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Abstract

Non-native plant pests and pathogens threaten biodiversity, ecosystem func-
tion, food security, and economic livelihoods. As new invasive populations
establish, often as an unintended consequence of international trade, they can
become additional sources of introductions, accelerating global spread through
bridgehead effects. While the study of non-native pest spread has used compu-
tational models to provide insights into drivers and dynamics of biological
invasions and inform management, efforts have focused on local or regional
scales and are challenged by complex transmission networks arising from
bridgehead population establishment. This paper presents a flexible spatiotem-
poral stochastic network model called PoPS (Pest or Pathogen Spread) Global
that couples international trade networks with core drivers of biological
invasions—climate suitability, host availability, and propagule pressure—
quantified through open, globally available databases to forecast the spread of
non-native plant pests. The modular design of the framework makes it adapt-
able for various pests capable of dispersing via human-mediated pathways,
supports proactive responses to emerging pests when limited data are avail-
able, and enables forecasts at different spatial and temporal resolutions. We
demonstrate the framework using a case study of the invasive planthopper
spotted lanternfly (Lycorma delicatula). The model was calibrated with histori-
cal, known spotted lanternfly introductions to identify potential bridgehead
populations that may contribute to global spread. This global view of
phytosanitary pandemics provides crucial information for anticipating biologi-
cal invasions, quantifying transport pathways risk levels, and allocating
resources to safeguard plant health, agriculture, and natural resources.

KEYWORDS
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INTRODUCTION

Worldwide, plant pests and pathogens (hereafter “pests”
for brevity) are responsible for destroying up to 40% of
crop yields and disrupting species composition and struc-
ture of forest ecosystems (Fones et al., 2020; Paini et al.,
2016; PySek & Richardson, 2010; Savary et al., 2019).
Invasions by non-native pests have increased in recent
decades and show no signs of slowing (Seebens et al.,
2017), with corresponding damage and management costs
roughly doubling every six years since 1970 (Diagne et al.,
2021). This acceleration is largely driven by globalization
and international trade, which facilitates long-distance
movement beyond natural geographic barriers (Brasier,
2008; Chapman et al., 2017; Epanchin-Niell et al., 2021).
The establishment of successful invasive populations,
termed bridgehead populations, then become additional
pest sources and accelerate global spread (Bertelsmeier
et al., 2018; Bertelsmeier & Keller, 2018; Lombaert et al.,
2010). Furthermore, propagule transport from these
bridgehead populations results in complex patterns of
repeated introductions and population admixture that can
increase invasive population fitness and establishment suc-
cess (Garnas et al, 2016; Rius & Darling, 2014).
Accounting for global transport and bridgehead effects in
invasive plant pest risk assessments can help inform pre-
vention and management efforts taking place at the range
of spatial scales known as the biosecurity continuum
(Magarey et al., 2009) and improve global spread forecasts.

Research in biological invasions has increasingly
turned to mathematical models and computational simu-
lations to understand drivers and dynamics of invasive
species spread (Douma et al., 2016; Lewis et al., 2016b;
Parnell et al., 2017). Population models have been used to
predict species survival and growth following an introduc-
tion, incorporating complicated interspecific interactions
(Lewis et al.,, 2016a; Petrovskii, Malchow, et al., 2005;
Petrovskii, Morozov, et al., 2005). Species distribution
models, meanwhile, provide insights for invasive pest
management by identifying areas where a pest could
establish based on statistical relationships between current
distributions and relevant environmental factors (Elith &
Leathwick, 2009; Véaclavik & Meentemeyer, 2009; Wakie
et al., 2020). Spatially explicit epidemiological simulations
that capture local and long-distance dispersal mechanisms
are especially useful for predicting patterns and rates of
invasive plant pest spread (DeAngelis & Yurek, 2017;
Jones et al.,, 2021; Meentemeyer et al., 2011). Network
models are well suited for modeling complex
human-mediated dispersal and can be coupled with
grid-based diffusion models (Banks et al., 2015; Harwood
et al., 2009; Strickland et al., 2015; Xing et al., 2020).
Although computational models have been extensively

used to study biological invasions and provide valuable
insights, most models focus on local or regional scales of
establishment and spread and do not attempt to model the
multiscale processes of bridgehead effects. The immensely
challenging task of invasive plant pest management, how-
ever, must be supported by forecasts that consider local,
regional, and global dynamics to understand complex pat-
terns of movement and invasion success (Chapman et al.,
2017; Garnas et al., 2016; Meentemeyer et al., 2012).

