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Abstract—Understanding human crowd motion is crucial for
realistic crowd simulations and content creation. Over the
multiple decades, several computational algorithms have been
developed to devise a more realistic simulation that will vastly
improve the user experiences. However, the gap between real and
simulated human motion and behavior is still large. One of the
promising thrusts of the crowd simulation community to reduce
the gap is to utilize a data-driven trajectory prediction model,
using the access to a large amount of data. However, building
a crowd simulation model based on the learned microscopic
trajectory model is still a challenging task. In addition, unlike
individual or group-level human trajectory data, large-scale real
human crowd motion data is not readily available. To overcome
these, we investigate the utility of synthetic simulation data. We
propose a novel human crowd motion estimation framework
that can predict simulator parameters from trajectory data.
Our initial findings show promising results that our method can
robustly estimate simulation parameters.

Index Terms—Parameter space exploration, Crowd simulation,
Data-driven model

I. INTRODUCTION

Crowd behavior modeling is applied in real-world scenarios,
such as content creations for video games and animations,
egress analysis, autonomous driving, and crowd control at
events [1]–[3]. Since understanding real human crowd motion
is essential for building realistic crowd simulations, researchers
have investigated the problem in various directions. A lot of
work has been done to predict human trajectory from real-
world videos, since the ability to accurately predict future
locations shows that computational models can effectively
capture human motion, even in crowded places.

Most human trajectory prediction models try to learn pat-
terns from microscopic real human trajectories. There are
two main lines of work, namely knowledge-based and data-
driven approaches [4]. Traditional approaches see an agent as
a particle moving in space, described using human motion
dynamics. This includes the popular force-based models like
Social Force (SF) [5], velocity-based models like reciprocal
collision avoidance (RVO) [6] and optimal reciprocal collision
avoidance (ORCA) [7], and rule-based models [8]. There have
been many other notable models and the interested readers
may refer to the review [4] that also provides a good summary
of trends in the past decade. These simulation models are
useful foundations to understand large-scale dynamics, but
obtainable insights are indirect.

The other line of work is the data-driven approach to
model and predict human trajectories. Early methods used
recurrent neural network-based sequence models, like Social
LSTM [9]. Others focus on prediction aspect of the problem
with a generative model. The idea is to sample potential future
positions from a learned model and hope the sample is close to
the ground truth [10], [11]. Recent advances like transformers
have also been applied, like AgentFormer [12] and TUTR [13].
However, these data-driven trajectory prediction models focus
on trajectory prediction itself, and they are not for human
crowd motion generation and simulation.

At the intersection of the trajectory prediction models and
the human crowd simulation, researchers investigated ways to
learn a steering model from the identified trajectory dynamic
pattern, e.g., by utilizing hand-crafted policies [7], [14]–[17].
However, they are not invertible, i.e., the parameter configu-
ration cannot be readily computed from an agent’s observed
steering. Some [18] have tackled the parameter configuration
search as an optimization problem, but no known method is
shown to be effective for more realistic heterogeneous crowds.
Others tried to learn policies in a non-parameterized way [19]–
[23] but the problem remains challenging. In addition, limited
access to real human crowd trajectory is another critical
roadblock in pursuing this research.

In this paper, we propose a new framework that aims to
overcome aforementioned challenges by making two contri-
butions: (a) our framework can find configuration parame-
ters for a crowd simulation model using trajectory patterns
learned from a data-driven trajectory prediction model, (b)
we suggest a novel algorithm to find long term agent-to-
agent interaction that trajectory prediction models often miss.
The proposed framework consists of two autoencoders and
a crowd simulator. First, we learn a trajectory prediction
network with an autoencoder called Trajectory Prediction
Network (TPN). Then, we learn another autoencoder, called
Configuration Prediction Network (CPN), that regresses the
latent trajectory representation of the first network to the
simulator’s configuration parameters. In the experiments, we
show that the proposed framework can effectively estimates an
environment parameter (corridor width) from a given trajectory
pattern, that can be used for SF and ORCA simulators. We also
report initial findings that our method can potentially predict
other agent parameters and robust to initialization.
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Fig. 1: Proposed learning framework. K indicates the number
of trajectory segments used in the AgentFormer model. At test
time (dark black), simulator configuration parameters may be
estimated from an unseen, real trajectories, and the estimates
can be used in the simulator to generate new trajectories.

