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We present a measurement of time-dependent rate asymmetries in B0 → ϕK0
S decays to search for

non-standard-model physics in b → qq̄s transitions. The data sample is collected with the Belle II detector
at the SuperKEKB asymmetric-energy eþe− collider in 2019–2022 and contains ð387� 6Þ × 106 bottom-
antibottom mesons from ϒð4SÞ resonance decays. We reconstruct 162� 17 signal events and extract
the charge-parity (CP) violating parameters from a fit to the distribution of the proper-decay-time
difference of the two B mesons. The measured direct and mixing-induced CP asymmetries are
C ¼ −0.31� 0.20� 0.05 and S ¼ 0.54� 0.26þ0.06

−0.08 , respectively, where the first uncertainties are
statistical and the second are systematic. The results are compatible with the CP asymmetries observed
in b → cc̄s transitions.

DOI: 10.1103/PhysRevD.108.072012

I. INTRODUCTION

Measurements of CP asymmetries in loop-suppressed B
meson decays are sensitive probes of physics beyond the
standard model (SM). In particular, gluonic-penguin b →
qq̄s modes, such as B0 → ϕK0

S, are sensitive to interfering
non-SM amplitudes that carry additional weak-interaction
phases. The SM reference is the mixing-induced CP asym-
metry S≡ sin 2ϕ1 observed in tree-level b → cc̄s transi-
tions, where ϕ1 (or β) equals argð−VcdVcb

�=VtdVtb
�Þ and

Vij are Cabibbo-Kobayashi-Maskawa (CKM) quark-
mixing matrix elements [1,2]. The deviation from the value
of S observed in b → cc̄s transitions, S ¼ 0.699� 0.017
[3], is the key observable. For B0 → ϕK0

S decays, such a
deviation is at most 0.02� 0.01 within the SM while the
direct CP asymmetry C is expected to be zero [4]. The
current world-average values for B0 → ϕK0

S are S ¼
0.74þ0.11

−0.13 andC ¼ 0.01� 0.14 [3]. Therefore, experimental
knowledgemust be improved.We present a measurement of
S and C in the sample of electron-positron collisions
collected by the Belle II experiment in 2019–2022 [5].
At B -factories, BB̄ events are produced from the decay

of an ϒð4SÞ resonance, where B indicates a Bþ or B0

meson. We denote pairs of neutral B mesons as BCPBtag,
where BCP decays into a CP -eigenstate at time tCP, and
Btag decays into a flavor-specific final state at time ttag. For
quantum-correlated B -meson pairs, the flavor of BCP is
opposite to that of Btag at the instant when the Btag decays.

The probability to observe a Btag meson with flavor q
(q ¼ þ1 for B0 and q ¼ −1 for B̄0) and a proper-
time difference Δt≡ tCP − ttag between the BCP and Btag

decays is

PðΔt; qÞ ¼ e−jΔtj=τB0

4τB0

f1þ q½S sinðΔmdΔtÞ

− C cosðΔmdΔtÞ�g; ð1Þ

where τB0 and Δmd are the B0 lifetime and B0 − B̄0 mixing
frequency, respectively [6].
We reconstruct B0 → ϕK0

S decays in a sample of energy-
asymmetric eþe− collisions at the ϒð4SÞ resonance pro-
vided by SuperKEKB and collected with the Belle II
detector. The sample corresponds to ð362� 2Þ fb−1 and
contains ð387� 6Þ × 106 BB̄ events. We fully reconstruct
BCP in the ϕK0

S final state using the intermediate decays
ϕ → KþK− and K0

S → πþπ−, while we only determine the
position of the Btag decay. The flavor of the Btag meson is
inferred from the properties of all charged particles in the
event not belonging to BCP [7]. In order to extract the CP
asymmetries, we model the distributions of signal BCP and
backgrounds in Δt and other discriminating variables, and
then perform a likelihood fit. The last measurements, by the
Belle and BABAR experiments, used time-dependent
Dalitz-plot analyses [8,9]. This method models the inter-
ferences among the intermediate resonant and nonresonant
amplitudes contributing to B0 → KþK−K0

S decays, thereby
providing the best sensitivity on ϕ1. Due to the small
dataset size, which may induce multiple solutions in the
Dalitz-plot approach, we perform a quasi-two-body analy-
sis by restricting the sample to candidates reconstructed in a
narrow region around the ϕ mass. This strategy offers the
advantage of a simpler analysis, albeit with a reduced
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statistical sensitivity. We use the knowledge from the
previous Dalitz-plot analyses to estimate the effect of
neglecting the interferences. We test our analysis on the
CP -conserving Bþ → ϕKþ decay, which has similar
backgrounds and vertex resolution. Charge-conjugated
modes are included throughout the paper.

