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We search for the ete™ — 17,(1S)w and ete™ — y,0(1P)w processes at a center-of-mass energy of
10.745 GeV, which is close to the peak of the Y(10753) state. We use data collected by the Belle II
experiment during a special run, corresponding to an integrated luminosity of 9.8 fb=!. We reconstruct
@ — n*n~7° decays and use the @ meson’s recoil mass to search for the signals. We do not find evidence
for either process, and set upper limits on the corresponding Born-level cross sections of 2.5 pb and 7.8 pb,
respectively, at the 90% confidence level. The y,,(1P)w limit is the result of a combination of this analysis

and a previous search using full reconstruction.

DOI: 10.1103/PhysRevD.109.072013

I. INTRODUCTION

Recently, the Belle experiment observed a new state, the
Y(10753), as a narrow enhancement in the ete™ —
Y(1S,2S,3S)z" 7z~ cross sections [1]. Subsequently, the
Belle II experiment observed a similar structure in the
e"e” = y,12(1P)w cross sections, which confirms
the existence of the Y(10753) in additional decay
channels [2]. This state has been interpreted in several
ways: as an Y (3D) bottomonium level mixed with nearby
S-wave states via hadron loops [3-6], a hadronic molecule
with a small admixture of bottomonium [7], a hybrid
meson [8—10], or a compact tetraquark with a diquark-
antidiquark structure [11,12]. Further studies of hadronic
transitions from the Y(10753) to lower bottomonia will
help to understand its structure [6,10-17].

In this paper, we report on a search for the processes
ete” - n,(18)w and ete™ — y,0(1P)w at a center-of-
mass (c.m.) energy /s = 10.745 GeV, which is close to
the peak of the Y(10753) state. We use Belle II data
corresponding to an integrated luminosity of 9.8 fb~! [18]
collected during a special run of the SuperKEKB collider at
energies above the Y (4S) resonance.

The 7,(1S) and yo(1P) mesons do not have exclusive
decay channels with a large product of efficiency and
branching fraction. Thus, we reconstruct only an @ meson
in the ztz~ 7 decay and use recoil mass,

M7 = \/ (C25=) - (). o

Published by the American Physical Society under the terms of
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the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

as the signal-extraction variable, where E,, and p,, are the
energy and momentum of the 7z~ z" combination in the
c.m. frame of the colliding beams.

In a previous study [2], we searched for the process
ete™ - ypo(1P)w fully reconstructing the y,o(1P) —
Y(1S)y decay and found no significant signal. The prob-
ability of the decay y,o(1P) — Y(1S)y is small, thus, the
sensitivity of partial reconstruction, applied in this analysis,
might be higher than that of full reconstruction.

We follow a blind approach, i.e., the analysis procedure
is established before examining the recoil-mass distribution
in data.

II. BELLE II DETECTOR AND SIMULATION

The analysis is based on a data sample collected with the
Belle II detector [19] at the asymmetric-energy e™ e~
SuperKEKB collider [20].

The detector has a cylindrical geometry with z axis
approximately coincident with the electron beam direction,
which defines the forward direction. Belle II includes a
two-layer silicon-pixel detector (PXD) surrounded by a
four-layer double-sided silicon-strip detector and a 56-layer
central drift chamber (CDC). These detectors reconstruct
tracks (trajectories of charged particles). Only one sixth of
the second layer of the PXD was installed for the data
analyzed here. Surrounding the CDC is a time-of-propa-
gation counter (TOP) in the central region, and an aerogel-
based ring-imaging Cherenkov counter (ARICH) in the
forward region. These detectors provide charged-particle
identification. Surrounding the TOP and ARICH is an
electromagnetic calorimeter (ECL) made with CsI(TI)
crystals that provides energy and timing measurements
for photons and electrons. These subsystems are sur-
rounded by a superconducting solenoid, providing an axial
magnetic field of 1.5 T. An iron flux return located outside
the coil is instrumented with resistive plate chambers and
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plastic scintillators to detect K mesons and to identify
muons (KLM).

For simulation, we use the EvtGen package [21]. Signal
events are generated with a uniform distribution over
angular variables and then are weighted according to the
theoretical expectations described in Appendix. To model
the event distribution over the Dalitz plot (DP) of the ® —
atn~7° decay, we use the OMEGA_DALITZ model [21].
Initial-state radiation (ISR) is simulated using the
PHOKHARA generator [22] where processes at next-
to-leading order in the electromagnetic coupling are taken
into account. We assume that the signal processes proceed
via the T(10753) state with mass and width from Ref. [1].
The simulation samples are weighted accordingly. The
GEANT4 package is used to simulate the passage of the
particles inside the detector and its response [23]. All
the data and simulated events are reconstructed and
analyzed using the Belle II analysis software [24,25].

