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Abstract: In this paper, we assess the noise-susceptibility of coherent macroscopic single
random phase encoding (SRPE) lensless imaging by analyzing how much information is lost due
to the presence of camera noise. We have used numerical simulation to first obtain the noise-free
point spread function (PSF) of a diffuser-based SRPE system. Afterwards, we generated a noisy
PSF by introducing shot noise, read noise and quantization noise as seen in a real-world camera.
Then, we used various statistical measures to look at how the shared information content between
the noise-free and noisy PSF is affected as the camera-noise becomes stronger. We have run
identical simulations by replacing the diffuser in the lensless SRPE imaging system with lenses
for comparison with lens-based imaging. Our results show that SRPE lensless imaging systems
are better at retaining information between corresponding noisy and noiseless PSFs under high
camera noise than lens-based imaging systems. We have also looked at how physical parameters
of diffusers such as feature size and feature height variation affect the noise robustness of an
SRPE system. To the best of our knowledge, this is the first report to investigate noise robustness
of SRPE systems as a function of diffuser parameters and paves the way for the use of lensless
SRPE systems to improve imaging in the presence of image sensor noise.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

A cost-effective imaging device that can capture high-fidelity images in the presence of substantial
camera noise will be of interest in degraded environments such as low light imaging. Generally,
the cost of imaging systems is dictated by the cost of their optical elements (e.g., lenses). On top
of that, imaging devices tailored for noisy environments may require sophisticated electronic
hardware. Moreover, the fact that lenses relay incoming information on small localities on image
sensors makes them vulnerable to noise. Eliminating lenses [1–8] and replacing them with
diffusers [1–7] makes imaging devices more compact, more portable, and less expensive. Also,
as lensless diffuser-based sensors spread the incoming information widely over the image sensor,
we aim to investigate whether they are able to retain information even under the presence of
substantial noise.

Diffuser-based lensless imaging systems [2–7] have recently emerged as attractive alternatives
to conventional lens-based imaging. In the domain of microscopy, single and double diffuser-
based microscopic imaging systems, called single random phase encoding (SRPE) [2,4–6] and
double random phase encoding (DRPE) [3] systems respectively, have been shown to be successful
at automated disease classification. In such systems, light transmitted through biological cells get
modulated by one or more diffusers and the resulting speckle intensity patterns get recorded at the
image sensor as the optobiological signatures of the cells. These signatures are thenceforth fed
(without computational reconstruction) to a convolutional neural network (CNN) based classifier
to identify diseased cells with impressive accuracy [4,5]. The classification performance of
such systems has been shown to be robust to partial obstruction of the optobiological signatures,
additive Gaussian noise [4], and reduction of number of pixels of the captured optobiological
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signatures by orders of magnitude [5]. Recently, the lateral resolution of SRPE systems have been
shown to exhibit robustness to pixel size variations and number of pixels on the image sensor [6].

In this paper, we analyze lensless SRPE systems in the context of macroscopic imaging. This,
in principle, is like DiffuserCam [7] which has been shown to be very successful at recovering a
large number of voxels from a small number of pixels (compressive sensing). However, unlike
DiffuserCam that captures intensity patterns before they become fully formed speckles, we keep
the diffuser to sensor distance long enough to capture fully formed speckles. We also use diffusers
with much larger scattering angles to keep this distance short. Figure 1 shows a schematic
diagram of our system.

Fig. 1. A schematic diagram of our macroscopic lensless single random phase encoding
imaging system.

This paper aims to investigate the effect of camera noise on macroscopic SRPE systems.
Assuming the illumination to be coherent (for ease of analysis), we have obtained the point
spread function (PSF) of an SRPE system using numerical simulations. Afterwards, we have
simulated an ideal noiseless camera and a series of noisy cameras with increasingly stronger
noise to image the PSF. Using various statistical measures of dependence, we have assessed how
much information lensless SRPE systems are losing due to camera noise. We have run identical
simulations for lens-based systems with various focal lengths. We have also analyzed the effect of
the physical parameters of the diffuser on the noise robustness of lensless SRPE systems. These
results allow us to optimize the performance of a macroscopic SRPE system under degraded
conditions.

