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The first simultaneous determination of the absolute value of the Cabibbo-Kobayashi-Maskawa matrix
element V,;, using inclusive and exclusive decays is performed with the full Belle data set at the T (4S)
resonance, corresponding to an integrated luminosity of 711 fb~!'. We analyze collision events in which one
B meson is fully reconstructed in hadronic modes. This allows for the reconstruction of the hadronic X,
system of the semileptonic b — u#v, decay. We separate exclusive B — 7£D, decays from other inclusive
B — X,¢v, and backgrounds with a two-dimensional fit that utilizes the number of charged pions in the X,
system and the four-momentum transfer ¢> between the B and X, systems. Combining our measurement
with information from lattice QCD and QCD calculations of the inclusive partial rate as well as external
experimental information on the shape of the B — #£v, form factor, we determine \VZ’;°1| = (378 +
023 £0.16 £0.14) x 107 and |Vi®!| = (3.88 +0.20 £ 0.31 +0.09) x 1073, respectively, with the
uncertainties being the statistical error, systematic errors, and theory errors. The ratio of |VE!|/|Vind| =
0.97 £ 0.12 is compatible with unity.
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B — ntv, 1], Ay, — puv, [2], or By - Kup, [3], whereas
inclusive determinations study B meson decays undergoing
b — ufv, transitions and are indiscriminate of the u — X,
hadronization process. The world averages of either method
are only marginally compatible [1],

|vexd| = (3.51 £0.12) x 1073, (1)
|vind| = (4.19 £ 0.16) x 1073, (2)

with a ratio of |[V|/|Vind| = (.84 £ 0.04, which deviates
3.7 standard deviations from unity. The underlying reason
for this tension is unknown. New physics explanations are
challenging (see, e.g., Refs. [4-7]), leading some to
speculate the existence of until now unaccounted system-
atic effects [8]. This motivates the simultaneous determi-
nation in a single analysis, in which B — #£7, and the
B — X,fv, rates can be simultaneously extracted and
systematic effects can be correlated.

The presented measurement of inclusive and exclusive
b — ufv, decays uses the same collision events and a
similar analysis strategy as Refs. [9,10]. Charmless semi-
leptonic decays are reconstructed by relying on the com-
plete reconstruction of the second B meson in the
e"e” — Y(4S) — BB process. This approach allows for
the direct reconstruction of the X, system of the B —
X, lv, process. Specifically, the four-momentum transfer
squared, ¢*> = (pp — px,)?, and the number of charged
pion candidates of the X, system, N, can be recon-
structed. This allows for the separation of BT — 7%/ *v,
and B® - 7~¢*v, from other B — X,£0, decays. The
main background in the measurement stems from the much
more abundant B — X.£7, decays, and a multivariate
suppression strategy is used to reduce this and other
background processes. Charge conjugation is implied
throughout. The inclusive B — X,£7, branching fraction
is defined as the average branching fraction of B* and B°
meson decays. Furthermore, we denote £ = e, u, and use
natural units: 2 =c¢ = 1.

We analyze (772 4 10) x 10° B meson pairs recorded at
the Y'(4S) resonance energy and 79 fb~! of collision events
recorded 60 MeV below the Y(4S) peak. Both data sets
were recorded at the KEKB e ™ e~ collider [11] by the Belle
detector. Belle is a large-solid-angle magnetic spectrometer.
A detailed description of its performance and subdetectors
can be found in Ref. [12]. The particle identification and
selection criteria are the same as in Ref. [9].

Monte Carlo (MC) samples of B meson decays and
continuum processes (ete™ — gg with ¢ = u, d, s, c) are
simulated using the EvtGen generator [13]. The normaliza-
tion of continuum events is calibrated with the measured
off-resonance data. A detailed description of all samples
and decay models is given in Ref. [9]. The simulated
samples are used for background subtraction and to correct
for detector resolution, selection, and acceptance effects.

The used sample sizes correspond to approximately ten and
five times, respectively, the Belle collision data for the B
meson production and continuum processes.

