructed. To
estimate the systematic uncertainty of the lepton identi-
fication, we reconstruct J=ψ → lþl−, l ¼ e, μ events,
where one of the daughter particles is identified as an
electron or muon. The difference of the identification
efficiency of the other daughter between data and MC
simulation is treated as a systematic uncertainty. To
estimate the systematic uncertainty of the vertex quality
requirements we apply them to K0

S decays, which have a
topology similar to HNL decays. Signal events were
generated using EvtGen, which is not optimized for τ
decays. To estimate the effect of this we prepared two
samples of ττ events—one generated with EvtGen and
the other with KKMC and TAUOLA—then reconstructed
τ → lνν decays, where l ¼ e, μ, using the same tagging as
for the signal events and compared reconstruction effi-
ciency in both cases. The phase space model may not give
the correct angle distribution of the HNL. We vary it by
reweighting generated events and treat the change as a
systematic uncertainty. The calculation uncertainty comes
from the efficiency and momentum approximations in
Eq. (3) and was estimated by comparing predicted and
observed number of events in different subsets of the signal
MC simulation. Systematic uncertainties induced by the
fitting procedure were found by varying the signal reso-
lution and background shape within their errors. The
theoretical uncertainty arises from uncertainties in the
constants used in Eq. (3). Correlations between different
systematic uncertainties are found to be small and are
ignored. All systematic uncertainties are summed in quad-
rature, leading to total systematic uncertainties of 16% and
12% for the ππe and ππμ modes, respectively. The largest
contributions are lepton identification (12% and 6% for the
electron and muon identification, respectively) and vertex
quality requirements (5.3%).

FIG. 2. Dependence of the HNL reconstruction efficiency on
the neutrino travel distance l for different neutrino massesMðνhÞ.
Efficiency is almost identical for e and μ.

TABLE II. Summary of systematic uncertainties in number of
events calculated according to Eq. (3).

Requirement Systematic uncertainty, %

Tracking 1.2
PeðlÞ 12
PμðlÞ 6
Vertex quality 5.3
Nττ 1.4
Generator 2
Angle distribution 5
Calculation 4
Signal resolution 2.5
Background shape 4
Theoretical 0.35

Total, e=μ 16=12
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We study the dependence of the coupling constant jUj2
on the HNL mass using simultaneous fit to ππe and ππμ
modes taking into account the relative mixing coefficients
xα defined above.
The ΔE vs MðππlÞ distributions with all requirements

butΔE andMðππlÞ imposed are shown in Fig. 3. The mass
distributions after application of all reconstruction require-
ments are shown in Fig. 4 for the same-charge τ and l
(Dirac-like limit) and both same- and opposite-charge
combinations (Majorana-like limit). From the background
MC simulation study, we expect to see a wide peak around
∼0.2 GeV=c2 from the conversion process γ → eþe− in the
ππe mode and a narrow peak from the K0

S → πþπ− process
at ∼0.48 GeV=c2 in the ππμ mode. Since the conversion
peak is wide, we can distinguish a narrow signal peak from
the HNL decay under it, but since theK0

S peak is narrow, we
exclude the K0

S region at 0.464–0.494 GeV=c2 from con-
sideration, which corresponds to �2σ of the peak width.
The HNL mass is unknown and we search for it in the

kinematically accessible region for the mass; for the decays
under study, this lies between Mπ þMl and Mτ −Mπ . We
perform a series of binned likelihood fits to the mass
distributions using the sum of a Gaussian signal function
and background (described below) varying the mass
hypothesis in each fit. The neutrino mass is set to the
center of a histogram bin which has a width of 2 MeV=c2.
The signal-shape parameters used in the fits to data are
fixed to those obtained by fitting simulated events. The
width evolves linearly from ∼3 MeV=c2 for MðνhÞ ¼
0.2 GeV=c2 to ∼10 MeV=c2 for MðνhÞ ¼ 1.6 GeV=c2.
The background is described by the sum of a constant
and the conversion peak described above in the ππe subset
and by a constant and the K0

S peak in the ππμ subset. The
functions for the peaking components are defined as

smoothed histograms from the background MC simulation.
Yields of all components are free parameters of the fit.
The statistical significance of the HNL signal is defined

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 lnL0=L

p
, where L0 and L are the likelihoods

returned by the fit with the signal yield fixed at zero and
at the fitted value, respectively. The maximum local
significance in four fits does not exceed 2.5σ, and we
set upper limits on jUj2 at 95% CL in the Dirac-like limit
and the Majorana-like limit for the two neutrino-mass

(a) (b)

FIG. 3. ΔE vs MðππlÞ distributions with all requirements but ΔE and MðππlÞ imposed for ππe (a) and ππμ (b) in data. The signal
region is shown as a red ellipse.

FIG. 4. Final distributions of MðνhÞ for ππe and ππμ
reconstruction modes in data. The filled histograms are for
candidates with opposite-charge τ and l, while the open histo-
grams are for candidates with same-charge combinations. The
curves are the fits with the signal yield fixed at zero.
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hierarchy scenarios bin by bin using PYHF package [27,28].
The resulting upper limits on the coupling constants at
95% CL are shown in Fig. 5. Comparison of all four upper
limits on one plot may be found in the Supplemental
Material [25].
In conclusion, we search for a heavy neutrino in τ decays

and observe no significant signal. This is the first study of a
mixed couplings of heavy neutrinos to τ leptons and light-
flavor leptons. Upper limits on the mixing of HNLs
to the active neutrinos in the mass range 0.2–1.6 GeV=c2

are set. The maximum sensitivities are achieved around
1.0 GeV=c2 and the corresponding upper limits at 95% CL
for jUj2 are 1.4 × 10−4 (1.5 × 10−4) in the Dirac-like limit
for the normal (inverted) hierarchy and 1.0 × 10−4

(1.1 × 10−4) in the Majorana-like limit for the normal
(inverted) hierarchy.
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