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We report a measurement of decay-time-dependent charge-parity (CP) asymmetries in B’ —
KKK decays. We use 387 x 10° BB pairs collected at the Y(4S) resonance with the Belle II
detector at the SuperKEKB asymmetric-energy electron-positron collider. We reconstruct 220
signal events and extract the CP-violating parameters S and C from a fit to the distribution of the
decay-time difference between the two B mesons. The resulting confidence region is consistent with

previous measurements in B’ - K3K%K9 and B® — (¢¢)K? decays and with predictions based on the

standard model.

DOI: 10.1103/PhysRevD.109.112020

I. INTRODUCTION

In the standard model (SM), the charmless three-body
decay B — K$K%KY is mediated by the b — sqg quark
transition, which is dominated by a one-loop process,
the so-called penguin amplitude. Charge-conjugate
decays are implied hereafter unless specified otherwise.
Penguin amplitudes are suppressed in the SM, e.g.,
B(B° - KYKOKY) = (6.0 £0.5) x 1075 [1] and imply
exchanges of virtual particles where SM particles can
be replaced by a broad class of non-SM particles. These
features make these decays sensitive to possible contri-
butions from non-SM physics [2]. A key probe of such
contributions is provided by decay-time-dependent
CP-violating asymmetries of the B® and B’ decay rates.
These asymmetries arise from interference between
amplitudes for direct decay and decay following flavor
oscillations, due to the irreducible phase in the Cabibbo-
Kobayashi-Maskawa (CKM) quark-mixing matrix [3].
Precise measurements of these asymmetries using B°B°
pairs are a primary goal of experiments in electron-
positron collisions at the Y(4S) resonance. If one of
the neutral B mesons, Bp, decays into a CP eigenstate
fep at proper time 7¢p and the other, By,,, decays into a
flavor-specific final state fi,, at proper time f,,, the
probability density for observing a By,, with flavor g, at
At = tep — g s [4-6]
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e—‘Al‘/TB()
———— (1 + g[S sin(Am,At)
41'30

— Ccos(AmyAt)]), (1)

where the flavor g, is +1(—1) for By, = B(B®), 75 is
the B° lifetime, Am, is the mass difference between the
two mass eigenstates of the B°-BY system, and the CP
asymmetries S and C express mixing-induced and direct
CP violation, respectively [7]. The SM predicts that
S = —sin2¢; — 0.02 and C = —0.007 for decays into the
CP-even final state KgKgKg [8]. The mixing phase ¢; =
arg[—-V.4V:,/V.aV3,] is a combination of CKM matrix
elements. The uncertainty in the SM prediction for § is
smaller than 0.01; hence, a large deviation in B° —
KYKIKY decays would indicate non-SM physics. The
Belle [9] and BABAR [10] experiments reported these
asymmetries with comparable uncertainties dominated
by the sample size, yielding world-average values S =
—0.83£0.17 and C = —0.15%+0.12 [11]. While these
agree with the SM predictions, the large uncertainties
limit the sensitivity to non-SM sources. Additional
measurements are needed.

We report a measurement of S and C in B® — K3K3K?
decays using electron-positron collisions at the Y(4S5)
collected by the Belle II experiment. We reconstruct signal
(Bcp) BY — KOKGKY decays followed by K$ — nta~
decays and suppress background using two multivariate
classifiers. We then measure g, using the remaining
charged particles in the event and Af from the distance
between the decay positions of B¢p and By,,. We divide the
B® - K3K%KY events into two classes based on the quality
of the At information: time-differential events use Ar and
determine S and C, while time-integrated events do not use
At and contribute to the determination of C only. Fits to
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signal-discriminating observables and decay time (when
appropriate) determine the signal yield and CP asymme-
tries. We use the decay BT — K3KOK* as a control
channel to constrain the fit model from data.

