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Based on et e~ collision data corresponding to an integrated luminosity of 4.5 fb~! collected at the
center-of-mass energies between 4.600 and 4.699 GeV with the BESIII detector at BEPCII, the absolute
branching fraction of the inclusive decay A; — 7 + X, where X refers to any possible final state particles,
is measured. The absolute branching fraction is determined to be B(A; — 7i + X) = (32.4 £ 0.7 + 1.5)%,
where the first uncertainty is statistical and the second systematic. Assuming CP symmetry, the

measurement indicates that about one fourth of A (A7) decay modes with a neutron (an antineutron)

in the final state have not been observed.

DOI: 10.1103/PhysRevD.108.L031101

The A/ is the lightest charmed baryon, and the
measurement of the properties of A provides key input
for studying heavier charmed baryons [1] and bottom
baryons [2,3], as well as understanding the dynamics of
light quarks in the environment with a heavy quark [4].
However, there is no reliable phenomenological model
calculation describing the complicated physics of charmed
baryon decays. Therefore, comprehensive and precise
experimental studies of the A" decays are highly desirable.

Experimentally, since the discovery of the A baryon in
1979 [5], which eventually decays to a proton or a neutron,
its decays with a proton in the final state have been studied
extensively. However, information about decays with a
neutron in the final state is sparse. Recently, the BESIII
Collaboration measured the absolute branching fraction of
decay A} —» nat to be (6.6+1.2+04)x107* [6],
where the double-tag (DT) approach [7] is used, and the
neutrons are treated as missing particles and inferred under
the laws of conservation of energy and momentum. This is
the first-time measurement of the singly Cabibbo sup-
pressed mode involving a neutron directly in the final state
in the Al decays. Up to now, there are still very few
measurements that directly observed neutron signals in the
A/ decays [6,8,9], including the decays Al — £ 2z " and
>~ 7927 [10] where the X~ is reconstructed with its
dominant decay mode X~ — nz~. All the measurements
implicitly include charge-conjugate modes. Combing all
the known exclusive decays of A} summarized by the
Particle Data Group (PDG) [11], the total branching
fraction of the decays with a proton or a neutron in the
final state is about 44% or 25%, respectively, which
include both the direct decay channels of Al and the
decays from intermediate particles, i.e. A, Z, and E. There
are still lots of unknown decay channels of A} baryon to
be explored experimentally.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

The inclusive decay Al — n + X, where X refers to any
possible particle system, has not yet been studied exper-
imentally, due to the difficulty in discriminating neutron
signals from neutral noises. In 1992, Ref. [13] estimated
the inclusive branching fractions of both A7 — p + X and
A = n+ X to be (50 & 16)%, inferred from the known
exclusive B-meson decays and the fact that all Al must
decay to either proton or neutron. High precision mea-
surements on the inclusive decays of A} are crucial to
point out the direction of searches for unknown channels.
Furthermore, the results of inclusive decays will provide
direct information about whether there exists a significant
difference between the decays of Al with a proton and a
neutron in the final state. The investigation of the isospin
symmetry between them is important input to theoretical
estimation of the lifetime of the charmed baryon A/,

Compared with the neutron, an antineutron has larger
energy deposition in an electromagnetic calorimeter (EMC)
due to its annihilation reaction with materials, which allows
for good discrimination against the contamination from the
electromagnetic showers of photon. Hence, our measure-
ment is conducted with the antiparticle decay A; — 7 + X,
which is supposed to yield the same result as the A7 —
n + X if the CP violation effect is ignored.

In this paper, taking advantage of the excellent BESIII
detector performance and of the AFA; production just
above the mass threshold, the first measurement of
absolute branching fraction of the A7 — 7 + X decay is
reported using ete” collision data collected with the
BESIII detector at seven center-of-mass (c.m.) energies
between 4.600 and 4.699 GeV, corresponding to an
integrated luminosity of 4.5 fb~!. The integrated luminos-
ities at these c.m. energies [14,15] are summarized in
Table 1.

