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Abstract: Integral imaging has proven useful for three-dimensional (3D) object visualization in
adverse environmental conditions such as partial occlusion and low light. This paper considers
the problem of 3D object tracking. Two-dimensional (2D) object tracking within a scene is
an active research area. Several recent algorithms use object detection methods to obtain 2D
bounding boxes around objects of interest in each frame. Then, one bounding box can be selected
out of many for each object of interest using motion prediction algorithms. Many of these
algorithms rely on images obtained using traditional 2D imaging systems. A growing literature
demonstrates the advantage of using 3D integral imaging instead of traditional 2D imaging for
object detection and visualization in adverse environmental conditions. Integral imaging’s depth
sectioning ability has also proven beneficial for object detection and visualization. Integral
imaging captures an object’s depth in addition to its 2D spatial position in each frame. A recent
study uses integral imaging for the 3D reconstruction of the scene for object classification and
utilizes the mutual information between the object’s bounding box in this 3D reconstructed
scene and the 2D central perspective to achieve passive depth estimation. We build over this
method by using Bayesian optimization to track the object’s depth in as few 3D reconstructions
as possible. We study the performance of our approach on laboratory scenes with occluded
objects moving in 3D and show that the proposed approach outperforms 2D object tracking. In
our experimental setup, mutual information-based depth estimation with Bayesian optimization
achieves depth tracking with as few as two 3D reconstructions per frame which corresponds to
the theoretical minimum number of 3D reconstructions required for depth estimation. To the best
of our knowledge, this is the first report on 3D object tracking using the proposed approach.
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1. Introduction

Two-dimensional (2D) object tracking aims at estimating bounding boxes and the identities of
the objects in video or image frame sequences. Object tracking has a wide range of applications.
Most state-of-the-art methods incorporate a tracking-by-detection framework [1]. It involves an
independent detector that is applied to each frame to obtain likely detections. Next, a tracker
(motion predictor) attempts to perform data association, where the aim is to associate detections
across frames. Here one bounding box is selected out of many for each object of interest.
To aid the data association process, trackers use various methods for modeling the motion
[2,3] and appearance [4,5] of objects in the scene. One of the most commonly used tracking
algorithms, simple online and real-time tracking (SORT) [1], uses a lean implementation of the
tracking-by-detection framework. Objects are represented only by bounding boxes, ignoring
other visual appearance features beyond the detection components. Its tracker uses detections
from previous and current frames to track multiple objects in real time. It uses the bounding
boxes’ position and size for motion estimation and data association through frames. A recently
established multi-target tracking benchmark [6] suggests that detection quality plays the most
significant role in overall object tracking accuracy. Accordingly, SORT uses recent advances in
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visual object detection to solve the detection problem directly rather than aiming to be robust
to detection errors. It uses the Faster Region CNN (FrRCNN) [7] detection framework along
with the Kalman filter [8] and Hungarian method [9] for motion prediction and data association
components of the tracking problem respectively. This method achieves 74.6 multiple object
tracking accuracy on the MOT17 dataset with 30 frames per second (FPS). Despite good overall
performance, SORT fails in many challenging scenarios like occlusions. To overcome these
limitations DeepSORT [10] replaces the bounding box-based association metric with a more
informed metric that combines motion and appearance information. It uses a convolutional
neural network to obtain a feature vector that can be used to represent a given image. This slightly
increases the robustness of the algorithm against misses and occlusions. In recent years several
new methods have been proposed with a similar framework. Some of the most prominent are
FairMOT [11], TransMOT [12], and ByteTrack [13]. These methods achieve 25.9, 9.6, and 30
frames per second on the MOT17 dataset. For all these methods, object detection accuracy plays
the most important role in the final tracking accuracy [10–14].

3D integral imaging [15,16] is a prominent imaging technique that captures angular information
about the object scene by recording multiple 2D elemental images from diverse perspectives
[17–27]. It has several advantages over other imaging modalities for object detection in adverse
environmental conditions like low illumination, partial occlusion, or fog [28,29]. Additionally,
integral imaging’s depth sectioning ability also aids in object detection and data association
tasks. The use of integral imaging for object detection requires the knowledge of the object’s
depth that can be acquired using different methods such as minimum variance estimate. A recent
study [30,31] uses mutual information for passive depth estimation in degraded environments. In
this manuscript, we advance this method, by using Bayesian optimization for sample-efficient
dynamic tracking of object’s depth. The scope of this manuscript is limited to demonstrating the
integral imaging-based dynamic depth tracking of an object using Bayesian optimization and
mutual information. A rigorous study of its performance or applications is not considered here.
We postulate that the adoption of integral imaging in place of traditional 2D imaging systems
can enhance the performance of object-tracking methods in adverse environmental conditions.
A change to the 3D imaging modality can work in conjunction with the numerous algorithmic
advances mentioned previously to provide enhanced performance.

