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The L, — L, extension of the standard model predicts the existence of a lepton-flavor-universality-
violating Z’ boson that couples only to the heavier lepton families. We search for such a Z’ through its
invisible decay in the process e™e™ — p"u~Z’. We use a sample of electron-positron collisions at a center-
of-mass energy of 10.58 GeV collected by the Belle II experiment in 2019-2020, corresponding to an
integrated luminosity of 79.7 fb~!. We find no excess over the expected standard-model background. We
set 90%-confidence-level upper limits on the cross section for this process as well as on the coupling of the
model, which ranges from 3 x 1073 at low Z’ masses to 1 at Z' masses of 8 GeV/c?.
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Recent experimental observations are in tension with
the standard model (SM) of particle physics. A notable
example is the difference between the measured and
expected values of the muon anomalous magnetic moment
[1,2]. In addition, the SM is known to provide an
incomplete description of nature since, among other
prominent issues, it does not address the phenomenology
related to the existence of dark matter [3], specifically the
prediction of the observed relic density. A simple way to
explain both phenomena is the L, — L, extension of the SM
[4-6]. This model gauges the difference of the muon and
tau lepton numbers, giving rise to a massive, electrically
neutral, vector boson, the Z'. This particle would couple to
the SM only through y, 7, v,, and v, with coupling ¢'.
The Z’, with such a lepton-flavor-universality-violating
coupling, would contribute to the muon magnetic moment
and, for certain values of ¢’ and mass M, would explain
the observed anomaly [7]. This model may resolve the
tensions in flavor observables reported by the LHCb, Belle,
and BABAR collaborations [8—18]. It may also reproduce
the observed dark-matter relic density, assuming dark
matter is charged under L, — L,. Two possible scenarios
have been proposed, suggesting sterile neutrinos [5] or light
Dirac fermions [6] as dark-matter candidates.

In this Letter we report a search, performed with the
Belle II experiment, for the Z’' in the process ete™ —
utu~Z' with Z' — invisible, where the Z’ is radiated off
a muon. We consider two different scenarios. If the Z’
couples only to SM particles, a model henceforth referred
to as the “vanilla” L, — L. model, the invisible decay
happens only through neutrinos, with a branching fraction
B(Z' — vv) that varies between ~33% and ~100% depend-
ing on the Z’' mass [19,20]. Alternatively, the Z’ can decay
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the Creative Commons Attribution 4.0 International license.
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the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

directly into a pair of dark-matter particles yy with a
coupling constant @, = ¢j/4x, and there is no a priori
reason for ap to be small. In this case, one can expect
gp > ¢, which implies B(Z' — yy)~ 1: we henceforth
refer to this second scenario as the “fully invisible” L, — L,
model.

We provide results for each of the two scenarios for
M, <9 GeV/c?. In the vanilla model, the intrinsic width
', of the Z' is negligible compared with the experimental
resolution. In the fully invisible model, I",» depends on ap:
it is negligible for values of ap smaller than 1 for M, ~
1.5 GeV/c?, and smaller than 0.1 for M, ~ 4.5 GeV/c?.
We focus our analysis on the case in which B(Z' — yjy) ~ 1
and Iz is negligible. We study separately one example in
which ', is not negligible and assume one benchmark
value such that I'yy = 0.1M 4, corresponding to ap = 2.9.

Searches for a Z' decaying to muons have been per-
formed by the BABAR [21], Belle [22], CMS [23], and
ATLAS [24] experiments: they only constrain the vanilla
L, — L, model in the parameter space we explore. Searches
for an invisibly decaying Z’ have been performed by the
NA64-¢ experiment [25] in the low-mass region and by
Belle II using data collected during the commissioning
run in 2018, with a luminosity of 0.276 fb~! [26]: these
searches set constraints both in the vanilla and fully
invisible L, — L, models.