The rest of the paper is organized as follows. In section 2, we briefly introduce our lensless
SRPE imaging system, the mathematical model of a noisy camera, and the statistical measures of
dependence used in this study. In section 3, we report and discuss the results obtained through our
simulations based on the theory discussed in section 2. Finally, section 4 presents the conclusion
of this study.

2. Methodology

2.1. Macroscopic single random phase encoding lensless imaging system

Our macroscopic SRPE lensless imaging system consists of a strong diffuser with 80◦ scattering
angle, and a CMOS image sensor. Light from the object plane propagates a distance z1 to reach
the diffuser in the imaging system, gets spatially modulated by the diffuser and, the modulated
field propagates a distance z2 to reach the image sensor where its intensity is recorded. Although
this system is not shift-invariant, we analyze the point spread function (PSF) of our system as
the noise susceptibility of the PSF would give us an idea about that of the imaging system. We
assume the light to be coherent for the ease of analysis.

Following [6], we have used angular spectrum propagation [9] to formulate a mathematical
model for our lensless SRPE system. As shown in Fig. 1, the co-ordinates on the object plane are



Research Article Vol. 32, No. 4 / 12 Feb 2024 / Optics Express 4918

denoted as (x, y), those on the diffuser plane have been denoted as (ζ , η) and, (α, β) represents
the points on the image sensor plane. For all the numerical simulations, our input u0(x, y) is a
point-source centered on the origin of the object plane, i.e.,

u0(x, y) = δ(x, y), (1)

where, δ(x, y) is a dirac delta function centered at co-ordinates (0, 0). The field emanating from
the point source propagates a distance z1 to reach the diffuser. Throughout this paper, × would
denote scalar multiplication and ∗ would denote convolution. The field immediately before the
diffuser can be written as:

u1(ζ , η) = u0(ζ , η) ∗ hD(ζ , η) ∗ pz1 (ζ , η), (2)

where pz1 (ζ , η) is the angular spectrum propagation kernel corresponding to a propagation
distance of z1 and hD(ζ , η) is a filter that eliminates the spatial frequencies that the diffuser would
not be able to capture due to its finite dimension (Dζ , Dη). The cut-off frequencies (fζm, fηm) of
this filter can be given as follows:

fζm =

Dζ

2

λ
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. (3)

The diffuser modulates the incoming field with a transmittance function tD(ζ , η) which imparts
spatially varying random phase. The modulated field u′

1(ζ , η) can be written as:

u′
1(ζ , η) = u1(ζ , η) × tD(ζ , η). (4)

One widely accepted form of the transmittance function for thin diffusers [4–6] is as follows:

tD(ζ , η) = exp(jϕ(ζ , η))Rect
(︃
ζ

Dζ
,
η

Dη

)︃
, (5)

where ϕ(ζ , η) are phase angles uniformly distributed within the range (−π, π]. This modulated
field then further travels a distance z2 to reach the image sensor where its intensity is recorded.
The recorded intensity can be written as:

u2(α, β) = |u′
1(α, β) ∗ hS(α, β) ∗ pz2 (α, β)|2, (6)

where pz2 (α, β) is the angular spectrum propagation kernel corresponding to distance z2 and
hS(α, β) is a filter that eliminates the frequencies that the finite dimension (Sα, Sβ) of the image
sensor would not be able to capture. The cut-off frequencies (fαm, fβm) of this filter are as follows:
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Using the above equations, we obtain the PSF of our imaging system during numerical
simulations. In the next subsection, we describe how an intensity image of this PSF is obtained
by modeling a noisy camera.