Mutual information-based depth estimation gives mutual information values that vary with
depth. Their maxima are located at the objects’ true depths. These objective functions have
some common underlying structures that lend them as good candidates for Bayesian optimization.
Bayesian optimization is a global optimization methodology for sample-efficient evaluation of
expensive-to-evaluate objective functions [32–34]. It iteratively builds a statistical model of an
objective function according to all the past observations and selects the next evaluation point
by maximizing some acquisition function. It has been successfully used in several domains
like simulations [35,36], machine learning [37–39], and reinforcement learning [40]. Several
other methods exist for multi-modal optimization like gradient descent, quasi-Newton [41,42], or
simplex method [43]. However, they require an analytical form of an objective function and tend
to get trapped in a local optimum. Evolutionary optimization methods like genetic algorithms
[44–46], clonal selection algorithms [47], or artificial immune networks [48,49] can be used
in domains with no available analytical expressions. However, these methods rely on heuristic
approaches and require many expensive function evaluations. This prevents their application in
our use case.

In this paper, we consider the problem of 3D object tracking using integral imaging. Data is
captured as video or image frames. We alternatively track the object’s lateral and depth locations
in each image frame. We use a deep convolutional neural network to track the object’s 2D spatial
location within a 3D reconstructed image frame of a scene and use mutual information and
Bayesian optimization to track the object’s depth. We experimentally evaluate the performance
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of our approach for the task of depth tracking of an object moving with bounded velocity and
acceleration. Our experimental setup contains a laboratory scene with an object free to move in
three dimensions. In our experiments, we achieve depth tracking with as few as two 3D integral
imaging reconstructions per frame. It equates to the minimum number of 3D reconstructions
required theoretically for depth estimation with our approach as one 3D reconstruction leads to a
correspondence problem. A rigorous study of the performance or applications of our proposed
method is not considered here, as it is outside of the scope of this manuscript.

2. Integral imaging-based depth estimation

2.1. Integral imaging

Integral imaging is a prominent passive 3D imaging approach. It gains information about the
scene’s light field by multiplexing the diverse perspectives of the 2D elemental images. These
2D elemental images are recorded by using either a camera array, a single camera mounted on a
translation stage, or a single imaging sensor with a lenslet array [17–27]. 2D elemental images are
back-propagated through a virtual pinhole to computationally re-compute 3D scenes. Faithful 3D
reconstruction can be obtained at any depth within the depth of fields of the 2D elemental images.
Multiple perspectives from the 2D elemental images help mitigate the effects of partial occlusion
in the 3D reconstructed scene. 3D integral imaging is optimal in the maximum likelihood
sense for read-noise dominant images that can occur in photon-starved conditions [50–53]. This
enables the 3D reconstructed scenes to have a better signal-to-noise ratio. An overview of recent
advances in integral imaging can be found in [15,16].

Our experimental setup consists of an integral imaging system [54] with an image sensor
array for image capture. The pickup stage of integral imaging is shown in Fig. 1(a). Once
the 2D elemental images are captured, the 3D reconstruction of the scene can be achieved
computationally as shown in Fig. 1(b). Figures 1(c) and (d) show the integral imaging pickup
and reconstruction process with a single sensor and a lenslet array.

3D reconstruction is achieved by back-propagating the captured 2D elemental images through
a virtual pinhole. Reconstructed 3D scene intensity Iz(x,y) is computed as [54]:
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where (x, y) is the pixel indices, O(x, y) is the number of overlapping pixels in (x, y). (cx, cy), (px,
py), and (Lx, Ly) represent the sensor size, the pitch size between cameras, and the resolution
of the camera sensor, respectively. Imn is a 2D elemental image, with (m, n) representing its
indices, and (M, N) representing the total number of elemental images. f is the focal length of
the camera lens, and z is the reconstruction distance of the 3D object from the camera array. ε is
the additive camera noise. Assuming that the incoming rays originate from a lambartian surface,
3D reconstruction at the true depth will minimize the variation of these rays [55].

2.2. Experimental setup

Our experimental synthetic aperture integral imaging uses 25 cameras in a 5× 5 configuration as
shown in Fig. 1(a) and (b). The camera array pitch size is 50 mm in both lateral directions. The
object to be tracked can move from 1000 mm to 8000 mm distance from the integral imaging
setup along the optical axis. It can also move 1500 mm perpendicular to the optical axis on
all sides. We restrict the movement of the object within the field of view of all the integral
imaging cameras. The focal length of each camera lens is 50 mm and the lens diameter is 40
mm. The sensor has 2048× 2048 pixels with each pixel being 6.5× 6.5 micrometers. These
system parameters can affect the performance of integral imaging in a complex manner. As an
example, more cameras can increase integral imaging’s depth sectioning ability, albeit, with
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99 object free to move in three dimensions. In our experiments, we achieve depth tracking with as 
100 few as two 3D integral imaging reconstructions per frame. It equates to the minimum number 
101 of 3D reconstructions required theoretically for depth estimation with our approach as one 3D 
102 reconstruction leads to a correspondence problem. A rigorous study of the performance or 
103 applications of our proposed method is not considered here, as it is outside of the scope of this 
104 manuscript.