II. EXPERIMENTAL SETUP

The Belle II detector [10] operates at the SuperKEKB
accelerator at KEK, which collides 7 GeV electrons with
4 GeV positrons. The detector is designed to reconstruct the
decays of heavy-flavor mesons and τ leptons. It consists of
several subsystems arranged cylindrically around the inter-
action point (IP). The innermost part of the detector is
equipped with a two-layer silicon-pixel detector (PXD),
surrounded by a four-layer double-sided silicon-strip detec-
tor (SVD) [11]. Together, they provide information about
charged-particle trajectories (tracks) and decay-vertex posi-
tions. Of the outer PXD layer, only one-sixth is installed for
the data used in this work. Themomenta and electric charges
of charged particles are determined with a 56-layer central
drift-chamber (CDC). Charged-hadron identification (PID)
is provided by a time-of-propagation counter and an aerogel
ring-imaging Cherenkov counter, located in the central and
forward regions outside the CDC, respectively. The CDC
provides additional PID information through the measure-
ment of specific ionization. Photons are identified and
electrons are reconstructed by an electromagnetic calorim-
eter made of CsI(Tl) crystals, covering the region outside of
the PID detectors. The tracking and PID subsystems, and the
calorimeter, are surrounded by a superconducting solenoid,
providing an axial magnetic field of 1.5 T. The central axis of
the solenoid defines the z axis of the laboratory frame,
pointing approximately in the direction of the electron beam.
Outside of the magnet lies the muon and K0

L identification
system, which consists of iron plates interspersed with
resistive-plate chambers and plastic scintillators.
We use simulated events to model signal and background

distributions, study the detector response, and test the
analysis. Quark-antiquark pairs from eþe− collisions,
and hadron decays, are simulated using KKMC [12] with
PYTHIA8 [13], and EvtGen [14], respectively. The detector
response and K0

S decays are simulated using Geant4 [15].
Collision data and simulated samples are processed using
the Belle II analysis software [16,17].

III. EVENT RECONSTRUCTION

Events containing a BB̄ pair are selected online by a
trigger based on the track multiplicity and total energy
deposited in the calorimeter. We reconstruct B0 → ϕK0

S
decays using ϕ → KþK− and K0

S → πþπ− decays, in
which the four tracks are reconstructed using information
from the PXD, SVD, and CDC [18]. All tracks are required
to have polar angle θ within the CDC acceptance

(17°< θ < 150°). Tracks used to form ϕ candidates are
required to have a distance of closest approach to the IP less
than 2.0 cm along the z axis and less than 0.5 cm in the
transverse plane to reduce contamination of tracks not
generated in the collision.
Kaon and pion mass hypotheses are assigned to tracks

based on information provided by the PID subsystems. The
ϕ candidates are formed by combining KþK− pairs
consistent with originating from the IP and having invariant
mass within ½0.99; 1.09� GeV=c2, where the average ϕ
mass resolution is approximately 3 MeV=c2. The K0

S
candidates are formed by combining two oppositely
charged particles, assumed to be pions, and requiring
their invariant mass to be within ½0.480; 0.515� GeV=c2,
where the average K0

S mass resolution is approximately
2 MeV=c2. In order to suppress combinatorial background
from misreconstructed K0

S, we require K0
S candidates to

have a displacement of at least 0.05 cm from the ϕ decay
vertex, where the average K0

S flight distance is 10 cm.
The beam-energy constrained mass Mbc and energy

difference ΔE are computed for each B0 → ϕK0
S candidate

asMbc≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�

beam=c
2Þ2− ðjp�

Bj=cÞ2
p

andΔE≡E�
B−E�

beam,
where E�

beam is the beam energy, and E�
B and p�

B are the
energy and momentum of the BCP candidate, respectively,
all calculated in the center-of-mass (c.m.) frame. Signal
BCP candidates peak at the known B0 mass [6] and zero in
Mbc and ΔE, respectively, while continuum is distributed
more uniformly. Only candidates satisfying Mbc >
5.2 GeV=c2 and jΔEj< 0.2 GeV are retained for further
analysis.
The B0 → ϕK0