We use a sample of e*e™ collisions collected by Belle 1T
at the center-of-mass (c.m.) energy of the T'(4S) resonance,
10.58 GeV, in 2019-2020, corresponding to a total inte-
grated luminosity of 79.7 fb~! [27]. This search supersedes
that in Ref. [26], with an integrated luminosity nearly
300 times larger, improved muon identification, and the use
of refined analysis algorithms.

The invisible-Z’ signature is a narrow enhancement in
the distribution of the mass M,...; of the system recoiling
against a muon pair. In the following, recoil quantities are
computed by using the measured muon momenta and the
knowledge of the initial-state total momentum. These
quantities coincide with Z’ properties for signal events
and typically correspond to undetected SM particles for
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background. We use the recoil mass squared M2, since
this quantity has a smoother distribution than M, for low
masses. We select events with exactly two charged particles
identified as muons, and negligible additional activity in the
detector. The dominant backgrounds are processes which
produce two muons and missing energy. These are pri-
marily e"e”™ — putu~(y) events with one or more unde-
tected photons, e™ e~ — 7777 (y) events with both 7 leptons
decaying to muons and neutrinos, and e*e™ — ete utu"
events (dominated by two-photon fusion production) with
electrons outside the detector acceptance.

We extract the signal yield from a fit to the two-
dimensional distribution of M2 _, and the polar angle
Orecoil Of the recoil momentum with respect to the detector
axis. Control samples are used to check simulation pre-
dictions and to infer correction factors. Selections are
optimized using simulated events prior to examining data.
However, one of the corrections based on control samples
was derived after observing a discrepancy in the data with
respect to the simulation.

The Belle II detector [28] operates at the interaction
region of the SuperKEKB electron-positron collider [29],
located at KEK in Tsukuba, Japan. The energies of the
electron and positron beams are 7 GeV and 4 GeV with a
boost of the c.m. frame fy = 0.28 relative to the laboratory
frame. The detector consists of several subdetectors
arranged around the beam pipe in a cylindrical structure.
Subdetectors relevant for this analysis are briefly described
here in order from innermost out; more details are given in
Refs. [28,30]. The innermost component is the vertex
detector, consisting of two inner layers of silicon pixels
and four outer layers of silicon strips. The second pixel
layer is partially installed, covering one sixth of the
azimuthal angle. The main tracking subdetector is a large
helium-based small-cell drift chamber. An electromagnetic
calorimeter (ECL) consists of a barrel and two endcaps
made of CsI(TI) crystals. A superconducting solenoid
provides a 1.5 T magnetic field. A K9 and muon sub-
detector is made of iron plates providing the magnetic flux-
return yoke, alternated with resistive-plate chambers and
plastic scintillators in the barrel, and with plastic scintilla-
tors only in the endcaps. The longitudinal and transverse
directions, and polar angle ¢ are defined with respect to the
detector’s cylindrical axis in the direction of the electron
beam. In the following, quantities are defined in the
laboratory frame unless otherwise specified.

Particle identification is implemented through the def-
inition of likelihoods for each charged particle hypothesis
by combining information from all the subdetectors.
Identification of muons relies mostly on charged-particle
penetration depth in the muon detector for momenta larger
than 0.7 GeV/c and on information from the drift chamber
and ECL otherwise. The ratio between the muon likelihood
and the sum of the likelihoods of all particle hypotheses is
required to be greater than 0.5. This retains 93-99% of

muons, and rejects 80-97% of pions, depending on their
momenta. Electrons, used in control-sample studies, are
identified primarily by comparing momenta with energies
of associated ECL depositions, with a similar likelihood-
ratio method. Photons are reconstructed from ECL depo-
sitions with energy greater than 100 MeV that are not
associated with any track.