105 2. Integral Imaging-Based Depth Estimation
106 2.1 Integral Imaging

107 Integral imaging is a prominent passive 3D imaging approach. It gains information about the 
108 scene’s light field by multiplexing the diverse perspectives of the 2D elemental images. These 
109 2D elemental images are recorded by using either a camera array, a single camera mounted on 
110 a translation stage, or a single imaging sensor with a lenslet array [17-27]. 2D elemental images 
111 are back-propagated through a virtual pinhole to computationally re-compute 3D scenes. 
112 Faithful 3D reconstruction can be obtained at any depth within the depth of fields of the 2D 
113 elemental images. Multiple perspectives from the 2D elemental images help mitigate the effects 
114 of partial occlusion in the 3D reconstructed scene. 3D integral imaging is optimal in the 
115 maximum likelihood sense for read-noise dominant images that can occur in photon-starved 
116 conditions [50-53]. This enables the 3D reconstructed scenes to have a better signal-to-noise 
117 ratio. An overview of recent advances in integral imaging can be found in [15, 16].
118 Our experimental setup consists of an integral imaging system [54] with an image sensor 
119 array for image capture. The pickup stage of integral imaging is shown in Fig. 1(a). Once the 
120 2D elemental images are captured, the 3D reconstruction of the scene can be achieved 
121 computationally as shown in Fig. 1(b). Figures 1(c) and (d) show the integral imaging pickup 
122 and reconstruction process with a single sensor and a lenslet array.

123
124 Fig. 1. (a) Integral imaging setup using a camera array for the image pickup process. (b) The 
125 reconstruction process of the integral imaging setup of (a). (c) Integral imaging setup using a 
126 lenslet array and a single imaging sensor. (d) The reconstruction process of the integral imaging 
127 setup of (c).

px

px

Reconstructed 3D images

Z2

Virtual pinhole 

Z3

Elemental images

Z1

f

Camera array

3D Scene

Lenslet array Lenslet array

(a) (b)

(c) (d)

Fig. 1. (a) Integral imaging setup using a camera array for the image pickup process. (b)
The reconstruction process of the integral imaging setup of (a). (c) Integral imaging setup
using a lenslet array and a single imaging sensor. (d) The reconstruction process of the
integral imaging setup of (c).

a corresponding increase in image processing time. Analysis of the effects of these integral
imaging system parameters is not considered here. Figure 2(a) shows a sample 2D elemental
image of our experimental scene. Its corresponding 3D reconstructions at the plane of the truck
and soccer balls are shown in Fig. 2(b) and (c), respectively. Objects in focus are shown in the
red box.

128 3D reconstruction is achieved by back-propagating the captured 2D elemental images 
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131 where (x, y) is the pixel indices, O(x, y) is the number of overlapping pixels in (x, y). (cx, 
132 cy), (px, py), and (Lx, Ly) represent the sensor size, the pitch size between cameras, and the 
133 resolution of the camera sensor, respectively. Imn is a 2D elemental image, with (m, n) 
134 representing its indices, and (M, N) representing the total number of elemental images. f is the 
135 focal length of the camera lens, and z is the reconstruction distance of the 3D object from the 
136 camera array.  is the additive camera noise. Assuming that the incoming rays originate from 
137 a lambartian surface, 3D reconstruction at the true depth will minimize the variation of these 
138 rays [55].

139 2.2 Experimental Setup

140 Our experimental synthetic aperture integral imaging uses 25 cameras in a 5×5 configuration 
141 as shown in Fig. 1(a) and (b). The camera array pitch size is 50 mm in both lateral directions. 
142 The object to be tracked can move from 1000 mm to 8000 mm distance from the integral 
143 imaging setup along the optical axis. It can also move 1500 mm perpendicular to the optical 
144 axis on all sides. We restrict the movement of the object within the field of view of all the 
145 integral imaging cameras. The focal length of each camera lens is 50 mm and the lens diameter 
146 is 40 mm. The sensor has 2048×2048 pixels with each pixel being 6.5×6.5 micrometers. These 
147 system parameters can affect the performance of integral imaging in a complex manner. As an 
148 example, more cameras can increase integral imaging’s depth sectioning ability, albeit, with a 
149 corresponding increase in image processing time. Analysis of the effects of these integral 
150 imaging system parameters is not considered here. Figure 2(a) shows a sample 2D elemental 
151 image of our experimental scene. Its corresponding 3D reconstructions at the plane of the truck 
152 and soccer balls are shown in Fig. 2(b) and (c), respectively. Objects in focus are shown in the 
153 red box.

