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We report the first measurement of the Michel parameter ξ0 in the τ− → μ−ν̄μντ decay with a new method
proposed just recently. The measurement is based on the reconstruction of the τ− → μ−ν̄μντ events with

subsequent muon decay in flight in the Belle central drift chamber. The analyzed data sample of 988 fb−1

collected by the Belle detector corresponds to approximately 912 × 106 τþτ− pairs. We measure
ξ0 ¼ 0.22� 0.94ðstatÞ � 0.42ðsystÞ, which is in agreement with the standard model prediction of
ξ0 ¼ 1. Statistical uncertainty dominates in this study, being a limiting factor, while systematic uncertainty
is well under control. Our analysis proved the practicability of this promising method and its prospects for
further precise measurement in future experiments.
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In the standard model (SM), the τ lepton decays via weak
charged vector current interaction mediated by a virtual W
boson that interacts only with left-handed fermions. Since
the momentum transfer in τ decays is much smaller than the
W mass, the decay amplitude can be approximated with

high accuracy by a four-fermion interaction with V − A
Lorentz structure. Any deviations from this structure will
indicate physics beyond the SM caused by either anoma-
lous coupling constants of the W-τ interaction or by a
contribution of new gauge or charged Higgs bosons [1].
The larger mass of the τ lepton compared to that of the
muon can enhance the particular new physics contribution
to the decay process leading to an “incorrect” Lorentz
structure [2–4].

Pure leptonic τ decays hold a special place in studies of
the charged weak interaction since the theoretical calcu-
lation of these processes can be done precisely without
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QCD-associated uncertainties. For the complete study of
the Lorentz structure of the interaction responsible for the
leptonic τ decay, one starts with the Lorentz invariant, local,
derivative-free, lepton-number-conserving Hamiltonian
of the four-fermion interaction [5]. The resulting matrix
element of the τ− → l−ν̄lντ [6] decay, written in the form
of helicity projections [7–9], includes scalar, vector, and
tensor interactions with left- and right-handed initial τ and
daughter leptons. The relative contribution of each term is
determined by ten corresponding complex coupling con-
stants. They are normalized so that the general interaction
strength is given by the Fermi constant GF. The exper-
imentally observed differential decay width of the lepton
is determined by bilinear combinations of coupling
constants. It is convenient to express them in terms of
the so-called Michel parameters described in detail else-
where [10].
At present, all Michel parameters have been measured

with high precision in μ− → e−ν̄eνμ decays [11], while in τ
decays, only four Michel parameters have been measured
with an accuracy to the order of a few percent levels [11].
All measurements are consistent with the predictions of the
SM within experimental uncertainties. To obtain the
remaining Michel parameters in τ decays, it is required
to measure the daughter lepton polarization, which has not
been done directly yet. Recently, the Belle Collaboration
reported the measurement of two Michel parameters
associated with the daughter lepton polarization in the
radiative leptonic τ decays [12]. However, this measure-
ment suffers from too large uncertainties. Five-body lep-
tonic τ decays open up another opportunity to measure
Michel parameters related to the polarization of the
daughter lepton from τ− → l−ν̄lντ [13]. Although a
sensitivity test for this method was performed by the
Belle Collaboration [14,15], demonstrating its feasibility,
the measurement has not been done yet.
In this Letter, we present the first direct measurement of

the Michel parameter ξ0 in the τ− → μ−ν̄μντ decay. This
parameter determines the longitudinal polarization of the
daughter muon in the case of an unpolarized τ lepton. We
use the method developed in Ref. [16] for implementation
in the experiments at the B factories. It is based on the
reconstruction of the μ− → e−ν̄eνμ decay in flight in the
tracking detector and exploits the correlation between the
daughter electron momentum and the muon spin. A more
comprehensive description of the measurement is provided
in a companion article [17].
This analysis is based on a data sample collected at

center-of-mass energies around the ϒðnSÞ resonances
(n ∈ f1; 2; 3; 4; 5g) with an integrated luminosity of
988 fb−1 corresponding to ≈912 × 106 τþτ− pairs. We
use Monte Carlo (MC) simulation of the main processes in
eþe− annihilation to optimize the selection criteria, study
the background contamination, and determine the fit
function.