We would like to clarify here that we are not proposing a new model for the diffuser or the
lensless SRPE system. The diffuser transmittance model used in Eq. (5) has earlier been reported
for lensless single random phase encoding [4–6]. Equations (1-7) have also been formulated
based on the principles of Angular Spectrum Propagation [9]. Our contribution lies not in
proposing the model but rather in carrying out further analysis of this model. Although more
sophisticated models exist for diffusers, the results obtained from this model form a motivation
for designing experiments. In future works, we shall design appropriate experiments and probe
the validity of the conclusions formed herein.
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2.2. Noise model for a typical CMOS imaging sensor

For this work, we have considered the three most common sources of noise seen in CMOS
cameras, namely, shot noise, read noise and quantization noise [10,11]. Figure 2 shows the
camera noise model used in this work.

Fig. 2. Camera noise model used in this work.

We started by converting the individual pixel intensities (u2(α, β)) to their corresponding
number of photons (Iph(α, β)). Since this relation is known to be linear, we simply multiply the
intensities with a factor kph that ensures that even the maximum light intensity remains below the
saturation level of the camera, i.e.,

Iph(α, β) = kph × u2(α, β). (8)

The arrival of photons in a camera is a Poisson random process. This uncertainty in the
number of arrived photons appears as shot noise in the camera model [11]. We obtained the
corresponding noisy photon image using the following equation:

Isn(α, β) = Poisson(Iph(α, β)), (9)

where Poisson(λ) is an operator that samples a Poisson random variable with mean λ. The
photon counts are then converted to corresponding number of electrons Ie(α, β) according to the
quantum efficiency ηqe of the camera:

Ie(α, β) = ηqe × Isn(α, β). (10)

We ignore the effect of dark noise in the model. Typically, dark current in a camera sensor is
negligible as compared to read noise [11]. Since read noise is an additive Gaussian noise, we can
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sample the noise pattern as follows:

Ir(α, β) ∼ N(0,σr), (11)

where σr is the standard deviation of the read noise mentioned in the camera specification. The
noisy image Irn(α, β) can hence be obtained as:

Irn(α, β) = Ie(α, β) + Ir(α, β). (12)

To convert the electron image Irn(α, β) to a digital image, it needs to be multiplied with the
Analog to Digital Unit (ADU) of the camera. The digitized image IADU(α, β) can be given as
[12]:

IADU(α, β) = ADU × Irn(α, β). (13)

To prevent the ADUs from becoming negative for very weak signals, a baseline ADU (ADUbl)

is added to the digitized image. The resulting image IcADU(α, β) is given by:

IcADU(α, β) = IADU(α, β) + ADUbl. (14)

This image is then quantized to one of 2b levels where b is the number of bits of the camera.
The captured image can be given as:

Icaptured(α, β) = Quantize(IcADU(α, β)). (15)

Here, Quantize(·) is an operation that performs the abovementioned quantization and introduces
a uniform noise in the process [13]. For this study, we have simulated captured images for
increasing levels of readout noise. Hence, the standard deviation σr of read noise can be given as
a collection of k distinct levels of readout noise σri such that σri>σrj for i>j.

σr = [σr1,σr2, ...,σrk], (16)

where k is the total number of noise levels considered. The image captured at noise level σri
would henceforth be called Ici(α, β). The captured image for the case of no noise is denoted as
Ic(α, β) (see Fig. 3).

2.3. Statistical measures of independence

To assess how much information is being lost due to noise, we calculate various statistical
measures of dependence fmd(·, ·) between noise-free captured image Ic(α, β) and noisy captured
images Ici(α, β) for both lensless and lens-based imaging systems. If an optical system is
robust to noise, the noisy intensity pattern acquired through it will maintain a strong statistical
dependence with its corresponding noise-free intensity pattern. For this particular task, we
employ two measures of dependence: (a) Mutual Information (MI) [14], and (b) Hilbert-Schmidt
Independence Criterion (HSIC) [15]. Both these measures are 0 at statistical independence
between two random variables and increase as the random variables under analysis become
statistically more dependent. We provide a brief discussion of each of these measures below.

