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1 Introduction

The Cabibbo-Kobayashi-Maskawa (CKM) matrix parameterizes quark mixing in the stan-
dard model [1, 2]. The angle ¢3, also called +, is the phase of a product of its elements
~VoaVab/VeaVer,- Theoretical relationships connecting the angle ¢5 with rates and CP asym-
metries of the decays B* - DK i, where D is an admixture of D° and D° states, are reliable
and can be used for precise direct measurements of ¢3. Any inconsistency between direct
measurements of ¢3 and the value inferred from global CKM fits performed without this
information would show that the CKM mechanism is not a complete description of CP
violation and reveal effects of physics beyond the standard model. Gronau, London, and
Wyler (GLW) proposed a method to extract ¢3 using decays in which the neutral D, Dgp, is
reconstructed as a CP eigenstate [3, 4]. We use this method to determine ¢5 using combined
data sets of the Belle and Belle II experiments.
We measure CP asymmetries,

B(B_ — DCP:EK_) — B(B+ — DCPj:K+)
B(B~ = Dcps K )+ B(B" = Depy KT

Acps = (1.1)

and the ratio of branching fractions for decays in which the D is reconstructed as a CP

eigenstate and decays in which the D is reconstructed in a flavor-specific state:

B(B_ — DCP:EK_> + B(B+ — DCP:tK+>
(B(B~ — Dgay K ) + B(B* — Dy  K1))/2°

Rept = (1.2)



This ratio can be expressed as

R
Rept & chia (1.3)
flav
where
_ B(B~ = Dgpy K )+ B(B" = Dcps K) (1.4)
op+ = B(B_ — DCPiTr_> + B(B+ — DCPiW+) ’ )
and B
_ B(B~ = DK ) + B(B" = Dgo K) (L5)
flav =— .

B(B~ — Dy, )+ B(B" — Dg,ont)
In these ratios of branching fractions, most potential systematic uncertainties, such as
those from reconstruction efficiencies and the known D branching fractions, cancel. The
approximation in equation (1.3) is an equality if CP is conserved in the B* = Dn* decay.
Neglecting the small effects of D mixing and CP violation in the D° decay [5], we relate Rep..
and Acpy to ¢s, the ratio rg of the magnitudes of the suppressed to favored B* - DK*
amplitudes, and the relative CP-conserving phase dp between them [6]:

Repy =1+ r%; =+ 2rp cos dg cos P3,

ACPi = iQTB sin 5B sin (]53 / RCPi'

The current precision on ¢5 is about 3.5° [6, 7], dominated by recent measurements
from the LHCb experiment [8]. The Belle experiment reported a ¢s-related measurement
using the ADS method [9, 10] for B* - DK* decays with D — K*nF using its full data
set [11]. A measurement using the BPGGSZ method [12, 13] for B¥ — Dh* decays with
D — thilﬁ, where h is a pion or kaon, using the full Belle data set and 128 fb~! of data
from Belle II was reported recently [14]. However, Belle reported results using the GLW
B* - DWK* decays based only a fraction of its full data sample [15]. Here we report
results for BX — Dpy K * for the CP-even D final state K™K~ and the CP-odd final state
Kg 7 based on the full Belle data set and also a fraction of the available data from Belle II.
These results supersede those of ref. [15].

2 Data samples and detectors

We analyze samples containing 772 x 10° and 198 x 10° BB pairs collected in electron-
positron collisions at the Y(4S) resonance with the Belle and Belle II detectors. The
integrated luminosities of the corresponding data sets are 711 fb~' and 189fb ™" for Belle
and Belle II. Belle operated at the KEKB asymmetric-energy collider with electron- and
positron-beam energies of 8 GeV and 3.5 GeV [16, 17], respectively. Belle IT operates at its
successor, SuperKEKB, designed to deliver thirty times higher instantaneous luminosity than
KEKB, with electron and positron beam energies of 7GeV and 4 GeV [18], respectively.
The Belle detector [19, 20] was a large-solid-angle magnetic spectrometer that consisted
of a silicon vertex detector, a 50-layer central drift chamber, an array of aerogel threshold
Cherenkov counters, a barrel-like arrangement of time-of-flight scintillation counters, and an
electromagnetic calorimeter, all located within a superconducting solenoid coil that provided



a uniform 1.5 T magnetic field collinear with the beams. An iron flux-return yoke located
outside the coil was instrumented to detect KB mesons and muons.