II. THE BELLE Il DETECTOR AND DATA SAMPLE

The Belle II experiment is located at SuperKEKB, which
collides electrons and positrons at and near the Y(4S)
resonance [12]. The Belle II detector [13] has a cylindrical
geometry and includes a six-layer silicon detector (VXD)
and a 56-layer central drift chamber (CDC). These detec-
tors reconstruct trajectories of charged particles (tracks).
The VXD consists of two layers of silicon-pixel detectors
(PXDs) surrounded by four layers of double-sided silicon-
strip detectors [14]. Only the innermost PXD layer and one-
sixth of the outermost layer are installed for the data
analyzed here. The symmetry axis of these detectors,
defined as the z axis, is almost coincident with the direction
of the electron beam. Surrounding the CDC, which also
provides dE/dx energy-loss measurements, is a time-of-
propagation counter [15] in the central region and an
aerogel-based ring-imaging Cherenkov counter in the
forward region. These detectors provide charged-particle
identification. Surrounding them is an electromagnetic
calorimeter based on CsI(Tl) crystals that primarily pro-
vides energy and timing measurements for photons and
electrons. Outside of the calorimeter is a superconducting
solenoid magnet. The magnet provides a 1.5 T magnetic
field parallel to the z axis. Its flux return is instrumented
with resistive-plate chambers and plastic-scintillator mod-
ules to detect muons, K(L) mesons, and neutrons.

We use data collected at the Y (4S) resonance in 2019—
2022, corresponding to an integrated luminosity of (362 +
2) fb~! and containing (387 4 6) x 10° BB pairs. We use
simulated samples to train the multivariate classifiers and
define fit models. The ete™ — T(4S) - BB sample is
generated using EvtGen [16] and PYTHIA [17]. In the
simulated signal sample, one of the B mesons decays to
the B » K$K9KY signal mode or the BT — KYKOK*
control mode according to phase space. The simulated
eTe™ = gq sample, where ¢ indicates an u, d, s, or ¢
quark, is generated using the KKkMC [18] generator inter-
faced with PYTHIA. We also use EvtGen to simulate the decay
of short-lived particles. The detector response is simulated
by GEANT4 [19]. Experimental and simulated data are
analyzed with the Belle II software [20,21].

III. EVENT RECONSTRUCTION

The T (4S5) is produced at the e e~ collision point with a
Lorentz boost (fy) of 0.288 and subsequently decays to a B
and a B meson, which are both nearly at rest in the e e~
c.m. frame. Therefore, the B-meson pairs propagate nearly
along the boost direction with known velocity in the
laboratory. This allows one to approximate the difference

between their decay times as A7 = (z¢p — Zyg)/Pyc, Where
ZcP(g) 18 the decay position of Bep,g) projected onto the
boost axis.

Events are selected online based on the number of
charged particles and total energy deposited in the calo-
rimeter with nearly 100% efficiency. Pairs of oppositely
charged particles are used to reconstruct Kg -t
candidates. The four-momentum and decay vertex of the
Kg candidate are obtained from a kinematic fit of the z*
and 7z~ tracks. To reduce combinatorial background from
incorrectly reconstructed K(S) candidates, we use a boosted-
decision-tree (BDT) classifier O K9 with 15 input variables

that include the K flight length, the impact parameters of
the Kg candidate and the 7%, and the number of measure-
ment points (hits) in the VXD associated with the 7. The
most discriminating variables are the angle between the Kg
momentum and the displacement of the Kg decay vertex
from the beam interaction point (IP) and the Kg flight
length normalized by its uncertainty. We select K§ candi-
dates with invariant mass M(z"z~) between 462.6 and
532.6 MeV/c?, corresponding to about 35 units of the
relevant resolution, and with an O K9 requirement that

accepts 91% of K% mesons. The mass window is wide
since the BDT efficiently suppresses the background. These
criteria are optimized as described later.

We reconstruct Bqp candidates by combining three Kg
candidates and treat the particles not belonging to Bqp as
By, decay products. We select B¢p candidates using the

invariant mass M(K3K9KY) and the beam energy con-

strained mass My, = \/Eg.,., — |Psl*c?/c?, where Eyeanm

and pj are the beam energy and the momentum of the B
meson in the e™e™ c.m. frame. The difference between the
beam energy and the energy of the B meson in the c.m.
frame is not used unlike in previous analyses because of its
correlation with My, [9,10]. We retain B.p candidates
satisfying 5.2 < My < 5.29 and 5.08 < M(K3KIKY) <
5.48 GeV/c?, but exclude those satisfying 5.265 < M, <
529 and 5.08 < M(KSK3KY) <52 GeV/c? to avoid
contamination by BY*) — K$KOK**) decays.

