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We present the first comprehensive tests of the universality of the light leptons in the angular
distributions of semileptonic B-meson decays to charged spin-1 charmed mesons. We measure five
angular-asymmetry observables as functions of the decay recoil that are sensitive to lepton-universality-
violating contributions. We use events where one neutral B is fully reconstructed in Y (4S) — BB decays in
data corresponding to 189 fb~! integrated luminosity from electron-positron collisions collected with the
Belle II detector. We find no significant deviation from the standard model expectations.

DOI: 10.1103/PhysRevLett.131.181801

In the standard model, all leptons share the same
electroweak coupling, a symmetry known as lepton univer-
sality (LU). Semileptonic B -meson decays involving the
quark transition b — c£v provide excellent sensitivity to
potential new interactions that would violate this symmetry.
Evidence for lepton-universality violation (LUV) in the ratio
of semileptonic decay rates to 7 leptons relative to the light-
leptons #, denoting electrons and muons, has been reported
in the combination of results from the BABAR, Belle, and
LHCb Collaborations [1-8]. Recently, evidence of LUV
between the light leptons at the 4 standard-deviation level
has been reported based on differences in their angular
distributions in semileptonic B decays to D* mesons [9].
However, that analysis relied on a reinterpretation of Belle
results [10] that contained only one-dimensional projections
of the multidimensional angular distributions that are needed
to fully characterize such decays. We present the first light-
lepton LU test using a complete set of angular-asymmetry
observables chosen to suppress most theoretical and exper-
imental uncertainties, thus optimizing sensitivity to LUV
[11]. This test is complementary to the branching-fractions-
based LUV test in Ref. [12].

The semileptonic decay B — D*~£v is mediated in the
standard model via W-boson exchange (charge conjugation
is implied throughout). Because of the spin of the D*,
which is reconstructed from its decay to a D° and a charged
pion, the properties of the coupling and the spin of the
virtual W are encoded in angular distributions of the final-
state particles. These can be fully characterized in terms of
a recoil parameter and three helicity angles. The recoil
parameter is defined as

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2 2 2
W mBO+mD*_q

; (1)

szmD*

where mgo and myy- are the known B® and D*~ masses and
q is the four-vector of the momentum transferred to the
dilepton system (natural units are used throughout). The
helicity angles are defined as follows: 6, is the angle
between the direction of the charged lepton in the virtual W
frame and the W in the B° frame, @), is the angle between
the D° direction in the D*~ frame and the D*~ in the B°
frame, and y is the angle between the decay planes formed
by the virtual W and the D*~ in the B® frame. Of these
angles, only 6, is correlated to lab-frame quantities.

The four-dimensional standard-model differential rate
can be represented in terms of eight helicity amplitudes and
as a function of w, cos@,, cosfy, and y [13,14]. It is
possible to construct one- or two-dimensional integrals of
these differential rates to isolate angular asymmetries that
are sensitive to LUV, called Apg, S3, S5, S7, and Sg [11].
The forward-backward asymmetry Apg measures the ten-
dency for the charged lepton to travel in the same direction
as the virtual W. The S5 and Sy asymmetries are sensitive to
the alignment of the lepton and D* momenta, while S5 and
S7 measure coupled alignments in the orientation of the D
with respect to the D*. We redefine these asymmetries in
terms of one-dimensional integrals

iorm (& o

with x = cos 8, for Agg, cos 2y for S3, cosy cos 6y for Ss,
sin y cos @y for S;, and sin2y for Sg, as illustrated in the
Supplemental Material [15]. The determination of each of
the five asymmetries then reduces to measuring the signal
yields N; with xe€[—-1,0) and N} with x€][0, 1] after
accounting for experimental effects such as resolution

181801-2
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and detector acceptance. The asymmetries are then calcu-
lated as

Ni(w) - Ni(w)

AW = Frw TNz

(3)

The differences between the angular asymmetries of
electrons and muons,

AA(w) = Ar(w) — As(w), (4)

are sensitive to interactions that violate LU. Most experi-
mental uncertainties cancel in the asymmetries A,, and
standard-model contributions largely cancel in the asym-
metry differences AA,, only arising from the differences in
lepton masses. Therefore, the compatibility between mea-
surements of the asymmetry differences AA, and their
standard-model expectations is a powerful test of LU. To
optimize sensitivity to extensions of the standard model
[11], we measure these variables integrated over three w
ranges: the full phase-space (wj,;.), the low w region (wy,,,)
from 1 up to 1.275, and the high w region (W) from
1.275 to the kinematic endpoint at 1.503.