The Belle II detector [21] is an upgrade with several new subdetectors designed to
handle the significantly larger beam-related backgrounds of the new collider. It consists of a
silicon vertex detector comprising two inner layers of pixel detectors and four outer layers of
double-sided silicon strip detectors, a 56-layer central drift chamber, a time-of-propagation
detector in the central detector volume and an aerogel ring-imaging Cherenkov detector
in the forward region (with respect to the electron-beam’s direction) for charged particle
identification (PID), and an electromagnetic calorimeter, all located inside the same solenoid
as used for Belle. A flux return outside the solenoid is instrumented with resistive-plate
chambers, plastic scintillator modules, and an upgraded read-out system to detect muons,
KE mesons, and neutrons.

We use simulated data to optimize selection criteria, determine detection efficiencies,
train multivariate discriminants, identify sources of background, and obtain our fit models.
The EVTGEN software package is used to simulate the ¢" e~ — Y(45) — BB process and
our signal decays [22]. The KKMC [23] and Pythia [24] generators are used to simulate
the e e~ — ¢ continuum, where ¢ indicates a u, d, s or ¢ quark. For Belle, the GEANT3
package [25] was used to model the detector response, whereas for Belle II the GEANT4
package [26] is used. To account for final-state radiation, the PHOTOS package [27] is used.

3 Reconstruction and candidate selection

We use the Belle II analysis software framework to reconstruct both Belle and Belle II
data [28-30]. Owing to the different performance of the detectors, separate sets of selection
criteria are used for each data set.

Online data-selection criteria are based on requirements of a minimum number of charged
particles and observed energy in an event. They are fully efficient for signal and strongly
suppress low-multiplicity events. In the offline analysis, reconstructed charged-particle
trajectories (tracks) are required to have distances from the e'e interaction point (IP)
smaller than 0.2cm in the plane transverse to the beams, and smaller than 1.0 cm along
the beam direction. Charged kaon and pion candidates are identified based on information
from PID detectors and the specific ionisation measured in the drift chamber. We use
the ratio L(K/7) = L(K)/[L(K) + L(m)] to identify the type of charged particles, where
L(h) is the likelihood for a kaon or pion to produce the signals observed in the detectors.
Charged particles with £(K/7) > 0.6 are identified as kaons, and those with £(K/7) < 0.6
as pions. To mitigate pion misidentification in the Belle II data, we remove tracks with a
polar angle 6 > 120°, since no PID detector covers this region [31]. No such veto is necessary
for Belle data because the larger KEKB boost results in essentially all tracks being within the
acceptance of the PID detectors. The kaon-identification efficiency and the rate to misidentify
a pion as kaon are quantitatively given in section 4.

We reconstruct Kg candidates in their 717~ final state by forming each from a pair of
oppositely charged particles (assuming they are pions) with a common vertex and mass in the
range [486,509] MeV /¢? for Belle data and [491,504] MeV/c? for Belle I data. These ranges
correspond to 3o in resolution in either direction from the known K % mass. To improve



the purity of the Kg sample, we reject combinatorial background using neural networks for
Belle data and boosted decision trees for Belle II data [14, 32, 33]. Five input variables are
common to the Belle and Belle II discriminators: the angle between the Kg momentum and
the direction from the IP to the Kg decay vertex; the distance-of-closest-approach to the IP
of the pion tracks; the flight distance of the KSO in the plane transverse to the beams; and
the difference between the measured and known Kg masses divided by the uncertainty of
the measured mass. The Belle discriminator uses seven additional variables, including the
Kg momentum and the shortest distance between the two track helices projected along the
beam direction [32, 33]. Each Kg momentum is recalculated from a fit of the pion momenta
that constrains them to a common origin.