154
155 Fig. 2. Integral imaging experimental scenes. (a) Sample 2D central elemental image of one of 
156 the scenes. (b) 3D integral imaging reconstruction at the plane of the truck (highlighted in red 
157 colored box). (c) 3D integral imaging reconstruction at the plane of the soccer balls.

158 2.3 Mutual Information

159 Mutual information between two random images X and Y is defined in terms of the probability 
160 density function of the pixel values [56]:

(a) (b) (c)

Fig. 2. Integral imaging experimental scenes. (a) Sample 2D central elemental image of one
of the scenes. (b) 3D integral imaging reconstruction at the plane of the truck (highlighted
in red colored box). (c) 3D integral imaging reconstruction at the plane of the soccer balls.
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2.3. Mutual information

Mutual information between two random images X and Y is defined in terms of the probability
density function of the pixel values [56]:

MI(X; Y) =
∑︂

g1∈I

∑︂
g2∈I

fxy(g1, g2) log
fxy(g1, g2)

fx(g1)fy(g2)
(2)

Here g1 and g2 are the pixel intensity values in images X and Y. These variables are free to take
any value from a set of available pixel intensity values denoted by I. However, this formulation
(pixel-to-pixel correspondence) fails to capture the spatial information that exists in an image.
Several investigations on image registration found that lack of spatial information leads to poor
robustness to environmental degradations like noise and experimental factors like misalignment
errors [57]. Attempts were made to rectify this by incorporating additional spatial information
like gradients [58] or by using higher-order mutual information [59]. However, these lead to
an exponential rise in data and computational requirements. Some authors tried to mitigate it
using dimensionality reduction techniques like principle component analysis or independent
component analysis [57]. A more promising approach for incorporating spatial information
without an exponential rise in data or computational requirements relies on graph theory [60].
It uses the Gibbs random field formulation which states that the conditional probabilities of a
site’s gray level corresponding to its neighborhood are proportional to the exponential sum of the
potentials of its associated cliques. Thus, different pixel intensity neighborhood configurations
that produce the same potential U(x) can be grouped as a single state α. Mutual information
between two images is then given as [60]:
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Here I is the set of pixel intensities. αx and αy are the unique states corresponding to different
neighborhood configurations that produce the same potential. gx and gy are the intensity values of
pixels. This approach was adopted by [30,31,61] for 3-bit images with one adjacent neighborhood
used for spatial information. This gives I= {0,1,2,3,4,5,6,7} and the number of α equals nine.
Thus, the total combination of the pairs (α,g) is 72. We use this formulation of mutual information
henceforth.

We obtain mutual information curves for objects as a function of depth by computing mutual
information between object bounding boxes in the 3D integral imaging reconstructed scenes
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170 mitigate it using dimensionality reduction techniques like principle component analysis or 
171 independent component analysis [57]. A more promising approach for incorporating spatial 
172 information without an exponential rise in data or computational requirements relies on graph 
173 theory [60]. It uses the Gibbs random field formulation which states that the conditional 
174 probabilities of a site’s gray level corresponding to its neighborhood are proportional to the 
175 exponential sum of the potentials of its associated cliques. Thus, different pixel intensity 
176 neighborhood configurations that produce the same potential U(x) can be grouped as a single 
177 state α. Mutual information between two images is then given as [60]:
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180 Here I is the set of pixel intensities. αx and αy are the unique states corresponding to different 
181 neighborhood configurations that produce the same potential. gx and gy are the intensity values 
182 of pixels. This approach was adopted by [30, 31, and 61] for 3-bit images with one adjacent 
183 neighborhood used for spatial information. This gives I = {0,1,2,3,4,5,6,7}  and the number of 
184 α equals nine. Thus, the total combination of the pairs (α,g) is 72. We use this formulation of 
185 mutual information henceforth.
186 We obtain mutual information curves for objects as a function of depth by computing 
187 mutual information between object bounding boxes in the 3D integral imaging reconstructed 
188 scenes and corresponding bounding boxes in the 2D central perspective (central elemental 
189 image). The maximum of these curves corresponds to the true depth of the objects. Figure 3 
190 shows sample mutual information curves for the truck (see Fig. 2(b)) as it is placed at different 
191 depths. These curves correspond to objective functions in an optimization context.

192
193 Fig. 3. Passive depth estimation with integral imaging using normalized mutual information 
194 (MI). Sample mutual information curves vs. object reconstruction depth (recon. depth) for the 
195 truck (see Fig. 2(b)) as it is placed at different depths from the integral imaging setup. The curves 
196 are obtained by computing normalized mutual information between the object’s bounding box 
197 in the 3D reconstructed scene and its corresponding box in the 2D central perspective. Peaks 
198 correspond with the true depth of the object. These curves correspond to objective functions in 
199 an optimization context.