Multiscale network modeling frameworks that couple
global models of organism movement with local or
regional models of population dynamics have been used
to predict rates and patterns of pandemic spread among
humans and, more recently, invasive species. The
GLEAMvis framework for human infectious disease
modeling (Balcan et al., 2010) uses global airline and
regional commuter data to simulate movement of
infected individuals between geographically dispersed
metapopulations and compartmental models to simulate
spread dynamics within each metapopulation. The flexi-
ble Spatiotemporal Epidemiological Modeler (STEM;
Ford et al., 2006) also couples network models with local
compartmental or agent-based disease models. For inva-
sive marine species, Seebens et al. (2013, 2016) developed
a probabilistic network model that couples ballast water
transport through international shipping networks with
port biogeographic conditions to identify invasion routes
and predict establishment. Gottwald et al. (2019)
published a general census-travel model that integrates
international passenger movement, demographic data,
and source strength to assess plant, human, and animal
pathogen introduction risk for land parcels. These
multiscale modeling approaches represent a promising
paradigm for global biological invasion forecasting; how-
ever, their applicability to phytosanitary risk analysis is
limited by the unique challenges posed by plant pests.
Plant pests often exhibit long detection lag times
(e.g., years vs. days), complex host preferences, temporal
and spatial irregularity of host availability, and diverse
dispersal mechanisms (Crooks, 2005; Cunniffe et al.,
2015). Furthermore, traits of emerging plant pests are
often not well understood, and occurrence data for model
calibration and validation are limited. Phytosanitary
agencies tasked with preventing and managing emerging
invasive plant pests need tools that can quickly be
deployed for a broad range of pest-host systems when
data are limited to simulate global transport and bridge-
head population establishment.

This paper introduces PoPS (Pest or Pathogen Spread)
Global—a flexible, stochastic simulation and forecasting
framework adapted for plant pests and pathogens from
the network modeling approach developed by Seebens
et al. (2013, 2016) and builds on the local-to-regional
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scale PoPS Forecasting Platform (Jones et al., 2021). PoPS
is a modular, spatially explicit, discrete-time forecasting
platform that simulates reproduction, dispersal, and
establishment of pests based on weather, multiscale dis-
persal, and other biotic and abiotic factors. It has been
used in collaboration with government and other part-
ners to forecast the spread of Phytophthora ramorum, the
causal agent of sudden oak death, and spotted lanternfly
(Gaydos et al., 2021; Jones et al., 2021). Together with
PoPS Border, a consignment inspection simulator used
for designing dynamic, risk-based sampling protocols at
national ports of entry (Montgomery et al., 2023), these
three models form a suite of tools developed to support
phytosanitary management decisions along the
biosecurity continuum.

PoPS Global is broadly applicable for forecasting
plant pest invasions accelerated by international trade
and bridgehead populations. It can be adapted for a wide
range of pest-host systems, targeting pest species associ-
ated with specific commodities. The modular design
enables quick implementation to support management of
poorly understood emerging pests using general, open
data, while also providing options to integrate more spe-
cialized information when available. PoPS Global is
multiscale, addressing calls to incorporate temporal
dynamics of local spread and global transmission concur-
rently; multiscale dynamics (e.g., latency between inva-
sion and population build up) are critical to
understanding the timing of pandemics (Balcan et al.,
2009; Chapman et al., 2017). The framework also allows
for scenario testing by adjusting inputs to explore the
impact of management (e.g., phytosanitary efforts and
trade policy) or pest ecology (e.g., polyphagy and host
availability). This paper describes the modeling frame-
work, highlighting the modular design, core drivers, and
data requirements and presents a case study of an emerg-
ing plant pest, spotted lanternfly (Lycorma delicatula) to
demonstrate how the framework can be used to forecast
global species movement. We conclude by highlighting
opportunities for expansion of this open-source frame-
work and priorities for data and future research.

METHODS

The PoPS Global forecasting framework integrates an
automated open-data pipeline that supports model cali-
bration and validation, scenario testing and analytics to
inform management decisions, and iterative updating as
new data become available (Figure 1; Appendix SI:
Section S1). The open data pipeline acquires and formats
pest observations, core driver data, and optional inputs to
the model. A calibration loop incorporates a parameter

grid search and leave-one-out cross-validation to
compute calibrated model parameters, validate results,
and enable sensitivity analyses (Figure 1b; Appendix S1:
Section S5). Users can visualize forecast and scenario
results (Figure la) to inform biosecurity management
decisions, including the deployment of novel surveillance
approaches like web scraping and text mining to auto-
matically monitor online information sources (Tateosian
et al., 2023). The model is then confronted with new pest
occurrence data as they become available to update and
improve the forecast (Figure 1c). This framework pro-
vides a practical approach for leveraging currently
existing data to quickly provide quantitative forecasts of
plant pest invasions and to iteratively improve the fore-
cast over time.