Signal events are simulated using MadGraph5
aMC@NLO 2.6.6 [31] with initial state radiation. The
signal MZ_ ., resolution ranges from a minimum of
0.06 GeV?/c* at 80 GeV?/c* to a maximum of
0.23 GeV?/c* at9 GeV?/c* . We generate 582 Z’ samples,
with negligible I';, corresponding to mass hypotheses
ranging from 0.01 to 8.5 GeV/c* in steps of 3 to
202 MeV/c?, following the resolution. Background events
are simulated using the following generators: ete™ —
utu=(y) with KKMC 4.19 [32], ete™ - 777 (y) with
KKMC 4.19 [32] in combination with TAUOLA 3.1
[33], eTe” > eTe uTu~ and eTe” — eTe"eTe” with
AAFH [34], ete” - n'n(y) with PHOKHARA 9.1
[35], and ete™ — eTe™(y) with BabaYaga@NLO [36].
Backgrounds coming from the final states ¢g (¢ = u, d, s,
¢, b), Jlyy, w(2S)y with J/w, w(2S) - utp~, and
utu vp are found to be negligible. Detector geometry
and interactions of final-state particles with the detector
material are simulated using GEANT4 10.06 [37] and the
Belle I Analysis Software Framework [38,39].

The search uses an online event selection (trigger) that
requires events with at least one pair of tracks in a restricted
polar-angle acceptance, 0 € [37,120]°, and an azimuthal
opening angle larger than 90° or 30° for data collected in
2019 and 2020, respectively (two-track trigger). A dedi-
cated trigger veto rejects events consistent with Bhabha
scattering.

In the offline analysis, we require that tracks originate
from the interaction point, with transverse and longitudinal
projections of their distance of closest approach smaller
than 0.5 and 2.0 cm, respectively, to reject spurious and
beam-induced background tracks. We require events to
have exactly two oppositely charged particles identified as
muons, that pass the trigger requirements and have trans-
verse momenta larger than 0.4 GeV/c. We reject events
with opening angles between the muons in the c.m. frame
larger than 179°, to suppress pu~ (y) backgrounds, which
typically produce back-to-back muons. For M2 <
4 GeV?/c*, most of the u*u~(y) background comes from
events with single-photon emission: we require @i
to be within the ECL barrel acceptance [34,123]° so as
to exclude regions where photons can escape undetected.
Additionally, we reject events with O,...;; € [89,91]°, where
there is a 1.5 mm-wide gap in the ECL instrumentation. For
M2, >4 GeV?/c*, ut = (y) background arises predomi-
nantly from multiple photon emission. In this case the
recoil direction does not coincide with the direction of the
lost photons, so we instead require O,...; < 123° because
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the signal is dominantly produced in the forward direction
due to the c.m. boost. To suppress utu~(y) backgrounds,
we impose a photon veto: we require the total energy of all
photons to be less than 0.5 GeV and no photon to be within
15° of the recoil momentum. To suppress pu*u~(y) and
ete utu~ backgrounds, we require that the transverse
recoil momentum in the c.m. frame exceed 0.5 GeV/c.

After these selections, the remaining background comes
dominantly from 777 (y) events with 7 leptons decaying to
muons or to pions misidentified as muons in the region
M2, <50 GeV?/c*, and from ete uu~ events else-
where. The background from e*e™ — uu~(y) is sublead-
ing across the entire mass range.

The final selection uses an artificial neural network,
denoted as Punzi-net [40], trained on simulated signal and
background events, and specifically designed to optimize a
figure of merit [41] for all Z' mass hypotheses simulta-
neously. We use as inputs the four kinematic variables, all
defined in the c.m. frame, with the highest discriminating
power: the transverse momentum of a muon with respect to
the dimuon thrust axis [42,43]; the transverse momentum
of the higher-energy muon with respect to the momentum
direction of the lower-energy muon; the longitudinal
momentum of the higher-energy muon with respect to
the momentum direction of the lower-energy muon; and the
transverse momentum of the dimuon system. The first three
variables exploit mostly the kinematic properties of Z’
production through radiation from a final state muon,
compared with 77z~ (y) events, in which the recoil momen-
tum arises from neutrinos from z decays. The fourth
variable exploits the kinematic features of u*u~(y) and
eTe utu~ backgrounds, which typically have low trans-
verse momenta. The Punzi-net produces an output between 0
(background) and 1 (signal): we select events with an output
larger than 0.5. Additional details are given in Ref. [40].