Fig. 3. Passive depth estimation with integral imaging using normalized mutual information
(MI). Sample mutual information curves vs. object reconstruction depth (recon. depth) for
the truck (see Fig. 2(b)) as it is placed at different depths from the integral imaging setup.
The curves are obtained by computing normalized mutual information between the object’s
bounding box in the 3D reconstructed scene and its corresponding box in the 2D central
perspective. Peaks correspond with the true depth of the object. These curves correspond to
objective functions in an optimization context.
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and corresponding bounding boxes in the 2D central perspective (central elemental image). The
maximum of these curves corresponds to the true depth of the objects. Figure 3 shows sample
mutual information curves for the truck (see Fig. 2(b)) as it is placed at different depths. These
curves correspond to objective functions in an optimization context.

3. Bayesian optimization-based depth tracking

3.1. Background

Bayesian optimization was initially developed by Kushner [62], Zilinskas [63,64], and Mockus
[65,66]. It was further adopted for multi-fidelity optimization [67,68] and multi-objective
optimization [69–71]. Bayesian optimization aims to achieve sample-efficient optimization of
expensive to evaluate objective functions [34,72]. It is especially beneficial when, as in our case,
no closed-form representation is available and only noisy point-based observation is possible.

We model the depth-tracking as a spatiotemporal optimization problem, that is, to find
x∗(t) = arg maxx∈Xf (x, t), where X ⊂ Rd is a compact set. Bayesian optimization works well
when the domain of x i.e. X ∈ Rd has dimensions less than 20 and the objective function f is
continuous. Neither mutual information curves nor their derivatives have closed-form analytical
expressions. However, the derivative information, if available, can aid Bayesian optimization [73].
Bayesian optimization performs a sequential search, and at every iteration k selects a new location
xk+1 to evaluate f and observe its value. Gaussian process regression, the most commonly used
surrogate model for Bayesian optimization [74], provides the posterior distribution according to
previous observations. The sequential selection is handled by an acquisition function a : X → R,
defined over the posterior of the Gaussian process.

A spatiotemporal optimization problem (e.g. depth tracking) requires time-dependent Bayesian
optimization. Only limited research exists on this topic. [75] Introduces look-ahead acquisition
functions, which are modified acquisition functions designed to predict a time-varying optimum
at target horizon T. This formulation does not suit our needs. It tries to optimally predict the
optimum at some target horizon T while sacrificing its optimum tracking ability for times before
T. However, depth-tracking requires tracking the optimum for every time interval, at least for
some restricted environmental conditions like bounded velocity and acceleration assumption.
[76] Uses the standard sequential Bayesian optimization framework and models the objective
functions with the Gaussian process prior whose evolution follows a simple Markov model. They
discard the stale data samples of the time-varying objective function to adapt to its changes.
Although this formulation suits our needs, it has a very limited expressiveness as it fails to capture
the non-linear evolution of the time-dependent objective function. It also performs poorly on our
experimental data. [77] Represents a time-dependent observable as a vector of m components
corresponding to different time instances. This vector is modeled by a Gaussian process with m
outputs. This formulation is inefficient in terms of the number of required observations (data
samples), as high dimensional Bayesian optimization is unstable for less number of observations.
[78] Model dynamic objective functions using spatiotemporal Gaussian process priors which
capture all the instances of function over time. Information learned from this model is used to
guide the tracking of a temporally evolving optimum. We adopt this formulation for our depth
tracking problem as it provides the most promising results. Further discussions are provided in
subsequent sections.

3.2. Spatiotemporal Bayesian optimization

Spatiotemporal Bayesian optimization relies on spatiotemporal Gaussian process priors as surro-
gate functions. Gaussian process [79,80] is a collection of random variables {Fx1,t1, Fx2,t2, . . .}
for which any finite subset has a joint multivariate normal distribution. Thus, for any fi-
nite length vector x = [{x1 , t1 }, {x2 , t2 }, . . . , {xn , tn }]T its corresponding observation values
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Fx = [Fx1,t1, Fx2,t2, . . . , Fxn,tn] are jointly normally distributed:

Fx ∼ N{µ0(x), k(x, x)} (4)

Here elements of µ0(x) are given by a prior mean function µ0({xi, ti}), and k is the kernel
function. for k to be a valid kernel k(x, x) needs to be a square, positive semi-definite matrix for
any x[81]. Values Fx are obtained by noisily observing the function f (x, t) at indices x = {xi, ti},
i.e. Fx,t = f (x, t) + ε, where ε ∼ N(0,σ2

ε ) is independent and identically distributed (i.i.d.). The
spatiotemporal Gaussian process regression infers the posterior of f given the observations Fx.
The posterior distribution at some new point z ∈ {X, T} is Gaussian with mean and variance
[79,80]:

µ(Fz |Fx = f) = µ0(z) + k(z, x)(k(x, x) + σ2
n I)−1(f − µ0(x)) (5)

σ2(Fz |Fx = f) = k(z, z) − k(z, x)(k(x, x) + σ2
n I)−1k(x, z) (6)

The kernel matrix k(x, x) + σ2
n I depends only on the observed values and is Cholesky factored

instead of inverted. In the absence of observation noise σn, a small number must be to the
diagonal of k(x, x) to prevent the eigenvalues from approaching zero. The posterior mean is a
linear combination of n kernel functions, each one centered at an observed data point.