We reconstruct 7 candidates via their decays to two photons. In Belle data, each photon
is required to have an energy above 50 MeV; in Belle IT data, each photon is required to have
an energy above 80 MeV if detected in the forward endcap, 30 MeV if detected in the barrel,
and 60 MeV if in the backward endcap. Each photon candidate must also be unassociated with
any track and have an energy-deposition distribution in the calorimeter consistent with an
electromagnetic shower. Each 7° candidate must have a mass in the range [120, 145] MéV /¢?,
corresponding to 2.50 in resolution on either side of the known m° mass, and momentum
above 0.6 GeV/c. Each 7% momentum is recalculated from a fit of the photon momenta that
constrains them to a common origin and the diphoton mass to the known mass of the .

A D candidate is formed from combinations of K~ and 77, Kt and K, and Kg and 7°
candidates. The mass of each D candidate is required to be consistent with the known D
mass [6] within [—20, +20] MeV/c? in Belle data and [—12,4+12] MeV/c? in Belle 1I data for
D — K=h¥ decays; and within [—64, +47] MeV /c? in Belle data and [—53, +36] MeV /¢? in
Belle 1I data for the D — Kg m° decays. These ranges are approximately 3o in resolution on
either side of the known mass. Each D momentum is recalculated from a fit of the momenta
of its decay products that constrains them to a common origin and their invariant mass
to the known mass of the D meson.

A B candidate is formed from a D candidate and an h™ candidate. To select signal
candidates, we use the beam-energy-constrained mass,

Mbc = 672 \/ Eﬁgam - |ﬁBC’27 (31)

and the energy difference, AE = E — Fpap, calculated from the B energy Ep, momentum
pg, and beam energy Efo.m, all in the e™ e center-of-mass (c.m.) frame. We require M, to
be in the range [5.27,5.29] GeV /¢, which is 30 in resolution around the known B mass [6].
We require AE to be in the range [—0.13,0.15] GeV to suppress partially reconstructed
BY - D'pE decays, which have negative AL.

Most remaining backgrounds arise from continuum events, in which final-state particles
are highly boosted into two jets that are approximately back-to-back in the c.m. frame. Since
BB pairs are produced slightly above kinematic threshold, their final-state particles are
isotropically distributed in the c.m. frame. We use boosted decision trees (BDTs) to suppress
candidates from continuum events. We train them on equal numbers of simulated signal
and continuum events using variables that are uncorrelated with AFE. The simulation of
these variables is verified by inspection of the flavor-specific channel. The variables used are



modified Fox-Wolfram moments [34, 35]; the cosine of the polar angle of the B momentum in
the c.m. frame; the absolute value of the cosine of the angle between the thrust axis of the
B and the thrust axis of the rest of the charged particles and photons in the event (ROE);
the longitudinal distance between the B vertex and the ROE vertex; and the output of a
B-flavor-tagging algorithm [36, 37]. The thrust axis of a group of particles is the direction
that maximizes the sum of the projections of the particle momenta onto it. The BDT classifier
output, C, is in the range [0, 1], peaking at zero for continuum background and at one for
signal. We require C > 0.15, which retains 95% of signal in Belle data and 97% in Belle II
data, while rejecting 60% and 63% of background, respectively.

*) X processes,

To suppress D decays from D* — Dr arising from ee” = cé » D*D
we use the observed difference between the mass of the D candidate and the mass of the D*
candidates reconstructed by associating to the D any 7+ or 7 in the ROE. We require that
the differences all be outside +30 in resolution from the known D*-D mass difference [6]; the
excluded ranges are [143.4, 147.5] MeV /¢ and [143.8, 147.0] MeV/c? in Belle and Belle 11
data for D*i, respectively, and [140.0, 145.0] MeV/ ¢* in both experiments for D*°. This
retains 97% of signal candidates and rejects 13% of background candidates in Belle data and
18% in Belle II data. For B — D(— K=n¥)7™, we require that the dipion mass not be in
the range [3.08,3.14] GeV/c? to veto candidates reconstructed from BY — J/(— M0 K*
decays in which both leptons are misidentified. The AFE distribution of such events peaks
in the signal region.