S decay vertex is determined using the
TreeFitter algorithm [19,20]. In addition, the BCP
candidate is constrained to point back to the IP. The Btag

decay vertex is reconstructed using the remaining tracks in
the event. Each track is required to have at least one
measurement point in the SVD and CDC subdetectors and
correspond to a total momentum greater than 50 MeV=c.
The Btag decay-vertex position is fitted using the RAVE

algorithm [21], which allows for weighting the contributions
from tracks that are displaced from theBtag decay vertex, and
thereby suppressing biases from secondary charm decays.
The decay-vertex position is determined by constraining the
Btag direction, as determined from its decay vertex and the IP,
to be collinear with its momentum vector [22].

We estimate the proper-time difference using the longi-
tudinal decay-vertex positions, lCP and ltag, of the BCP and
Btag mesons, respectively, as

Δt ≈
lCP − ltag

βγγ�c
; ð2Þ

where βγ ¼ 0.28 is theϒð4SÞ Lorentz boost and γ� ¼ 1.002
is the Lorentz factor of the B mesons in the c.m. frame. The
average distance between the BCP and Btag vertices is
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approximately 100 μm along the z axis. TheB -decay vertex
resolution along the z axis is approximately 35 μm for
simulated B0 → ϕK0

S decays. We apply loose χ2 probability
requirements to both theBCP andBtag vertices. Events having
a Δt uncertainty σΔt greater than 2.0 ps, where the average
value is approximately 0.5 ps, are not included in the
analysis, as they constitute less than 2% of the signal events
and do not contribute to the determination of S.
The dominant sources of background come from con-

tinuum eþe− → qq̄ events, where q indicates a u, d, c, or s
quark. A boosted-decision-tree (BDT) classifier is trained on
simulated samples to combine several topological variables
that provide separation between continuum and signal events
[23]. The variables included in the BDTare the following, in
order of decreasing discriminating power: the cosine of
the angle between the thrust axes of BCP and Btag [24], the
modified Fox-Wolframmoments introduced in Ref. [25], the
thrust of Btag [26,27], the ratio of the zeroth to the first Fox-
Wolfram moment [28], and the harmonic moments calcu-
lated with respect to the thrust axis. We impose a minimum
requirement on the output of the BDT,OCS, that retainsmore
than 95% of the signal, while rejectingmore than 55% of the
continuum events. The transformed output of the classifier,
defined asO0

CS ¼ log½ðOCS −Omin
CS Þ=ðOmax

CS −OCSÞ�, where
Omin

CS andOmax
CS are theminimum andmaximum values of the

selected events, is included in the fit. The signal and
remaining background events are approximately Gaussian-
distributed in this variable and are therefore simple to model.
An additional requirement jΔEj < 50 MeV further sup-

presses continuum and misreconstructed B → ϕK� decays.
To reduce the contamination from nonresonant B0 →
KþK−K0

S decays and other modes leading to the same final
state, events are required to satisfy jmðKþK−Þ −mϕj<
10 MeV=c2, where mϕ is the known ϕ meson mass [6].
The same event reconstruction is applied on Bþ → ϕKþ

decays, except for the K0
S selection, which is replaced by a

Kþ track with a stringent PID requirement. This is more
than 90% efficient on the signal, while rejecting around
30% of misidentified charged particles. We achieve a total
signal reconstruction efficiency of 33% for B0 → ϕK0

S and
40% for Bþ → ϕKþ.
Events with multiple candidates account for approxi-

mately 6% of the data. We keep the candidate with the
highest BCP vertex χ2 probability. The criterion retains the
correct signal candidate 67% of the times using simulated
events. We check that the candidate selection does not bias
the Δt distribution by comparing the results of lifetime fits
to the B0 and Bþ samples with known values [6].

