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We present a measurement of the τ-lepton mass using a sample of about 175 million eþe− → τþτ−

events collected with the Belle II detector at the SuperKEKB eþe− collider at a center-of-mass energy
of 10.579 GeV. This sample corresponds to an integrated luminosity of 190 fb−1. We use the kinematic
edge of the τ pseudomass distribution in the decay τ− → π−πþπ−ντ and measure the τ mass to be
1777.09� 0.08� 0.11 MeV=c2, where the first uncertainty is statistical and the second systematic. This
result is the most precise to date.

DOI: 10.1103/PhysRevD.108.032006

I. INTRODUCTION

The τ-lepton mass mτ is one of the fundamental
parameters of the standard model. An experimental deter-
mination of mτ with the lowest possible uncertainty has
important consequences for tests of lepton-flavor univer-
sality between τ and lighter leptons where the τ mass enters
to the fifth power [1]. Precise knowledge of mτ is also
important for the predictions of leptonic and hadronic
branching fractions of the τ [2] and the determination of
the strong-interaction coupling αs at the τ-mass scale [3,4].
The most precise measurements of the τ mass currently

available are reported in Table I. The BES [5], KEDR [6],
and BES III [7] Collaborations measured the τ mass by
analyzing the eþe− → τþτ− cross section near the τþτ−
production threshold. The Belle [8] and BABAR [9]
measurements use the pseudomass end-point method [10]
at a center-of-mass energy near the ϒð4SÞ mass. The
highest precision to date has been achieved by the
BES III Collaboration. While the statistical and systematic
uncertainties for the BES III measurement are of similar
size, the precision of the Belle and BABARmeasurements is
limited by systematic uncertainties. For both experiments
the largest systematic uncertainties arose from the knowl-
edge of the beam energy and the momentum reconstruction
of the τ-decay products.
In this paper, we report a measurement of mτ using a

sample of about 175 million eþe− → τþτ− events recorded
with the Belle II detector [11] at the asymmetric-energy
eþe− SuperKEKB collider [12]. The data, collected
between March 2019 and July 2021 near the nominal
center-of-mass energy of

ffiffiffi
s

p ¼ 10.579 GeV, correspond to

an integrated luminosity of 190 fb−1. We determine mτ

from the hadronic decays τ− → π−πþπ−ντ using the
pseudomass end-point method. Charge-conjugate modes
are implied throughout. Assuming zero mass for the
neutrino, the τ mass is given by

mτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

3π þ 2ðE�
τ − E�

3πÞðE�
3π − p�

3π cos α
�Þ

q
; ð1Þ

where for brevity we set c ¼ 1. Here, and throughout the
paper, quantities in the eþe− center-of-mass frame are
indicated by an asterisk. The mass, energy, and momentum
of the three-pion system are denoted by M3π, E�

3π , and p�
3π ,

respectively. The energy of the τ is given by E�
τ ; α� is the

angle between the momenta of the three-pion system and
the neutrino. The energy E�

τ is half of the eþe− center-of-
mass energy

ffiffiffi
s

p
=2 up to corrections from initial-state

radiation (ISR) from the e� beams and final-state radiation
(FSR) from the τ and its decay products. The pseudomass
Mmin is defined by setting α� equal to 0 and therefore
minimizing Eq. (1) as

Mmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

3π þ 2ð ffiffiffi
s

p
=2 − E�

3πÞðE�
3π − p�

3πÞ
q

≤ mτ: ð2Þ

In the absence of ISR and FSR, and assuming a perfect
measurement of the four-momentum of the three-pion
system, the Mmin distribution extends up to mτ, where it

TABLE I. Summary of most precise measurements of the τ
mass to date.

Experiment mτ (MeV=c2)

BES [5] 1776.96þ0.18þ0.25
−0.21−0.17

KEDR [6] 1776.80þ0.25
−0.23 � 0.15

BES III [7] 1776.91� 0.12þ0.10
−0.13

Belle [8] 1776.61� 0.13� 0.35
BABAR [9] 1776.68� 0.12� 0.41
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has a sharp edge. The momentum resolution of the detector
and the energy loss through radiation smear the end-point
position and introduce a tail toward larger Mmin values.
However, as seen in Fig. 1, an edge remains in the observed
Mmin distribution and is used to measure the τ mass. One
challenge is to precisely measure the inputs to Eq. (2),
namely the eþe− center-of-mass energy

ffiffiffi
s

p
and the

momenta of the τ-decay products. Another challenge is
to develop an empirical model to describe the Mmin
distribution. Any inaccuracy in either directly impacts
the τ-mass determination.