2.3.1. Mutual information

Mutual information (MI) I(X; Y) [14] between two random variables X and Y is a statistical
measure of how much entropy of X is explained by Y, i.e.,

I(X; Y) = H(X) − H(X |Y), (17)

where H(X) is the entropy of X and H(X |Y) is the entropy of X given Y. If X and Y are stationary
continuous random variables with joint probability density function (PDF) fX,Y (x, y) and marginals
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Fig. 3. Noise robustness analysis performed in this work.

PDFs fX(x) and fY (y) respectively, the MI can be given as below:

I(X; Y) =
∫∫

fX,Y (x, y) log
(︃

fX,Y (x, y)
fX(x)fY (y)

)︃
dxdy. (18)

Note that I(X; Y) is 0 only when X and Y are statistically independent and increases as they
become more dependent. Hence, MI is a measure of statistical dependence between two variables.
It can be intuitively interpreted as the Kullback-Leibler divergence between the joint PDF of
(X, Y) and the product of their marginal PDFs. MI also has the attractive property that it is
invariant under homeomorphic transformations (examples include translation, rotation, scaling
etc.) of the underlying random variables.

However, MI is not a normalized measure. Normalization is important since we are using it
to perform a comparative study between lens-based and lensless imaging systems. Hence, we
obtain a normalized metric using the following equation:

I(X; Y) =
I(X; Y)√︁

H(X)H(Y)
, (19)

where H(X) and H(Y) are the entropies of X and Y respectively.
For all our analyses, we have assumed that the 1-dimensional (1D) histogram of a pattern X

sufficiently approximates the PDF of X.
Unlike correlation that measures only linear dependence between two random variables, MI

measures both linear and non-linear relations between random variables. Although simple in
interpretation, it is remarkably difficult to derive an empirical estimate for MI for the fact that
it requires joint density estimation. However, our simulation shows that MI is much faster to
calculate than HSIC.

2.3.2. Hilbert-Schmidt independence criterion

Hilbert Schmidt Independence Criterion (HSIC) [15] is a kernel-based statistical measure of
dependence. For two random variables X and Y, let us define two Reproducing Kernel Hilbert
Spaces (RKHS) F and G with functionals ψF(x) and ψG(y) respectively. Under this scenario, a
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cross-covariance operator Cxy : G → F can be defined such that for all ψF ∈ F and ψG ∈ G,⟨︁
ψF, CxyψG

⟩︁
F
= Exy([ψF(x) − Ex(ψF(x))][ψG(y) − Ey(ψG(y))]), (24)

where ⟨·, ·⟩F denotes an inner product defined on F . The matrix Cxy generalizes the cross-
covariance operator between random vectors. If F and G are universal RKHS (dense in
bounded continuous functions), the largest singular value of Cxy is zero if and only if X and
Y are independent. A more computationally convenient equivalent is to look at the squared
Hilbert-Schmidt norm of Cxy (which is the sum of the squared singular values). This is what
is known as the Hilbert Schmidt Independence criterion. It is zero only when X and Y are
independent and increases as they become statistically more and more dependent.

Calculating HSIC does not require joint density estimations. However, calculating HSIC is
much more computationally expensive than MI. For the purpose of this report, the reason behind
using two different measures of independence is that if both of these are in agreement with each
other, it makes the conclusions more reliable.

3. Results

The studies performed in this work involve gradually changing the read noise specifications of
the camera while keeping all the other system parameters fixed. In studies discussed later in this
section, one needs to gradually change the parameters of a diffuser. More investigation is needed
to figure out how this can be achieved in an experimental setting. Hence, in this section, we
report and discuss the results obtained through our mathematical simulations. In future works,
we shall design appropriate experiments and collect data to test the validity of the conclusions in
real experiments.

We have used the angular spectrum propagation method to simulate our optical systems. Our
simulated diffusers have high scattering angles, and hence, high spatial frequencies in the exiting
field. A proper sampling (under the Nyquist criterion) of the field requires the spatial sampling
rate of the simulation to be of the order of the wavelength. This means that sampling a 2D
diffuser of practical dimensions (a few centimeters for example) would require approximately
a billion pixels. To avoid such a huge computational burden, we restrict our analyses to one
dimension (1D) with 2777 image sensor pixels.