II. PROPOSED FRAMEWORK

Our proposed framework is depicted in Figure 1. At training
phase, we first prepare simulated trajectories dataset with
known simulator configuration parameters. Any crowd simula-
tor can be used and our goal is to find parameters for the steer-
ing model used in the simulator. Next, we fed the trajectories
into the TPN so that the network can learn the trajectory pat-
tern from the input data. The TPN should have an autoencoder-
like structure, since our goal is to find the underlying trajectory
pattern representation, rather than future trajectory prediction.
In this paper, we adopted AgentFormer [12], but any model
that is capable of reconstructing the input trajectory can be
used. Next step is to extract the latent pattern representation
of the TPN and fed it to the CPN as input. The CPN
then regresses the latent representation to the configuration
parameter using another autoencoder. This second autoencoder
aims to fill the gap between TPN model’s latent space and
simulator’s configuration parameter space. At testing phase,
we can fed the new trajectory set into the framework and the
framework will predict the simulator’s configuration parameter
that likely enables the simulator generate new trajectories
similar to the TPN input.

A. Agent groups for neighbor interaction
For human pedestrian trajectory prediction models, it is

common to include a method to capture interactions between
people. AgentFormer also does this by grouping neighboring
agents in trajectories. However, this approach is problematic
for crowd simulations. Suppose a crowd evacuation scenario,
where agents tries to exit from a room with a narrow corridor
exist in front of the exit. Naturally, agents enter and exit the
corridor at different timing. Due to congestion, one agent
typically interacts with a small group of others before it
evacuates from the room. In addition, over the long duration
of crowd simulation, the agent may not interact with only
nearby agents and may interact with some other agents who
were far away at the beginning but later get close together, vice
versa. In other words, the agent-to-agent interaction learned by

AgentFormer TPN may not be effective in capturing long term
interactions. A naı̈ve approach to overcome this limitation is to
increase the agent group size, but increasing the agent size will
easily get stuck by the limit of the hardware (GPU) memory
for applications like crowd simulations.

To resolve this issue, we propose an agent grouping al-
gorithm that aims to cluster all agents within a simulation
into small groups. Note that the meaning of the term “agent
group” in this paper differs from the social group used in
the transportation literature [24]. We used the term “group” to
describe the algorithm only. Each agent group should have the
same number of agents, N . We utilize Average Displacement
Error (ADE), which is the Mean Square Error (MSE) between
the predicted trajectory locations and the ground truth trajec-
tory locations, as the clustering criterion. The overall agent
grouping algorithm is summarized in algorithm 1.

Algorithm 1: Agent grouping strategy
input : Number of agents in each group: N

All trajectories: {T1, · · · , TM} where Ti is the
trajectory of agent i ∈ [1..M ] where M
denotes the total number of agents

output: A set of agent groups (clusters): L
begin

L ← {}; P ← {1, · · · ,M}
while P ̸= ∅ do

i ← Sample from P
ℓ ← {i}; n ← N ; Q ← {1, · · · ,M} \ i
while n > 0 do

ℓ ← ℓ ∪ {j}
where j ∈ Q s.t. argminj ADE(Tj , Ti)
Q ← Q \ j; n ← n− 1

end
P ← P \ ℓ; L ← L ∪ {ℓ}

end
end

B. Extracting latent variables from TPN and training CPN
In AgentFormer, trajectories are split into several small

segments before the prediction is made. We also apply this
strategy in our trajectory representation. Each trajectory seg-
ment is 27 frames long. AgentFormer considers first 13 frames
as a past window, i.e., history, and the rest 14 frames as a
future window. Since not all agents exist in all frames and
trajectories may not be aligned, the beginning of a trajectory
segment is determined by the first frame of the first agent in
the record. An agent in the same group will only be included
in a certain temporal segment if it has at least one frame in
past window and in future window in that segment. Thus, each
temporal segment may cover different number of agents.