The kernel function k dictates the structure of the response functions that we can fit. For
example, a periodic kernel function is good for a periodic response function. We assume the
kernel function to be stationary, i.e. K({x1, t1}, {x2, t2}) = K({x1−x2, t1− t2}) and full symmetric,
i.e. K({x1, t1}, {x2, t2}) = K({x2, t2}, {x1, t1}). Additionally, we assume the spatiotemporal
kernel function to be separable, i.e. decoupled into purely spatial and purely temporal factors,
i.e. K({x1, t1}, {x2, t2}) = KS(x1, x2) ⊙ KT (t1, t2), where ⊙ is the element wise or the Hadamard
product. We adopt the commonly used squared exponential kernel:

ksquared_exponential(xi, ti,xj, tj |θ) = σ2
f exp
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T (xi − xj)

σ2
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)︄
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(︄
−
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2
(ti − tj)T (ti − tj)

σ2
lt

)︄
(7)

Here σf is the signal standard deviation. σlx and σlt are the spatial and temporal characteristic
length scales respectively. These together form the hyperparameter vector of the kernel function
denoted by θ. Squared exponential kernels give rise to a Gaussian process whose samples are
infinitely differentiable. The kernel function is differentiable with respect to its hyperparameters
θ. The marginal likelihood of the data can thus be optimized to compute a maximum likelihood
estimate of its hyperparameters.

3.3. Depth tracking

We use Bayesian optimization to build a posterior mutual information distribution using the
existing data samples of the latent time-varying mutual information curves (see Fig. 3) and the
spatiotemporal Gaussian process prior. This posterior is used to construct an acquisition function
that leads the search for a time-varying maximum, which corresponds to the object’s depth, by
exploring and exploiting the objective function. We cannot make predictions more than one
spatial length scale (σlx) away. Thus, the maximum time gap between frames, or the minimum
effective frame rate, will be determined by the object’s speed along the optical axis of the integral
imaging setup and the temporal length scale of the spatiotemporal kernel function.

In its standard form, Bayesian optimization aims to strike a balance between exploration
and exploitation. This, however, does not work well for our problem. Tracking requires a
different exploration-exploitation tradeoff than the standard form. Since the goal is to track
the maximum, certain exploration steps could heavily penalize the algorithm’s performance
albeit the importance of exploration in the learning process. For a known budget of Bayesian
optimization steps (number of observations), one solution is to allocate a few of those to obtain
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initial samples to learn the function. These “throwaway” number of steps can aid better tracking
in future steps. Determining when the learned Gaussian process model of the underlying latent
function is good enough to make faithful predictions can be achieved by looking at the rate of
change of the characteristic length scale in each iteration [78]. Refrence [78] uses this heuristic
criteria to switch between learning, exploring and exploiting, and purely exploiting stages.

Although the hyperparameters (spatial and temporal length scales, and signal standard deviation)
can be learned online using the strategy described above and with one of several available methods
like maximum likelihood or maximum a posteriori, their accuracy deteriorates significantly for
only a few data samples (observations) [31]. We, thus, learn the kernel hyperparameters during a
training phase by observing time-varying mutual information curves for multiple objects and
multiple trajectories. The spatial characteristic length scale (σlx) varies with the object’s depth
from the integral imaging setup, and the temporal characteristic length scale (σlt) varies with the
speed of the object along the optical axis of the integral imaging setup. Thus, a dictionary of
spatial and temporal length scales is learned during the training phase. In the tracking phase, we
use this learned dictionary of kernel hyper-parameters to construct the spatiotemporal Gaussian
process. We then solely focus on exploitation, i.e. to track the maximum without learning the
hyper-parameters or searching for other maxima.

Exploration-exploitation tradeoff is handled by acquisition functions that sequentially probe
the objective function to get point estimates. The most commonly used are the probability of
improvement [62], expected improvement [64], upper confidence bound [82], entropy search
[83], predictive entropy search [84], and max-value entropy search [85]. As exploration is
not of significance to us, we use the upper confidence bound (UCB) acquisition function
UCB(x) = µ(x) + βσ(x)[82]. It works on the principle of selecting an optimistic point under
uncertainty. For every query point x, it uses a fixed-probability best-case scenario according to
the underlying probabilistic model. β controls the exploration-exploitation tradeoff. A high value
of β enables more exploration while a lower value leads to more exploitation. In our experiments
we select β as 0.6, however, we did not observe a significant effect of this parameter on the overall
performance of the system.