In events with multiple B candidates, 2% of events for the CP-even mode and 7% for the
CP-odd mode, we retain the candidate with the smallest X2 calculated from the reconstructed
D mass, M,,. and their resolutions; for decays with Dsp_, the reconstructed 7 mass and
its resolution are also used in the X2 calculation. This selects the correct signal candidate
in 70%-80% of such events in simulation.

4 Fits to data

The final event sample consists of signal, cross-feed background that comes from mis-identifying
the h™ of a signal event, other BB background sources, and continuum background. To
determine the numbers of signal decays, we fit to the distributions of AF and C, the variables
that best discriminate between signal and the remaining background. To make C easier to
model, we transform it to C’ using an ordered list of C values from the signal simulation
sample such that C’ is the fraction of signal events present below a given value of C in the list.
The C variable is distributed uniformly in [0, 1] for signal and peaks at zero for continuum
background. We perform an unbinned extended maximum-likelihood fit to candidates with
AE € [-0.13,0.14] GeV and C’ in its full range.

Simulation shows that AE-C’ correlations in the distributions of candidates from all
sample components are negligible, and thus we factorize the two-dimensional probability
density function (PDF) for each component in the fit. For each decay mode, we divide the
data into 12 subsets defined by the product of the two possible electric charges of the B,
the three possible D final states (two CP-specific and one flavor-specific), and whether ht
is identified as a kaon or pion. The fit models are mostly common in all decay modes and
data subsets, but the shape parameters are different in each.



For signal, the AE PDF is the sum of two Gaussian functions and an asymmetric
Gaussian function, with all parameters fixed from simulated data except for the common
mean of all three D decay modes and a common multiplier for all signal widths. These
parameters are determined by the fit and account for differences in resolution between the
experimental and simulated data. The C' PDF is a straight line with its slope fixed to
the value fitted in the simulated data, except for the PDF used for the Belle Dx data, in
which the slope is a free parameter.

The cross-feed AE PDF is same as the signal one, but with its own set of parameters.
When determining the fixed parameters of the cross-feed PDF for D, the simulated data are
corrected for momentum-dependent differences in particle misidentification rates between the
experimental and simulated data. Without this correction, the cross-feed AE PDF requires
a large signal-width multiplier (f = 1.16 £ 0.02) to adequately model the peak in the Belle
data. To account for potential biases due to a mismodelling of the cross-feed peak, we assess
a systematic uncertainty in section 5 by considering the difference between the results of
the fits with and without the correction. The C' PDF is the sum of a straight line and an
exponential function, with parameters fixed from the simulated samples.

For the BB background component, the AE PDF is the sum of an exponential function
and a uniform distribution for the CP modes, and the sum of an exponential function and a
Novosibirsk function [38] for the flavor-specific mode. The C" PDF is a straight line whose
slope is fixed from simulated data.

A peaking background study has been performed for all final states. There is no sizeable
peaking background found for Dep 7, Dep_7, Dep_ K, Dg,,m and Dg,, K modes. While
for the Dopy K mode we see a significant peaking structure from events in which a B decays
directly to K K K and estimate its yield in the signal AE region to be 132 & 17 events in
Belle data and 24 + 4 in Belle II data.

These yields are estimated by linearly extrapolating the results obtained in eight D
mass sidebands in data, as discussed in appendix B. The procedure is validated using
simulated samples generated according to the B¥ — KT K~ K™ results obtained in ref. [39].
Figure 8 shows a comparison of the D-mass-sideband distributions obtained from data and
simulated samples. We observe good agreement, which validates our method to estimate
the peaking background. In the final fit, the PDF shape of peaking background is fixed
from a simulated sample.

For the continuum component, the AE PDF is a straight line and the C’ PDF is the sum
of two exponential functions. The larger exponential component has its parameter fixed to
the value fit from simulated data, and the other is free to vary, which accounts for differences
between the distributions in experimental and simulated data.