The values used for the parameters in our simulations are listed in Table 1. Note that the lateral
sampling rate τ has been kept as half of the wavelength λ. This ensures that all the optical fields
in the simulation (which can have a maximum frequency of 1/λ) are sampled properly. Also,
the choice of the camera parameters (such as quantum efficiency, dark noise etc.) have been
inspired by the parameters of actual cameras used in typical optical experiments performed in
our laboratory with lensless single random phase encoding systems.

Table 1. Simulation parameters used in this study (m denotes meters)

Parameters Values Parameters Values

Wavelength of light λ 6 × 10−7 m Pixel size p 3.6 × 10−6 m

Lateral sampling rate τ 3 × 10−7 m Camera quantum efficiency ηqe 0.7

Object to diffuser distance z1 10 m Camera read noise σr 2.63 electrons

Diffuser to sensor distance z2d 10−2 m Camera saturation level 10818 electrons

Diffuser size D 10−2 m Analog-to-digital unit (ADU) 0.23/electron

Sensor size S 10−2 m Baseline ADU 4.48

In all our analyses, we have compared our lensless system with typical lens-based systems.
The object to diffuser or lens distance z1 has been kept at 10 meters.
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We have also simulated lenses with three different focal lengths (fl): 75 millimeters, 300
millimeters and 500 millimeters. For each comparison, the dimensions of the lens and the diffuser
have been kept the same and they have been kept at the same distance away from the object
plane. This enables the lens and the diffuser to capture the same incoming frequencies (since the
numerical apertures are same for all the systems simulated in this study). The distance between
the diffuser and the sensor (see Table 1) has been kept fixed throughout the study. Figure 4 shows
a schematic diagram of the lens-based systems. The separation z2l between the lenses and the
sensor, on the other hand, have been always maintained such that a focused image of the object
forms at the sensor. Hence,

z2l =
flz1

z1 − fl
. (25)

Fig. 4. A schematic diagram of the lens-based system designed to form a baseline for the
study of lensless SRPE systems. z2l has been chosen according to Eq. (25).

Diffusers scatter light, making the acquired patterns of much lower light level than those
acquired through lens-based systems. For low levels of illumination, this means that some of the
pixel intensities which contain useful information about the input field may fall below the read
noise level of the camera. To address this while still maintaining a fair comparison, we choose a
kph (see Eq. (8)) that was maintained the same for both lens-based and lensless imaging systems,
and that would ensure that enough photons are collected at the camera sensor. In practical
experiments, this can be done by adjusting the exposure time of the cameras. In our analysis,
we have selected a kph such that the maximum intensity of the lensless diffuser-based intensity
pattern corresponds to 0.25 times the saturation level of the camera.

Scattering of light is a fundamental property of diffusers and a research effort to increase
the light throughput of strong scattering diffusers would definitely make the noise robustness
properties of the diffuser more apparent. However, this report merely serves to show that when
lensless diffuser-based intensity patterns are bright enough to be captured by the camera, they
maintain good noise robustness compared with equivalent lens-based imaging systems.

3.1. Effect of noise on the information content of the captured pattern

In all our studies, we have assumed that the noise is predominantly read noise. For this analysis,
we increased the read noise (σr), from 2.63 electrons to 100 electrons. For each level of read noise,
we simulated the captured image Ici(α, β) and compared it with the corresponding noise-free
image Ic(α, β) using the aforementioned measures of independence.

Additionally, we also define an important parameter rsat as follows:

rsat =
photons corresponding to the maximum captured intensity of lensless systems

photons corresponding to the saturation level of camera
. (26)
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All the studies in this paper have been performed with rsat = 0.25 unless otherwise specified.
Figure 5 shows examples of noise-free and noisy images generated in our simulation.

Fig. 5. Sample images from our simulations. The lens has a focal length of 75 mm. The
noise standard deviation here is 50 electrons.