4. Object tracking experiments

4.1. Methodology

We use the ‘You Look Only Once v2’ (YOLOv2) neural network for object detection [86,87].
Although newer versions of YOLO deep neural networks exist like YOLOv8, these only
provide incremental performance improvement, especially for smaller objects and more complex
environments. Additionally, these incremental improvements come at the cost of processing
speed. As this manuscript presents only a proof of concept on a single object tracking problem,
we use the YOLOv2 network which has a good balance of detection accuracy and speed. However,
any state-of-the-art detector can be used for this purpose. The YOLOv2 deep neural network
simultaneously locates and classifies objects within a scene. Its architecture is inspired by
GoogleNet [88] and has 24 convolution layers with two fully connected layers. YOLOv2 has
a high-resolution classification capability. It also utilizes the concept of anchor boxes which
enables it to detect multiple objects centered at one grid cell. As a rigorous experimental analysis
is outside the scope of this manuscript, we use only a limited laboratory-generated dataset to train
the YOLOv2 neural network. We assume a near-constant orientation of the object. However,
with more training data, YOLOv2 can be trained to detect objects with random orientations. We
start the object tracking by first detecting an object of interest and estimating its depth. In each
iteration (or image frame), we 3D reconstruct the scene at the predicted depth using integral
imaging and utilize YOLOv2 for object detection and tracking. We then estimate the object’s
depth by using the 2D bounding box provided by the detector and the depth tracking method
described in the previous section. We alternatively keep applying object detection and depth
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tracking in each image frame to achieve full 3D tracking of the object. Figure 4 shows a flowchart
summarizing this method. In our approach, the 3D tracking of one object is independent of the
3D tracking of other objects. As such, the time complexity of our approach grows linearly with
the number of objects under consideration.

343
344 Fig. 4. Flowchart summarizing the 3D object tracking framework using integral imaging. 
345 YOLOv2 deep neural network is used for object detection. Object depth tracking is achieved 
346 using mutual information and Bayesian optimization.

347 4.2 Experimental Results

348 Figure 5 shows the depth tracking results for scenes shown in Fig. 2. In accordance with the 
349 frame rates of commonly used tracking methods (see Sec. 1), we capture the motion of our 
350 object (truck, see Fig. 2) in 30 frames per second (fps). This, however, is not the running speed 
351 of our current experimental system as our computational system is not yet optimized. We use 
352 two 3D integral imaging reconstructions per frame (rpf) to track the object’s depth. 3D object 
353 tracking is achieved by alternatively switching between 2D object tracking and depth tracking 
354 (see Fig. 4). Figures 5 (a) and (d) show the true depth and the tracked depth of the object with 
355 time for different motion profiles. Figures 5 (b) and (e) show the axial speed profiles of the 
356 object corresponding to the depth profiles shown in Fig. 5 (a) and (d), respectively. Figures 5 
357 (c) and (f) show the true and predicted lateral positions of the object. The spatial location of the 
358 object is represented by the object’s mid-point pixel coordinates in the captured 2D central 
359 elemental image.

360
361 Fig. 5. Experimental depth tracking results for scenes shown in Fig. 2. Motion of the truck is 
362 captured with 30 frames per second (fps). Two 3D integral imaging reconstructions per frame 
363 (rpf) are used for depth tracking. (a) True and tracked depths of the truck for a sample motion 
364 profile. The corresponding depth error has a mean of 9.08 cm and standard deviation of 8.10 cm. 
365 (b) The axial speed (measured in meters per second – mps) of the truck corresponding to the 
366 depth profile shown in (a). We represent an object moving away from the imaging system with 
367 a positive speed and moving closer to the system with a negative speed. (c) True and tracked 
368 lateral x and y positions (x-pos, y-pos) of the truck for the same motion profile. (d), (e), and (f) 
369 show similar results as (a), (b), and (c) respectively for a different motion profile. The depth 
370 error for curve in (d) has a mean of 11.56 cm and standard deviation of 6.75 cm. YOLOv2 is 
371 you look only once v2 deep neural network. 
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Fig. 4. Flowchart summarizing the 3D object tracking framework using integral imaging.
YOLOv2 deep neural network is used for object detection. Object depth tracking is achieved
using mutual information and Bayesian optimization.