The dominant source of background is the ete™ = ¢gg
continuum. We suppress this background by using another
BDT classifier, Ocg, with the following input variables
that exploit event topology: the cosine of the angle between
the thrust axes of Bcp and By, in the e"e™ c.m. frame,
the magnitude of the By,, thrust, the sum of the transverse
momenta of the particles in the event, the squared four-
momentum difference between the beams and the detected
particles in the c.m. frame, and the modified Fox-Wolfram
moments [22]. The B thrust axis is a unit vector 7 that
maximizes the thrust magnitude 7= (> ;|7-p:l)/
(>>:1pil), where p; is the momentum of the B meson’s
ith decay product in the c.m. frame. The BDT classifier
Ocs ranges from zero for backgroundlike events to one for
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signal-like events. We use simulated events to train the
classifier. A requirement of Ocg > 0.1 results in 51%
background rejection with a signal efficiency of 98%.
We then calculate a transformation of the classifier,
O¢s =1og [(Ocs —0.1)/(1 — Ocs)], which yields a clas-
sifier distribution more convenient to parametrize. The
selection criteria on K9 candidate mass and Oy are

determined by maximizing Ng,/\/Nge + Npke» Where
Ng, and Ny, are the expected yields of Bcp signal and
background events determined from simulation, respec-
tively, meeting the following signal-enhancement condi-
tions: 5.27 < My <5.29GeV/c?, 5.18 < M(KYKSKY) <
5.38 GeV/c?, and Ocg > 0.5.

In addition to the nonresonant decay amplitude, quasi-
two-body decays B® — X(— K3K9)KY via intermediate
resonances X due to b — s and b — c transitions contribute
to B® —» KYKIK?Y decays. We consider b — s decays to be
signal, but we veto b — ¢ contributions to measure the CP
asymmetries for the b — s transition. We expect a signifi-
cant b — ¢ contribution only from B® — y K% decays
based on the rates of B — X(— K%K$)KY decays where X
indicates a D, y.o, ¥c1 Xe2 Mer J /W, or w(2S) meson [1].
The B® = y.o(— K$K$)KS branching fraction is around
5% of the signal branching fraction. We reject signal B¢p
candidates if the invariant mass of any combination of two
K9 candidates is in the range 3.379 < M(K}KY) <
3.447 GeV/c?. This requirement rejects 90% of the back-
ground from B® — y.o(— K3K$)KY decays and 7.2% of
signal.

The control channel B™ — K9K$K* is reconstructed
from two K% mesons and a track and is similar to the signal
decay. We require the particle identification information for
the track to be consistent with a K. We use the control
channel to constrain the parameters of B-vertex-resolution
model for signal, as well as those of the shapes of the Bp
mass and Og background distributions. We do not veto
10Kt decays for the control channel because their kin-
ematic distributions are the same as those of the KKK+
final state.

IV. MEASUREMENT OF B-MESON FLAVOR AND
DECAY-TIME DIFFERENCE

We use a category-based BDT algorithm to identify the
By, flavor [23]. The algorithm uses 13 BDTs, each
geared toward discriminating a specific signature of b —
¢ — s cascade decays using particle identification and
kinematic variables of the B, charged decay products.
The outputs from these BDTs are combined by the top-
level BDT to return the flavor value g, and tagging
quality r = 1-2w, where w is the probability for wrong
flavor assignment. The probability density of Eq. (1) is
modified to include the parameter w, and its difference
between B® and B°, Aw,

- oAt /70
Psig (AI,CIf) :TBO(I —qrAw
+q7(1-2w)[Ssin(Am At) — Ccos(Am,At)]).

(2)

The events are classified into seven independent r
intervals (bins). For each bin, w and Aw are determined
using flavor-specific B-meson decays with large branch-
ing fractions [24]. Since the signal purity varies as a
function of r, using the distribution of r improves the
statistical sensitivity to the CP asymmetries.