Modeling framework

PoPS Global is a spatiotemporal stochastic network
modeling approach wherein network nodes represent
geographical areas (e.g., countries, regions, and ports)
and bidirectional network edges (i.e., connections
between nodes) represent human-mediated dispersal
pathways, for example, the movement of goods via trade.
Potential plant pest import and export is modeled along
these pathways by integrating global trade data, pest
occurrence, host species distribution, and climate condi-
tions. The model incorporates changing environmental
and host conditions (e.g., annual agricultural crops or
perennial forest species) and the impact of biosecurity
and control measures on spread (Figure 2a,b), which can
be updated as new data become available (Dietze et al.,
2018; Jones et al., 2021; Parnell et al., 2017). The model
predicts the probability of introduction (i.e., successful
entry and establishment) for every node in the network.
Nodes with successful introductions in the stochastic
simulation then become bridgehead populations with the
potential for transmitting the pest in the subsequent time
step, or after an optional latency period, described in
more detail in Drivers and data (Figure 2c,d).

The model consists of three equations (Figure 3) cal-
culating separate but related probabilities: (1) entry,
(2) establishment, and (3) introduction. These terms align
with definitions used by the United States Department of
Agriculture Animal and Plant Health Inspection Service
(USDA APHIS) and correspond, respectively, to trans-
port, introduction, and establishment as defined by
Blackburn et al. (2011). Probability of entry (Figure 3a)
captures processes controlling human-mediated move-
ment between globally distributed nodes. It is a function
of the amount of traded goods capable of transporting the
pest, the likelihood of a pest surviving the journey, and,
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FIGURE 1

The Pest or Pathogen Spread (PoPS) Global forecasting framework includes an automated data pipeline using open data sources

that acquires, aggregates, and formats model input data to support three iterative components: (a) a scenario modeling loop, (b) a calibration loop,
and (c) a field observation and scientific feedback loop. Results from these loops are visualized on an analytics dashboard to support user
interaction and decision-making, incorporating new data as they become available to iteratively update and improve forecast accuracy.

optionally, the phytosanitary capacity of importing and
exporting countries for preventing quarantine species
movement. Probability of establishment (Figure 3b) cap-
tures conditions and ecological processes within a node
area. Establishment probability increases with environ-
mental suitability, which is modeled as a Gaussian func-
tion of the climate dissimilarity between the two trading
nodes and percent area without host species in the desti-
nation node. Optionally, the probability can be adjusted
by the pest’s ability to survive on multiple hosts
(e.g., number of host taxonomic families). Probability of

introduction (Figure 3b) is a function of the probability
of entry (internode processes) and the probability of
establishment (intra-node processes) and is used in a
binomial distribution to determine whether a successful
introduction occurs.

Drivers and data

PoPS Global applies broad theoretical concepts of biologi-
cal invasion drivers at a global scale to provide an
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FIGURE 2 The Pest or Pathogen Spread Global spatiotemporal network model (a) simulates spread from node to node via edges

weighted by trade volume. (b-d) The environmental conditions, phytosanitary capacity, and import volume (proxy for propagule pressure)

in the destination nodes determine the probability of pest introduction. Following a predicted introduction, the destination can become a

bridgehead population in subsequent time steps (f-i), either immediately or after a lag drawn from a distribution (e).

estimate of the likelihood and timing of pest arrival
(Bellard et al., 2016; Hulme, 2009; Lenzner et al., 2019).
Three core drivers are required to run the network
model: quantity (i.e., value or weight) of goods traded
between nodes over time, climate dissimilarity between
nodes, and the area within nodes without hosts. Future
versions of the model may incorporate other active and
passive dispersal mechanisms, such as diffusive overland
or aerial spread. The spatial scale represented by the
nodes determines the degree to which these drivers are
aggregated and should be chosen for each use case based

on data availability and the desired network resolution.
The amount of traded goods is obtained from the United
Nations Comtrade database, which provides historical
annual or monthly records of traded goods using the
Harmonized Commodity Description and Coding System
(HS) for countries since the 1960s (DESA/UNSD, n.d.).
The U.S. Bureau of Labor Statistics Consumer Price
Index (CPI) is used to adjust trade values for inflation
(United States Bureau of Labor Statistics, n.d.). Trade
values should be limited to include only goods known to
transport the species being modeled to provide a better
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(a) Entry Probability of pest species S traveling from node i to node j at time t.