For each asymmetry A, and w range, we separate signal
candidates into angular categories + and — based on the
measured value of x. We determine the numbers of signal
events N with fits to distributions of M2, the squared
difference between the sum of the four-momenta of the
colliding particles and the sum of the four-momenta of the
reconstructed particles. The M2, distribution for correctly
reconstructed signal events peaks near zero, while the
distribution for backgrounds, which come mostly from
B — D**¢v decays, does not peak. We correct these event
numbers for detector efficiency, acceptance, and resolution
effects determined from simulation in order to calculate
unbiased asymmetries.

Of the five asymmetries, only Apg and S; have been
measured, but not differentially in w [9,16,17]. In the
standard model or any extension thereof, S¢ is always
zero [9]. Similarly, S; is always zero in the standard model
and has reduced sensitivity to its extensions [11]. In
contrast, Agg, S3, and S5 are highly sensitive to LUV
via their asymmetry differences, which should show highly
correlated deviations from the SM expectations in the case
of new interactions. Therefore, correlated LUV signatures
between the asymmetry differences can help to probe the
nature of any new interactions. Therefore, the simultaneous
determination of all asymmetries in different w ranges
provides a powerful test of LU and probes the nature of
non-standard-model interactions.

We measure the asymmetries and their differences using
a dataset corresponding to 189 fb~! of electron-positron
collisions at 10.58 GeV center-of-mass energy collected by
the Belle I experiment between 2019 and 2021. We use the
Belle II detector [18] to reconstruct Y(4S) — B°B° decays.

The detector consists of several nested subsystems in a
cylindrical barrel, closed on either end with end caps,
arranged around the interaction region and nearly coaxial
with the beams. The innermost subsystem is the vertex
detector, composed of two layers of silicon pixels and four
outer layers of silicon-strip detectors. During data collec-
tion for this analysis the outermost pixel layer only covered
15% of the azimuth. Charged-particle trajectories (tracks)
are reconstructed by a small-cell drift chamber (CDC)
filled with a He 50% and C,Hg 50% gas mixture, which
also provides a measurement of ionization energy loss for
particle identification. A Cherenkov-light imaging and
time-of-propagation detector (TOP) provides charged pion
and kaon identification information in the barrel region.
This information is provided in the forward end cap by a
proximity-focusing, ring-imaging Cherenkov detector with
an aerogel radiator. An electromagnetic calorimeter (ECL)
consisting of CsI(T1) crystals provides neutral-particle and
electron identification information in the barrel and both
end caps. All of the above subsystems are immersed in a
uniform 1.5 T magnetic field that is nearly aligned with the
electron beam and is generated by a superconducting
solenoid situated outside the calorimeter. The outermost
subsystem, the K‘z and muon identification detector, con-
sists of scintillator strips in the end caps and the inner part
of the barrel, and resistive-plate chambers in the outer
barrel, interleaved with iron plates that serve as a magnetic
flux-return yoke.

We use Monte Carlo (MC) simulation to model the
signal and backgrounds and to calculate reconstruction
efficiencies. We use the software libraries EvtGen [19],
PYTHIA [20], and KKMC [21] to model particle production
and decay, PHOTOS [22] for photon radiation, and GEANT4
[23] for detector response. We overlay simulated beam-
induced backgrounds on the simulated events [24]. We
simulate 900 fb~! of B® — D*~¢#v decays with the form
factors of Refs. [25-27] and values determined by the
measurements of Refs. [10]. We use the Belle II analysis
software, basf2 [28,29], to reconstruct simulated and
experimental data identically.

In each event, we use the full event interpretation (FEI)
algorithm [30] to fully reconstruct one neutral B, called the
tag BY. The FEI reconstructs tag B® candidates in explicit
hadronic decay cascades with no missing particles. Each
tag BY candidate then consists of a collection of detected
tracks and neutral energy depositions (clusters) and a
hypothesis for the full B decay cascade that produced
them. We use three variables to select correctly recon-
structed tags. The beam-constrained mass M, is calculated
from the center-of-mass collision energy /s and tag-B
momentum P,

My =/ (v/5/2)* = |ps*. (5)

181801-3



PHYSICAL REVIEW LETTERS 131, 181801 (2023)

The energy difference AE = Ez — /s/2 is the difference
between the center-of-mass collision energy and tag-B
energy Ep. Finally, a tag-reconstruction confidence score,
Prer> valued between zero and one, quantifies the agree-
ment between the kinematic properties of the detected
particles and the hypothesized decay cascade.

Correctly and completely reconstructed B° candidates
have My, near the B® mass, AE near zero, and Ppg; near 1.
We require that tag B® candidates satisfy M, > 5.27 GeV,
AE €[-0.15,0.1] GeV, and Pgg; > 0.001. If multiple tag
B® candidates in an event pass these selections, we keep
only the one with the highest value of Prgy.