We perform a simultaneous fit to all decay modes in both the Belle and Belle II data,
to determine the six charge asymmetries and three branching-fraction ratios. The yields of
B* — Dh™ with the D decaying to the state X and the charged hadron identified as h/i,



denoted as Yh/(BjE — DXhi), are related to these physical observables via

Y, (B* = DyK*) = %[1 T A(B — DyK)|N(B — Dym) Ry 6 (1 —ey), (4.1)
Y (BY = DyK*) = %[1 T A(B — DyK)|N(B — Dym) Ry dey, (4.2)
Y, (B* = Dyr®) = (1 A(B = Dym)] N(B — D) (1 ), (4.3)
Yie(BE — Dyrt) = %[1 + A(B = Dym)| N(B — Dyr) ks, (4.4)

where A is the charge asymmetry, Ry is the ratio between the branching-fraction of B &
Dy K + and BT — DX7Ti for D decaying to final state X. N is the total number of events
regardless of how the charged hadron was identified and of its sign, €4 is the efficiency to
identify a kaon with +1 charge, and . is the rate for misidentifying a pion as a kaon with
41 charge. The efficiency ¢ for reconstructing BY — DK™ relative to that for BY — Dr is
independent of the D final state and equals 0.975 in Belle data and 1.000 in Belle II data.
We measure PID efficiencies and misidentification rates using control samples. For Belle,
we measure £, = 7.7%, k_ = 8.2%, e, = 83.4%, and ¢_ = 84.3% [40]. For Belle II, we
measure £, = 7.2%, k_ = 8.7%, ¢, = 79.6%, and ¢_ = 78.9%. Uncertainties on those
values are typically 0.5%.

The signal yields N are independent for the Belle and Belle II data. For each background
component, separate yields are fitted for B and B~ to account for their possible charge
asymmetries.

To check for fit biases, we perform the fit on five independent sets of simulated data.
We also repeat the analysis on 1000 data sets simulated according to the fit model for seven
different values of Agpy: 0, £0.1, £0.2, +0.3. In all cases, the fit results are consistent
with the input values.

5 Systematic uncertainties

We consider several sources of systematic uncertainties, which are summarized in table 1. In
general, for parameters fixed in the fits, we repeat the fits with the parameter varied by its
uncertainty and take the resulting change in our results as the fit-model systematic uncertainty.
We do this for the fixed PDFs parameters, PID efficiencies and mis-identification rates, peaking
background yields, and the efficiency ratio. We ignore correlations between those uncertainties
and combine them by adding them in quadrature. The peaking background estimation is
obtained directly from the data using D mass sidebands. This provides the largest systematic
uncertainty and is due to the uncertainty on the peaking background contamination which
is statistical in nature and will improve with larger sample size. We also assign systematic
uncertainties (included in the “PDFs parameters” item of table 1) from the difference between
correcting and not correcting for the momentum-dependent pion misidentification rates when
modeling the cross-feed PDFs for the D7 data, and having common and independent mode
parameters for the AE PDFs for DK and Dw. We use a common mean for the signal AE
PDFs for all modes. The corresponding systematic uncertainty (”Signal-AFE common mean”
item of table 1) is estimated from the variations resulting from assigning different mean



Repy Rep— Acpy Acp-

PDFs parameters 0.012 0.014 0.002 0.002
PID parameters 0.009 0.010 0.003 0.005
Peaking background yields 0.033 0.002 0.013 —

Efficiency ratio 0.001 0.001 < 0.001 < 0.001
Signal-AE common mean 0.005 0.006 < 0.001 < 0.001
Total systematic uncertainty 0.036 0.019 0.014 0.006
Statistical uncertainty 0.081 0.074 0.058 0.057

Table 1. Systematic and statistical uncertainties.