phytosanitary capacity trade species survival
[ S

T; jet —minTe

Pijer(entry) = (1= pi) (1 = pj)Sig(1 — e masTemminTe )™ x

Country / #\ Country

pest(S) O

(=S ELIEINERIE Probability of pest species S establishing in node j from node i at time t (assuming entry).

species climate host ON
flexibility d|ss%n1@|ty a@[aﬁbﬂﬁy Country / . Country /

Kitya (i AN
‘ R

(c) Introduction Probability of pest species S being introduced in node j at time t (from any node).

Probability of species S being introduced to node j from node i Entry + Establishment

P (introduction) = 1— 1 — P (entry) P, (establishment .
it( ) g [ jet )Pijie( )] COUO“MCountryj
Probability of species S being introduced to node j from any node: Country x Os:m.

Pj(introduction) = 1 — H [1 — Pji(introduction)] .-

2

_1
P;;i(establishment) = ¢ae 21l

Country z

P = phytosanitary capacity, S = species presence, )\ = commodity importance, C =commodity, 7" = commodity quantity, . = species transport mortality rate, ¢ = distance between nodes,
X =seasonality, ¢ = degree of polyphagy, v = baseline establishment probability, /& = climate dissimilarity, H = non-host area

FIGURE 3 The forecasting framework uses a graph structure with nodes (geographical areas) and edges (transport of pests) driven by
three equations for calculating event probabilities within the network: (a) probability of entry represents internode processes; (b) probability
of establishment represents intra-node processes; (c) probability of introduction is the combined outcome of inter- and intra-node processes.

proxy for propagule pressure (e.g., solanaceous commodi-
ties for Phthorimaea absoluta or rhododendron, vibur-
num, or other host plants for Phytophthora ramorums;
Bacon et al., 2012; Chapman et al., 2017). An exploratory
data analysis, including pairwise plots and statistical
modeling, is used to identify which trade commodities
are most closely related to past pest introductions
(Appendix S1: Section S4).

Climate dissimilarity and nonhost area are computed
only for areas that are likely to be commodity destina-
tions and, therefore, where the pest will have the oppor-
tunity to establish. For consumer commodity
destinations, we use the Global Human Influence Index
to identify areas within each node with direct human
influence (e.g., cities and working lands) and accessibility
(e.g., highways), retaining areas above a threshold index
value of 16 (Sanderson et al., 2002; WCS & CIESIN-CU,
2005). This threshold was approximated by identifying
the lowest index values assigned to developed areas, and
major transportation corridors to ensure those areas were
retained in the analysis. For agricultural inputs
(e.g., seeds for sowing), a global map of cropland like the
NASA-funded Global Food-Support Analysis Data
(Teluguntla, 2015) could be similarly used for identifying
commodity destinations.

To determine climate dissimilarity between origin
and destination nodes, we use the Koppen-Geiger

Climate Classification (Beck et al., 2018) and compute
the percent area of the destination node that contains the
same climate subclass(es) as the origin node(s) and then
subtract from 100%. The Ko&ppen-Geiger Climate
Classification consists of 30 climate subclasses derived
from bioclimatic variables that describe seasonal patterns
in temperature and precipitation and is widely used for
mapping ecosystem conditions (Chen & Chen, 2013; Cui
et al., 2021). We use climate classes as a convenient and
sufficiently precise way to compute climate dissimilarity
for the broad spatial extent of the areas being compared
(i.e., country to country). However, a summary metric
describing the difference between multiple bioclimatic
variables in the origin and destination nodes could be
used in place of the climate class dissimilarity metric as
the intent is to produce a parameter that describes the
proportion of suitable area in each node. Non-host area is
computed as the percent node area that does not contain,
or is not suitable for, at least one host. For agricultural
hosts, harvested area per country is obtained from the
Food and Agriculture Organization Statistics (FAOSTAT)
database (FAO, n.d.). Maps of other hosts can be created
with species distribution models, such as Maximum
Entropy (Maxent; Phillips et al., 2006) or BIOMOD
(Thuiller et al., 2009), using input data from the Global
Biodiversity Information Facility (GBIF) species distribu-
tion database (GBIF, n.d.) or the Centre for Agriculture
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and Biosciences International (CABI) Crop Protection
Compendium (CABI, n.d.).