II. THE BELLE II DETECTOR AND SIMULATION

The Belle II detector consists of several subdetectors
arranged in a cylindrical structure around the eþe− inter-
action point [11]. Charged-particle trajectories (tracks) are
reconstructed by a two-layer silicon-pixel detector, sur-
rounded by a four-layer double-sided silicon-strip detector
and a central drift chamber (CDC). Only 15% of the second
pixel layer was installed when the data were collected.
Outside the CDC, a time-of-propagation detector and an
aerogel ring-imaging Cherenkov detector cover the barrel
and forward end-cap regions, respectively. The electro-
magnetic calorimeter (ECL), divided into the forward end
cap, barrel, and backward end cap, fills the remaining
volume inside a 1.5 T superconducting solenoid and is used
to reconstruct photons and electrons. A K0

L and muon
detection system is installed in the iron flux return of the
solenoid. The z axis of the laboratory frame is defined as
the detector solenoid axis, with the positive direction along
the electron beam. The polar angle θ and the transverse
plane are defined relative to this axis.

Several processes contribute to the eþe− → τþτ− sample
as backgrounds, including eþe− → qq̄ events, where q
indicates a u, d, c, or s quark; eþe− → eþe−ðγÞ and
μþμ−ðγÞ events; eþe− → lþl−lþl− events, where l is
a charged lepton; eþe− → eþe−hþh− events, where h
indicates a pion, kaon, or proton; and eþe− → eþe−nh
events with n > 2. We use simulated events to identify
discriminating features effective to suppress these back-
grounds. The eþe− → τþτ− process is generated using the
KKMC generator [13,14]. The τ decays are simulated by
TAUOLA [15] and their FSR by PHOTOS [16]. We use KKMC

to simulate μþμ−ðγÞ and qq̄ production; PYTHIA [17] for the
fragmentation of the qq̄ pair; BABAYAGA@NLO [18–22] for
eþe− → eþe−ðγÞ events; and AAFH [23–25] and TREPS [26]
for the production of nonradiative final states lþl−lþl−

and eþe−hþh−. There is no generator to simulate the
eþe− → eþe−nh process. The Belle II analysis software
[27,28] uses the GEANT4 [29] package to simulate the
response of the detector to the passage of the particles.

III. EVENT SELECTION

In the eþe− center-of-mass frame, the τ leptons are
produced in opposite directions. Thus, the decay products
of one τ are isolated from those of the other τ, and they are
contained in opposite hemispheres. The boundary between
those hemispheres is the plane perpendicular to the τ flight
direction, which is experimentally approximated by the
thrust axis. The thrust axis is the unit vector t̂ that
maximizes the thrust value

P jt̂ ·  p�
i j=

P j  p�
i j, where  p�

i
is the momentum of ith final-state particle in the eþe−
center-of-mass frame [30,31].
We define the signal hemisphere as that containing three

charged particles, which are assumed to originate from the
τ− → π−πþπ−ντ decay, and require that the other hemi-
sphere, named tag, contains only one charged particle and
up to one neutral pion. Thus, the tag side contains leptonic
(τþ → eþνeν̄τ and τþ → μþνμν̄τ) and hadronic (predomi-
nantly τþ → hþν̄τ and τþ → hþπ0ν̄τ) τ decays.
We select τ-pair candidates by requiring the event to

contain exactly four charged particles with zero total
charge, each having a trajectory displaced from the average
interaction point by less than 3 cm along the z axis and
less than 1 cm in the transverse plane to reduce the
contamination of tracks originated from beam-background
interactions. No particle-identification requirements are
imposed on any of the charged particles. The momenta
of charged particles are scaled with factors that range from
0.99660 to 1.00077 depending on the charge and cos θ to
correct for imperfections in the magnetic-field description
used in the event reconstruction, misalignment of the
detector, and material mismodeling. The correction factors
are evaluated by measuring the mass-peak position of high-
yield samples of D0 → K−πþ decays reconstructed in data
and comparing them to the known value [32].
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FIG. 1. Spectrum of Mmin in experimental data (dots), along
with simulated background contributions from eþe− → τþτ−