Dy mode N(B = DxK) N(B — Dxn)
D — K*7T  Belle 4238 + 94 59481 + 267
Belle II 1084 + 44 14229 + 126
D — K'K~ Belle 476 + 36 5559 + 85
Belle II 107 + 15 1336 + 40
D — K2n°  Belle 541 + 42 6484 + 95
Belle 11 145 + 16 1763 + 46

Table 2. Signal yields extracted from the simultaneous fit in data.

values to the AFE PDFs, i.e., B— Dx K and B — Dy with the same or independent means,
B~ and BT with the same or independent means. For the slopes of the C' PDFs of the BB
component, we calculate the systematic uncertainty from the maximum difference among
fit results in which the slope is taken from simulation, as in the nominal fit, or taken from
the signal ¢’ PDFs slope in data, or determined by the fit itself.

6 Results

Figures 1, 3, and 5 show distributions and the fit results for candidates satisfying |[AE| <
0.05 GeV and 0.65 < C' < 1.0 for Belle data; figures 2, 4, and 6 show the corresponding plots
for Belle II data. The fit results agree with the data; the small shifts seen for B — Dy
signal in AFE are accounted for in the systematic uncertainty estimation. The data-fit
discrepancy observed in the AE projection for Bt — D(— K tK K * in the Belle sample
(figure 3(e)) is interpreted as a statistical fluctuation since no mismodelling is observed in
the C' projection (figure 3(g)) nor in those for B~ — D(— K~ K")K~ (figure 3(f) and (h)).
Table 2 summarizes the signal yields.



68.3% CL 95.4% CL

8.5, 16.5] [5.0, 22.0]
¢s (°) [84.5,95.5]  [80.0, 100.0]
[163.3, 171.5] [157.5, 175.0]
g 0.321, 0.465]  [0.241, 0.522]

Table 3. One-dimensional 68.3% and 95.4% CL regions for ¢5 and rg, for ¢5 € [0°,180°].

From the combined Belle and Belle II data, the ratios of branching-fraction ratios and
CP asymmetries of B & DCpKi are

Repy = 1.164 4 0.081 =+ 0.036,
Rep_ = 1.151 4 0.074 £ 0.019,
Acpy = (+125+ 5.8+ 1.4)%,
Acp_ = (—16.7+5.7+0.6)%,

where the first uncertainty is statistical and the second is systematic.

The significances of CP violation for CP-even and CP-odd D final states are approximated

using /—2In(Ly/Lax) Tstat/ Vo2t + O'SQySt, where L., is the maximum likelihood value,
Ly is the likelihood value obtained assuming CP symmetry, and o are the statistical and

systematic uncertainties. We find 2.0c and 2.80 significances for CP violation in the Dep
and Dgp_ modes, respectively. This corresponds to 3.50 evidence for the asymmetries being
different, i.e., Acpy # Acp_. The measured Rep, value is 2.20 away from its expectation as
estimated from the world-average values [6, 7] of ¢3, rp, and dp, while the measured Rp_
value agrees well with its expected value. An underestimation of the peaking-background yield
for Depy K could be a possible explanation, but this estimation is carefully done using eight
different sidebands in data as described in section 4 and appendix B. Fit bias is also excluded
here; we examine data both from realistic simulation and simulation based on the fit model
and find no bias (section 4). The CP asymmetries of B* DX7Ti and BY — Dﬂ&WKi are

epr = (—2.0+1.44+02)%, Afp_ = (—0.3+1.24+0.2)%, Af., = (—0.5+0.4 £ 0.2)%, and
AR = (=1.4+1.7+0.1)%, consistent with the negligible CP asymmetries in these modes.

With these results for Ropy and Agpy, we constrain the angle ¢35 using a frequentist
approach as implemented in the CKMFITTER package [41]. Figure 7 shows the resulting
distributions of the p-value (the complement of the confidence level, 1 — CL). Given the
dp <> ¢3 symmetry of equations 1.6 and 1.7, the distribution for dp is identical to that
for ¢3. Table 3 lists the 68.3%- and 95.4%-CL intervals for ¢3 and rg for solutions with
¢3 € [0°,180°]. The large value measured for Rgp . results in a relatively large rp which, in
turn, gives a more stringent constraint that expected on ¢3 due to the correlation between
rp and ¢3. The p-value of the agreement of our result of (¢3, rg, dg) with the world average
values is calculated to be 4% from analysing an ensemble of 100,000 pseudo-experiments.
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Figure 1. Distributions of AE and C' for BX — D(— K*7F)h* candidates in the Belle data with

fit projections overlaid. Differences between data and fit results normalized by the uncertainty in data
are shown in the bottom panels.
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Figure 2. Distributions of AE and C' for B¥ — D(— K77 )h* candidates in the Belle II data with
fit projections overlaid. Differences between data and fit results normalized by the uncertainty in data
are shown in the bottom panels.
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are shown in the bottom panels.