Beyond the core required inputs, several additional
optional components can be included: phytosanitary
capacity of each node, degree of pest polyphagy, seasonal-
ity in the likelihood of a pest being transported, and
transmission lag. An exploratory visualization and statis-
tical analysis module is included in the workflow to help
the modeler identify relevant data drivers to include in a
given case study (Appendix S1: Section S4). Phytosanitary
capacity represents measures taken by origin and destina-
tion countries to prevent or mitigate cargo contamina-
tion. We use an index developed by Early et al. (2016)
based on a review of Convention on Biological Diversity
national reports to determine a country’s capacity to pro-
actively address invasive species threats. The degree of
pest polyphagy, specified as a count of host families, can
be used to increase the likelihood of establishment for
more generalist species. The seasonality component is
used to constrain transmission of the pest to certain
months depending on species biology. If seasonality is
not incorporated, the pest can be transported between
nodes during any month. The transmission lag specifies
the time between when a pest is introduced to a node
and when that node can become a source to other nodes
in the network, representing local population growth and
spread. The transmission lag can be set to a static interval
(e.g., 3years) or can be dynamic and stochastic
(e.g., drawn from a gamma distribution informed by liter-
ature or available data). With a dynamic transmission lag
and repeated introductions, a new lag time is drawn for
each reintroduction and the lag time resulting in the ear-
liest transmission date is chosen, simulating the effect of
increasing propagule pressure. If lag time is not used in
the model, a node can become a source of the pest in the
time step immediately following introduction. See
Supporting information for additional description of
model and data assumptions (Appendix S1: Section S2).

Decision analytics

The PoPS Global modeling framework was collabora-
tively developed with USDA APHIS practitioners tasked
with rapid response to threats from emerging plant pests.
Visualization of global spread over time allows users to
analyze predicted locations and timing of introductions
with associated levels of uncertainty and compare
outcomes of different intervention strategies. We are
working with analysts and managers to create a
web-based decision analytics dashboard that will use the
open-data pipeline to run the model, test scenarios, and
provide multiple, interactive views of the model output.

The first dashboard iteration (available at https://
popsglobaldemo.popsmodel.org/) allows users to view
the model results as a world map with country-level sum-
mary statistics of introduction probability, timing, and
sources (Figure 4a). Model results can also be viewed as a
network graph and filtered to nodes of interest to exam-
ine spread pathways from native and bridgehead pest
populations (Figure 4b). Statistics summarizing transmis-
sion network characteristics, for example, the most sus-
ceptible and transmissive nodes, are also provided.
Graphs of forecasted introductions over time show
predicted rates of pandemic spread. Users can toggle
between model runs to compare outcomes of manage-
ment scenarios. Collectively, these visualizations and sta-
tistics provide insight into the spread network to support
decision-making. See Appendix S2 for additional details
about the analytics dashboard.

Applying the framework: A case study of
spotted lanternfly

We demonstrate the framework by simulating the global
spread of spotted lanternfly, a phytophagous planthopper
and emerging pest of many commercially important fruit
plants and timber. Spotted lanternfly is native to China
and possibly other subtropical regions of Southeast Asia
(Dara et al., 2015; Kim et al., 2011, 2013). We used China
and Vietnam as origin countries (Lee et al., 2019; Wakie
et al., 2020) and ran the simulation through 2030. We
modeled transmission lag as a stochastic process by draw-
ing a lag time at each simulated introduction from a
gamma probability distribution (x=4, p=1), with a
mean lag time of 4years. The lag time distribution was
parameterized based on a review of 35 invasive insects in
Japan that found the median lag time between first and
second occurrences of a pest was 4years (Kiritani &
Yamamura, 2003), providing an approximation of the
interval between first introduction and population
buildup and spread.

