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Additional spin-0 particles appear in many extensions of the standard model. We search for long-lived
spin-0 particles S in B-meson decays mediated by a b → s quark transition in eþe− collisions at the ϒð4SÞ
resonance at the Belle II experiment. Based on a sample corresponding to an integrated luminosity of
189 fb−1, we observe no evidence for signal. We set model-independent upper limits on the product of
branching fractions BðB0 → K�ð892Þ0ð→ Kþπ−ÞSÞ × BðS → xþx−Þ and BðBþ → KþSÞ × BðS → xþx−Þ,
where xþx− indicates eþe−; μþμ−; πþπ−, or KþK−, as functions of Smass and lifetime at the level of 10−7.
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Minimal renormalizable extensions of the standardmodel
(SM) allow for the existence of an additional light spin-0
(scalar) S that may give mass to dark matter particles [1].
Such a new scalar would mix with the SM Higgs boson
through a mixing angle θ [2,3]. However, for masses mS
below the B-meson mass, decays of S into dark matter
particles must be kinematically forbidden to provide the
correct relic density [4]. This motivates a search for S
decays into SM particles. For couplings much weaker
than the electroweak interaction, the scalar is long-lived.
Another possible extension of the SM introduces a spin-0
(pseudoscalar) axionlike particle (ALP) that couples to
photons, fermions, or gluons [5]. ALPs share the quantum
numbers of axions, but differ in that their masses and
couplings are independent. The set of possible ALP cou-
plings is large and includes models with a predominant
coupling fa to fermions that results in long-lived ALPs
decaying into SM leptons [3,6,7].
To distinguish between different models, lifetime-

dependent results for different final states and different
production modes are needed [8–10]. To date, almost all
direct searches or reinterpretations of previous analyses
have focused on the minimal scalar model, with some
reinterpretations in the context of ALPs [3]. The cur-
rent best limits from colliders exclude mixing angles sin θ
larger than 10−3 to 10−4. For mS ≳ 0.3 GeV=c2 the best
limits are reported in Ref. [11], which are based on searches
by the LHCb Collaboration for displaced scalars in B→
K�0Sð→μþμ−Þ and B→KþSð→μþμ−Þ decays [12,13].
In this letter, K�0 indicates a K�ð892Þ0 meson and charge
conjugated processes are included implicitly. The CMS
experiment has reported limits competitive with LHCb [14].
For lighter S masses, mS ≲ 0.3 GeV=c2, the best upper
limits are provided by reinterpretations [11] of searches

for the decays K0
L → π0μþμ− [15], Kþ → πþνν̄ [16],

and searches for displaced lepton-pairs in beam-
dump experiments [17,18], as well as by direct searches
by the experiments NA62 [19,20] and MicroBooNE [21].
An inclusive search for B → XsS decays by the BABAR
experiment excludes a small parameter region around
mS ≈ 0.9 GeV=c2 not covered by the other results [11,22].
Model-dependent studies of supernova SN1987A and pri-
mordial nucleosynthesis constrain the mixing angle θ to
values larger than 10−5 (for mS ≲ 0.2 GeV=c2) to 10−7 (for
0.2 < mS ≲ 4 GeV=c2) [11]. To date only LHCb has
studied scalar decays separated into exclusive production
modes, whereas only the BABAR experiment has studied
scalar decays into hadronic final states but not separated into
exclusive production modes.
In this Letter, we search for a long-lived particle (LLP)

S → xþx−, where xþx− indicates eþe−; μþμ−; πþπ−, or
KþK−, in Bþ →KþSð→ xþx−Þ and B0 →K�0ð→Kþπ−Þ×
Sð→ xþx−Þ decays mediated by a flavor-changing neutral
current b → s transition [11,23]. We search for the signal as
a narrow enhancement in the invariant S mass distribution
in events with B decays at theϒð4SÞ resonance. The search
is conducted for masses between 25 MeV=c2 (S → eþe−),
211 MeV=c2 (S → μþμ−), 280 MeV=c2 (S → πþπ−), or
988 MeV=c2 (S → KþK−), and 4.78 GeV=c2 for Bþ →
KþSð→ xþx−Þ or 4.38 GeV=c2 for B0 → K�0ð→ Kþπ−Þ×
Sð→ xþx−Þ. We present our results as model-independent
limits on the products of branching fractions BðBþ →
KþSÞ × BðS → xþx−Þ and BðB0 → K�0ð→ Kþπ−ÞSÞ ×
BðS → xþx−Þ for various lifetimes 0.001< cτ< 100 cm.
In addition to the model-independent search, we report our
results as limits on the mixing angle θ and on the ALP
coupling for the aforementioned dark scalar and ALP
models.
We use a sample of NBB̄ ¼ ð198� 3Þ × 106 B-meson