In Figs. 6–8, we report how lensless SRPE systems perform compared to typical lens-based
systems. The camera saturation level is 10818 electrons as presented in Table 1. In all these
cases, except for small levels of read noise, lensless SRPE imaging system maintains higher
statistical dependence between noise-free and noisy captured intensities than typical lens-based
systems. Note that these curves do not attain a value of 1 even at very low levels of noise. This is
due to the shot noise which is present in the camera even at very low levels of read noise.

Fig. 6. Comparison between lensless SRPE and lens-based imaging systems. Change in
mutual information and Hilbert Schmidt independence criterion as a function of standard
deviation of read noise. The lens has a focal length of 75 mm.

The steep drop in MI and HSIC for lens-based system can be explained by the fact that lenses
(as shown in Fig. 5) concentrate the PSF only on a small area of image sensor pixels, i.e., there
is no redundancy in information, unlike lensless systems. Hence, when noise creeps into the
system, it has a high probability of degrading such concentrated information.

Since diffusers scatter light, we had to maintain rsat = 0.25 to ensure that most of the pixel
intensities do not fall below the read noise level of the camera. However, for the sake of
completeness, we present, in Fig. 9, similar results for rsat varying in a range from 0.001 to 0.5.
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Fig. 7. Comparison between lensless SRPE and lens-based imaging systems. Change in
mutual information and Hilbert Schmidt independence criterion as a function of standard
deviation of read noise. The lens has a focal length of 300 mm.

Fig. 8. Comparison between lensless SRPE and lens-based imaging systems. Change in
mutual information and Hilbert Schmidt independence criterion as a function of standard
deviation of read noise. The lens has a focal length of 500 mm.

As one can observe, lensless systems perform poorly for rsat values less than 0.05. However, for
rsat at and above 0.05, lensless systems appear to perform comparable to or better than lens-based
systems for higher levels of read noise.

Here, we attempt to provide an intuitive explanation as to why lensless SRPE systems seem to
exhibit better noise robustness than equivalent lens-based systems. Due to the scattering nature
of diffusers, SRPE systems spread the incoming information all over the image sensor pixels [6].
In a previous work [5] on this topic, SRPE systems were experimentally shown to be capable
of successfully classifying between diseased and healthy cells even when the number of image
sensor pixels was reduced by orders of magnitude. In [7], the researchers were able to recover
large number of voxels from a small number of intensity pixels. In [4], the deep learning based
SRPE classifier was able to maintain a high level of accuracy even when the intensity patterns
were degraded by additive Gaussian noise and partial occlusion of patterns. These observations
naturally led to the hypothesis that diffuser-based lensless systems may be capable of retaining
useful information under noise. The results shown above make a case in favor of this hypothesis.
Additional experiments would establish the validity of these inferences.

3.2. Effect of diffuser feature size on noise susceptibility

We conjecture that the noise robustness of the diffuser comes largely from its ability to spread
the incoming information widely over the image sensor. The diffusion angle θD (see Fig. 10(a)),
i.e., the maximum spread provided by a diffuser, depends on its feature size. This can be well
understood by analyzing the diffuser function in Eq. (5). If we assume that the features on the
diffuser tD(ζ , η) are squares of dimension (∆, ∆) centered on co-ordinates (m∆, n∆) and are of
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Fig. 9. A comparison between lens-based and lensless systems in terms of normalized
mutual information for different values of rsat (see Eq. (26)). rsat is the ratio of the photons
corresponding to the maximum captured intensity of lensless systems and the photons
corresponding to the saturation level of the camera. The lens has a focal length of 75 mm.
The visible kink in the curve of lens-based system for rsat = 0.001 is an effect of shot noise.

height h(m∆, n∆) (see Fig. 10(b)), the transmittance function can be expanded as follows:

tD(ζ , η) = Rect
(︃
ζ

Dζ
,
η

Dη

)︃ ∑︂
m,n

exp
(︃
j
2π
λ

h(m∆, n∆)
)︃

Rect
(︃
ζ − m∆

∆
,
η − n∆

∆

)︃
. (27)

Fig. 10. (a) Diffusion angle θD of a diffuser, (b) features of a diffuser approximated by
square columns of dimension (∆, ∆), (c) frequency response of diffuser transmittance for
various feature sizes and, (d) diffusion angle as a function of diffuser feature size (see
Eq. (28)).