The data are collected with the Belle detector [18,19] at
the KEKB asymmetric-energy eþe− collider [20,21]. The
Belle detector is a large-solid-angle magnetic spectrometer
that consists of a silicon vertex detector (SVD), a 50-layer
central drift chamber (CDC), an array of aerogel threshold
Cherenkov counters (ACC), a barrel-like arrangement of
time-of-flight scintillation counters (TOF), and an electro-
magnetic calorimeter (ECL) composed of CsI(Tl) crystals
located inside a superconducting solenoid coil that provides
a 1.5 T magnetic field. An iron flux return located outside
of the coil is instrumented to detect K0

L mesons and to
identify muons (KLM).
The most critical Belle subdetector for this study is the

CDC [22]. It is large enough (the outer radius is 874 mm) to
reliably reconstruct both the daughter electron and mother
muon tracks if the decay occurs in the inner CDC volume.
However, the average flight distance of muons from τ
decays at Belle is of the order of a kilometer, leading to a
decay probability inside the CDC of about 10−3. The large
τþτ− sample compensates for this tiny probability and
allows one to reconstruct hundreds of such events at Belle.
The Belle reconstruction algorithm can find separately

the trajectories of the parent muon and the daughter
electron from the μ− → e−ν̄eνμ decay: together these
appear as a kinked track (kink) in the CDC. These
trajectories can be fitted to the point of their closest
approach to obtain the muon decay vertex. Figure 1 shows
the event display of a typical signal event generated with
the MC simulation, where a kink from the μ− → e−ν̄eνμ
decay is clearly observed.
We perform τ− → μ−ð→ e−ν̄eνμÞν̄μντ event selection

based on the τþτ−-pair event topology, kink pattern, and
μ− → e−ν̄eνμ decay features. Here, we provide only a
qualitative discussion, while a detailed description of the

FIG. 1. Event display of a MC event eþe− → τþτ− →
ðπþπ−πþν̄τÞðμ−ν̄μντÞ with μ− → e−ν̄eνμ decay in the CDC
(the arrow points to the decay vertex). The Belle detector,
without the KLM, is shown projected onto the x-y plane.
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selection can be found in Ref. [17]. We start with a standard
preselection of eþe− → τþτ− events with τ− → μ−ν̄μντ
decay on the signal side. We are not interested in a
particular decay mode of the tagging τ lepton; therefore,
we content ourselves only with its decay topology. As the
majority of the τ decay modes have one or three charged
particles in the final state with several π0s and photons, we
require the event topology to be 1–1 or 1–3: one charged
track originating from the beam interaction point (IP) in the
signal hemisphere (muon candidate from the τ− → μ−ν̄μντ
decay) and one or three charged tracks from the IP in the tag
hemisphere. In the signal hemisphere, we additionally
require one track displaced from IP, which is then used
as an electron candidate from the μ− → e−ν̄eνμ decay.
In the first step, we focus on the suppression of the non-

τþτ− background, such as hadron and muon production,
two-photon processes, and Bhabha scattering. For this, we
use the missing energy and momentum signature typical for
τþτ− pair events due to undetectable neutrinos in the final
state. We additionally suppress Bhabha scattering by a
loose electron veto in the tagging hemisphere using the
standard Belle particle identification based on the informa-
tion from the CDC, ACC, and ECL subdetectors [23].
We also suppress the background in the signal hemisphere

from decay modes other than τ− → μ−ν̄μντ, which mainly
containπ− in the final state, often accompanied byπ0s. Thus,
we veto events with significant energy deposits in the ECL
associated with photons in the signal hemisphere.
The next step is the innovative part of the analysis since

kinks have never been used in Belle studies before. The
selection is based on two reconstructed tracks in the CDC:
one originates in the vicinity of the IP (muon candidate) and
ends inside the CDC volume, and the other track (electron
candidate) is required to be inconsistent with being pro-
duced at the IP. Both trajectories are required to be located
close to each other forming a kink, and the point of their
closest approach is used as the muon decay vertex. Since
kink trajectories are, on average, shorter than regular ones,
we limit the number of CDC hits assigned to the tracks. We
additionally suppress combinatorial background by vetoing
signals in the Belle subsystems, which are absent for kink
tracks (TOF, ECL, and KLM response for the muon track
candidate and SVD and KLM response for the electron
candidate).
After the application of the above two steps of selection,

the nonkink background is suppressed to a negligible level,
as confirmed using the MC simulation. The remaining
events consist of the signal μ− → e−ν̄eνμ decay and real-
kink background processes mimicking the signal: light
meson decays (π− → μ−ν̄μ, K− → μ−ν̄μ, K− → π0μ−ν̄μ,
K− → π0e−ν̄e, K− → π−π0, K− → π−πþπ−, and K− →
π−π0π0), and electron, muon, and hadron scattering. The
K− and π− decays are mainly two-body and are charac-
terized by monochromatic daughter particle momentum in
the mother’s rest frame when the correct pair of mass