III. EVENT SELECTION

We reconstruct the @ meson using the @ — z7 7~ 7°

decay. Online event selection is based on the number of
charged particles and observed energy in an event, and is
fully efficient for signal. For charged pions, we require the
distance from the beam-spot to be within 0.5 cm along the z
axis and 0.3 cm in the transverse plane. Particle identi-
fication uses the dE/dx measurements in the CDC and
information from TOP, ARICH, ECL, and KLM. The
corresponding likelihoods are calculated for each particle
hypothesis, and loose selections are applied to separate
charged pions from kaons, protons, and electrons.
Candidate 7° mesons are reconstructed from pairs of
photons, which are energy deposits (clusters) in the
ECL not matched to a track in the CDC. The photon
energy is required to exceed 50 MeV in the forward endcap
(124° <0 <31.4° and barrel (32.2° <6 < 128.7°)
regions of the ECL, and 75 MeV in the backward endcap
(130.7° < 0 < 155.1°), because the latter region has higher
beam-induced background. To suppress beam-induced
background, we require the difference between the cluster
time and the collision time to satisfy |A#| < 50 ns. This
requirement corresponds to approximately two standard
deviations in time resolution. To suppress background from
hadronic clusters, which are broader than electromagnetic
ones, we require the ratio of the energy depositin a 3 x 3
matrix of crystals to that in the enclosing 5 X 5 matrix in
which the four corner crystals are excluded to be greater
than 0.8. The invariant mass of the selected photon pairs
M(yy) is required to satisfy |M(yy) —myu| < 12 MeV/c?
for the 1, (1S)@ channel and [M(yy) — m| < 13 MeV/c?
for the y,o(1P)w channel, where m,o is the z° mass [26].
These requirements correspond to approximately twice the
7° mass resolution. To suppress combinatorial background
from low-energy photons, we require the momentum of the

7° candidate in the c.m. frame of the colliding beams to
exceed 260 MeV/c for the n,(1S)w channel and
130 MeV/c for the y,o(1P)w channel. We perform a
mass-constrained kinematic fit for the z° candidates to
improve the 7° momentum resolution.

The w candidates are selected by combining z™, z~,
and 7°, and requiring the invariant mass to satisfy
M(zt2~2°) —m,| < 13 MeV/c?, where m, is the o
mass [26]. In the DP of the ® — 7+ 7~ 2° decay, the density
of the signal decreases toward the boundaries, while the
combinatorial background is concentrated near the boun-
daries. To suppress the combinatorial background, we
use a normalized distance r to the center of the sym-
metrized DP [27] in our candidate selection criteria. The
variable r takes the value r = 0 at the DP center and r = 1
at its boundary. We require r < 0.84 for the #,(1S) and
r < 0.82 for the y;,o(1P).

To suppress background from continuum events e e~ —
qq (g = u, d, s, c), which have a jetlike shape, we use
the ratio R, of the second to the zeroth order Fox
Wolfram moments [28]. For bb events, this variable peaks
at approximately 0.1, while for continuum events it is
distributed almost uniformly between 0.0 and 1.0. The
selection criteria are R, < 0.21 for the 7,(1S) and R, <
0.28 for the yo(1P).

The above selection criteria are obtained by maximizing
the figure of merit (FoM), defined as €,/ /Npk,, Where
€ig 18 the signal efficiency determined using simulation,
and Ny, is the yield of candidates in a wide M recoil (7T~ 70)
interval near the expected signal position in data. This
definition of the FoM takes into account the small signal-
to-background ratio for partial reconstruction. To find the
global maximum of the FoM, we scan each selection variable
in an iterative way.

The M ooy (2 7~ 2°) fitintervals are (9200,9600) MeV / ¢?
and (9780,9950) MeV/c? for the 1,(1S) and yu0(1P)
candidates, respectively. For reference, the 7,(1S) mass is
(9398.7 +2.0) MeV/c?, and the y;,;(1P) (J =0, 1,2) masses
are  (9859.44+0.5)MeV/c?,  (9892.84+0.4) MeV/c?,
and (99122 +0.4) MeV/c?, respectively [26]. The
Mot (mt 77 7°) resolutions are 15.0 MeV/c? for the
1,(1S) and 8.4 MeV/c? for the y,(1P).