Semileptonic B — X,£v, decays are simulated as a
mixture of specific exclusive modes and nonresonant
contributions using a “hybrid” approach [14—16]: the triple
differential rate of inclusive and exclusive predictions are
combined such that the partial rates of the inclusive
prediction are recovered. This is achieved by assigning
weights to the inclusive contribution as a function of the
generator-level ¢, EZ, and My. Here, E% and My denote
the energy of the lepton in the signal B rest frame and
the invariant mass of the X, system produced in the B —
X,Cv, decay. For the inclusive contribution, we use two
different calculations: the De Fazio and Neubert model [17]
(with mkN = (4.66 £ 0.04) GeV, a®N =13+ 0.5 in the
Kagan-Neubert scheme) and the Bosch-Lange-Neubert-
Paz model [18] (with m3F =4.61 GeV, u23F =0.20 GeV?
in the Shape Functioin scheme). The difference between the
two models is treated as a systematic uncertainty. The
simulated inclusive B — X, £7, events are hadronized with
the JETSET algorithm [19] into final states with two or
more mesons. We study two different tunes of the frag-
mentation parameters and assign their difference as a
systematic uncertainty. The exclusive contributions are
modeled as follows: B — n£v, decays are modeled using
the Bourrely-Caprini-Lellouch (BCL) form factor para-
metrization [20]; B —pfv, and B — wfv, decays are
modeled using the Bharucha-Straub-Zwicky form factors
[21] from the fit of Ref. [22] to light-cone sum rule (LCSR)
predictions [21] and the measurements of Refs. [23-25];
B — ntv, and B — /¢, are modeled using pole form
factors obtained from fits to LCSR [26]. For the branching
fractions the world averages from Ref. [27] are used.

Semileptonic B — X .£v, decays are dominated by B —
D¢v, and B — D*¢v, decays. We simulate them with the
form factors of Refs. [28-30] and values determined by the
measurements of Refs. [31,32]. Other B — X .7, decays are
simulated as a mixture of resonant and nonresonant modes,
using the parametrization of Ref. [33] for the modeling of
B — D**¢v, form factors. The known difference between
inclusive and the sum of measured exclusive B — X .£7v,
decays is simulated with B — D)+ v, decays.

We reconstruct e e~ collision events with the multivari-
ate tagging algorithm of Ref. [34]. The algorithm uses a
hierarchical approach utilizing neural networks to fully
reconstruct one of the two B mesons in hadronic final states
(labeled as By,). The B, reconstruction efficiency is
calibrated using B — X .£v, decays following the prescrip-
tion outlined in [9]. The identified final state particles
forming the B, are masked and b — uZ7v, signal candi-
dates are reconstructed by identifying an electron or muon
candidate in the events, requiring EZ = [pZ| > 1 GeV as
measured in the signal B rest frame. To reject background
from the much more abundant B — X .£7, decays, eleven
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distinguishing features are combined into a single discrimi-
nant using boosted decision trees (BDTs) and utilizing the
implementation of Ref. [35]. The most discriminating
training features are the reconstructed neutrino mass,
M2, the vertex fit probability of the decay vertex between
the hadronic system X and the signal lepton #, and the
number of identified K* and K9 in the X system. As in [9],
we select a working point that corresponds to a signal
efficiency of 18.5%, which rejects 98.7% of B — X (v,
decays, defined with respect to all events after the B,
selection. To test the modeling of B — X_.£7, and other
backgrounds in the extraction variables, ¢ and N+, we
also utilize the events failing the BDT selection and find
good agreement [36]. We further separate events by the
reconstructed M y, categorizing My < 1.7 GeV into five ¢°
bins ranging in [0,26.4] GeV? as a function of the N,-
multiplicity for the interval of [0, 1,2, > 3]. Events with
My > 1.7 GeV are analyzed only in bins of NV =+ as they are
dominated by background. To enhance the B — zfv,
purity in the low-My N, =0 and N, =1 events, we
apply a selection on the thrust of 0.92 and 0.85, respec-
tively. It is defined by max, i (3_; [p; - m|/ >_; [pil|), when
summing over the neutral and charged constituents of the
reconstructed X system in the center of mass frame. For
B — nfU, events, we expect a more collimated X, system
than for B — X /v, and other B — X,£v, processes,
resulting in a higher thrust value.

The ¢*: N, bins and the My > 1.7 GeV N+ distribu-
tion are analyzed using a simultaneous likelihood fit, which
incorporates floating parameters for the modeling of the
B — n¢v, form factor, the binned templates, and system-
atic uncertainties as nuisance parameters. Specifically, the
shape of B — £V, template is linked to the form factors by
correcting the efficiency and acceptance effects. The fit
components we probe are the normalizations of B — #£v,
decays, other B — X/, signal decays, and of back-
ground events dominated by B — X /7, decays. The f,
and f, form factors describing the B — nf7D, decay
dynamics are parametrized with expansion coefficients
a; and a? using the BCL expansion

+_
1 NT-1

+ n
— 1 — (=1 n—N N+t
g 2 [

f+(‘12)

NO—1

folg®) = ahe, (3)
n=0

at expansion order N* = N° = 3 in the conformal variable
z=2(q%) [20,37], and aj is expressed by the remain-
ing coefficients to keep the kinematical constraint
f+(0) = fo(0). We constrain the expansion coefficients
to the lattice QCD (LQCD) values of Ref. [37], combining
LQCD calculations from several groups [38,39]. Note that
the measured distributions have no sensitivity for f,, and

thus, we neglect its effects in the decay rate. The inclusion
of the f, expansion coefficients, however, reduces uncer-
tainties on the B — n£v, rate through the correlation to the
S+ shape. In order to utilize the full experimental knowl-
edge of the B — # form factors to date, we constrain its
shape to the combined lattice QCD and experimental
information of Refs. [40-43]. The fit scenario with only
lattice QCD constraints is studied for a stand alone
comparison with other experimental results.