IV. TIME-DEPENDENT CP-ASYMMETRY FIT

The distributions of signal and backgrounds are descri-
bed in a likelihood fit to extract the CP asymmetries. We
consider the following contributions to the sample compo-
sition: signal B0→ϕK0

S events, nonresonant B
0→KþK−K0

S

background, and continuum background. Additional BB̄
background events are treated as a source of systematic
uncertainty, as they are estimated to be at most 2% of the
signal yield, according to simulation. Low-multiplicity
events contribute at less than the level of theBB̄ backgrounds
in the simulation, and are distributed like continuum in the
variables used in the fit, so they are treated as part of the
continuum background.Wemodel the distributions of signal
and background events in the Mbc, O0

CS, cos θH, and Δt
variables. TheMbc andO0

CS variables provide discrimination
between signal and continuum background. The helicity
angle θH, defined as the angle between themomentum of the
B0 and that of the positively charged kaon in theϕ rest frame,
is used to distinguish between signal and nonresonant
components. TheΔt variable and tag-flavor q provide access
to the time-dependent CP asymmetries. In addition, we use
σΔt as a conditional observable to model the per-event
resolution.
We extract the CP asymmetries using an extended

maximum-likelihood fit to the unbinned distributions of
the discriminating variables. The total probability density
function (PDF) is given by the product of the four one-
dimensional PDFs, since the dependences among the fit
observables are negligible. We model the Mbc distribution
using an ARGUS function [29] for continuum and a
Gaussian function with shared parameters for the B0 →
ϕK0

S and B0 → KþK−K0
S components. The continuum

shape is fixed from a fit to the jΔEj > 0.1 GeV sideband,
while the signal-shape parameters are determined by the fit.
We check that the continuum shapes are not biased by
B0 → ϕK�0, Bþ → ϕK�þ, and other B0 and Bþ decay
modes, contributing in total to less than 1% of the events in
the ΔE sideband. The O0

CS distribution is modeled using
the sum of two Gaussian functions with a common mean
and constrained proportions for continuum, and a Gaussian
function with asymmetric widths and shared parameters for
the B0 → ϕK0

S and B0 → KþK−K0
S components. The O0

CS
shape-parameters are determined from events in the ΔE
sideband for continuum, and using simulated events for
signal. The cos θH distribution of continuum is modeled
with a second-order polynomial determined from ΔE
sideband events. We verify using simulated samples that
the B0 → ϕK0

S and B0 → KþK−K0
S components follow a

cos2 θH and a uniform distribution, respectively, as
expected from angular momentum conservation, and the
detector acceptance does not affect their shapes.
The Btag flavor is identified using a category-based B

-flavor tagging algorithm from the particles in the event that
are not associated with the BCP candidate [7]. The tagging
algorithm provides for each Btag candidate a flavor (q) and
the tag-quality r ¼ 1–2w. The latter is a function of the
wrong-tag probability w and ranges from r ¼ 0 for no
discrimination power to r ¼ 1 for unambiguous flavor
assignment. Taking into account the effect of imperfect
flavor assignment, Eq. (1) becomes
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PðΔt; qÞ ¼ e−jΔtj=τB0

4τB0

n
1 − qΔwþ qatagϵ ð1 − 2wÞ þ ½qð1 − 2wÞ þ atagϵ ð1 − qΔwÞ�

× ½S sinðΔmdΔtÞ−C cosðΔmdΔtÞ�
o
; ð3Þ

where Δw is the wrong-tag probability difference between
events tagged as B0 and B̄0, and atagϵ is the tagging-
efficiency-asymmetry between B0 and B̄0.
The effect of finite Δt resolution is taken into account by

modifying Eq. (3) as follows:

F ðΔt; qjσΔtÞ ¼
Z

PðΔt0; qÞRðΔt − Δt0jσΔtÞdΔt0; ð4Þ

where R is the resolution function, conditional on the per-
event Δt uncertainty σΔt. Its parametrization, as determined
in B0 → Dð�Þ−πþ decays [30], consists of the sum of three
components,

RðδtjσΔtÞ ¼ ð1 − ft − fOLÞGðδtjmGσΔt; sGσΔtÞ
þ ftðσΔtÞRtðδtjmtσΔt; stσΔt; k=σΔt; f>; f<Þ
þ fOLGðδtj0; σ0Þ; ð5Þ

where δt is the difference between the observed and the
true Δt. The first component is described by a Gaussian
function with mean mG and width sG scaled by σΔt, which
accounts for the core of the distribution. The second
component Rt is the sum of a Gaussian function and the
convolution of a Gaussian with two oppositely sided
exponential functions,

Rtðxjμ; σ; k; f>; f<Þ ¼ ð1 − f< − f>ÞGðxjμ; σÞ
þ f<Gðxjμ; σÞ ⊗ k exp<ðkxÞ
þ f>Gðxjμ; σÞ ⊗ k exp>ð−kxÞ;