Its frequency response can be given as below:

TD(fx, fy) = ∆2Sinc(∆fx, ∆fy)
∑︂
m,n

exp
(︃
j
2π
λ

h(m∆, n∆)
)︃

exp(−j2π∆(ifx + jfy)). (28)

Hence, for a uniform plane wave of unit amplitude traveling along the optical axis incident on
the diffuser, the output field would have plane waves of spatial frequencies (fx, fy). As shown in
Fig. 10(c), for a feature size of ∆, the maximum spatial frequency (considering only the central
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lobe of the Sinc envelope) in the field exiting from the diffuser is (1/∆). Hence, from the theory
of angular spectrum propagation, the diffusion angle θD can be written as a function of feature
size ∆ in the following way:

θD = 90◦−cos−1
(︃
λ

∆

)︃
. (29)

As we can see from Fig. 10(d), θD and hence the spreading capability of the diffuser drops
rapidly with increase in feature size ∆.

To study the effect of diffuser feature size on the robustness to noise, we have kept the camera
(with parameters as listed in Table 1) fixed but gradually increased the feature size of the diffuser
from 0.6 microns to 900 microns. Figures 11 show that as we make the features larger, the
statistical dependence between the noise-free image and noisy images decreases, gradually
reducing the noise robustness of our diffuser-based lensless system.

Fig. 11. Change in mutual information and Hilbert Schmidt independence criterion as a
function of diffuser feature size. Camera parameters are in Table 1. Read noise standard
deviation has been maintained at 2.63 electrons. The visible kinks when diffuser features are
very small is an effect of shot noise.

3.3. Effect of diffuser height variation on noise susceptibility

The strength of the modulation provided by the diffuser depends on its height variation. For a
thin diffuser, the phase angle ϕ(ζ , η) imparted by a feature of height h(ζ , η) located at (ζ , η) can
be written as:

ϕ(ζ , η) =
2π
λ

h(ζ , η). (30)

If h(ζ , η) is uniformly sampled from [−aλ/2, aλ/2] (with 0 ≤ a ≤ 1), the phase ϕ(ζ , η)
becomes a random variable uniformly distributed between [−aπ, aπ]. As a increases, the
modulation by the diffuser increases.

Fig. 12. Change in mutual information and Hilbert Schmidt independence criterion as a
function of maximum feature height of the diffuser.
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To perform this analysis, we have kept the camera fixed but gradually scaled up the height
of the diffuser features until the maximum reached λ/2 which provides π phase shift. This is
mathematically equivalent to increasing a from 0 to 1. In Figs. 12, we observe that increasing
feature height (or alternatively, a) seems to improve the noise robustness.

4. Conclusion

In conclusion, we have performed numerical simulations to analyze the noise robustness of
a lensless SRPE imaging system. We have used normalized mutual information and Hilbert
Schmidt independence criterion to quantify how much change the acquired intensity patterns
undergo as camera noise becomes stronger. We have run identical simulations for lens-based
imaging systems to form a basis for comparison. Our results indicate that although lens-based
systems exhibit robustness to low levels of read noise, SRPE lensless imaging systems are better
at retaining information while operating under a significant level of read noise. We have also
analyzed the effects of diffuser feature size and feature height variation on noise robustness. Our
analyses suggest that diffusers with smaller features and larger height variations up to π phase
shift modulation perform better under camera noise. This analysis provides a way to optimize
lensless SRPE systems to improve their performance under noisy camera conditions. In future,
we plan to design experiments and collect data to see if the simulation matches experimental
results. There are broad applications of this approach in various domains [16–18].