After the trajectory pattern representation is learned by
AgentFormer, we can retrieve per-agent, per-trajectory seg-
ment. To represent the whole trajectory set from an agent
group, we need to combine all of these into one latent
representation, a fixed-length vector. To do this, we first take
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the AgentFormer’s context vertor C and pad it to have the
size of maximum number of agents. Then, we apply a linear
transformation to compress the vectors. We find a normal
distribution that is represented by the context vectors with
N (mean(C), var(C)). We sample once from the distribution
that has the desired length of 256 × K where K is the
number of segments. Next, an average pooling is applied over
all trajectory segments for the agent group in consideration,
and the result is the latent trajectory pattern-to-configuration
mapping representation for that specific agent group. There,
we impose a normal distribution constraints to this latent
vector during training time to form a desired shape in the
latent space following [25]. For training loss, we used root
mean squared error (RMSE) of the CPN output against the
ground truth parameter Θ.

III. EXPERIMENTS

To evaluate the potential of the proposed method, we
designed a evacuation scenario using crowd simulators. First,
we introduce the environment and steering model parameters.
Next, we explain the dataset and performance measures. Then,
we present the experiment results.

A. Simulation Configuration Parameters
We consider an environment, considering a evacuation

scenario, built in a 20 meters × 7 meters region as shown
in Figure 2. Agents are initially located in the top half of
the space lined up in 5 rows and 15 columns. The bottom
half of the space contains a gradually narrowing bottleneck
to a corridor. The bottleneck opens the same width as the
hallway near the end. The width of corridor is configurable
between 1 meter (narrowest) and 7 meters (fully open). A one
meter exit door is placed directly after the hallway. An agent
is considered successfully evacuated when it moves below
the exit and will be removed from the environment. Each
agent’s trajectory is formatted as a time series data of its
global position (x, y). The recording of the trajectory starts
immediately after the agent enters the hallway and stops when
agent evacuated. The configuration of agents’ properties are
defined differently upon each steering model. In the SF model,
there are 14 real-valued parameters and for ORCA, there are 5

!"#$%&%'(

)#$%&%'(

*#$%&%'

*#+#)#$%&%'(

Fig. 2: Evacuation scenario blueprint. An example simulation
using ORCA with heterogeneous agents.

TABLE I: Simulation configurations parameters (SF)

ID Parameter name Value Range
1 Environment corridor width [1.0, 7.0]
2 Agent radius [0.15, 0.3]
3 Acceleration [0.25, 0.75]
4 Personal space threshold [0.15, 0.45]
5 Repulsion importance [0.15, 0.45]
6 Query radius [1.5, 4.5]
7 Body force [750, 2250]
8 Agent body force [750, 2250]
9 Sliding friction force [1500, 3000]

10 Agent inverse proximity force importance [0.04, 0.12]
11 Agent proximity force importance [12.5, 37.5]
12 Wall inverse proximity force importance [0.04, 0.12]
13 Wall proximity force importance [12.5, 37.5]
14 Max speed limit [1.3, 3.9]

TABLE II: Simulation configurations parameters (ORCA)

ID Parameter name Value Range
1 Environment corridor width [1.0, 7.0]
2 Agent radius [0.15, 0.3]
3 Neighbor distance threshold [5.0, 15.0]
4 Time horizon for agents [1.0, 3.0]
5 Max speed [0.7, 0.8]
6 Time horizon for obstacles [1.0, 2.0]

real-valued parameters. Table I and Table II summarize what
constitute these parameters and the range.
B. Dataset and Performance Measures

For each parameter setting, simulations are performed using
all variable parameters. We used SteerSuite [26] for simula-
tions. When generating random parameters, we sample one
parameter at a time while fixing all the others. Each parameter
is sampled uniformly from the value range summarized in
Table I and Table II. The other parameters took the default
value which is the center of the value range. For each pa-
rameter, we generated 550 random values and each value was
simulated. 400 of them were included in the training split. The
remainder is reserved for the test split. It should be noted that a
small number of trials were discarded due to failed simulation.
For the hyperparameters needed for architectural design, we
used cross validation. For most experiments, we used SF [5]
and ORCA [7] as base steering model. We considered both
homogeneous and heterogeneous crowds, where the agents
in the former shares the same parameter configuration while
those in the latter do not as shown in Figure 2.

All the environment and agent steering model parameters
are arranged to form the ground truth configuration parameter:
Θ = [θ1, · · · , θu], where θu denotes the parameter with ID
u as listed in Table I and Table II. We used mean absolute
error (MAE) to measure the performance of parameter pre-
diction: MAE(y, y⋆) = mean (| y − y⋆ |). Configurations are
also scaled to the range [−1, 1]. Since the configurations are
sampled uniformly from defined range, a random predictor
will produce an MAE value 0.66, and a trivial zero-predictor
which always predict zeros will have an MAE value of 0.50.