A detailed description of the design and performance of
the BESIII detector can be found in Ref. [16]. Simulated
samples are produced with a GEANT4-based [17]
Monte Carlo (MC) toolkit, which includes the geometric
description of the BESIII detector. The signal MC samples
of ete™ = AFA7, with A] decaying into the specific tag
mode A} — pK~z" and AI going to any possible
processes containing the already measured [6,8—11] and

L031101-4
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TABLE I. The integrated luminosity (£;,), ST yields, and the
detection efficiencies of the ST and DT selections for the data
samples at seven c.m. energies. The uncertainties are statistical
only.

Vs (GeV) Ly (pb™") NiT T (%) P (%)

4.600 5869 +£0.1 326662 51.0+£0.2 19.1£+0.1
4.612 103.8 £0.1 587+£28 502+0.2 19.24+0.1
4.628 521.54+0.1  2967+64 4954+0.2 19.1 +£0.1
4.641 5524 +£0.1 3201 £66 49.0+0.2 18.9+0.1
4.661 529.6 £0.1 3080+63 48.0+0.2 18.5+0.1
4.682 1669.3 +0.2 8863 + 107 47.3+0.2 18.2+0.1
4.699 536.5+£0.1 2613+59 464+0.2 17.84+0.1

predicted [12] ones with an 7 in the final state, are used to
determine the detection efficiencies. They are generated for
each individual c.m. energy with the generator KKMC [18]
by incorporating initial-state radiation (ISR) effects and the
beam energy spread. The 7 candidates include the ones both
from the interaction point (IP) and from intermediate
particles, i.e. A, £ and E. The inclusive MC samples,

which consist of A7A7, charmed meson DE;) pair produc-

tion, ISR return to the charmonium(-like) y states at lower
masses, and continuum processes ete™ — qg (¢ = u, d, s),
are generated to survey potential backgrounds. Particle
decays are modeled with EVTGEN [19,20] using branching
fractions taken from the PDG [11], when available, or
otherwise estimated with LUNDCHARM [21,22]. Final state
radiation from charged final state particles is incorporated
using PHOTOS [23].

The DT approach [7] is implemented to measure the
absolute branching fraction of A7 — 7 + X. Taking advan-
tage of a large branching fraction and a high signal-to-
background ratio, A baryons are reconstructed in the A} —
pK~n" decay mode, and are referred to as the single-tag
(ST) candidates. Events in which the signal decay A; —
n + X is reconstructed in the system recoiling against the
A} candidates of the ST sample are denoted as the DT
candidates.

Charged tracks detected in the helium-based multilayer
drift chamber (MDC) are required to be within a polar angle
(@) range of |cos 0] < 0.93, where 0 is defined with respect
to the z axis, which is the symmetry axis of the MDC. Their
distances of the closest approach to the IP must be less than
10 cm along the z axis, and less than 1 cm in the transverse
plane. The particle identification is implemented by com-
bining measurements of the ionization energy loss (dE/dx)
in the MDC and the flight time in the time-of-flight system,
and to each charged track a particle type of pion, kaon, or
proton is assigned, according to which assignment has the
highest probability.

The ST A} candidates are identified using the beam

: _ /> 4_ 17 12/
constrained mass MBc—\/Ebeam/C —|Pa+|*/c* and

energy difference AE = E\+ — Epeqm, Where Epeyy is the

beam energy, and E,+ (p,+) is the energy (momentum) of
the A candidates in the c.m. frame. The A} candidates are
required to satisfy the requirement AE € (—34,20) MeV.
The asymmetric interval takes into account the effects of
ISR and corresponds to 3 times the resolution around the
peak. If there is more than one pK~z' combination
satisfying the above requirements, the one with the mini-
mum |AE]| is kept.