pairs corresponding to an integrated luminosity of 189 fb−1.
The data is collected at a center-of-mass (c.m.) energy offfiffiffi
s

p ¼ 10.58 GeV by the Belle II experiment [24] at the
SuperKEKB eþe− collider [25]. The beam energies are
7 GeV for e− and 4 GeV for eþ, resulting in a boost
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βγ ¼ 0.28 of the c.m. frame relative to the laboratory
frame. The Belle II detector is a hermetic magnetic spec-
trometer surrounded by particle-identification detectors, a
electromagnetic calorimeter, and a K0

L and muon detector,
arranged around the beam pipe in a cylindrical structure [26].
The longitudinal direction, the transverse plane, and the
polar angle θpolar are defined with respect to the detector’s
solenoidal axis in the direction of the electron beam. In the
following, quantities are defined in the laboratory frame
unless specified otherwise.
We use simulated events to determine efficiencies and

signal-shape parameters. Signal events are simulated using
EvtGen [27] for various scalar masses 0.025 < mS <
4.78 GeV=c2 in about 90 steps of varying size, and vari-
ous lifetimes 0.001 < cτ < 400 cm in variable steps. We
simulate the following background processes: eþe− →
ϒð4SÞ → BB̄ where B indicates a B0 or a Bþ meson with
EvtGen [27]; eþe− → qq̄ðγÞ where qq̄ indicates uū; dd̄; ss̄,
or cc̄ quark pairs with KKMC [28] interfaced with PYTHIA8

[29] and EvtGen; eþe− → ττðγÞ with KKMC interfaced
with TAUOLA [30]. Electromagnetic final-state radiation
is simulated using PHOTOS [31] for all charged particles
generated by EvtGen. The detector geometry and interactions
of final-state particles with detector material are simulated
using Geant4 [32]. Both experimental and simulated events
are reconstructed and analyzed using the Belle II
software [33,34]. To avoid experimenter’s bias, we examine
the experimental data only after finalizing the analysis
selection. However, we observed negative background
yields in fits to data that led to a modification of the fit
strategy restricting the background probability density
function (pdf) to non-negative values. Simulations show
that this does not introduce any significant bias in the signal
yield or expected limits. All selection criteria are chosen
by optimizing the figure-of-merit for a discovery with a
significance of five standard deviations [35].
We reconstruct B-meson candidates from charged-

particle trajectories (tracks) originating either from the
eþe− interaction point (prompt), or from a vertex separated
from it by a macroscopic distance (displaced). We require
each prompt track to correspond to a transverse momen-
tum of more than 0.15 GeV=c. In addition, it must have a
distance of closest approach to the interaction point (IP) of
less than 0.5 cm in the plane transverse to the beam and
2.0 cm in the direction parallel to it in order to remove
charged particles not associated with the eþe− interaction.
Displaced tracks are required to correspond to a transverse
momentum of greater than 0.25 GeV=c, but have no
restrictions on their distance of closest approach to the IP.
We reconstruct S candidates by combining pairs of oppo-
sitely charged displaced particles, both identified as elec-
trons, muons, pions, or kaons. A fit constrains the pair
of displaced tracks to come from a common vertex. The
displaced vertex must have a transverse distance dv to the
IP of at least 0.05 cm. All displaced tracks must have an

extrapolated polar angle 32° < θpolar < 150°, calculated by
extrapolating the track from the displaced vertex to the
calorimeter surface. The distance of the displaced vertex
from the IP should exceed three times its resolution. For
signal B0 → K�0ð→ Kþπ−ÞSð→ xþx−Þ decays, we com-
bine two oppositely charged prompt particles, identified as
a kaon and a pion, in a vertex fit to form a K�0 candidate
with mass 0.796 < MðKþπ−Þ < 0.996 GeV=c2 that is
then combined with the S candidate. For signal Bþ →
KþSð→ xþx−Þ candidates, we combine the S candidate
with a prompt track identified as a kaon.
Particle identification (PID) information from all relevant