C. Determining agent group size
Our algorithm 1 requires a hyperparameter N . To determine

this, we ran preliminary experiments using TPN. Figure 3
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shows the trend of trajectory prediction error as a function
of group size. Intuitively, for homogeneous agents, larger
group size means more agents share the same parameters,
hence the prediction becomes easier. For heterogeneous agents,
larger group means each group has more sophisticated mixture
of heterogeneous behaviors, thus prediction becomes harder.
Hence, we chose 10 as a balance between the two.
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Fig. 3: Prediction error with varying agent group size

D. Results
Our experiments focused on verifying two aspects of the

proposed framework: feasibility of the idea and robustness of
the trained model. For the first part, we investigated which sim-
ulation configuration parameters are reasonably predictable.
For the second part, we investigated the prediction perfor-
mance change with various randomization settings. Namely,
we tested three types of randomizations: (a) network weight
initialization (TPN, CPN), (b) dataset, and (c) initial locations
of the agents. For each randomization setting, we ran three
trials and report the mean and the variance of the parameter
prediction MAE. For the dataset, we generated the entire
dataset from scratch for each trial.

(a) Network initialization
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(c) Initial locations

SF ORCA
0

0.05

0.1

0.15

Fig. 4: Environment configuration parameter (ID 1) prediction
errors with various randomization settings. It is clear that the
proposed framework can predict the corridor width.

Figure 4 shows that our framework can robustly estimate
the corridor width (varying from 1 to 7 meters) regardless of
randomization type and the steering model choice. For agent
steering model parameters, we found a clear difference in
prediction performance comparing homogeneous and hetero-
geneous setups. Not surprisingly, homogeneous setup is much
easier to predict than heterogeneous setup, which is virtually
impossible to do much better than random (MAE 0.5). How-
ever, it was interesting to see that some parameters (Agent
inverse proximity force importance in SF and Max speed in
ORCA) are relatively easy to predict in the heterogeneous
setting.

We also compared the trajectories generated by a simulator
using the steering model configuration parameters predicted
by our method to the trajectories generated by the simulator
using the original ground truth configuration parameters. We
computed ADE between the trajectories to evaluate the per-
formance. The results show that trajectories generated in the
homogeneous setup are closer to the trajectories of simulations
using ground truth parameters than those generated in the
heterogeneous setup. This result coincides with the observation
of the parameter prediction experiments discussed above.

What is different in the proposed framework vs. learning
steering model parameters directly from trajectories? At
high level, it may look like there is no difference in the sense
that we learn model parameters from trajectories. However,
unlike existing approaches, our framework enables utilizing
knowledge learned from various TPN choices. By separating
the trajectory pattern knowledge and the mapping from the
pattern to the configuration parameter space, we can further
expand the framework in various ways to learn from multiple
trajectory distributions. For example, one can combine two
TPN latent representations, one for simulated trajectories and
the other for the real trajectories. This way we can alleviate
the issue of imbalanced data nature to the data-driven crowd
models. To see the potential of this idea, we conducted an
ablation study to compare the proposed framework to directly
regressing TPN latent variable to configuration parameter,
hence removing CPN. As shown in Figure 5, it is clear that
CPN improves the prediction performance over the TPN-only
model, suggesting the importance of pursuit for latent mapping
between TPN-learned trajectory pattern knowledge and the
simulator configuration parameter space.

(a) SF
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(b) ORCA
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0
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Fig. 5: Ablation study for environment configuration parameter
(ID 1, corridor width) with random weight initialization.

IV. CONCLUSION

In this paper, we proposed an autoencoder framework that
can predict simulator configuration parameter. We also pro-
posed an agent grouping algorithm that can capture long term
agent-to-agent interaction and reduce computation. Experi-
ments suggest a promising potential of the proposed method
with rooms of improvement in challenging situations like
heterogeneous crowd simulations. In the future, we aim to
expand the framework to learn the CPN that can map multiple
trajectory distributions into a configuration parameter space. It
would be interesting to see how the proposed model applies to
other steering algorithms such as centrifugal force-based [27],
[28] or reinforcement-based [29] models.
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