To measure Az, we reconstruct the Bep and By,, decay
vertices using information about the IP. The spatial dis-
tribution of the IP is described by a three-dimensional
Gaussian whose parameters are regularly measured in a
calibration based on ete™ — utu~ events. The IP size is
typically 250 pm in the boost direction, 10 pm in the
horizontal direction, and 0.3 pm in the vertical direction
[25]. The B p vertex position is reconstructed from the six
final-state pions using a decay-chain vertex fit, which
constrains the Bp to originate from the IP (IP constraint)
[26]. Due to their long lifetime, a fraction of K‘; mesons
decay outside of the VXD volume, resulting in poorly
measured decay positions. This causes the B.p vertex
resolution to depend strongly on the number of Kg mesons
with associated VXD hits. In simulation, the fractions of
signal decays in which zero, one, two, or three Kg mesons
have VXD hits are 0.4%, 7.9%, 37.9%, or 53.8%, respec-
tively. When only one Kg meson has VXD hits, the IP
constraint significantly improves the Bp vertex resolution,
reducing the average vertex-position uncertainty in the
boost direction from around 270 to 120 pm. The average
uncertainty with the IP constraint is 49 pm when two K(S)
mesons have VXD hits and 35 pm when all three have
such hits.

We use the By, tracks to reconstruct the By, vertex,
excluding those having no associated PXD hits. We also
exclude pairs of oppositely charged pions consistent with a
K g decay because they are likely to be produced away from
the B,, vertex. Similar to the B¢p vertex, we constrain the
B, to originate from the IP to improve the vertex
resolution and reconstruction efficiency [27]. In order to
reduce the contamination from tracks from secondary and
tertiary displaced vertices, which would bias the determi-
nation of the Bcp vertex position, the fit is repeated by
iteratively removing the tracks contributing the largest
increase to the vertex-fit ¥ until a satisfactory fit quality
is achieved. A selection on fit quality and vertex-position
uncertainty is applied to ensure the quality of the Ar
measurement.

We divide the remaining B’ — KYK%KY candidates into
two classes based on the quality of the At information to
maximize the sensitivity of the measurement of S and C.
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For the time-differential (TD) analysis that determines
both S and C, we require candidates that satisfy the
following criteria: both tracks from one or more signal
Kg are associated with at least one VXD hit, the decay-
time-difference satisfies —30 < Ar < 30 ps, satisfactory
vertex-fit quality, and small vertex-position uncertainty.
The At resolution is around 0.9 ps in the TD events.
The At information of the other events is not used. They are
included in the time-integrated (TI) analysis, which con-
tributes only to C. The probability density in Eq. (2) is
integrated over Atz for TI events, yielding

1 1
Pl (g == (1-qAw—q (1 —2w)C—on—).
Slg(qf) 2< qraw Qf( W) 1+Am3f}290>

(3)

For 1.1% of simulated signal events, multiple (typically
two) Bcp candidates are reconstructed. We choose the
candidate with the best vertex-fit quality for such events,
which retains the correctly reconstructed Bp candidates in
82% of these events. This requirement has negligible
impact on the Ar distribution and the CP asymmetry
results. The reconstruction efficiency including the B,
selection is 28.3% in simulation. For the control channel,
we reconstruct the B — KKK vertex without using the
K" track to emulate the B® - KOKOKY vertex fit. We
discard B* — K$KYK™" candidates that fail the TD criteria.
The reconstruction efficiency for the control channel
is 24.7%.