ð6Þ
where exp>ðkxÞ ¼ expðkxÞ if x > 0 or zero otherwise, and
similarly for exp<ðkxÞ. The exponential tails arise from
intermediate displaced charm-hadron vertices from the Btag

decay. The fraction ft is zero at low values of σΔt and
steeply reaches a plateau of 0.2 at σΔt ¼ 0.25 ps. The third
component, which accounts for outlier events contributing
with a fraction of less than 1%, is modeled with a Gaussian
function having a large width σ0 of 200 ps. The effect on
the resolution function of the small momentum of the B0

in the ϒð4SÞ frame is taken into account as a systematic
uncertainty.
We divide our sample into seven intervals (bins) of the

tag-quality variable r, with boundaries (0.0, 0.1, 0.25, 0.45,
0.6, 0.725, 0.875, 1.0), to gain statistical sensitivity from
events with different wrong-tag fractions. The response
of the tagging algorithm and detector Δt resolution is

calibrated from a simultaneous fit of w, Δw, atagϵ , and
resolution-function parameters in the seven r-bins, using
flavor-specific B0 → Dð�Þ−πþ decays [31]. The effective
flavor tagging efficiency, defined as

P
i εið1 − 2wiÞ2,

where εi is the fraction of events associated with a tag
decision and wi is the wrong-tag probability in the ith r bin,
is ð31.69� 0.35Þ%, where the uncertainty is statistical.
We verify in simulation the compatibility of the flavor
tagging and resolution function between the calibration and
signal decay modes. We use the flavor-tagging parameters
obtained from Bþ → D̄0πþ decays to calibrate the flavor
tagger and resolution function in the Bþ → ϕKþ control
channel.
The Δt distribution of the continuum background is

modeled using events from the ΔE sideband and allowing
for an asymmetry in the yields of oppositely tagged events.
A double Gaussian parametrization, with means and widths
scaled by σΔt, describes the data accurately. The Δt dis-
tribution of the B0 → KþK−K0

S background is parame-
trized using the same detector response as for signal. Its CP
asymmetries are fixed to the known values [3].
The nominal fits to the control and signal samples

determine the continuum yields and the sum of the resonant
and nonresonant yields in the seven r-bins. We also
determine the fraction of the resonant yields with respect
to the sum of the resonant and nonresonant yields directly
in the data. In addition, the mean and width of the Gaussian
function describing the resonant and nonresonant com-
ponents in Mbc and the asymmetry in the normalization
of oppositely tagged continuum-background events are
determined by the fit. Finally, the fit determines the CP
asymmetries, for a total of 20 free parameters.
The fit results are reported in Table I. In the control

sample, we find 581� 33 signal Bþ → ϕKþ, 70� 23
nonresonant, and 5730� 77 continuum events. The rel-
evant data distributions are displayed in Fig. 1, with
fit projections overlaid, under selections in the
analysis variables that enhance the signal component.

TABLE I. Results of the fit to the signal and control samples.

B0 → ϕK0
S Bþ → ϕKþ

Resonant yield 162� 17 581� 33
Nonresonant yield 21� 12 70� 23
Continuum yield 1169� 35 5730� 77

C −0.31� 0.20 −0.12� 0.10
S 0.54� 0.26 −0.09� 0.12
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FIG. 1. Distributions of (top left) Mbc, (top center) O0
CS, (top right) cos θH , (bottom left) Δt for Bþ -tagged and (bottom right) Δt for

B− -tagged Bþ → ϕKþ candidates (data points) with fits overlaid (curves and stacked shaded areas). The Mbc distribution is displayed
for candidates with O0

CS > −1 and the O0
CS distribution is displayed for candidates with Mbc > 5.27 GeV=c2. The cos θH and Δt

distributions are displayed for candidates with O0
CS > −1 and Mbc > 5.27 GeV=c2.

FIG. 2. Distributions of (top left)Mbc, (top center)O0
CS, (top right) cos θH , (bottom left) Δt for B0 -tagged and (bottom right) Δt for B̄0

-tagged B0 → ϕK0
S candidates (data points) with fits overlaid (curves and stacked shaded areas). The Mbc distribution is displayed for

candidates with O0
CS > −1 and the O0

CS distribution is displayed for candidates with Mbc > 5.27 GeV=c2. The cos θH and Δt
distributions are displayed for candidates with O0

CS > −1 and Mbc > 5.27 GeV=c2.