— 12 —



Events / 5.6 MeV

Pull

Events / 0.02

Pull

Events / 5.6 MeV

Pull

Events / 0.02

Pull

F Belle Il B* - DK*K )n+ (&
60F | Ldt=189fb" (a)
50 ; —+— Data

Y A VL B*— Dn*

40 [ — - B*5 DK*

E — . BB
S0 qq
20
10F
0: hiiihed b . o "
5
72E' = .... %o .... S o o o . I

01 005 0 0.05 01 0.15
AE (GeV)
40 ¢

g Belle Il B DK'K)n* (C

3B | Ldt= 189" (c)

J

Belle Il
Ldt=1891b"

B*— DK*K )K" (€)

-0.1 -0.05 0 0.05 0.1 0.15
AE (GeV)
7 Belle I B* > DK'K)K*
g _[Ldt=189 o ()

03 04 05 06 07 08 09 1

fod

Events / 5.6 MeV

Pull

Events / 0.02

Pull

Events / 5.6 MeV

Pull

Events / 0.02

Pull

70
F Belle Il B DK K)n (b
60F | Ldt=189fb" (b)
50 ; —+— Data
Y A W B™— Dn~
40 — - B 5 DK-
E — . BB
S0 F qq
20F
10f '
0 M PO S . L "
5
0 . .- * oo ..- . *
-5 -0.1 -0.05 0 0.05 0.1 0.15
AE (GeV)
40 (d)
E Belle Il B™ = DK K*)n-
B E J.Ldt=189fb'1

0.1

0.2

03 04 05 06 0.7

08 09 1
c

14E - Bellell 8 - ok KK~ (f)

wE ILdt=189fb B KKK

10f

87,

ol

4

bl

N: 12101

5

-5 -0.1 -0.05 0 0.05 0.1 0.15
AE (GeV)

16

14? jsz£e1ggfb" Bi%D(KiKUK?(h)

12f

10

8

6 |

TR

s;_ A UL L N A 7 P SRS P T T o 3

_50 01 02 03 04 05 06 07 08 09 1

c

Figure 4. Distributions of AE and €’ for BT — D(—» K'K 7)hi candidates in the Belle II data
with fit projections overlaid. Differences between data and fit results normalized by the uncertainty in
data are shown in the bottom panels.

,13,



3 Belle B* = DK’m)n+ (a d Belle B - DK’z (b
160 ) - 160 | )
E J‘Ldt:711fb1 H s ( ) E JLdt:mfb‘ s ( )
> 140 F —+— Data 3 140 F —+— Data
=120 f\ e B*- Dn* =120 fex e B — Dn~
5100 | —= B> DK" ©100 F — B > DK"
5 80fF — BB 5 80 — BB
" oaop Hoa0f