There are on average 1.6 and 4.0 candidates per event
forthe e™e™ — 1, (1S)w and eTe™ — y,0(1P)w processes,
respectively. We verify that the additional candidates do not
peak in the M,...; (777~ 7°) signal regions, and therefore,
we retain all candidates. The reconstruction efficiencies are
7.6% and 7.8% for the 1,(1S)w and y,(1P)w channels,
respectively. These include corrections for the discrepan-
cies between data and simulation, which are discussed
along with the systematic uncertainties in Sec. V.

The M(z*z~z") distributions for the ete™ = ,(1S)w
and ete™ — y,0(1P)w candidates without the ztz~z°
invariant mass requirement are shown in Fig. 1. We perform
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FIG. 1. Distributions of M(z*z~z°) for the e*e™ — 1, (15)w

(top) and ete™ — y,0(1P)w (bottom) candidates. Points indicate
the data; solid curves show the results of the fit; dashed and dotted
curves show the signal and background components of the fit,
respectively. Vertical lines indicate the @ signal region.

a least-squares fit to these distributions, in which the w-
signal shape is modeled by a sum of a Gaussian function
and a double-sided Crystal Ball (CB) function [29], while
the background is described by second and third order
Chebyshev polynomials for the #,(1S)w and y,0(1P)w
channels, respectively. The parameters of the signal fit
function are determined from simulation. To account for
possible data-simulation discrepancies, we introduce an
overall mass shift and a width scale factor that are
determined from the fit. We find, respectively, (0.80 £
0.16) MeV/c? and 1.074+0.03 for the 1,(1S),
(0.17 £0.18) MeV/c?, and 0.99 4 0.03 for the y,,(1P).
The purity of the w-meson candidates is estimated to be
12.9% and 5.3% for the 1, (1S)w and y,y(1P)w channels,
respectively.

IV. YIELD MEASUREMENT

The M,.oi(nt7~2°) distributions for the ete™ —
n,(1S)w and ete™ — y,0(1P)w candidates are shown in
Figs. 2 and 3, respectively. We perform a y fit to these
distributions, in which the shapes of the 7,(1S) and
x»s(1P) signals are fixed to the simulation results. To
model the background, we use a 3rd-order Chebyshev
polynomial for the #,(1S) channel, and the product of a
4th-order Chebyshev polynomial and a square-root func-
tion for the y,o(1P) channel. Orders of the polynomial

w b
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FIG. 2. Distribution of M, (ztz %) for the ete™ —
n,(1S)w candidates. Top: data points with the fit function
overlaid. Bottom: the same distributions with the background
component of the fit function subtracted. The solid histogram
shows the fit function for the best fit; the dashed histogram shows

the same function with the yield fixed to the upper limit.

functions are chosen to give the maximal p-value for
the fit.

Based on the results of the full-reconstruction analysis [2],
we find that the expected ratio of the y;,;(1P) and

_.
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FIG. 3. Distribution of M, (zt7z~ %) for the ete™ —
xpo(1P)w candidates. Symbols are the same as those in Fig. 2.
The yp,(1P) and y,,(1P) contributions between 9.88 and
9.94 GeV/c? are discussed in the text.
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TABLE I.  Signal yields and Born-level cross sections (central
values and upper limits at the 90% CL) for the processes et e~ —
n,(18)w and ete™ = y,0(1P)w.

1y (18)@ Jw0(1P)w
Yield (10%) 023+0494+025 12+144+09
Born cross section (pb) 05+1.1+£0.6 2.64+3.14+2.0
Upper limit (pb) <25 <8.7

X2 (1P) yields with partial reconstruction is N;/N, =
14+0.7. In an initial fit to the data we fix
N{/N, =14, and find N;+ N, = (5.54+3.2) x 10°,
which agrees with the expectation based on Ref. [2] of
(3.4 £ 1.0) x 10%. In the following, we fix N| + N, to the
expected value, which helps to improve the sensitivity to
the y,o(1P) signal. Thus, only the #,(1S) and yo(1P)
yields, and background parameters, are free in the fit. The
fit results are shown in Figs. 2 and 3. We use 1 MeV/c?
bins for fitting and 10 MeV/c?> or 5 MeV/c? bins for
visualization. No significant signals are observed; the
obtained 7, (1S) and y,o(1P) yields are given in Table I.