The resulting signal efficiency is typically 5%, nearly
uniform as a function of M2,__,. The Punzi-net selection
removes nearly all 777 (y) background for M2, <
50 GeV?/c*, with a sensitivity gain between 5 and 15,
depending on the mass. The residual background comes
dominantly from pu~(y) in the region M2, <
50 GeV?/c* and from a large irreducible contribution of
eteptpu for M2, > 50 GeV?/c*, where the Punzi-net
selection has limited discriminating power.

The region M2_, <1 GeV?/c* is dominated by the
uru(y) process with a single photon emission. Above
1 GeV?/c* the uu~(y) process contributes mostly with
events containing two radiated photons. Typically, one
photon is collinear with the beams and outside the
acceptance, while the other is emitted in the direction of
one of the gaps between the barrel and the forward or
backward ECL endcaps. For M2, in the 1-50 GeV?/c*
range, this produces two distinctive bands in the
o<m- -M2 . plane, where 6™ is the polar angle of the

recoil recoil recoi
recoil momentum in the c.m. frame. This feature is

exploited in a two-dimensional fitting procedure, which
incorporates the expected background shapes due to
utu=(y) events, doubling the sensitivity relative to a
one-dimensional fit.

We fit the data by maximizing a binned likelihood based
on signal and background two-dimensional templates
obtained from simulation. The parameter of interest is
the signal cross section, with the background normalization
determined by the fit. The M2, ;, bin widths vary across the
spectrum and are set to the signal M2_, resolution. The
binning in @7, is determined by the distribution of
uu=(y) events and depends on M2 _ .. The number of
bins varies from one (for high Mrzecoﬂ) to five (for low
M2,_..). We perform a squared-mass scan in steps corre-
sponding to one unit of signal M2__, resolution, testing all
simulated mass hypotheses. Each fit is performed in search
windows of 20 M2,_,, bins centered around each hypothesis.
Uncorrelated systematic uncertainties on the signal and
background shapes (see below) are included in the respective
templates by introducing in each bin of the template Gaussian
nuisance parameters constrained by the corresponding
uncertainties. A frequentist procedure based on the profile-
likelihood ratio ?ﬂ [44] is used to obtain 90% confidence-level
(C.L.) intervals on the cross section. We use the pyhf
software package [45] for inference and check the consistency
of our results with simplified simulated samples.

We also consider the scenario in which 'y is not
negligible, as expected for large ap values [15,46], and
study one benchmark case that assumes I'» = 0.1M . We
account for the nonzero width in the fitting procedure by
changing the shape of the signal templates to Breit-Wigner
distributions with the widths I",; convolved with Gaussian
resolution functions. We use only one-dimensional M2,
templates and enlarge the search windows to cover the
sizable signal width.

Three control samples are used to validate the analysis
and estimate systematic uncertainties. The ppy control
sample is obtained by reversing the photon-veto criteria
thus requiring a photon of energy greater than 1 GeV within
15° of the recoil momentum direction. The ey and ee
control samples are obtained by requiring one or both
tracks to be identified as electrons and then applying all the
other selection criteria.

The efficiency of the two-track trigger is studied with the
ep control sample with events collected by an ECL-based
trigger, which is used as a reference. This requires that the
total energy deposition in the barrel and forward endcap
exceed 1 GeV. The two-track trigger efficiency increases
from 89 to 93% as a function of MZ_ ..