In events with an identified tag B° candidate, we
reconstruct B® — D*~(— D%z7)£v candidates with D°
decaying to K*n~, K*n~ntn~, K*n~ 2", K*n~ntn a°,
Kot n=, Kntn= 2% K$x° or KTK~ final states. We
require that all tracks originate from the vicinity of the
interaction point. We require that each lepton candidate
have a lab-frame momentum above 0.4 GeV, and a polar
angle within the range [0.22, 2.71] rad for electrons and
[0.4, 2.6] rad for muons, to ensure that suitable particle-
identification information is available. Leptons are identi-
fied using the ratio of their likelihood to the sum of
likelihoods for all charged-particle types. These likelihoods
combine particle-identification information from the CDC,
ECL, and, for muons, the TOP. We retain lepton candidates
with a likelihood ratio above 0.9, resulting in electron and
muon identification efficiencies of 86% and 89%, respec-
tively, and hadron misidentification rates of less than 1%
and 3%, respectively. We determine lepton-identification
efficiencies and their uncertainties from auxiliary measure-
ments in discrete intervals of lab-frame momentum, polar
angle, and charge, using J/y — £1¢~, ete™ = 767 (y),
and ete™ — (ete™)f ¢ events.

We reconstruct 7° candidates via decays to two photons.
We identify photon candidates from ECL clusters unasso-
ciated with any matched tracks and with timing selections
designed to minimize contamination from beam-induced
backgrounds. We require that each z° candidate have an in-
variant mass in the range [0.120,0.145] GeV, approxi-
mately 4 times the diphoton mass resolution. The z°
reconstruction and selection efficiency is approxi-
mately 0.3.

We reconstruct K candidates via decays to two charged
particles that are assigned the pion mass. We require that
each K9 candidate has an invariant mass in the range
[0.3,0.7] GeV and that it can be fit to a common vertex that
is displaced from the interaction point by at least one unit of
the uncertainty of the vertex fit. We also require that the
angle between the momentum of the Kg candidate and the
displacement of the vertex from the interaction point be less
than 0.64 rad.

We require that the mass of each D° candidate is in the
range [1.85,1.88] GeV, corresponding to approximately
4 times the peak resolution and centered on the known

mass. We reconstruct D*~ candidates by combining D°
candidates with each of the remaining tracks, which we
label 7, and require that the mass difference between the
D° and D*~ candidates is in the range [0.143,0.148] GeV,
approximately 4 times its resolution.

We combine D*~ and lepton candidates to form signal B’
candidates and use the TreeFit [31] algorithm to reject
candidates that cannot be fit to consistent vertices. We then
combine the signal and tag B® candidates and require
that no additional tracks remain in the event and that the
difference between the reconstructed energy and the
collision energy is greater than 0.3 GeV, in order to reject
hadronic decay backgrounds. If more than one candidate
passes these requirements, we select only the one closest to
expectation in the well-modeled quantity |M(D*) — M (D).

We obtain the signal yield for each combination of lepton
flavor, w interval, and angular category (4 or — as defined
for a particular asymmetry A, ) using a binned maximum-
likelihood fit to the distribution of M2 . The signal yield
NE(w) and the background yield are unconstrained in
the fit, allowing for an effective background subtraction
that removes dependence on the angular asymmetry of the
backgrounds. We determine the shapes of the signal and
background with simulation and choose a coarse binning to
minimize dependence on resolution modeling. In Fig. 1 we
show the two such independent fits that determine N; and
N7 for x = cos 8, in the muon mode and in the wy,. bin.
Together, these yields determine Afg (Win.). We find 1617
(1639) signal events in the electron (muon) mode overall,
with a variation of less than one event between variables. Of
these, 803 (853) are in the wy,,, range.

Belle II [Ldt =189 b

1000

¢ Exp Data
| B Signal
800 | BB Background

!
A%B - Wincl.

600

400

Events per bin

200

-1.0 -0.250.250.75 1.25 -1.0 -0.250.250.75 1.25 2.0
Mr?liss [GCVZ]

FIG. 1. Muon-mode M2, distributions and fit results for cos 0,
in the ranges [—1, 0) (left) and [0, 1] (right), corresponding to the
— and + categories of Afy, in the full w range (Wiyq).
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N P— —_—— . Belle II)(2023) —_——
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FIG. 2. Observed asymmetries and their differences (points with error bars), 1 standard-deviation bands from the Belle [16] and
Belle II [17] measurements (hatched boxes), calculations from Ref. [9] based on a previous measurement from Belle [10](empty boxes),
and standard-model expectations (solid boxes). The standard-model expectation is drawn with a dashed line when its uncertainty is too

small to display.