I. ADACHI et al. PHYS. REV. D 108, 072012 (2023)

072012-6



The control-sample CP asymmetries are C ¼ −0.12�
0.10 and S ¼ −0.09� 0.12, where the uncertainties are
statistical only, with correlation coefficient ρ ¼ 0.06. The
results are compatible with the null asymmetries we expect.
In the fit to the signal B0 → ϕK0

S sample, displayed under
the same signal-enhancing selections in Fig. 2, we find
162� 17 signal, 21� 12 nonresonant, and 1169� 35
continuum events. The corresponding CP asymmetries
are C ¼ −0.31� 0.20 and S ¼ 0.54� 0.26, where the
uncertainties are statistical only, with correlation coefficient
ρ ¼ 0.01. The observed continuum background asymmetry
is compatible with zero. The Δt distributions for tagged
signal decays, after subtracting the continuum background
[32], are displayed in Fig. 3, along with the resulting CP
-violating asymmetries.

V. SYSTEMATIC UNCERTAINTIES

Contributions from all considered sources of system-
atic uncertainty are listed in Table II. We consider
uncertainties associated with the calibration of the flavor
tagging and resolution function, fit model, and determi-
nation of Δt.
The leading contribution to the total systematic uncer-

tainty on C arises by neglecting a possible time-integrated
CP asymmetry from BB̄ backgrounds. The main system-
atic uncertainty on S comes from the fit bias, due to the
modest statistical precision to which the fraction of B0 →
KþK−K0

S backgrounds can be determined with the current
sample size.

A. Calibration with B0 → Dð�Þ−π + decays

We assess the uncertainty associated with the resolution
function and flavor tagging parameters using simplified
simulated samples. We generate ensembles assuming for
each an alternative value for the above parameters sampled

FIG. 3. Distributions, and fit projections, of Δt for flavor-tagged (left) B0 → ϕK0
S and (right) Bþ → ϕKþ candidates subtracted of

the continuum background. The fit PDFs corresponding to q ¼ −1 and q ¼ þ1 tagged distributions are shown as dashed and solid
curves, respectively. The yield asymmetries, defined as ðNðq ¼ þ1Þ − Nðq ¼ −1ÞÞ=ðNðq ¼ þ1Þ þ Nðq ¼ −1ÞÞ, are displayed in the
bottom subpanels.

TABLE II. Summary of systematic uncertainties.

Source σðCÞ σðSÞ
Calibration with B0 → Dð�Þ−πþ
decays
Calibration sample size �0.010 �0.009
Calibration sample systematic �0.010 �0.012
Sample dependence þ0.005 þ0.021

Fit model
Fit bias þ0.028

−0.017
þ0.033
−0.062

B0 → KþK−K0
S backgrounds þ0.020 −0.011

Fixed fit shapes �0.009 �0.022
τB0 and Δmd �0.006 �0.022
CKþK−K0

S
and SKþK−K0

S
�0.014 �0.013

BB̄ background asymmetry þ0.019
−0.030

þ0.017
−0.031

Tag-side interference <0.001 þ0.012
Candidate selection −0.032 −0.002

Δt measurement
Tracker misalignment −0.002 −0.002
Momentum scale �0.001 �0.001
Beam spot �0.002 �0.002
Δt approximation <0.001 −0.018

Total systematic þ0.046
−0.052

þ0.058
−0.082

Statistical �0.201 �0.256
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from the statistical covariance matrix determined in the
B0 → Dð�Þ−πþ control sample. Each ensemble is fitted
using the nominal values of the calibration parameters and
the standard deviation of the observed biases is used as a
systematic uncertainty.
A similar procedure is used to assess a systematic

uncertainty due to the systematic uncertainties on the
calibration parameters, in which the ensembles are gen-
erated by varying each parameter independently within
their systematic uncertainty.
We estimate the impact of differences in the resolu-

tion function and tagging performance between the signal
and calibration samples. We apply the resolution function
and flavor-tagging calibration obtained from a simulated
B0 → Dð�Þ−πþ sample and repeat the measurement of C
and S over an ensemble of simulated B0 → ϕK0

S events.
The average deviation of the CP asymmetries from their
generated values is assigned as a systematic uncertainty.