events with decays other than τ− → π−πþπ−ντ (orange area with
solid line), eþe− → qq̄ events (blue area with dashed line), and
other background sources (gray area with dotted line).
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Neutral pions are identified as photon pairs with masses
between 115 and 152 MeV=c2. Those photons are iden-
tified from ECL energy deposits (clusters), reconstructed
within the CDC acceptance, 17° < θ < 150°, to ensure they
are not matched to any charged particle. Depending on
whether the photons are reconstructed in the forward,
barrel, or backward region of the detector, requirements
are different. Photon-energy thresholds ranging from
60 to 600 MeV suppress the beam-induced backgrounds,
which are larger in the end caps compared to the barrel
region. Requirements on the cosine of the angle between
the momenta of the two photons, cosαγγ , and on the
momentum of the reconstructed neutral pion, pπ0 , reduce
the combinatorial background from low-energy photons.
The most stringent requirements, cos αγγ > 0.95 and
pπ0 > 0.94 GeV=c, are imposed when both photons are
reconstructed in the forward region. For the photons
reconstructed in the rest of the detector the minimum
requirements on cos αγγ and pπ0 are around 0.87 and
0.60 GeV=c, respectively.
The online event selection, trigger, is based on the

energy deposits and their topologies in the ECL. The
trigger efficiency is driven by the requirements of at least
three clusters with a topology inconsistent with a Bhabha
event and one of the clusters having an energy larger than
300 MeV. The trigger efficiency in the experimental data is
approximately 92%.
Background from qq̄ production is suppressed by

rejecting events containing neutral pions in the signal
hemisphere or more than one neutral pion in the tag
hemisphere. Events with photons of energy greater than
0.2 GeV that are not used in neutral-pion reconstruction
are also rejected. In order to suppress eþe−ðγÞ, μþμ−ðγÞ,
lþl−lþl−, and eþe−hþh− events, which are character-
ized by low-momentum charged particles, we rank the
three charged particles in the signal hemisphere in
decreasing order of transverse momenta and ensure that
their values exceed 0.6, 0.2, and 0.1 GeV=c. We further
reject events from qq̄, eþe−ðγÞ, and eþe−ðnhÞ processes
by restricting the thrust value and the visible center-of-
mass energy of the event, E�

vis, that is the sum of all
reconstructed particles’ energies, to be within ranges of
[0.87, 0.97] and [2.5,9.0] GeV, respectively. We remove
most of the remaining background with requirements
on the magnitude of the missing momentum, 0.05 <
p�
miss < 3.5 GeV=c, on its polar angle, 0.5 < θ�miss <

2.7 rad, and on the square of the missing mass,
0 < M2

miss < 54 GeV2=c4. The missing momentum is
the difference between the momenta of the initial eþe−
and that of all reconstructed particles in the event,
while the square of missing mass is defined as
M2

miss ¼ ð ffiffiffi
s

p
− E�

visÞ2 − ðp�
missÞ2.

After all requirements, we observe 583192 events in the
experimental data in the Mmin range ½1.70; 1.85� GeV=c2.
The signal-reconstruction efficiency in this region is 2.3%,

and the purity of the sample is 90%. Among the signal
events, around 56% are lepton tagged and the remaining
events are hadron tagged. The dominant backgrounds are
from the eþe− → qq̄ processes (6.4%), followed by
eþe− → τþτ− with decays other than τ− → π−πþπ−ντ in
the signal hemisphere (2.0%).

IV. BEAM ENERGY

The computation of Mmin relies on the knowledge of the
eþe− center-of-mass energy. We exploit the fact that the
collision energy is just slightly above the kinematic-
production threshold for BB̄ pairs and measure the
B-meson energy E�

B using fully reconstructed neutral
and charged B-meson decays (setting c ¼ 1):

E�
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B þ ðp�
BÞ2

q
≈mB þ 1

2mB
ðp�

BÞ2: ð3Þ

Here p�
B andmB are the momentum and mass, respectively,

of the B meson. A maximum-likelihood fit is performed
to the E�

B distribution to determine its peak position. The
collision energy

ffiffiffi
s

p
is obtained from E�

B after correcting
for the effect of ISR and by accounting for the energy
dependence of the eþe− → BB̄ cross section [33,34] using
the following procedure.
We use a model where the center-of-mass energy of the

colliding particles is described by a Gaussian of width σ ffiffi
s

p

about a mean value
ffiffiffi
s

p
, where

ffiffiffi
s

p
and σ ffiffi

s
p vary slowly

during data taking. The eþe− → BB̄ cross section is then
given by

d2σ

dx d
ffiffiffiffi
s0

p ¼ Gð
ffiffiffiffi
s0

p
−

ffiffiffi
s

p
; σ ffiffi

s
p ÞWðs0; xÞσ0ðs0ð1 − xÞÞ; ð4Þ

where
ffiffiffiffi
s0

p
is the event-by-event center-of-mass energy, x

is the fraction of energy carried by the ISR photon [35],
and G is the Gaussian distribution. The photon-emission
probability is described by the function W, and σ0 is
the Born cross section for eþe− → BB̄ [34]. In terms of
these quantities, the B-meson energy is given by
E�
B ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0ð1 − xÞp

. We use events simulated according
to Eq. (4) to establish a mapping between the corrected
quantities (

ffiffiffi
s

p
; σ ffiffi

s
p ) and observed quantities (E�

B; σE�
B
).