We consider additive and multiplicative systematic
uncertainties in the likelihood fit by adding bin wise
nuisance parameters for each template. The parameters
are constrained to a multivariate Gaussian distribution with
a covariance reflecting the sum of all considered systematic
effects, and the correlation structure between templates
from common sources is taken into account. This includes
detector and reconstruction related uncertainties, such as
the tracking efficiency for low and high momentum tracks,
particle identification efficiency uncertainties, and the
calibration of the By, reconstruction efficiency. We further
consider uncertainties on the B — X,/v, and B — X £,
shapes from the form factors, nonperturbative parameters,
and their compositions. The u — X, fragmentation uncer-
tainties are evaluated by changing the default Belle tune of
fragmentation parameters to the values used in Ref. [44].
We further vary the ss-production rate y, = 0.30 &= 0.09,
spanning the range of Refs. [45,46]. The largest uncer-
tainties on the exclusive branching fraction measurements
are from the calibration of the tagging efficiency (+4.1%)
and the B — X7V, modeling (£3.5%). The largest uncer-
tainties on the inclusive branching fraction measurement
are from the B - X, 70, (£10.9%) modeling and the u —
X, fragmentation (£5.3%). The uncertainties of the mod-
eling of the B — X .£v, background are +1.2% and +2.8%
for the B — #n¢v, and B — X,/v, branching fractions,
respectively.

Figure 1 shows the ¢?>: N - distribution of the signal
region after the fit and with only using LQCD information:
Bt — n°¢*v, and B’ — n=¢* v, events are aggregated in
the N,+ =0 and N, =1 bins, respectively, whereas
contributions from other B — X ,£v, processes are in all
multiplicity bins. The high My bins constrain the B —
X /v, and other background contributions. We use the
isospin relation and B®/B™ lifetime ratio to link the yields
of Bt = 2%*v, and B - 2= ¢*v,. The fit has a y? of
13.8 with 21 degrees of freedom, corresponding to a p
value of 88%. The measured B — 7°%¢*v, and B —
n~ ¢ v, yields are corrected for efficiency effects to
determine the corresponding branching fractions B. The
measured inclusive yield is calculated from the sum of
Bt - 2°%¢*v,, B - n¢*v,, and other B — X,fi,
events and unfolded to correspond to a partial branching
fraction AB with El; > 1.0 GeV, also correcting for the
effect of final state radiation photons. We find
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FIG. 1. The ¢*: N, spectrum after the 2D fit is shown for the
scenario that only uses LQCD information. The uncertainties
incorporate all postfit uncertainties discussed in the text.

B(B® » ¢ 0,) = (1.45+0.1940.14) x 1074, (4)
AB(B = X,f0,) = (1.39+£0.14£0.22) x 1073, (5)

with the errors denoting statistical and systematic uncer-
tainties, and we used the isospin relation between B~ —
7°¢~v, and B — 77 ¢~ D, to link both branching fractions.
The recovered branching fraction for B® — z7¢7 0, is
compatible with the world average of B(B® — z*¢~1,) =
(1.50 £ 0.06) x 10™* [1]. The correlation between the
exclusive and inclusive branching fractions is p = 0.11.
Using calculations for the inclusive partial rate and the
fitted form factor parameters, we can determine values for
|V .- As our baseline, we use the GGOU [47] calculation
for the inclusive partial rate with EZ > 1.0 GeV
(AT/|V,|*> =585+ 2.7 ps7!), but other calculations
result in similar values for inclusive |V,,;|. We find

|vexe| = (4.05 4 0.30 £0.16 £0.16) x 1073, (6)
|Vinel| = (3.87 £0.20 £ 0.31 £0.09) x 1073, (7)

for exclusive and inclusive |V,,| with the uncertainties
denoting the statistical error, systematic error, and error
from theory (either from LQCD or the inclusive calcula-
tion). The correlation between the exclusive and inclusive
[V.s]is p = 0.07. The determined value for inclusive |V, |
is compatible with the determination of Ref. [9]. For the
ratio of inclusive and exclusive V;, values, we find