The My distributions of candidate events for the ST
mode with data samples at different c.m. energies are
illustrated in Fig. 1, where clear Al signals are observed.
No peaking backgrounds are found with the investigation
of the inclusive MC samples. To obtain the ST yields,

2000 £ V5=4.600 GeV]| 300
1500 F

E 200
1000 F
00 ? 100

400 £ (_4512 Gev| 60 F

300 .
E 40 |
200 £ :
100 f 20F
Bosde ra A I I E

1500 F Vs=4.628 Gev| 250

E s=4.628 GeV
200 F
150 E
100 f
50 E
: Il 1

1s=4.600 GeV

L

ﬁ_46120ev

1000 [

500

(o}
]
Py 1 1
c : 250
9 1500 F V5=4.641 GeV] : 15=4.641 GeV
= : 200 f
1000 150 F
N £ E
~ 500 F 100
Z b 50 E
= . : .
o : 3
> 1500 £ Vs=4.661 Gev| 250 E V5=4.661 GeV
= : 200 f
1000 F 150
500 F 100
£ 50
B 1 - 1
4000 £ f=a6s26ev| SOF 15=4.682 GeV
3000 £ 400 |
2000 F :
E 2
1000 F 00 :
1500 F
\5=4.699 GeV| 150 15=4.699 GeV
1000 F 100 E
500 F 50|
226 228 23 232 231 226 228 23 232 234
Mg (GeV/c?)
FIG. 1. The My distributions of Al at seven c.m. energies,

and the data distributions are described by points (left column) or
triangles (right column) with error bars. The seven figures on the
left column represent the results after the ST selections, and
those on the right are obtained with both ST and 7 selections. The
(red) solid curves indicate the fit results, and the (green) dashed
curves describe the background shapes after the ST selections.
The (blue) solid curves indicate the fit results, and the (pink)
dashed curves describe the background shapes after applying the
i selections.
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unbinned maximum likelihood fits on these Mpc distribu-
tions are performed, where the signal is modeled with the
MC-simulated distribution convolved with a Gaussian
function taking into account the resolution difference
between data and MC simulation, and the background
distribution is described by an ARGUS function [24] with
the truncation parameter fixed to the corresponding Epeqp-
The candidates within My € (2.275,2.31) GeV/c? are
retained for further analysis, and the signal yields for the
data samples at different c.m. energies are summarized in
Table 1. The sum of ST yields for all data samples is
24,577 £ 179, where the uncertainty is statistical.

The decay A — it + X is searched for among the
remaining tracks and showers recoiling against the ST
A/ candidates. Neutral showers are identified in the EMC.
The deposited energy of each shower must be more than
25 MeV in the barrel region (|cos 8| < 0.8) and more than
50 MeV in the end cap region (0.86 < |cos 8| < 0.92). To
suppress electronic noise and showers unrelated to the
event, the difference between the EMC time and the event
start time is required to be within [0, 700] ns. The most
energetic shower is taken as the 7 candidate. The angle
between the charged track and shower is required to be
greater than 20 degrees. To discriminate the 7 shower from
showers caused by photons and neutrons, three variables
are used for further selection: the deposited energy (Ej;)
in the EMC, the second moment of shower shape
(S; = %E;r?/%,E;, where E; is the energy deposited in
the ith crystal of the shower and r; is the distance from
the center of that crystal to the center of the shower), and the
number of hit crystals (Hj) for the primary shower. The
most energetic shower is required to have E; > 0.48 GeV,
H; > 20, and S; > 18 cm?. To suppress contamination
from the decays with a p particle in the final state, the
candidate events are further required to be without any
tracks identified as p and having a distance of closest
approach to the IP within 20 cm along the z axis.