subdetectors is combined to separate final states into exclu-
sive samples and to further reduce backgrounds [26]. We
exclude the time-of-propagation detector from the PID
determination when separating eþe−, μþμ−, and πþπ−
pairs because it tends to misidentify the S decay products
as heavier particles due to the long S time-of-flight. The
prompt pion PID efficiency is about 84% for all S masses;
the prompt kaon PID efficiency is about 80% and decreases
to 40% for the highest S masses. For displaced tracks we
give the PID efficiency for pairs, corresponding to the
identification of S → xþx−. It ranges in 96%–99% for
eþe−, 89%–96% for μþμ−, 75%–90% for πþπ−, and 50%–
80% for KþK−. The differences in displaced-pair efficien-
cies between K�0 and Kþ final states for the same S mass
do not exceed 2%. The dominant backgrounds are from
light quark pair production, followed by cc̄ pair produc-
tion and then eþe− → ϒð4SÞ → BB̄. The above selections
reduce the backgrounds by factors between 7 (forKþπþπ−)
and about 370 (for K�0μþμ−). The probability to mis-
identify signal is generally less than 1% in our simulated
samples. To suppress prompt peaking SM backgrounds, the
transverse-distance requirement of the displaced vertex is
increased to dv > 0.2 cm in S-mass regions close to known
two-body decays of SM particles like J=ψ → μþμ− or ϕ →
KþK− [36]. To suppress background from γ → eþe−

conversions, we veto events in the eþe− final state formS <
0.05 GeV=c2 if the vertex is close to inner tracking layers.
The cosine of the angle between the vector connecting

the IP with the decay vertex and the momentum vector of
the scalar candidate in the transverse plane must exceed
0.95 for eþe−, μþμ−, and KþK− candidates to reject back-
ground from events with missing particles and random track
combinations; it must exceed 0.99 for πþπ− to further reduce
the higher backgrounds in this final state. To suppress
eþe− → qq̄ðγÞ and eþe− → τþτ−ðγÞ backgrounds, we
require each B-meson candidate to have a beam-constrained
mass value Mbc¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=4− j  p�

Bj2
p

>5.27GeV=c2, where  p�
B

is the three-momentum of the B-meson candidate in the c.m.
system.We further require that theB-meson candidate has an
energy difference jΔEj ¼ jE�

B −
ffiffiffi
s

p
=2j < 0.05 GeV, where

E�
B is the energy of theB-meson candidate in the c.m. system;

for πþπ− candidates, the requirement is tightened to jΔEj <
0.035 GeV. Displaced KþK− pairs are selected with high
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purity by the jΔEj requirement alone due to the larger K
mass. To reduce continuum background, events must have
R2 < 0.45, where R2 is the ratio of the second and zeroth
Fox-Wolfram moments. The ratio tends to small values for
more spherical distributions of final-state particle momenta
as expected fromB-mesons, which are lightly boosted, while
larger values are expected for the collimated momentum
distribution of light-quarks, which are boosted [37]. The
requirement is restricted to R2 < 0.35 for πþπ− candidates.
We reject events with displaced track-pairs consistent with
0.498 < Mðπþπ−Þ < 0.507 GeV=c2 to reduce background
from K0

S decays. If multiple signal candidates pass the
selections, which happens in less than 0.5% of the events,
we choose the candidate with the smallest value of jΔEj.
For the signal extraction, we use a modified mass

M0ðxþx−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðxþx−Þ− 4m2

x

p
with mx¼meþ ;mμþ ;mπþ ,

or mKþ, to simplify the modeling of the signal width close
to kinematic thresholds where the scalar mass approaches
twice the rest mass of the final-state particles. M0 equals
twice the x momentum in the xþx− rest frame. An example
of a modified-mass distribution for Bþ → KþSð→ πþπ−Þ
is shown in Fig. 1. Normalization discrepancies are not a
concern since backgrounds are floating in all fits.
To validate the selection we compare simulation and data

in the K0
S mass region rejected in the signal selection, in the

displacement regions close to promptly decaying SM
resonances rejected in the signal selection, and in sidebands
formed by inverting the Mbc and ΔE selections. We find
agreement for all selection variables.