Spotted lanternfly feeds on more than 70 plant species
but has a strong preference for tree of heaven (Ailanthus
altissima; Murman et al., 2020). We created a tree of
heaven host map by using observations from the GBIF
database to create a Maxent species suitability model
(Appendix S1: Section S3). Spotted lanternfly can hitch-
hike long distances by depositing egg masses on surfaces
like trees, vehicles, or stone. Experts suspect that egg
masses arrived in the United States on imported stone,
although plant material and wood packing material are
also  suspected carriers (Dara et al, 2015
USDA-APHIS-PPQ-CPHST, 2018). In our simulation, we
used monthly imported values (2019 US$) of stone
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FIGURE 4 The first iteration of the Pest or Pathogen Spread Global analytics dashboard (https://popsglobaldemo.popsmodel.org/)
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displays (a) a geographic view of forecast results with country-level summary statistics of pest introduction probability, timing, and sources
and (b) an interactive pest transmission network, which allows users to filter the network and explore the timing and magnitude of
predicted spread pathways. See Appendix S2 for additional screenshots and description of the analytics dashboard.
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commodities (HS 6801, 6802, 6803, and 6804) obtained
from the UN Comtrade database and included only stone
commodities that provide a solid substrate for carrying
eggs, given that adults are very unlikely to survive
long-distance transport. Through visual and statistical
data exploration, we removed commodities HS 6801,
6803, and 6804, which did not show positive correlation
with  known  spotted lanternfly introductions
(Appendix S1: Section S4), and ran the model only with
HS 6802.

We created a simple trade forecast to 2030 by ran-
domly drawing a value for each month per country
from their respective 2016-2020 values. We did not
forecast a change in trade patterns for this case study;
however, trade increase or decrease scenarios can eas-
ily be included in PoPS Global by applying a percent
change to the drawn forecast data or through the
inclusion of trade forecasts from other sources. We
incorporated seasonality by constraining the potential
for transporting the pest to only those months suitable
for egg-laying in each origin country. In the Northern
Hemisphere, the model allowed transmission from
September through April. This is based on several
reports stating that eggs are laid from September to
December and will begin hatching in May (Dara et al.,
2015; USDA-APHIS-PPQ-CPHST, 2018; Wakie et al.,
2020). The model allowed transmission from May
through October in the Southern Hemisphere.

Literature reports for spotted lanternfly include the
years of first observation for three established
populations outside the native range: the Republic of
Korea in 2004, Japan in 2009, and the United States in
2014 (Dara et al.,, 2015; Han et al., 2008; Nakashita
et al., 2022). These three observations were used to cali-
brate the network model with leave-one-out
cross-validation (Appendix S1: Section S5). We
conducted a grid search for the unknown parameters,
alpha (i.e., baseline establishment probability), lambda
(i.e., commodity importance weight), and simulation
start year, resulting in 1984 parameter sample sets. The
parameter sets were ranked using Fj scores averaged
across 80 stochastic runs. To implement leave-one-out
cross-validation, three separate Fj scores were calcu-
lated for each parameter set that used just two of the
three known introductions, leaving one out for each
(i.e., Fp_usa-xkor> Fp_ypn-xor, and Fg_usa-jen). The top
performing calibration parameter sets (90th percentile)
were used to fit a multivariate normal distribution for
each start year considered (2000 through 2003). For the
final output, the model was run 1000 times using
parameters drawn from each distribution in proportion
to that start year’s representation in the top
calibration set.

RESULTS

We used PoPS Global to simulate the international
spread of spotted lanternfly through trade, starting
between 2000 and 2003 and forecasting spread through
2030, to identify potential global patterns of invasion
pressure over space and time (Figure 5). Introductions in
the three countries with known invasive populations
were predicted in most of the stochastic realizations
(Republic of Korea 99.6%, Japan 99.9%, and the
United States 84.3%). Introductions were also predicted
for several European countries, particularly Germany,
which had the most consistent introductions out of the
countries where the pest has not been observed (81.8% of
runs). The overall F score averaged over the 1000 runs
was 0.6 (0.005 + SE). The first introduction year was rela-
tively consistent for the Republic of Korea and Japan
with median first introduction years of 2004 and 2002
and interquartile ranges of 4 and 3 years, respectively.
The first introduction years for the United States and
Germany, however, were more variable, with the median
first introduction year for both being 2010 and
interquartile ranges of 11.5 and 9 years, respectively
(Figure 5).

The framework’s network approach illuminates likely
indirect pathways of pest movement via bridgehead
populations over time. While China was the primary
exporter of spotted lanternfly in the simulation, Italy,
Spain, and Turkey emerged as potentially important
bridgehead populations (Figure 6). The frequency of spot-
ted lanternfly introductions in these countries was rela-
tively low (Italy 36.6%, Spain 30.0%, Turkey 28.4%), but
when they did occur, these populations became impor-
tant sources for spreading the pest to other countries with
environmental conditions suitable for pest establishment.
These bridgehead countries became additional sources of
pest introductions to France, the Netherlands, Germany,
Romania, the United Kingdom, Ireland, and the
United States (Figure 7). The main exporter of the pest to
the United States was China (2.02 introductions per run
on average), followed by Turkey and Italy (0.20 and 0.15
introductions per run on average, respectively). The
known introduced populations in Japan, the Republic of
Korea, and the United States did not act as significant
bridgehead populations in the simulation with only
100 introductions coming from these countries combined
over 1000 runs.