The inverse of this mapping is used to obtain
corrected values for the center-of-mass energy

ffiffiffi
s

p
as a

function of data-taking time. The results are shown in
Fig. 2. During the 2019 and early 2020 data-taking
periods, the

ffiffiffi
s

p
value is around 2 MeV above the nominal

value
ffiffiffi
s

p
nominal ¼ 10.579 GeV. It then drifts to lower

values where it stabilizes at around 6 MeV below the
nominal value by the middle of the 2021 data-taking
period.
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V. METHOD

To reduce experimenter bias, we validate the method of
the τ-mass measurement and estimate the statistical and
systematic uncertainties before looking at the central value
of the result. The Mmin distribution around the edge can be
empirically described as a Heaviside step function multi-
plied by second-order polynomials and convoluted with a
double-Gaussian resolution function to account for the ISR,
FSR, and detector resolution. We approximate the result of
the convolution with the following expression:

FðMminÞ ¼ 1 − P3 · arctan

�
Mmin − P1

P2

�

þ P4ðMmin − P1Þ þ P5ðMmin − P1Þ2: ð5Þ

To determine the τ mass, we perform an unbinned maxi-
mum-likelihood fit [36] to the Mmin distribution in the
range ½1.70; 1.85� GeV=c2 using Eq. (5). The parameter P1

determines the edge position and therefore is an estimator
of the τ mass. The P2 parameter modifies the slope of
the threshold, while the rest of the parameters describe the
shape away from the edge. Fits to simulated events in
which the generated value of the τ mass is varied in the
range ½1772; 1782� MeV=c2 show that on average P1

overestimates the τ mass with a constant offset of
0.40� 0.03 MeV=c2. This bias results from the empirical
parametrization of the Mmin distribution.
Figure 3 shows the Mmin distribution in the range of

½1.70; 1.85� GeV=c2 in data with the background predicted
from simulation and the fit projection overlaid. While the

τ− → π−πþπ−ντ events show a clear threshold, the back-
ground processes are featureless around the end point.
Their contribution is described by the parameters P3, P4,
and P5. The observed value P1 ¼ 1777.49� 0.08 MeV=c2

is then corrected for the estimator bias to obtain the
measured τ mass:

mτ ¼ 1777.09� 0.08 MeV=c2; ð6Þ

where the uncertainty is the statistical uncertainty of the P1

parameter. The statistical precision of the result is validated
by generating simplified simulated experiments based on
Poisson statistics, as well as by resampling the data based
on bootstrapping techniques [37], and repeating the meas-
urement on them.

VI. SYSTEMATIC UNCERTAINTIES AND
CONSISTENCY CHECKS

The systematic uncertainties are grouped into categories
associated with the knowledge of the colliding beams, the
reconstruction of the charged particles, the fit model, and
imperfections in the simulated data. Table II summarizes
the sources that contribute to the total uncertainty. The
largest uncertainty arises from the beam-energy correction,
followed by the uncertainty on the charged-particle
momentum. The various systematic uncertainties are added
in quadrature, resulting in a total systematic uncertainty
of 0.11 MeV=c2.

A. Knowledge of the colliding beams

The uncertainty on the
ffiffiffi
s

p
measurement, as indicated by

the red band in Fig. 2, is on average around 0.75MeVand is
dominated by systematic uncertainties. The estimation of

0 100 200 300 400 500

3
10�

Chronologically ordered events

10.57

10.575

10.58

10.585

10.59
 [

G
e

V
]

s
C

o
rr

e
c
te

d
Belle II

-1 dt = 190 fbL�
s

Total uncert.