Ve|/|Vind| = 1.05 £ 0.14, (8)

which is compatible with the standard model (SM) expect-
ation of unity. The value is higher and compatible with the
current world average of |VEcl|/|Vind| = 0.84 4 0.04 [1]
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FIG. 2. The |V,;| values obtained with the fits using (top)
LQCD or (bottom) LQCD and experimental constraints for the
BY — 7" ¢, form factor are shown. The inclusive |V, | value is
based on the decay rate from the Gambino-Giordano-Ossola-
Uraltsev (GGOU) calculation. The values obtained from the
previous Belle measurement [9] (gray band) and the world
averages from the Heavy Flavor Averaging Group (HFLAV) [1]
(black marker) are also shown. The shown ellipses correspond to
39.3% confidence levels (Ay* = 1).

within 1.5 standard deviations. Figure 2 (top) compares the
measured individual values with the SM expectation and
the current world average. We also test what happens if we
relax the isospin relation between B~ — 7%/~ 1, (red
ellipse) and B® — 771, (blue) branching fractions and
find compatible results for exclusive and inclusive |V, |, as
well as for the exclusive |V ;| values.

In the nominal result, we utilize the full theoretical and
experimental knowledge of the B — #nfv, form factor,
combining shape information from the measured ¢* spec-
trum with LQCD predictions, as provided by Ref. [37]. The
determined (partial) branching fractions in this scenario are

B(B® —» n*¢70,) = (1.53 £0.18 £0.12) x 1074, (9)

AB(B — X,¢0,) = (139 £ 0.14 £ 0.22) x 103, (10)

211801-4



PHYSICAL REVIEW LETTERS 131, 211801 (2023)

T T T T
=8~ Bkg-subtracted (fit with LQCD & exp const) BCL (fit with LQCD & exp const)
A Bkg-subtracted (fit with LQCD const) == BCL (fit with LQCD const)

Input LQCD const

———

- \ .

N w »

dr/dg? x 108 Gev~!

-

0 | | |
0 5 10 15 20 25

q° [GeV?]

FIG. 3. The ¢* spectra of B - 77/ D, obtained from
the fit of the combined LQCD and experimental information
(orange, solid curve) and from the fit to LQCD only (green,
dashed curve) are shown. The data points are the background
subtracted postfit distributions, corrected for resolution and effi-
ciency effects and averaged over both isospin modes. In addition,
the LQCD prefit prediction of [37] for the B® — z*#~p, form
factor is shown (gray).

with a correlation of p = 0.12 between inclusive and
exclusive branching fractions and assuming isospin rela-
tion. This fit leads to a more precise value of |V,,;,| from
B — 7D, and we find with the same inclusive calculation

lvexd| = (3.78 £0.23 £ 0.16 £ 0.14) x 1073, (11)
|vinel| = (3.88 +0.20 + 0.31 £0.09) x 1073, (12)

with a correlation p = 0.11 and a ratio of
|vexd| /|vind| = 0.97 +0.12, (13)

compatible with the world average within 1.2 standard
deviations. Figure 2 (bottom) compares the obtained
values, and we also find good agreement between the
isospin conjugate exclusive values of |V,,|. Figure 3
compares the fitted ¢> spectra of the differential rate of
B - nt¢~p, for both fit scenarios as well as for the
LQCD input [37]. The inclusion of the full experimental
and theoretical knowledge leads to a higher rate at low g>.

In summary, we presented the first simultaneous deter-
mination of inclusive and exclusive |V,,| within a single
analysis. In the ratio of both |V ;| values, many systematic
uncertainties, such as the tagging calibration or the lepton
identification uncertainties, cancel, and one can directly test
the SM expectation of unity. We recover ratios that are
compatible with this expectation, but 1.5 standard devia-
tions higher than the ratio of the current world averages of
inclusive and exclusive |V ,;,|. This tension is reduced to 1.2
standard deviations when including the constraint based on

the full theoretical and experimental knowledge of the B —
n¢v, form factor shape. We average our inclusive and
exclusive values from both approaches using LQCD or
LQCD and additional experimental information and find,

V| =(3.9620.27)x 1073, (LQCD) (14)

V| = (3.84+0.26)x 1073,  (LQCD+exp), (15)
respectively. These values can be compared with the
expectation from CKM unitarity of Ref. [48] of |[VEKM| =
(3.64 +0.07) x 1073 and are compatible within 1.2 and 0.8
standard deviations, respectively. The applied approach of
simultaneously fitting g> and the number of charged pions
in the X, system will benefit from the large anticipated data
set of Belle II. Additional fit scenarios and inclusive |V ;|
values from other theory calculations of the partial rate are
provided in the Supplemental Material [36].
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