DISCUSSION

Our case study of spotted lanternfly demonstrates the
utility of the PoPS Global framework to forecast the
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Global Spread of Spotted Lanternfly through 2030
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FIGURE 5 Predicted global distribution of spotted lanternfly by 2030. Colors indicate the proportion of the 1000 stochastic model
realizations that predicted introductions for each country. Histograms of predicted first introduction years are shown for the countries most

consistently predicted to be invaded.

international spread of emerging pests and identify
potential bridgehead populations. Identifying these
bridgeheads is important for directing pre-border
biosecurity efforts in infested areas and for prioritizing
inspection of goods from bridgehead countries at ports of
entry (Epanchin-Niell et al., 2021). PoPS Global success-
fully simulated spotted lanternfly spread to the three
countries in the known invaded range to date (Japan, the
Republic of Korea, and the United States) as well as iden-
tified potential bridgehead populations in Europe and
quantified pathway risk. There is phylogenomic evidence
that suggests the U.S. spotted lanternfly population origi-
nated from the Republic of Korea (Du et al., 2021); how-
ever, PoPS Global only simulated seven introductions to
the United States from the Republic of Korea over 1000
runs, due to the low volume of stone trade between the
two countries. While the exact invasion pathway cannot
be known, this discrepancy highlights the possible sce-
nario of a pest being transported regionally between
countries with frequent transport interactions and then
subsequently being exported to more geographically

dispersed areas through trade. This seems especially
likely with hitchhiking pests that attach to or lay eggs on
nonhost material, like vessels or containers, that fre-
quently move between ports. This scenario implies the
need for a model mechanism to create more direct con-
nections between a “super-spreader’s” outgoing edges
and other adjacent nodes.

The PoPS Global framework addresses critical needs
for forecasting plant pest invasion pathways when very
little is known about historical pest movement. It lever-
ages globally available open data to implicitly model the
effect of propagule pressure from international trade, and
each simulated introduction encompasses the entire
establishment process, from overcoming movement bar-
riers to developing a self-sustaining population
(Blackburn et al., 2011). The transmission lag time pro-
vides a simplified, stochastic conceptualization of the
time required for a newly introduced population to suc-
cessfully expand and be subsequently exported. This is a
necessary simplification as population spread is highly
variable and difficult to generalize at a global scale
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Spotted Lanternfly Exports from Bridgehead Populations
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FIGURE 6 Frequency of exports predicted from bridgehead populations with at least five pest exports, summed over 1000 stochastic
model realizations. The pest was not consistently introduced in Italy, Spain, and Turkey in the simulation; however, when it was introduced,

populations in these countries acted as important bridgeheads.

(Garnas et al., 2016; Vose, 2008). Lag time will depend on
myriad factors such as intra- and interspecific interac-
tions (e.g., competition, predation, and Allee effect), dis-
persal mechanisms, detection rates, and other complex
processes (Crooks, 2005; Morimoto et al., 2019).
However, if subsequent introductions are simulated, the
impact of increasing propagule pressure is incorporated
by drawing another transmission lag from a probability
distribution and using the shortest time drawn. While the
effect of reintroductions and population growth are not
explicitly modeled, the likelihood of short transmission
lag times is higher for countries with simulated repeat
introductions.

Fine resolution temporal data on the timing of species
introductions are often not readily available and will be
very challenging to obtain with high accuracy due to
inherent lags in detection (Crooks, 2005). Temporal
imprecision is likely to persist in this type of forecast.
Initial model conditions, including species distribution
and simulation start year, are a source of forecast

uncertainty for PoPS Global. Species distributions, in
both native and invaded ranges, are often poorly
documented, limiting the ability to estimate the potential
for propagule transport between countries (Bebber et al.,
2019; McGeoch et al., 2010; Rouget et al., 2016). The sim-
ulation is also sensitive to the start year used. We concep-
tualized “start year” as the year that an unobserved event
results in species range expansion and propagule trans-
port. The optimal simulation start year was calibrated
alongside the other unknown model parameters, alpha
and lambda, and used to estimate parameter distribu-
tions. Future application of the framework could stream-
line model calibration through approximate Bayesian
computation (Minter & Retkute, 2019). Furthermore, as
with all efforts to model ecological systems, the complex,
nonlinear nature of invasion biology makes the predic-
tion of introductions very challenging, with events often
occurring due to idiosyncratic, unknowable factors and
random chance. PoPS Global focuses on the major com-
ponents known to be important drivers of introductions
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FIGURE 7 Simulated spotted lanternfly transmission network. Node size indicates the number of times the country exported the pest