We extract the Bþ → KþSð→ xþx−Þ and B0 → K�0ð→
Kþπ−ÞSð→ xþx−Þ signal yields by performing extended
maximum likelihood fits to the unbinned modified S-mass
distribution. We fit for a narrow nonnegative-yield signal
peak, at various values of S mass and assuming various
lifetimes, over a smooth background. We perform inde-
pendent fits [38] for each of the eight final states and for
each lifetime with a S-mass scan step-size equal to half
the signal mass resolution σsig. For the model-dependent
searches, we perform a combined fit in all relevant and
kinematically accessible analysis channels, again sepa-
rately for various lifetimes. For the dark scalar model
we fix the B-meson and scalar branching fractions to the
theoretical values from Refs. [11,23,39]; for the ALPmodel
the B-meson and ALP branching fractions are taken from
Refs. [3,7,40,41] using a cut-off scale of Λ ¼ 1 TeV and
assuming identical coupling fa ¼ fq ¼ fl to quarks and
leptons. For mS greater than 2 GeV=c2, only S → μþμ− is
included in the combined scalar fit due to large uncertain-
ties in the predicted branching fractions.
The signal is described by a double-sided Crystal Ball

function [42,43] with all parameters determined from fits to
the simulated signal samples. Mass hypotheses that lack a
simulation sample are interpolated from adjacent simulated
samples. The resolution σsig increases smoothly from about
2 MeV=c2 for a light S to about 10 MeV=c2 for a heavy S
and does not depend significantly on lifetime or final state.
However, the tails of the signal distribution, especially for
largermS, increase for larger lifetimes. This is reflected in a
variation of the corresponding parameter values.
The background is modeled by a straight line, with

normalization and slope determined from the fit to data.
This model describes the background beneath any potential
signal across the range of S masses. We restrict the linear
function to non-negative values in the full fit range by
limiting the slope parameter accordingly. To account for a
possible remaining conversion background, an exponential
function is added to the background model when signal
mass hypotheses below mS < 40 MeV=c2 are tested in the
eþe− final state. Each likelihood fit is performed over an
M0ðxþx−Þ range with a width of�20σsig. To improve the fit
stability, we iteratively increase the fit range symmetrically
in 10% steps until it contains at least ten events. We verify
that small variations of the fit-interval extension have
negligible effects on the results.
We include mass- and lifetime-dependent systematic

uncertainties associated with the signal efficiency and with
our signal model pdf as Gaussian nuisance parameters
with widths equal to the systematic uncertainty. The syste-
matic uncertainties associated with the signal efficiency
are typically around 4% for most of the scalar masses and
lifetimes, but can reach 10% for the lightest scalar masses
accessible in the eþe− final state. For large displacements,
the dominant systematic uncertainty on the signal effi-
ciency is due to the difference in track finding efficiency for

FIG. 1. Distribution of M0ðπþπ−Þ together with the stacked
contributions from the various simulated SM background sam-
ples for Bþ → KþSð→ πþπ−Þ candidates. Simulation is normal-
ized to a luminosity of 189 fb−1. The hatched area represents the
statistical uncertainty of the SM background prediction. The
background from eþe− → ττðγÞ is negligible. The bottom panel
shows the pulls per bin, defined as the difference between data
and simulation, normalized to the statistical uncertainties added
in quadrature.
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displaced tracks between data and simulation. This uncer-
tainty varies between zero (prompt) and 45% per event
depending linearly on the vertex position. We correct for
this efficiency difference based on a large K0

S control
sample and assign the full efficiency difference as a
systematic uncertainty, which is relevant mostly for small
mS. For larger mS values, the 2.9% contribution from the
combination of the uncertainty on the BB̄ yield and the
uncertainty on the charged-to-neutral B-meson ratio from
ϒð4SÞ decays [44], along with the PID efficiency of low-
momentum prompt kaons in the K�0 channel (3%) are the
largest systematic uncertainties. We verify the modeling
and fitting procedure using pseudoexperiments and add an
uncertainty of 3% to the signal efficiency to account for a
small bias in the independent fits; the uncertainty is 4% for
the combined fit. We also include systematic uncertainties
due to differences between simulation and data that affect
the signal model. For this we correct the difference between
simulation and data of the signal pdf parameters using a
large K0

S control sample and assign the full difference
between simulation and data as a systematic uncertainty.
The typical total uncertainty is around 15% for the signal
width and around 10% for the tail parameters.