V. DETERMINATION OF SIGNAL YIELD

We extract the yields for TD, TI, and control channel
events from a three-dimensional likelihood fit to the
unbinned distributions of M., M(K%KOK), where K
indicates a K3 or K™ meson, and Ofg. The likelihood
function includes two sample components, signal and
background. We determine the shape of the signal compo-
nent from fits to distributions of simulated signal and
control samples. The My, distribution is modeled with a
Gaussian function for the signal TD and control samples
and with a crystal ball shape [28,29] for the signal TI
sample. The signal and control-sample M(K%KJK) dis-
tribution is modeled with the sum of a Gaussian function
and an asymmetric Breit-Wigner function [30]. The signal
and control-sample O¢q distribution is modeled with the
sum of a symmetric and an asymmetric Gaussian function
[31]. For the background, the M, distribution is modeled
with an ARGUS function [32], the M (KK K) distribution
with a linear function, and the Ogg distribution with the
sum of a symmetric and an asymmetric Gaussian function.
The end point of the ARGUS function is set to Eyam», Which
is calibrated using other B decays. The parameter sets for
the O shapes are shared between TD and TI events. We
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FIG. 1. Distributions of My, for (top) TD, (middle) TI, and
(bottom) B — K3KYK* candidates with fit projections overlaid.
The black dots with error bars represent the data points; the black
solid curve shows the total fit projection; the red hatched area is
the signal projection; and the blue dashed curve is the background
projection. The distributions are restricted to events in the
M(KK3K) signal region. Lower panels show the differences
between data and fit results normalized by the statistical un-
certainty of the data.

use the same parameter set for the My, and M(K3K9K)
background shapes across the three samples as the BT —
KYKIK™ kinematic properties are similar to those of the
signal decay, as confirmed in simulation. The fit simulta-
neously determines the yield of each sample and 14
background shape parameters [33].

Figures 1-3 show the data distributions with fit results
overlaid. The low-mass tails of the M (K$KK) distribution
of the signal TI component is mainly due to 7 — uv,
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FIG. 2. Distributions of M(K$}K%K) for (top) TD, (middle) TI,
and (bottom) B" — K9KGK* candidates with fit projections
overlaid. The black dots with error bars represent the data points;
the black solid curve shows the total fit projection; the red
hatched area is the signal projection; and the blue dashed curve is
the background projection. The distributions are restricted to
events in the My, signal region. Lower panels show the
differences between data and fit results normalized by the
statistical uncertainty of the data.

decays, which occur in 3% of the reconstructed signal B® —
K9KYKY events. Such events are mostly classified as TI
events due to the poor vertex-fit quality. We define the
signal region as 5.272<M;.<5.288GeV/c?, 52 <
M(KKIK) < 5.36 GeV/c?, and —4.44 < Of4 < 8.85.
Each range for M,. and Ofg retains 99.73% of signal
TD events. The signal yield and the purity in the signal
region is 158+ and 57% for TD events, 62 £ 9 and 40%
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FIG. 3. Distributions of Ogg for (top) TD, (middle) TI, and

(bottom) B™ — K3KYK™ candidates with fit projections overlaid.
The black dots with error bars represent the data points; the black
solid curve shows the total fit projection; the red hatched area is
the signal projection; and the blue dashed curve is the background
projection. The distributions are restricted to events in the My,
signal region. Lower panels show the differences between data
and fit results normalized by the statistical uncertainty of the data.

for TI events, and 403*’231 and 22% for the control channel
events.

VI. DETERMINATION OF CP ASYMMETRIES

We determine the CP asymmetries S and C from a
maximum-likelihood fit to the unbinned A7 and binned g
distributions combining TD, TI, and B* — KYKJK*
events restricted to the signal region. The contribution to
the likelihood function from the ith TD event is
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EiTD(& C|At;, (Zf,i)

= £ [ d(Ar)R(Ar — AYYPIR(AY. g5,

+ (1 _f?ig)Pbkg(Ati)7 4)