C 20 -

Pull
Pull

140 140
s Belle B* = DK’n)r+ (C s Belle B~ - DK’m)n- (d
1200 | Ldt=71110" s (c) 120 | Ldt=71110" s ()
oy 100 oy 100
S 80 S go [
2 2} o
s 60 S 60 [T e gl T
i S L A AR RS S A TS & o PEN
w 40 T + 40 L +
20 F 20 F
o b e e o B e
5 3
o o
5007 02 03 04 05 06 07 08 09 1 007 02 03 04 05 06 07 08 09 1
c c
25 25
F Belle B' > D(K’nO)K * (e) F Belle B~ — D(Kn)K - (f)
of |Ldt=7111b sof |Ldt=7111b
> B > B
2 | 2 |
© 15| © 15
e} L n L
2 10 £ 10
2 r 2
w w
s s
o o
X Ry 0 0.05 01 0.15
AE (GeV)
60 60
; Belle W B" - DKI)K* (g) E Belle 8- bk~ (h)
50 |Ldt=7111 50F |Ldt=7111b
[aV] o i
Q S 40p
o o r
P % 30 R
= =
[ [
> >
w w
5 5
o o
5007 02 03 04 05 06 07 08 09 1 5007 02 03 04 05 06 07 08 09 1
c c
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projections overlaid. Differences between data and fit results normalized by the uncertainty in data
are shown in the bottom panels.
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Repy  Rep-  Acpy  Acp-
Reps 1 —0.081 0.060 0.000
Rep— 1 0.000 0.056
Acps 1 0.000
Acp_ 1

Table 4. Statistical correlation matrix of measured observables.

7 Conclusion

We measure the CP asymmetries and ratios of branching-fraction ratios for B > Depi K +
for the CP-even D final state K™ K~ and the CP-odd final state Kg 7 with a combined
analysis of the full Belle data set of 772 x 10° BB pairs and a Belle II data set containing
198 x10° BB pairs. As expected, the asymmetries have opposite signs, showing prominent CP
violation in BY — DepK £, The statistical and systematic precision of our results, based on
a data set almost four times larger than the previous Belle measurement [15], is significantly
improved. The results are consistent with those of the BABAR and LHCb experiments [42, 43].
We obtain 68.3%-CL intervals for the CKM angle ¢3 and the amplitude ratio rg:

s € [8.5°,16.5°] U [84.5°,95.5°] U [163.3°, 171.5°],
rg € [0.321,0.465].

A Correlation matrices

Table 4 and 5 list the statistical and systematic correlation matrices for Aopy and Ropy.
We vary every fixed parameter randomly by Gaussian distribution for thousand times. We
repeat the fit with the varied values for every fixed parameter, which can result in Gaussian-
like distributions of the measured observables. The correlations are calculated by using
those Gaussian-like distributions. These correlation matrices are used in the extraction

of ¢3, dg and rpg.
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Repy Rep— Acpy Acp-
Reps+ 1 —0.063  0.342 0.005
Rep 1 —0.128 —0.490
Acp 1 0.542
Acp_ 1

Table 5. Systematic correlation matrix of measured observables.

Analysis Lower sidebands Upper sidebands
Belle [1.67,1.71][1.71,1.75] [1.90,1.94][1.94,1.98]
[1.75,1.79][1.79,1.83] [1.98,2.02][2.02,2.06]

]
Il Il
Belle I [1.706,1.732][1.732,1.758]  [1.758,1.784][1.784,1.810]
[1.920,1.946][1.946,1.972]  [1.972,1.998][1.998,2.024]

Table 6. D sideband mass regions for Dgp, mode, in GeV/ ¢ units.

B D mass sidebands for the B — DCP_,_KjE mode

In section 4, we use eight D mass sidebands of data to estimate the peaking background for
the Dep, mode. Table 6 lists the sideband mass ranges used in the Belle and Belle 11 analyses,
respectively. These sidebands are chosen to extend over the same range as the signal D region.

The sideband procedure is validated by comparing the results in the data and in the
simulated samples, as illustrated in figure 8, showing a good agreement for all sidebands.

Figure 9 shows distributions and fit-result projections in the data sidebands for the
Belle analysis. We obtain the peaking background yield for each sideband and interpolate
those yields linearly.

The Belle II data sample used in this analysis has only an integrated luminosity of
189 fb ™!, which is insufficient to estimate the yield of peaking background. Instead we
obtain the Belle II yield by scaling the Belle yield by the reconstruction efficiencies e of
B~ — K K"K insimulated data and the luminosities (L) of Belle and Belle II data samples:

o L eml
Ypo(B~ — K KK )=Yp(B~ — K K'K )GBQTBQ, (B.1)
€Blp

where subscripts B and B2 stand for Belle and Belle 11, respectively.
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