We use the ee control sample to study the photon-veto
performance. We select events with M2, < 1 GeV?/c?,
since they come dominantly from Bhabha scattering with a
single radiated photon. The results indicate that the photon-
veto inefficiency in the backward barrel ECL is larger than
that estimated in simulation. This study was performed
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after observing a large data-simulation disagreement in the
signal region compatible with photon-veto inefficiency. The
photon-veto inefficiencies measured with the ee control
sample are used to correct the expected pu background.

We estimate systematic uncertainties on the signal
efficiency and on the signal and background template
shapes. The uncertainties on the template shapes independ-
ently affect each of the bins contained within the templates.

Uncertainties in selection efficiencies due to data-
simulation mismodeling are studied by comparing data
and simulation in the puy and ey control samples in three
M2, ranges: [-0.5,9], [9,36], [36, 81] GeV?/c*. The two
control samples provide complementary coverage of the
M2, range, with yuy addressing the lower region and ey
covering the higher. Systematic uncertainties due to data-
simulation mismodeling in the trigger, luminosity, tracking
efficiency, muon identification, background cross sections,
and effect of the selections are collectively evaluated
through data-simulation comparison before the application
of the Punzi-net. Systematic uncertainties due to the Punzi-
net selection-efficiency differences in data and simulation
are evaluated by studying its efficiencies, as they are
indicators of the performances for the signal-like background
component. The differences from unity of the data-to-
simulation ratios of event yields before the Punzi-net
application and of the Punzi-net efficiencies in the three
M2, ranges are summed in quadrature and found to be 2.7,
6.5, and 8.3%, respectively. These differences are assigned as
systematic uncertainties on the signal efficiency.

The recoil mass resolution is studied using the pupuy
sample. The width of the M2, ;, distribution is 8% larger in
data than in simulation. This translates to a systematic
uncertainty of 10% on the signal template shape.

Systematic uncertainties due to background shapes are
evaluated using the uuy and ey samples. We compute the
standard deviation of the bin-by-bin data-to-simulation
ratios of the number of events for each search window.
To be conservative, we assign twice the largest of these
standard deviations in each of the three M2_ , ranges as an
uncertainty for the shape in the respective M2, ranges.
We use the puy control sample for M2, up to 56 GeV?/c*
and the ey control sample above. The resulting uncertain-
ties are 3.2, 8.6, and 25% in the three Mrzecoil ranges.

Uncertainties on the background template shape from the
photon-veto inefficiency are studied using the ee control
sample and are on average 34% for M2_, < 1 GeV?/c*,
decreasing to 5% above 1 GeV?/c*. We assign a systematic
uncertainty of 1% to the measured integrated luminosity [27].

The observed and expected M2 distributions are
shown in Fig. 1. We find no significant excess of data
above the expected background. The y? value describing
the goodness of the two-dimensional fit is acceptable for
each test Z' mass with the largest incompatibility corre-
sponding to a p value of 0.05. The largest local significance

10°
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FIG. 1. Squared recoil mass spectrum of the ytu~ sample,
compared with the stacked contributions from the various
simulated background samples normalized (for illustrative pur-
poses) to the integrated luminosity.

is 2.86 for M, = 2.352 GeV/c?. The global significance
of this excess after correcting for the look-elsewhere
effect [47] is 0.76.

The 90% C.L. upper limits on the cross section for the
process ete” — utu~7Z' with Z' invisible, c(ete” —
utu=7',7Z" — invisible) = o(ete” - utu=Z') x B(Z' -
invisible), are shown in Fig. 2 as functions of M/, along with
the 1o and 26 bands of expected limits (the median limits
from background-only simulated samples). We set upper
limits as small as 0.2 fb. In addition, we show upper limits for
the benchmark scenario in which we assume non-negligible
I". Our upper limits are dominated by statistical uncertain-
ties for M, < 6 GeV/c?, where systematic uncertainties
degrade them by less than 5%. Above 6 GeV/c?, upper
limits are dominated by systematic uncertainties (mainly due
to background shapes), degrading them by about 40%.