*
BE2

nominal
s

F
e
b
. 
2
0
2
0

O
c
t.
 2

0
2
0

F
e
b
. 
2
0
2
1

FIG. 2. Corrected center-of-mass energy
ffiffiffi
s

p
(solid line) and

center-of-mass energy of BB̄ pair 2E�
B (dashed blue line) as

functions of data-taking time, expressed in terms of chronologi-
cally ordered event numbers. The horizontal dashed line repre-
sents the nominal center-of-mass energy

ffiffiffi
s

p
nominal¼10.579GeV,

and the vertical dashed lines indicate the start of different data-
taking periods. The 68.3% confidence level band of

ffiffiffi
s

p
is

displayed as a shaded area.

]2 [GeV/cminM

0

2

4

6

8

10

12

14

16

3
10�

)
2 c

E
v
e

n
ts

 /
 (

1
.5

 M
e

V
/

Belle II
-1 dt = 190 fbL�

2c 0.11 MeV/� 0.08 � = 1777.09 �m

Data Fit

Background

1.7 1.72 1.74 1.76 1.78 1.8 1.82 1.84

]2c [GeV/minM

2�
0

2

P
u

ll
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p
from the B-meson energy relies on the knowledge of the

energy dependence of the eþe− → BB̄ cross section, whose
uncertainty is driven by the beam-energy uncertainty of the
BABAR measurement [33,34]. An additional uncertainty
originates from the uncertainties in the average values of
the charged (0.26 MeV=c2) and neutral (0.20 MeV=c2)
B-meson masses [32]. Since the eþe− → BB̄ sample is
dominated by charged B mesons, the weighted average of
the two uncertainties results in 0.24 MeV=c2, assuming the
uncertainties of the Bþ and B0 masses are fully correlated.
In the experimental data the B-meson energy spread has an
average value of 5.4 MeV. A systematic uncertainty of
0.25 MeV is assigned to the measurement of σE�

B
based on

simulation. Assuming that the individual systematic effects
are independent, we calculate an alternative value of Mmin
for each effect separately and fit the resulting distribution to
obtain an alternative value for the τmass. By combining the
resulting variations of the τ mass in quadrature, we obtain
the systematic uncertainty of 0.07 MeV=c2.
The computation of Mmin relies on the knowledge of the

boost vector of the center-of-mass frame. The boost vector
is measured in experimental data using a dimuon sample.
Its uncertainty is found to contribute negligibly to the
systematic uncertainty on the τ mass.

B. Reconstruction of charged particles

Several sources of systematic uncertainty impact the
determination of the charged-particle momentum corrections
derived from the D0 → K−πþ sample. Different sources

contribute to different cos θ regions. In particular, some
residual dependence of the scale factors on the transverse
momentum pT is observed. This effect is included as a
source of systematic uncertainty by measuring the variation
in the scale factors after splitting the D0 → K−πþ sample in
pT at its median value of 1.3 GeV=c. The small deviation
from the known value of the D0 mass-peak observed in
simulation is also included as systematic uncertainty. Other
important sources of uncertainties include the modeling of
the D0 mass peak, the uncertainty of the known D0 mass,
and a bias due to differences in the cos θ distributions of the
charged particles in the τ− → π−πþπ−ντ and D0 → K−πþ
samples. As a consistency check, the scale factors are tested
in Dþ → K−πþπþ, D0 → K−πþπ−πþ, and J=ψ → μ−μþ

decays. The Dþ, D0, and J=ψ peak positions match the
known values within the uncertainties, as shown in Fig. 4 for
the D�. Assuming that the individual systematic effects are
independent, the impact of the variations of the momentum
correction on the τ mass are added in quadrature, resulting
in 0.06 MeV=c2.
The correction of tracking misalignment uses cosmic-ray

tracks and dimuon and hadronic collision events [38]. To
estimate the impact of a residual misalignment in the
determination of mτ, various misalignment configurations
are used in the simulated data. The maximum deviation
with respect to the nominal configuration, 0.03 MeV=c2, is
assigned as the systematic uncertainty due to the residual
misalignment of the subdetectors.

C. Fit model

The uncertainty of the estimator bias directly propagates
to the precision of the τ mass, resulting in an uncertainty of

TABLE II. Summary of systematic uncertainties in the τ-mass
measurement.