where R(At; — At') is the response function of the Ar

measurement (resolution function), f;* is the signal prob-
ability of the ith event, and Py, is the At distribution of
background events. We use a resolution function developed
by the Belle Collaboration [34]. The resolution function is
the convolution of four components: detector resolution for
the Bp vertex, detector resolution for the By,, vertex, bias
due to secondary particles from charmed intermediate states
for the By,, vertex, and corrections to the boost factor due to
the nonzero c.m. momentum of the B mesons. The correc-
tion to the boost factor is calculated analytically using the
cosine of the angle between the B-p momentum and the
boost direction in the e™ e~ c.m. frame, cos 67, on an event-
by-event basis. The resolution-function parameters are fixed
to those obtained from a fit to simulated signal events, but the
width in simulation is scaled by a parameter sy that
accounts for data-simulation differences and that is deter-
mined simultaneously with § and C. The distribution Py, is
the sum of two Gaussian functions that depend on vertex
quality and vertex-position uncertainty. The Py, parame-
ters are determined by a fit to the M, sideband data. The
likelihood function assumes equal fraction of B’-tagged and
BO-tagged background events as confirmed in the sideband
data and in the simulation. We calculate the signal proba-
bility on an event-by-event basis using the five-dimensional
PDF of My., M(KSK$K), O, r, and cos @. The PDF
contains signal and background components, whose frac-
tions are determined by the signal and background yields.
No correlation is assumed between the variables. The last
two variables are included to avoid fit biases (0.03 for S and
0.02 for C) due to implicitly assuming equal distributions
that differ across sample components [35]. The r distribution
for background is obtained from the M,, < 5.265 GeV/c?
sideband. For cos 83, we assume a uniform distribution for
background and 3 (1 — cos? 83 for signal. For TI events, we
use the likelihood in Eq. (4) integrated over At,

- £

£ (Clag) = f*P&(ar) +—

sig

(5)

We include the BY — K$KK" decays in the fit using the
likelihood in Eq. (4) summed over g, and using the B
lifetime instead of the B? lifetime. The control channel helps
to constrain s, since its signal yield is 2.5 times larger than
the TD signal. The resolution-function parameters and s 4
are the same as those of the B — K9K$K? events except for
the parameters that model the effect of secondary particles.
They differ since, compared to B mesons, BT mesons yield
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FIG. 4. Background-subtracted Ar distributions for (top) B™ —
KYKIK ™" candidates and (middle) B® — K3K%KY TD candidates
separated for g, = &1 along with (bottom) the resulting B?ag
minus B?ag yield asymmetry as a function of At. Points with error
bars represent data and the curves show the fit results. Red, filled
circles and solid curves show the data for g, = +1 and fit results,
respectively, while blue, open circles and dashed curves are for

fewer D~ mesons and more D° mesons, which have shorter
lifetimes. We define the background A distribution for
B* — KYKYK™ with an independent parameter set from
B® — KYK$KY and with an additional Gaussian function.

Figure 4 shows the background-subtracted At distribu-
tions using the (Plot technique [36] and their asymmetry
with fit projections overlaid. We obtain S = —1.37f8"§62,
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C=-0.07£0.17, and s4,; = 1.16 = 0.15. Linear corre-
lation coefficients are —0.02 between S and C, —0.16
between S and sg4, and —0.07 between C and s4q.
However, simulation studies show that the above point
estimates are not reliable. While the likelihood has no
secondary maxima, the small sample size leads to biases
and non-Gaussian uncertainties. For more reliable results,
we construct confidence regions for the CP-violating
parameters as described in Sec. VIII.

VII. SYSTEMATIC UNCERTAINTIES

We consider various sources of systematic uncertainties,
which are listed in Table 1. To evaluate the systematic
uncertainties in S and C related to assumptions made on
parameters of the fit model, we repeat the fit on data using
alternative values of the parameters sampled from Gaussian
distributions based on their uncertainties. The widths of the
resulting distributions of S and C are taken as contributions
to the systematic uncertainty. This approach is used for 7o,
g+, and Amy; the parameters of the My, M(KKSK), and
O shapes (referred to as signal modeling in the table); the
parameters describing the resolution function; the param-
eters for the background Ar shape; and the parameters
related to flavor tagging.

We sample the world averages of the B® and B™ lifetimes
and Am, including their uncertainties [1]. The parameters
of signal probability, resolution function, and background
At shape have uncertainties from the fits used to determine
them, which depend on the size of data and simulated
samples. The systematic uncertainty in the resolution
function includes the uncertainty due to the choice of
the model, which is determined by analyzing a simulated
sample with alternative resolution models whose depend-
ence on the vertex-fit quality is partly or entirely removed.
The simulation assumes S = —0.7 and C = 0. The sys-
tematic uncertainty due to flavor tagging takes into account
the statistical and systematic uncertainties of w and Aw. It
also includes the bias due to the flavor asymmetry in the
tagging efficiency between B° and B°. Two sets of
simplified simulated experiments are generated, with and

TABLE I. Systematic uncertainties.