V. BORN CROSS SECTIONS
AND SYSTEMATIC UNCERTAINTIES

The Born-level cross sections are calculated as

N1 =11

o8 eL(1 + Sisr) Bini @)
where N is the signal yield, ¢ is the reconstruction
efficiency, £ is the integrated luminosity; |1 —II> =
0.93 is the vacuum polarization [30], B, is a product of
the B(w — nt2~2%) and B(z° — yy) branching fractions,
(1 +6gr) = 0.63 is the radiative correction calculated
using the Kuraev-Fadin radiator [31] assuming production
via Y(10753).

The dominant contributions to the systematic uncertainty
in the yields are listed in Table II. We vary the 7, (1S) mass
and width and the y,,(1S5) mass by one standard deviation
around their values [26]. The effect of variation of the
1, (18) width is negligibly small. We vary the c.m. energy

TABLE II. Systematic uncertainties in the yields for the
processes ete” — 1, (18)w and eTe™ — y0(1P)w (in units of
10%).

ny(18)w Xpo(1P)w
1 (18)/xp0(1P) mass 0.05 0.08
Collision-energy calibration 0.02 0.19
Cross-section shape 0.01 0.13
251 (1P) and y,, (1P) yields - 0.27
Background shape 0.24 0.85
Total 0.25 0.92

in Eq. (1) by £1 MeV to account for the uncertainty in its
calibration [32]. We use the shifts and scale factors of the
M(ntz=z°) fits, determined in Sec. III, to calibrate
the momentum resolution in the signal simulation; the
resulting change of the yields is negligibly small. The peak
position and the ISR tail of the signal function depend on
the shape of the cross section as a function of collision
energy. We assume that the signal cross section is constant
in energy instead of considering the resonant production via
Y (10753). Since N and (1 + digg) are correlated when the
shape of the cross section is varied, we calculate the
deviation of the ratio N/(1 + Sgg). For the y,0(1P)w
channel, we vary the expected y,;(1P) and y,,(1P)
yields Ny =(1.9+£0.4) x 10* and N, = (1.4+0.6) x 10°
according to their uncertainties considering their —0.57
correlation [2]. To estimate the contribution from the
assumptions on the background shape, we vary both
boundaries of the #,(1S) fit interval simultaneously by
+50 MeV/c?, and the lower boundary of the y,,(1P) fit
interval by 50 MeV/c?. We also increase the polynomial
order by one. For the background-shape source, we con-
sider the root-mean-square spread of the deviations to be
the corresponding systematic uncertainty. For other
sources, we use maximal deviations. The total systematic
uncertainty in the yields, shown in Table 11, is estimated as a
sum of the various contributions in quadrature.

A summary of the multiplicative uncertainties is pre-
sented in Table III. The possible discrepancies between data
and simulation contribute to the uncertainty in the
reconstruction efficiency. The OMEGA_DALITZ model
assumes a uniform distribution over the P-wave phase
space [21] and describes data quite well [33]. We use
corrections to this model determined by the BESIII experi-
ment [33] to weight our simulated events and find that the
efficiency changes by less than 1%, which is negligibly
small. The process e e~ — 1, (1S)w proceeds in a P-wave;
its angular distribution, given in Appendix, is defined
uniquely. The processes e"e™ — y,;(1P)w can proceed
in S- and D-waves (in case of J = 2, even an F-wave is
allowed); however, higher orbital angular momenta are
strongly suppressed due to proximity of the collision

TABLE III.
measurement of the e
cross sections (in %).

Multiplicative systematic uncertainties for the
tem 5> n,(1S)w and ete™ = yu(1P)w

1ny(18)w Jo0(1P)w
Track reconstruction efficiency 1.6 2.4
PID efficiency 0.8 1.0
7" reconstruction efficiency 32 73
R, efficiency 10.0 10.0
Luminosity 0.6 0.6
Blw — nt 7 2°)B(z° - yy) 0.7 0.7
Total multiplicative uncertainty 10.7 12.7
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energy to the y,;(1P)w thresholds. The systematic uncer-
tainty in the reconstruction efficiency due to possible
D-wave admixture is negligibly small. The uncertainty
in track reconstruction efficiency is estimated using the
B - D**(— D°z")n~ decays for low-momentum par-
ticles and using the e™e™ — 777~ process for mid-to-high
momentum particles. The uncertainty in the efficiency of
the PID requirements is determined using K% — 7'z~
D*t - D°(— K—z*)n", and A° - pz~ data samples. The
uncertainty in the z° reconstruction efficiency is estimated
by comparing reconstructed y — 7°7°2%, y — 7zt 2~ 2°, and
n — yy decays. The efficiencies of the R, requirements in
the 7, (1S)w and ypo(1P)w channels are 82% and 91%,
respectively. We assume that the relative uncertainty in
these efficiencies is 10%. The uncertainty in luminosity is
measured using Bhabha and yy events [18]. The uncer-
tainties in the @ — 772~ 7° and 7° — yy branching frac-
tions are taken from Ref. [26].