B. Fit model

To validate how accurately the fit determines the under-
lying physics parameters in the presence of backgrounds,
we generate ensemble datasets that contain all the fit
components. For each ensemble, we sample alternative
values of C and S within the physical boundaries, and
the fraction of the resonant events over the sum of resonant
and nonresonant decays between 0.7 and 1.0, to account
for the statistical precision on the observed value
fϕK ¼ 0.89� 0.07. Due to the limited sample size, we
assign a conservative systematic uncertainty for the fit bias
by taking the largest deviations of the fitted values of C and
S from their generated values. We also check that the
relative magnitude of this systematic uncertainty with
respect to the statistical uncertainty remains constant for
larger sample sizes.
We study the effect of neglecting interference between

the signal and nonresonant backgrounds using simulated
samples, where the B0 → ϕK0

S and B0 → KþK−K0
S com-

ponents are generated coherently using a complete Dalitz-
plot description of the decay [8]. We apply the nominal fit
to these samples, where the nonresonant yields are deter-
mined by the fit and the CP -asymmetries of the back-
grounds, CKþK−K0

S
and SKþK−K0

S
, are fixed to their generated

values, neglecting interference with the signal. The dif-
ference between the generated and fitted values of the
CP -asymmetries of the signal is assigned as a systematic
uncertainty.
The effect of fixing the PDF shapes of the Mbc, O0

CS,
cos θH, and Δt distributions in continuum, and O0

CS
distribution in signal and nonresonant background, is
estimated from ensemble datasets. We generate simulated
datasets by varying the shape parameters, in order to cover
for the empirical parametrization and statistical uncertainty,
and fix them to their nominal values in the fit. The resulting

standard deviation on the distributions of C and S is used to
estimate the corresponding systematic uncertainty.
The same procedure is applied to estimate the systematic

uncertainty associated with the external inputs used for the
lifetime τB0 ¼ ð1.519� 0.004Þ ps,mixing frequencyΔmd ¼
ð0.507� 0.002Þ ps−1, andCP asymmetriesC¼0.06�0.08
and S ¼ −0.68þ0.09

−0.10 of the nonresonant background.
Simulation shows that the residual BB̄ backgrounds is at

most 2% of the signal yield. We generate ensemble datasets
containing an additional BB̄ background component with
PDF shapesmodeled after theB0 → ϕK0

S orB
0 → KþK−K0

S
distributions and by conservatively varying the BB̄ back-
ground CP asymmetries between þ1 and −1. The BB̄
backgrounds are neglected in the fit to these datasets. The
corresponding systematic uncertainty is obtained by taking
the largest deviations ofC and S from their generated values.
The time evolution given in Eq. (1) assumes that the Btag

decays in a flavor-specific final state. We study the impact
of the tag-side interference, i.e., neglecting the effect of
CKM-suppressed b → uc̄d decays in the Btag in the model
for Δt [33]. The observed asymmetries can be corrected for
this effect by using the knowledge from previous mea-
surements [3]. We conservatively assume all events to be
tagged by hadronic B decays, for which the effect is largest,
and take the difference with respect to the observed
asymmetries as a systematic uncertainty.
The effect of multiple candidates is evaluated by repeat-

ing the analysis with all the candidates and taking the
difference with respect to the nominal candidate selection
as a systematic uncertainty.

C. Δt measurement

The impact of the detector misalignment is tested on
simulated samples reconstructed with various misalign-
ment configurations.
The uncertainty on the momentum scale of charged

particles due to the imperfect modeling of the magnetic
field has a small impact on the CP asymmetries [31].
Similarly, the uncertainty on the coordinates of the eþe−

interaction region (beam spot) has a subleading effect [31].
We do not account for the angular distribution of the B

meson pairs in the c.m. frame when calculating Δt using
Eq. (2). Therefore, we estimate the effect of the Δt
approximation on simulated samples, where the generated
and reconstructed time differences can be compared.

VI. SUMMARY

A measurement of CP violation in B0 → ϕK0
S decays is

presented using data from the Belle II experiment. We find
162� 17 signal candidates in a sample containing ð387�
6Þ × 106 BB̄ events. The values of the CP asymmetries are

C ¼ −0.31� 0.20� 0.05 and S ¼ 0.54� 0.26þ0.06
−0.08 ;
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where the first uncertainty is statistical, and the second is
systematic. The results are compatible with previous
determinations from Belle and BABAR [8,9] and have
a similar uncertainty on C, despite using a data sample
2.0 and 1.2 times smaller, respectively. When compared
to measurements using a similar quasi-two-body
approach [34,35], there is a 10% to 20% improvement
on the statistical uncertainty on S for the same number of
signal events. No significant discrepancy in the CP
asymmetries between b → qq̄s and b → cc̄s transitions
is observed.
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