Source S C
Tgo, Tp+, and Amy 0.009 0.000
Signal modeling 0.014 0.008
At resolution function 0.013 0.008
Background At modeling 0.004 0.002
Flavor tagging 0.013 0.012
Fit bias 0.014 0.004
Tag-side interference 0.001 0.027
Vertex reconstruction 0.011 0.004
Tracker misalignment 0.008 0.007
Total 0.030 0.033

without the asymmetry, and fits for S and C are performed
in both ignoring the asymmetry. The difference between the
mean values of § and C obtained in the two sets is the
uncertainty. We repeat the simplified simulation assuming
various input CP asymmetries and take the maximum
difference. We observe correlations between M(K%KJK)
and vertex-fit quality for B-p (—0.06 for TD events), and
between O¢g and r (0.15), which are not included in the
default model. To evaluate the bias due to these correlations
and to a mismodeling of the cos @}, distribution, we use
simplified simulated samples generated with and without
these effects in the same way as above. The CP asymme-
tries are affected by the interference between a CKM-
favored transition » — ¢ud and a doubly CKM-suppressed
transition b — ucd on the tag side [37]. We assign as a
systematic uncertainty the effect of the tag-side interference
assuming S = —0.7 and C = 0. The systematic uncertainty
due to the vertex reconstruction is determined by varying
the parameters describing the IP profile and boost vector,
the track requirements used in the B, vertex reconstruc-
tion, and the criteria to select TD events, and repeating the
fit on data. To evaluate the effect from possible misalign-
ment of the vertex detector, we use four simulated samples,
each assuming a different misalignment configuration and
CP asymmetries of § = —1.0 and C = 0. We compare the
resulting CP asymmetries with those in the sample without
misalignment and the maximum deviation is taken as the
systematic uncertainty.

VIII. RESULTS AND SUMMARY

Since the point estimates from the fit are not reliable, we
construct confidence regions for our results based on
likelihood-ratio ordering [38]. For the construction, sim-
plified simulated experiments are generated by sampling
the likelihoods of the yield fit and asymmetry fit. The
nuisance parameters in the models are fixed to the values
fitted to the data and the systematic uncertainty is not taken
into account as its size is negligible. Figure 5 shows the
resulting two-dimensional confidence regions where S and
C are constrained within their physical boundary,
§? 4+ C? < 1. The projections of the confidence regions
are —1<85<-072 and -029 <C <0.14 at the
68.3% confidence level, —1 < § < —-0.41 and —0.45 <
C < 0.32 at the 95.5% confidence level, and —1 < S <
—0.09 and —0.61 < C < 0.49 at the 99.7% confidence
level. The results are consistent with the SM predictions
and current best determinations by the Belle and BABAR
experiments [9—11].

In summary, we report a measurement of decay-time-
dependent CP asymmetries in B® — KYK9KY decays using
a dataset of 387 x 10° BB pairs reconstructed from
electron-positron collisions at the T (4S) and collected
with Belle II experiment from 2019 to 2022. We reconstruct
220 signal events and extract the CP-violating parameters
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FIG.5. Two-dimensional confidence regions for S and C based
on likelihood-ratio ordering. The red solid, orange dashed, and
green dotted contours represent the 68.27%, 95.45%, and
99.73% confidence regions for § and C given the physical
constraint §2 4+ C? < 1. The blue dot with the error bar is the
average value based on results by Belle and BABAR [9,10]. The
black dot represents the SM prediction (S,C) = (—sin2¢, —
0.02,-0.007) based on measurements in B® — (c2)K°
decays [11].

from a fit to the distribution of the decay-time difference of
the two B mesons. We determine a two-dimensional
confidence region for the relevant parameters S and C
obtaining results that are consistent with the SM predictions
and previous determinations.

The Belle II analysis software framework used in this
paper is openly available from the Zenodo repository [21].
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