In contrast to photons and electrons, the interaction of 7
with materials is very difficult to model, and there exists
more than 10% deviation in detection efficiency between
data and MC simulation for the 7 induced clusters in the
EMC. To solve this issue, a model-independent data-driven
method [25] has been developed to simulate the detector
response of the 72 at BESIII. The detector response in data is
investigated with a control sample of 16.2 million 7
candidates selected in the process J/y — pin~ at \/s =
3.097 GeV [26]. Firstly, the efficiency of the requirements
E; > 0.48 GeV, H; > 20, and S; > 18 cm? is derived in
different finite bins (g&;,) of the two-dimensional distribu-
tion of the momentum and polar angle cos@d; of 7 by
comparing the yields of the 7 candidates in the control
sample with and without imposing the above requirements.
In the signal MC samples of the process Ay — 7 + X, each
accepted event with these requirements is determined, if a
random number, uniformly generated between 0 and 1, and
is less than the value of &, in the bin that the event belongs
to. Then, the efficiency of the 71 selections is calculated by
comparing the number of accepted events, summed over all
bins, with the total number of events at the generator level.
Secondly, the probability density function and the cumu-
lative distribution function (CDF) of the deposited energy
E;, after applying the selection criteria, are evaluated in
these different bins of momentum and cos@; with the
control sample. Then, the value of Ej; for each accepted
event, in the signal MC samples, is sampled based on the
CDF of Ej; in the bin that the event belongs to. After
imposing all the selections mentioned above, the distribu-
tion of E; for the accepted DT candidates from the
combined data samples at seven c.m. energies is shown
in Fig. 2, where the data-driven method has been applied in
the prediction of signal process A7 — ii+ X and the
simulated shape describes the data well.

The potential backgrounds can be classified into two
categories: those directly originated from continuum hadron
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FIG. 2. The stacked distribution of E; (a), S; (b) and H}; (c) for the accepted DT candidates in the region Mpc € (2.275,2.31) GeV/ c?
from the combined seven data samples. The black points with error bars are data. The red shaded histogram is the signal that is obtained
with the data-driven method, and the green one describes the alternative signal shape obtained with a Monte Carlo sample with only the
observed decay modes. The blue and brown shaded histograms are the two background components, where the A} A7 is modeled with the
inclusive MC sample of Af — p + X and the ¢g is estimated with events in the sideband region of My € (2.20,2.26) GeV/c? and

normalized to the region Myc € (2.275,2.31) GeV/c?.
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production in the e*e~ annihilation (denoted as ¢g
background hereafter) and those from the ete™ — AF AL
events (denoted as AfA. background hereafter) except
for the signal of Ay — 7 + X. The resultant E;, distribution
is depicted in Fig. 2, where the events are selected in the
region Mg € (2.275,2.31) GeV/c?. In Fig. 2, the ¢g
contamination, which is the major background component,
is estimated with events in the sideband region Mpc €
(2.20,2.26) GeV/c? and normalized to the region My €
(2.275,2.31) GeV/c?. The normalization factor is calcu-
lated with the event numbers in these two regions which are
determined by integrating the ARGUS functions in the
fitting to the ST Mp( distributions. The AF A background
is modeled with the inclusive MC sample of A7 — p + X.

The yield of signal A; — 7 + X is obtained by perform-
ing unbinned maximum-likelihood fits on the Mpc dis-
tributions of ST A/ after applying the 7 selections. The
procedure is similar to the one used to obtain the ST yields.
The fitting curves for data samples at different c.m. energies
are illustrated in Fig. 1, and the signal yields are obtained
within M € (2.275,2.31) GeV/c?. The AfA; contami-
nation has the same shape as the signal process due to the
undetected p tracks and misidentified 7 showers, and it is
estimated with the inclusive MC samples and subtracted
from observed signal yields. The fitting results and A7 A7
background are summarized in Table II.