hypotheses is assigned to tracks. Figure 2 shows such
momentum distributions calculated for pion and kaon mass
hypotheses assigned to the daughter and mother tracks,
respectively. The filled histograms correspond to MC
events, while points with errors show the data. Peaks from
the two-body decays are clearly observed: the narrowest
one is from K− → π−π0 since the pair of mass hypotheses
assigned to the tracks is correct for this decay. The
dominant peak from the K− → μ−ν̄μ decay is slightly
smeared by misinterpretation of the daughter mass hypoth-
esis. Other backgrounds, which do not have such distinct
characteristics, have a broad shape. Agreement between
simulation and data is observed, and the background
exceeds the signal by 2 orders of magnitude.
To suppress the remaining background with high effi-

ciency, we employ a boosted decision tree classifier (BDT)
[24,25]. We configure the BDT to distinguish signal from
background based on 12 features selected by separation
power and the physical characteristics of the signal and
each background source. The first two features are the
momentum of the daughter particle in the mother rest frame
with two pairs of mass hypotheses: muon and pion (pμπ),
and pion and kaon (pπK) mass hypotheses assigned to the
daughter and mother particles, respectively. The use of
these variables is intended mainly to suppress the back-
ground from hadron kinks.
The other five features are particle identification (PID)

variables for the muon and electron candidates. The
identification of the former is based only on the dE=dx
losses in the CDC; it includes the contradistinction of the
muon hypothesis against electron, pion, kaon, and proton
hypotheses. The electron candidate PID is based on the
combination of the dE=dx losses inside the CDC and the
information from ECL. Here, we only consider the electron
hypothesis against the muon hypothesis. The PID variables
are useful for the background suppression of all kink types.
We also use parameters of the decay vertex in the BDT:

the z coordinate of the muon track endpoint and the

FIG. 2. Distribution of the momentum of the daughter, in the
rest frame of the mother, for pion and kaon mass hypotheses
assigned to the daughter and mother particles, respectively.
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distance between the kink tracks at the decay vertex. Their
separation power is based on the difference in the momen-
tum transfer, which depends on the kink type.
The last three features are based on the kinematics of the

event and focused on the suppression of the residual
background from non-τþτ− processes, since about a third
of hadron kinks originate from eþe− → qq̄ events.
The BDT application has a high signal efficiency (about

80%) while suppressing the background by a factor of 50. It
is additionally checked with the MC simulation that no bias
in the signal kinematic distributions related to ξ0 is induced
by the BDT selection. Figure 3 shows the electron
momentum in the muon rest frame with the corresponding
mass hypotheses for the selected τ− → μ−ð→ e−ν̄eνμÞν̄μντ
events. The tail above the kinematic threshold of
53 MeV=c in the μ− → e−ν̄eνμ decay is due to the
imperfect resolution of the momentum of the mother and
daughter particles, and the decay vertex. Finally, we obtain
165 signal-candidate events in data, while based on the
simulation, we estimate the number of signal events to be
139 with 50 background events. Although the number of
events depends on the ξ0 value, the effect is not significant
for the reported study, and we estimate the number from the
simulation with ξ0 ¼ 0.
To validate the MC simulation and estimate systematics,

we use control samples with tagged kinks of different
types: kaon two-body and three-body decays, π− → μ−ν̄μ
decays, and hadron scattering selected from the D�þ →
D0ð→ K−πþÞπþ candidate sample, and electron scattering
from the γ-conversion candidate sample. All samples of
background-type kinks are larger than the corresponding
background in the signal sample. The exploitation of the
D�þ and γ-conversion samples allows for the selection of
specific types of kink without uncertainties induced by the
BDT application. We also use K− → μ−ν̄μ and π− → μ−ν̄μ
decays selected with BDT from the τ candidates sample.
To take into account the BDT uncertainties, we compare
light meson decay events from the τ and D�þ samples. In

general, agreement between the MC simulation and data is
observed for all samples with minor discrepancies taken
into account as systematics.
To measure the Michel parameter ξ0, we perform an

unbinned maximum-likelihood fit to the ðy; cos θeÞ≡
ðy; cÞ distribution, where y is the electron energy in the
muon rest frame divided by mμ=2, and θe is an angle of the
electron emission direction in the muon rest frame. This
angle carries information about the muon spin, taking into
account its rotation in the magnetic field of the Belle
detector. The definition of cos θe and a detailed description
of its calculation can be found in Ref. [16]. The probability
density function (PDF) used in the fit is defined as follows:

Pðy; c; ξ0Þ ¼ pPsigðy; c; ξ0Þ þ ð1 − pÞPbckgðy; cÞ:

Here, Psigðy; c; ξ0Þ and Pbckgðy; cÞ are the signal and back-
ground PDF, respectively, and p ¼ 0.74 is the signal purity;
we obtain all of them from the MC simulation. We calculate
the signal PDF taking into account the reconstruction
efficiency and detector resolution from two MC samples
generated with the parameters ξ0 ¼ −1 [P−1ðy; cÞ ¼
Psigðy; c;−1Þ] and ξ0 ¼ 1 [Pþ1ðy; cÞ ¼ Psigðy; c; 1Þ] using
the fact that the initial theoretical function is linear in the
parameter ξ0:

Psigðy; c; ξ0Þ ¼
1

2
fPþ1ðy; cÞ þ P−1ðy; cÞ

þ ξ0½Pþ1ðy; cÞ − P−1ðy; cÞ�g:

The large size of the signal MC sample allows us to use
Psigðy; c; ξ0Þ in the formof a 10 × 10 histogram.By contrast,
the backgroundMC sample size is limited by the generating
complexity; therefore, we choose Pbckgðy; cÞ as a smooth
parametric function that describes the two-dimensional
background histogram in ðy; cÞ with χ2 per degree of
freedom ≈ 1. This approach is tested using pseudoexperi-
ments generated with 11 ξ0 seed values from−1 to 1, and no
bias is observed.
Finally, the Michel parameter ξ0 is found to be ξ0 ¼

0.22� 0.94 from the fit to the data. The result of the fit is
shown in Fig. 4 via projections onto cos θe for two intervals
in y larger than 0.52. A projection onto cos θe for y < 0.52
is not shown since there is almost no sensitivity to ξ0 for this
interval.
The systematic errors of the measurement are taken into

account by assuming the most conservative approach. They
are estimated in a blind manner using an ensemble of
pseudoexperiments simulated for the whole physically
allowed range of ξ0 values from −1 to 1. Each sample is
generated according to the PDF, determined taking into
account any discrepancies between the data and the MC
simulation observed in the control kink samples. Four main
sources of systematics are considered: the signal and
background PDFs, particle identification, and the fit

FIG. 3. Distribution of the momentum of the daughter, in the
rest frame of the mother, for electron and muon mass hypotheses
assigned to the daughter and mother particles, respectively. The
dashed line shows the 53 MeV=c threshold.
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procedure. We estimate their contributions to be 0.14, 0.20,
0.24, and 0.25, respectively, leading to a total systematic
uncertainty of 0.42. It is additionally checked that system-
atics estimated from the data fit by variation of correspond-
ing PDFs yields a lower value for each source compared to
the blinded approach.
As a result, we measure the Michel parameter ξ0 to be

ξ0 ¼ 0.22� 0.94� 0.42;

where the first uncertainty is statistical and the second one
is systematic. The obtained value is in agreement with the
SM expectation of ξ0 ¼ 1 within the uncertainties. The
precision of the reported ξ0 measurement is significantly
better than that obtained in the radiative τ decays [12].
In summary, we report the first direct measurement of the

Michel parameter ξ0 in the τ− → μ−ν̄μντ decay using the
full data sample of 988 fb−1 collected by the Belle detector.
The obtained value ξ0 ¼ 0.22� 0.94� 0.42 is in agree-
ment with the SM prediction. The performed measurement
proves the feasibility of the novel method proposed in
Ref. [16]. This analysis demonstrated that the over-
whelming background can be efficiently suppressed with
the machine learning algorithm to a manageable level.
Statistics is a limiting factor in this analysis, while

systematics is smaller and remains well under control with
various data-control samples. Thus, in future experiments,
the systematics will not restrain the overall accuracy. In this
study, one of the limiting factors for the precision turned
out to be the kink-vertex resolution due to the absence of a
dedicated kink reconstruction algorithm. While we could
not overcome this problem in this analysis due to various
nonphysical factors, it is feasible to implement such an
algorithm in future experiments. Based on this experience,
it should be possible to improve the result in the near future
in the Belle II experiment [26]. Furthermore, the pioneering
of this method opens a unique opportunity to measure the
muon polarization in other weak processes like semilep-
tonic decays of heavy mesons.
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