The yield uncertainty 6y, obtained by adding the
corresponding statistical and systematic uncertainties in
quadrature, is combined with the multiplicative uncertainty
0 using the following formula:

(N+6y) x (1£8) =N+ (5y ® NS ® 5y5). (3)

where the symbol @ denotes addition in quadrature. The
estimated Born-level cross sections and upper limits at the
90% confidence level (CL) set using the likelihood-ratio
ordering method [34] are presented in Table I.

VI. CONCLUSIONS

We report a search for the ete™ — 1,(1S)w and et e —
x»(1S)w processes at /s = 10.745 GeV. No significant
signals are observed, and we set the following 90% CL
upper limits on Born-level cross sections:

og(ete™ - n,(1S)w) < 2.5 pb,
og(ete™ = yu0(1P)w) < 8.7 pb. 4)

The upper limit on the ete™ — y,0(1P)w cross section
is comparable to the upper limit obtained using full
reconstruction of 11.3 pb [2]. We combine the two results,
taking into account correlations, to obtain

oglete™ = yuo(1P)w) < 7.8 pb. (5)

The tetraquark model of Ref. [11] predicts that the decay
rate of Y (10753) — 5, (1S)w is strongly enhanced com-
pared to the decay rates of Y(10753) — Y(nS)z'z~.
The obtained upper limit on og(7,(1S)w) is close to
the measured values of op(Y(nS)ztz~), which are
in the range (1-3) pb [1]. Thus, our results do not support
the tetraquark-model prediction that the Y(10753) —
7,(18)w decay is enhanced [11]. In the 4S5 — 3D mixing

model, the decay rate of Y(10753) — #,(1S)w is smaller
than the decay rate of Y(10753) — Y (nS)z* z~ by a factor
0.2-0.4 [17]; our upper limit is consistent with this
expectation.

The upper limit on the y,,(1P)w cross section is higher
than the measured y,;(1P)w and y;,(1P)w cross sections
of (3.6 £0.9) pb and (2.8 £ 1.3) pb, respectively [2]. For
a 45 —3D mixed state, the decay rate to y,o(1P)w is
expected to be comparable to the decay rates to y, (1P)w
and y,,(1P)w [14]; our upper limit is consistent with this
expectation. In the charmonium sector, the decay of the
Y (4230) state to y o is enhanced compared to the decays
to y. o and y.o [35]. We do not find an analogous
enhancement in the decay pattern of Y(10753), which
may indicate that ¥(4230) and Y(10753) have different
structures.
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APPENDIX: ANGULAR DISTRIBUTIONS

To estimate the angular distributions of the studied
processes, we use a nonrelativistic approximation. The
amplitude of the eTe™ — 1, (15)w(— zt 7~ 2°) process can
be written as

T =le; x p,]- A, (A1)
where e; is the polarization vector of the virtual photon
produced in the e*e™ annihilation, p, = p; + p> + p3 is
the total momentum of the three pions measured in the c.m.
frame, and A is defined as

A = E|[py X p3] = Ex[p1 X p3] + E3[p; x P2, (A2)
where E; are the energies of the pions measured in the c.m.
frame. For low-momentum , the vector A is perpendicular
to the @ decay plane. Summation over e; gives the formula
for magnitude
71> = A%p;, — (P, - A)> = (Imy x p,| - A%, (A3)
where n; is the unit vector along the e~ beam direction.
This formula corresponds to a 1 + cos? @ distribution in the
 production angle @ (the angle between the beam direction
and the ® momentum in the c.m. frame) and a 1 + cos® &
distribution in the angle @ between the normal vector to the
o decay plane and the momentum of the beams measured
in the o rest frame.

The amplitudes for the ete™ — y,,0(— nta 7°)

(J =0, 1, 2) processes can be written as

Ty = (e; - A)A,
T] = [e] XA] 'Al,
T, = el NAY, (A4)
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where Ay, A, and A;j are y, 1, wave functions, respectively. After summing over the e, projections the magnitudes are

[Tol> = A> = (n; - A)?,
T\ > =A%+ (n; - A)?,

To> =7A% = (n; - A)%.
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