The branching fraction (B) of decay A — i1+ X is
determined as

DT ATAZ
B— Nsig - Nblég—mc
SN 7T

where N gg is the signal yield from the unbinned maximum-

likelihood fit, and Né\éﬁw is the estimated A}A7 back-

ground from the inclusive MC samples. The subscript i
represents the data samples at different c.m. energies. The
parameters N5T, €T and €PT are the ST yields, ST and DT
efficiencies, respectively. The ST and DT efficiencies are
summarized in Table I, where the efficiency of 7 selections is

TABLE II. Yields of the fitting results and the corresponding
background estimation for the data samples at different c.m.
energies. The uncertainty is statistical only.

. A~

Vs (GeV) NG Nbigme
4.600 408 £23 44+03
4.612 66 +9 1.4£0.2
4.628 395 +23 6.7+04
4.641 405 £23 6.9+0.5
4.661 392 +£22 7.1£04
4.682 1135 + 36 20.5 £ 0.6
4.699 304 £19 58+04
Sum 3105 £ 62 529+1.1

already corrected with the data-driven method [25]. The
branching fraction is determined to be B(A; — i + X) =
(32.4 £ 0.7 £ 1.5)%, where the first uncertainty is statistical
and the second systematic.

The systematic uncertainties for the branching fraction
measurement include those associated with the ST yields,
detection efficiencies of the ST A and the DT selections.
As the DT technique is adopted, the systematic uncertain-
ties associated with the ST detection efficiency cancel out.

The uncertainty in the ST yields is 0.5%, which arises
from the statistical uncertainty and a systematic component
coming from the fit to the My distribution. The uncertainty
is evaluated by floating the truncation parameter of the
ARGUS function and changing the single Gaussian function
to a double Gaussian function. The uncertainty associated
with the finite size of the signal MC samples is 0.3%. The
uncertainty arising from the signal modeling is 4.1%, which
combines two sources. The first is due to unknown processes
in the MC production, which is investigated by generating
alternative signal MC samples only with the known 7
processes in the PDG [11]. The second one is the imperfect
simulation of the Ej distribution, which is estimated by
comparing the difference in the detection efficiencies
between the results with and without reweighting the
MC-simulated Ej; distribution to data, where all the signal
selection criteria in the analysis are applied except for the E;
requirement. For each case, the change of the signal
efficiencies is taken as the systematic uncertainty. The
uncertainty in the fit strategy of extracting the signal yields
is assigned to be 0.4%, which is estimated by floating the
truncation parameter of the ARGUS function and changing
the single Gaussian function to a double Gaussian function.
The uncertainty arising from A A7 background estimation
is studied by generating alternative inclusive MC samples
only with the known processes in the PDG [11], and
comparing the background yields between the nominal
and alternative MC samples. The difference of signal yields
after subtracting the estimated A A7 background, 1.0%, is
assigned as the corresponding uncertainty. The uncertainty
due to 7 selections is assigned to be 2.0%, as explained in
Ref. [25]. All other uncertainties are negligible. Assuming
that all the systematic uncertainties are uncorrelated, the total
uncertainty is then taken to be the quadratic sum of the
individual values, which is 4.7%.

In summary, the first measurement of the absolute
branching fraction of the inclusive decay AZ — 7 + X is
reported using 4.5 fb~! ete™ collision data collected at
seven c.m. energies between 4.600 and 4.699 GeV with the
BESIII detector. The absolute branching fraction is deter-
mined to be B(A; — i+ X)=(324+0.7+1.5)%,
where the first uncertainty is statistical and the second
systematic. Neglecting the effect of CP violation, the
inclusive decay A — n + X should have the same value
as A7 — i + X. The measurement significantly improves
the precision up to 5%, compared with the previous result
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of this inclusive decay, (50 + 16)%, inferred from the
B-meson decays [13]. The branching fraction of sum over
all the known exclusive decays with a neutron in the final
state is about (25.4 £+ 0.8)% [6,9,11], where the uncertain-
ties of all the modes are treated without correlation. It means
that about one fourth of the A} decays with a neutron in the
final state remain to be explored in experiments.
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