Source
Uncertainty
(MeV=c2)

Knowledge of the colliding beams:
Beam-energy correction 0.07
Boost vector < 0.01

Reconstruction of charged particles:
Charged-particle momentum correction 0.06
Detector misalignment 0.03

Fit model:
Estimator bias 0.03
Choice of the fit function 0.02
Mass dependence of the bias < 0.01

Imperfections of the simulation:
Detector material density 0.03
Modeling of ISR, FSR and τ decay 0.02
Neutral particle reconstruction efficiency ≤ 0.01
Momentum resolution < 0.01
Tracking efficiency correction < 0.01
Trigger efficiency < 0.01
Background processes < 0.01

Total 0.11
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FIG. 4. Deviation of the D� invariant-mass peak position from
the known value before (blue) and after (red) momentum
corrections as a function of the cosine of the kaon polar angle
θK . The vertical error bars on the blue points indicate the
statistical uncertainties in determining the peak position, while
the vertical error bars on the red points indicate the statistical and
total uncertainties of the applied momentum corrections.
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0.03 MeV=c2. To test the independence of the estimator
bias on the τ mass, an alternative assumption of a linear
dependence is used, which results in the same bias. Thus no
additional systematic uncertainty is assigned.
The dependence of the result on the choice of the edge

parametrization is investigated by repeating the measure-
ment with alternative functions used previously by the
Belle and BABAR Collaborations [8,9]. The largest
deviation with respect to the main result is 0.02 MeV=c2

and is assigned as a systematic uncertainty.

D. Imperfections of the simulation

We study possible simulation mismodelings that might
lead to an incorrect estimation of the fit-bias correction.
Differences between the properties of material used in the
simulation and those in the detector may have an impact on
the correction of the fit bias. Studies of the interaction of
photons with the detector material indicate a deficit of
around 10% in the density of the beam pipe in simulation.
The impact of this deficit is tested by increasing by 10% the
beam-pipe density in the simulation of a signal sample
corresponding to 4 ab−1. The statistical uncertainty of the
difference between the results using the nominal simulation
and the simulation with the modified material density is
0.03 MeV=c2, which is seen to be significantly larger than
the actual difference between the two models. Hence, we
assign the statistical precision of the difference as the
uncertainty for this effect.
The modeling of ISR and FSR as well as the kinematic

properties of the τ-decay products may be different in
simulated and experimental data. The simulated Mmin
distribution is weighted according to the observed
differences between the experimental and simulated dis-
tributions in p�

3π . The impact on the result is found to
be 0.02 MeV=c2.
Systematic uncertainties due to the simulation mismod-

eling of photon and neutral-pion reconstruction, transverse-
momentum resolution, track finding, trigger efficiencies,
and background processes are found to be below or equal to
0.01 MeV=c2 each.

E. Consistency checks

We check the stability of the result throughout various
data-taking periods and observe no evidence for a time
dependence. To exclude a potential dependence of the
measured τ mass on the kinematic properties of the three-
pion system or the τ-decay products, we divide the data into
subregions of various kinematic variables. Specifically, we
use the cosine of the polar angle of the three-pion system
and the individual pions, M3π and p3π , and the momentum
of the highest-momentum decay product. We obtain con-
sistent results, indicating no significant unaccounted-for
systematic effects. Finally, we explicitly test for a depend-
ence of the measurement on the modeling of the τ decay.

In the version of the TAUOLA program used for the
simulation of τ decays [39] the modeling of the three-pion
mass distribution in the τ− → π−πþπ−ντ channel is
based on form factors from Ref. [40]. As an alternative
we use a sample simulated with form factors based on
resonance chiral-Lagrangian currents for the hadronic τ
decays [41–44]. Using 6.6 ab−1 of simulated samples, the
fit to the generator-level Mmin distributions of τ decays
simulated with the two models show negligible variation in
the resulting P1 values. The P1 values from fits to the
reconstructed distributions are in agreement within 1.7σ.
Therefore no additional source of systematic uncertainty is
considered.

VII. SUMMARY

We measure the mass of the τ lepton to be

mτ ¼ 1777.09� 0.08� 0.11 MeV=c2 ð7Þ

using eþe− → τþτ− data collected with the Belle II detector
at a center-of-mass energy of

ffiffiffi
s

p ¼ 10.579 GeV and
corresponding to an integrated luminosity of 190 fb−1.
The statistical uncertainty per unit sample size is smaller
compared to the previous results [8,9] owing to the
improved event selection and momentum resolution of
the Belle II detector, which result in a steeper slope of the
Mmin distribution in the threshold region. The main sources
of systematic uncertainty arise from the knowledge of the
beam energy and from the uncertainty of the charged-
particle momentum correction. As shown in Fig. 5, our
result is consistent with previous measurements [5–9] and
is the most precise to date.
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FIG. 5. Summary of the most precise τ-mass measurements
[5–9] compared with the result of this work. The vertical gray
band indicates the average value of previous measurements [32].
The inner bars represent the statistical uncertainties, while the
outer bars indicate the total uncertainties.
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