between 2000 and 2030. Node color represents certainty, that is, the proportion of 1000 stochastic realizations predicting transmission to or

from the node. Edge weight represents the number of transmissions between countries. Edges directly connected to the United States are

dashed black lines. The network is filtered to include nodes with at least 200 incoming or outgoing transport events and edges with at least

50 transport events over 1000 stochastic model realizations. Histograms of the simulated first export event are shown for each node that
acted as a bridgehead to the United States; the vertical red line marks the 10th percentile year.

and presents a range of possible outcomes based on how
these drivers interact. The model also uses a modular
design so that additional drivers can be included on a
case-by-case basis.

Despite these limitations, the PoPS Global simulation
provides insights into broad patterns of introduction
timing and sequence (e.g., native country A transmits to
bridgehead country B, which then transmits to country C

after a latency period). There are opportunities to
increase the spatial resolution by reducing the area
represented by nodes to regions around ports of entry,
similar to subpopulation areas surrounding airports used
by Balcan et al. (2010). Modeling transport between
smaller, subnational regions could be especially useful
for large countries with concentrated areas of susceptible
hosts, such as fruit-producing regions of the West Coast
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of the United States. Higher spatial resolution also pro-
vides opportunities for explicitly modeling natural dis-
persal mechanisms and regional transmission between
adjacent nodes. Modeling multiple dispersal mechanisms
could be achieved by overlaying additional network edges
with probability of entry functions that capture different
spread processes. For example, local spread may be incor-
porated by including a set of edges quantified by
Euclidean distance and the length of shared border
between nodes (Brooks et al., 2008). When adequate
global data are available, PoPS Global can also be
coupled with spatially explicit models of overland (Jones
et al., 2021; Meentemeyer et al., 2011) or aerial (Stein
et al., 2015) landscape-scale dispersal. Further research is
needed to understand how the large uncertainties in tem-
poral and spatial data used for model calibration may
limit the usefulness of modeling species movement at
higher resolutions.

While statistical approaches provide important
insights, the network approach of PoPS Global can
uncover relationships between origin and destination
nodes and provides a mechanism for users to test spa-
tially and temporally dynamic intervention strategies.
Each input module used in the framework can be manip-
ulated to simulate scenarios and understand the impact
of changes. For example, available host area could be
decreased to simulate efforts to eradicate invasive tree of
heaven. From a national phytosanitary perspective, an
agency might also want to explore how to disrupt the
transmission network, such as by increasing resources for
phytosanitary activities or revoking market access
for goods known to carry pests from areas with
established populations.

Creating actionable insights when very little informa-
tion is available for model calibration and validation is
challenging. However, the threats posed by emerging
plant pests and pathogens necessitate quick, data-driven
decisions. A near-term forecasting approach creates
opportunities for frequent, iterative updating with new
observations to improve understanding of global biologi-
cal invasions, build predictive capacity, and reduce
uncertainty (Dietze et al., 2018). The PoPS Global frame-
work can be used to identify when and where data are
needed to create dynamic, adaptive monitoring efforts in
response to forecast uncertainties (Figure 1c). Novel tech-
niques, such as web scraping and text mining, represent
an opportunity to leverage free, publicly available infor-
mation from online news articles, social media, technical
forums, and research journals to collect up-to-date infor-
mation about where pest species are being discovered
globally, reducing latency between data collection and
availability (Jari¢ et al., 2021; Tateosian et al., 2023).
Critical to improving our ability to forecast invasions is

coordinated global surveillance to catalog pest occurrence
data from native and introduced ranges, species traits,
and the potential impacts of spread (Carvajal-Yepes et al.,
2019). In addition to these data, biosecurity efforts need
to be framed within a global context by treating the
spread of invasive plant pests as pandemics and learning
from advances made in global public health (Hulme,
2021; Ristaino et al., 2021). The PoPS Global framework
provides a modular approach for risk assessment that
enables phytosanitary agencies to quickly evaluate and
visualize globally connected invasion processes at multi-
ple scales.
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