Cross section results are translated into 90% CL upper
limits on the coupling ¢'. In both fully invisible and vanilla

Belle I, 0.276 fb~*
103 F E

102
10t

10°

' Belle Il [L dt = 79.7 fb~1, 90% CL UL

olete > utu~ (Z'-inv.)) [fb]

102 —Tz2=0 Expected =10 Expected +20+
—m Tz =0.1Mz
10—3 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8

Mz [GeV/c?]

FIG. 2. Observed 90% C.L. upper limits on the cross section
o(ete” —» utu~Z', 7' — invisible) as functions of the Z’ mass
for the cases of negligible I',» and for ',y = 0.1M ;. Also shown
are previous limits from Belle II [26].
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10°
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FIG. 3. Observed 90% C.L. upper limits on the coupling ¢ for

the fully invisible L, — L, model as functions of the Z' mass for
the cases of negligible I',» and for I'y = 0.1M ;. Also shown are
previous limits from NA64-¢ [25] and Belle II [26] searches. The
red band shows the region that explains the measured value of
the muon anomalous magnetic moment (g —2), + 20 [2]. The
vertical dashed line indicates the limit beyond which the
hypothesis B(Z' — yy) ~ 1 is not respected in the negligible
'y case.

models, we focus on the direct-search results and do not
show constraints obtained from reanalyses of data from
neutrino experiments [7,48,49].

Figure 3 presents limits in the fully invisible L, — L,
model for the cases of negligible and non-negligible I',.
For the case of negligible '/, these constraints hold for
My, <6.5 GeV/c?. Above this mass, there is no value of
ap that produces both a negligible width and
B(Z' — yy) =~ 1, given the values of ¢ being probed.
Numerical values in Fig. 3 can still be used, but need to

be rescaled by 1/+/B(Z" — yj), which depends on aj. We
also show limits from NA64-¢ [25] and the previous Belle

IT search [26]. Our results are world-leading for direct
searches of Z' with masses above 11.5 MeV/c?. They are
the first direct-search results to exclude at 90% C.L. the
fully invisible-Z" model as an explanation of the (g —2),
anomaly for 0.8 < M, < 5.0 GeV/c>

Figure 4 presents limits in the vanilla L, — L, model.
Our results are world leading for direct searches of Z’ in the
mass range 11.5 to 211 MeV/c?. More stringent limits are
from NA64-¢ [26] below 11 MeV/c? and from Belle [22],
BABAR [21], and CMS [23] searches for Z' — u*tu~
above 211 MeV/c?.

Additional plots, including indirect constraints from
neutrino experiments and detailed numerical results, are
provided in the Supplemental Material [50].

In summary, we search for an invisibly decaying Z'
boson in the process eTe™ — uTu~Z' using data corre-
sponding to 79.7 fb~! collected by Belle II at SuperKEKB
in 2019-2020. We find no significant excess above the
expected background and set 90% C.L. upper limits on the
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FIG. 4. Observed 90% C.L. upper limits on the coupling ¢ for
the vanilla L, — L, model as functions of the Z' mass. Also
shown are previous limits from Belle II [26] and NA64-¢ [25]
searches for invisible Z' decays, and from Belle [22], BABAR
[21], and CMS [23] searches for Z' decays to muons (at 95%
C.L.). The red band shows the region that explains the muon
anomalous magnetic moment (g —2), + 20 [2].

coupling ¢ ranging from 3 x 1073 at low Z’ masses to 1 for
amass of 8 GeV/c?. These are world-leading direct-search
results for Z' masses above 11.5 MeV/c? in the fully
invisible L, — L, model and for masses in the range 11.5 to
211 MeV/c? in the vanilla L u — L, model. These limits are
the first direct-search results excluding a fully invisible-
Z'-boson model as an explanation of the (g —2), anomaly
for 0.8 < M, < 5.0 GeV/c.
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