Appendix A

In Table 2, we list the parameters for simulating the point spread function of the lensless SRPE
system and the lens-based systems as well as the parameters used for simulating noisy cameras.

Table 3 shows the parameters related to the calculation of the statistical measures of dependence.

Table 2. Definition of all the parameters used for simulating the point spread function and noisy
cameras

Parameters Definition Parameters Definition

(x, y) Co-ordinates of the object plane u0(x, y) Field coming from the object plane

(ζ ,η) Co-ordinates of the diffuser plane u1(ζ ,η) Field on the back of the diffuser

(α, β) Co-ordinates of the image sensor
plane

hD(ζ ,η) Spatial frequency filter due to the
finite dimension of the diffuser

λ Wavelength of light pz(ζ ,η) Angular spectrum propagation
kernel for a propagation distance z

z1 Distance from the object plane to
the imaging optic (lens/diffuser)

(Dζ , Dη ) Spatial dimensions of the diffuser

z2, z2d , z2l Distance from the imaging optic to
the image sensor (z2d for diffuser,
z2l for lens)

(fζm, fηm) Maximum spatial frequency
collected by the diffuser

φ(ζ ,η) Random phase imparted by the
diffuser to the incoming field

(fαm, fβm) Maximum spatial frequency
collected by the image sensor

u2(α, β) Intensity field incident on the image
sensor

hS(α, β) Spatial frequency filter due to the
finite dimension of the sensor

tD(ζ ,η) Transmittance of the diffuser (Sα , Sβ ) Spatial dimensions of the image
sensor

τ Lateral sampling rate of all the
planes

⟨·, · ⟩ Inner product

∆ Feature size of the diffuser p Pixel size of the image sensor

TD(fx, fy) Frequency response of the diffuser (m∆, n∆) Co-ordinates of the diffuser plane
discretized into a grid of squares
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θD Diffusion angle of the diffuser h(m∆, n∆) Height of a diffuser feature located
at co-ordinate (m∆, n∆)

Iph(α, β) Number of photons corresponding
to intensity of the field on the sensor

kph Factor to convert intensity field to
number of photons

Ie(α, β) Number of electrons corresponding
to the field on the sensor

Isn(α, β) Number of incident photons after
accounting for shot noise

Irn(α, β) Number of photoelectrons after
accounting for read noise

Ir(α, β) Read noise of the image sensor

ADU Analog to digital units of the image
sensor

ηqe Quantum efficiency of the image
sensor

ADUbl Baseline ADU to prevent ADU
from becoming negative

IADU(α, β) ADUs corresponding to the field on
the image sensor

Icaptured(α, β) Image captured by a digital camera IcADU(α, β) ADUs offset by the baseline

Poisson(λ̄) Operator to sample a Poisson
random variable with

Quantize(·) Operation to quantize ADUs to
discrete intensity levels

σri i-th readout noise level in this study σr Standard deviation of read noise

Ici(α, β) Image captured by the i-th noisy
camera with readout noise level σri

rsat Ratio of photons corresponding to
the maximum intensity of lensless
images and photons corresponding
to the saturation level of the camera

Table 3. Definition of all the parameters used in the calculation of measures of dependence

Parameters Definition Parameters Definition

I(X; Y) Mutual information measured
between random variables X and Y

fmd(·, ·) A statistical measure of dependence

fX,Y (x, y) Joint probability density function
(PDF) of X and Y

Ic(α, β) Image captured by a noisy-free
camera

fX(x) Marginal probability density of X H(X) Entropy of a random variable X

fY (y) Marginal probability density of Y H(X|Y) Conditional entropy of X given Y

Cxy Cross covariance operator between
the reproducing kernel Hilbert
space (RKHS) of X and Y

I(X; Y) Normalized mutual information
between X and Y

Exy Expectation with respect to the joint
PDF of X and Y

F, G Reproducing kernel Hilbert spaces
for X and Y

ψF(x),ψG(y) Functionals for the RKHS F and G
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