We correct the fitted yields Ni(w) for selection and
detector acceptance losses using efficiency estimates from
simulation. The efficiency ratios between the + and —
categories are typically near 1.0 but range up to nearly 1.4 for
Agg, largely due to the reduced momentum of leptons in the
— category, which are emitted opposite to the direction of the
boost of the B mesons, relative to the 4 leptons, which are
emitted in the direction of the boost. This lower momentum
results in lower reconstruction and identification efficien-
cies. We further correct for migration of candidates between
the + and — categories and different w bins by inverting a
detector-response matrix. This matrix is constructed from
the conditional probabilities that events generated in a
particular kinematic bin are reconstructed in each kinematic
bin. For every variable and bin, the probability of
reconstruction into the correct bin is above 0.86.

The largest systematic uncertainty affecting the meas-
urement is from the size of the simulated samples, which
limits the precision of the bin-migration and efficiency
corrections. We determine this uncertainty from the stan-
dard deviation of the results obtained by repeatedly
resampling the simulated data with replacement and re-
fitting. This uncertainty is approximately one-fourth to
one-half of the statistical uncertainty, ranging in 0.010—
0.025. We determine the uncertainties from other system-
atic effects by varying their contribution within their known
uncertainties or bounds [32] or from independent control
data. Lepton-identification uncertainties mostly cancel in
the asymmetries .4 and are at most 0.004. The uncertainty
on the reconstruction efficiency of z,, also largely cancels
and is negligible. Uncertainties from modeling of the
background processes, such as B — D**¢1,, are negligible
due to fitting the backgrounds independently in the + and
— categories. The Supplemental Material contains a full list
of all of the systematic uncertainties [15].

Figure 2 shows our measurements of the asymmetries
and the LUV-sensitive differences and Table I shows the

numerical values. The numerical values and full covariance
matrices of the measured observables will be made avail-
able on HEPData [33]. These measurements are the first
comprehensive tests of lepton universality in the angular
distributions of semileptonic B decays. We compare our
measurements to predictions from Ref. [34] and measure-
ments from Refs. [9,16,17]. The results in Ref. [9] are
obtained in a slightly reduced w range, [1,1.5], which
makes them not strictly comparable to the other results.
However, the standard-model expectations in these two w
ranges differ only in the fourth decimal place. The results
from Refs. [9,17] derive from analyses without explicit
reconstruction of the tag B, resulting in lower statistical
uncertainties relative to these results.

To test agreement with the standard-model expectation
[34], we perform three different y? tests, accounting for the

TABLE 1. Summary of the results and comparison with expect-
ations. The measurement uncertainties are statistical and system-
atic, respectively.

Observable w bin AA, SM expectation
AAgg Wiow 0.099 4 0.056 + 0.020 —-0.00104
Whigh ~ —0.168 4 0.068 + 0.024 -0.01133
Wi —0.024 £+ 0.043 £ 0.016 —0.00566
AS; Wiow  —0.026 £ 0.068 + 0.024 0.00028
Whigh  —0.101 £ 0.069 £ 0.025 0.00023
Wi —0.062 £ 0.047 £ 0.017 0.00018
ASs Wiw  —0.019 £ 0.068 + 0.024 0.00027
Whigh  —0.055 £ 0.065 +0.023 0.00107
Wing  —0.035 +0.046 = 0.016 0.00049
AS, Wiow 0.028 4= 0.067 + 0.024 0
Whigh  —0.066 £ 0.065 £ 0.022 0
Wina  —0.026 £ 0.046 +0.016 0
AS, Wiow 0.032 4 0.067 &+ 0.024 0
Whigh 0.020 4 0.068 + 0.024 0
Wingl 0.020 4 0.047 £ 0.017 0
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statistical and systematic covariances between all of the
variables. Tests of the asymmetries A in the full w range
Wina) vield y?/Ngos = 14.6/10 (p =0.15) and in w
subranges (Wiow, Whigh) yield 26.7/20 (p = 0.14). Tests
of the LUV-sensitive asymmetry differences AAgg, AS3,
and ASs in the wy, range yield y?>/Ngys =2.0/3
(p = 0.57) and in w subranges yield 10.2/6 (p = 0.13).
Tests of the insensitive quantities AS; and ASy in the wy,y
range yield y?/Ngys = 0.6/2 (p = 0.76) and in w sub-
ranges yield 1.5/4 (p = 0.83). Our results agree well with
the standard-model expectations and provide no evidence
for LUV.
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