The local significance S of the signal for a given
mass and lifetime hypothesis is given by S ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlogL − logLbkgÞ

p
, where L is the maximum like-

lihood for the full fit and Lbkg is the maximum likelihood
for a fit to the background-only hypothesis.
The largest local significance for the model-independent

search is 3.6σ, including systematic uncertainties, found
near mS ¼ 1.061 GeV=c2 for Kþπþπ− for a lifetime
of cτ ¼ 0.05 cm. Taking into account the look-elsewhere
effect [45], this excess has a global significance of 1.0σ. By
dividing the signal yield by the signal efficiency and NBB̄,
we obtain the products of branching fractions BðBþ →
KþSÞ × BðS → xþx−Þ and BðB0 → K�0ð→ Kþπ−ÞSÞ×
BðS → xþx−Þ. To convert the latter to upper limits on
the product of branching fractions BðB0 → K�0SÞ×
BðS → xþx−Þ, the limits are multiplied by 3=2 [46]. We
compute the 95% confidence level (CL) upper limits [47] as
functions of scalar mass mS using a one-sided modified
frequentist CLS method [48] with asymptotic approxima-
tion [49]. The observed upper limits are shown in Fig. 2.
Systematic uncertainties weaken the limits by about 2% for
light S and large lifetime; for heavier S or short lifetimes,
the reduction is less than 1%. A direct comparison of our
model-independent limits with the inclusive BABAR [22]
limits are possible whenever the BABAR limits are stronger
than ours and the knowledge of the production mode is
not important.

FIG. 2. Upper limits (95% CL) on the product of branching
fractions BðBþ → KþSÞ × BðS → xþx−Þ (left) and BðB0 →
K�0ð→ Kþπ−ÞSÞ × BðS → xþx−Þ (right) as functions of scalar
mass mS for cτ ¼ 1 cm (green), cτ ¼ 10 cm (orange), and cτ ¼
50 cm (lavender). The region corresponding to the fully-vetoed
K0

S for S → πþπ− is marked in gray.

FIG. 3. Exclusion regions in the plane of the sine of the mixing
angle θ and scalar mass mS from this work (blue) together with
existing constraints from LHCb [12,13], CMS [14], KTeV [15],
E949 [16], CHARM [17], PS191 [18], NA62 [19,20]BABAR [22],
MicroBooNE [21], and L3 [50]. The exclusion regions from
Belle II, CMS, LHCb, CHARM, and MicroBooNE correspond
to 95% CL, while PS191, KTeV, E949, NA62, and BABAR
correspond to 90% CL. The CMS constraint should be interpreted
with caution since it is based on different B-meson and scalar
branching fractions. Constraints colored in gray with dashed
outline are reinterpretations not performed by the experimental
collaborations.
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The largest local significance for the combined scalar and
ALP fit is 3.3σ, including systematic uncertainties, found
near mS ¼ 2.619 GeV=c2 for a lifetime of cτ ¼ 100 cm;
the global significance is 0.3σ. For each scalar or ALP mass
hypothesis, we determine the value of sin θ or fa such that
the resulting predicted product of branching-fraction ratios
equals the 95% excluded branching fraction. The observed
upper limit on sin θ is shown in Fig. 3. Our limit is com-
petitive with that set by LHCb for mS ≈ 0.3 GeV=c2. The
observed upper limit on fa, as well as additional plots and
detailed numerical results can be found in the Supplemental
Material [36].
In conclusion, we report the first Belle II search for long-

lived particles. We search for a long-lived spin-0 mediator
S in B-meson decays mediated by a b → s transition using
189 fb−1 of Belle II data. We do not observe any significant
excess of events consistent with a signal process. We set
95% CL upper limits on the product of branching frac-
tions BðBþ →KþSÞ×BðS→ xþx−Þ and BðB0 → K�0SÞ ×
BðS → xþx−Þ that are the first for exclusive hadronic and for
eþe− final states.
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