4.2. Experimental results

Figure 5 shows the depth tracking results for scenes shown in Fig. 2. In accordance with the
frame rates of commonly used tracking methods (see Sec. 1), we capture the motion of our object
(truck, see Fig. 2) in 30 frames per second (fps). This, however, is not the running speed of our
current experimental system as our computational system is not yet optimized. We use two 3D
integral imaging reconstructions per frame (rpf) to track the object’s depth. 3D object tracking is
achieved by alternatively switching between 2D object tracking and depth tracking (see Fig. 4).
Figures 5(a) and (d) show the true depth and the tracked depth of the object with time for different
motion profiles. Figures 5(b) and (e) show the axial speed profiles of the object corresponding to
the depth profiles shown in Fig. 5(a) and (d), respectively. Figures 5(c) and (f) show the true and
predicted lateral positions of the object. The spatial location of the object is represented by the
object’s mid-point pixel coordinates in the captured 2D central elemental image.

As discussed earlier, we cannot make predictions more than a few length scales away. Thus,
the maximum time gap between frames, or the minimum effective frame rate, will be determined
by the object’s speed along the optical axis of the integral imaging setup. Length scale is one of
the parameters of the Gaussian process kernel and it signifies the correlation between two points
separated in space or time. Length scales for the mutual information curves are proportional to
their full widths at half maxima (FWHMs). These depend on integral imaging system parameters,
object characteristics, environmental conditions, and depth (axial distance) of the object from the
integral imaging setup. Figure 6(a) shows length scales for our experimental mutual information
curves as a function of object depth. For example, see Fig. 2 for sample experimental scenes
and Fig. 3 for sample mutual information curves. Figure 6(b) shows the maximum allowed axial
speed of an object as a function of operational frames per second for a few object depths. These
speeds represent the limit wherein depth tracking is more efficient than depth estimation, i.e.
previous depths can aid in predicting the current depth.

Maximum axial speeds shown in Fig. 6(b) represent a theoretical upper limit. Figure 6(b)
shows that more frames per second are needed for tracking as the object’s speed increases. These
results are shown for ideal conditions, that is, no environmental degradations. However, several
environmental or system parameters affect the depth tracking performance. For example, the
number of 3D integral imaging reconstructions allowed per frame has a significant impact on the
maximum trackable axial speed. Figure 7 provides an example of the effect of the number of 3D
integral imaging reconstructions per frame on depth tracking. Figure 7(a) shows a sample fast
axial speed depth profile. The object moves sinusoidally along the optical axis with an average
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345 YOLOv2 deep neural network is used for object detection. Object depth tracking is achieved 
346 using mutual information and Bayesian optimization.

347 4.2 Experimental Results

348 Figure 5 shows the depth tracking results for scenes shown in Fig. 2. In accordance with the 
349 frame rates of commonly used tracking methods (see Sec. 1), we capture the motion of our 
350 object (truck, see Fig. 2) in 30 frames per second (fps). This, however, is not the running speed 
351 of our current experimental system as our computational system is not yet optimized. We use 
352 two 3D integral imaging reconstructions per frame (rpf) to track the object’s depth. 3D object 
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355 time for different motion profiles. Figures 5 (b) and (e) show the axial speed profiles of the 
356 object corresponding to the depth profiles shown in Fig. 5 (a) and (d), respectively. Figures 5 
357 (c) and (f) show the true and predicted lateral positions of the object. The spatial location of the 
358 object is represented by the object’s mid-point pixel coordinates in the captured 2D central 
359 elemental image.
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362 captured with 30 frames per second (fps). Two 3D integral imaging reconstructions per frame 
363 (rpf) are used for depth tracking. (a) True and tracked depths of the truck for a sample motion 
364 profile. The corresponding depth error has a mean of 9.08 cm and standard deviation of 8.10 cm. 
365 (b) The axial speed (measured in meters per second – mps) of the truck corresponding to the 
366 depth profile shown in (a). We represent an object moving away from the imaging system with 
367 a positive speed and moving closer to the system with a negative speed. (c) True and tracked 
368 lateral x and y positions (x-pos, y-pos) of the truck for the same motion profile. (d), (e), and (f) 
369 show similar results as (a), (b), and (c) respectively for a different motion profile. The depth 
370 error for curve in (d) has a mean of 11.56 cm and standard deviation of 6.75 cm. YOLOv2 is 
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Fig. 5. Experimental depth tracking results for scenes shown in Fig. 2. Motion of the
truck is captured with 30 frames per second (fps). Two 3D integral imaging reconstructions
per frame (rpf) are used for depth tracking. (a) True and tracked depths of the truck for a
sample motion profile. The corresponding depth error has a mean of 9.08 cm and standard
deviation of 8.10 cm. (b) The axial speed (measured in meters per second – mps) of the
truck corresponding to the depth profile shown in (a). We represent an object moving away
from the imaging system with a positive speed and moving closer to the system with a
negative speed. (c) True and tracked lateral x and y positions (x-pos, y-pos) of the truck for
the same motion profile. (d), (e), and (f) show similar results as (a), (b), and (c) respectively
for a different motion profile. The depth error for curve in (d) has a mean of 11.56 cm and
standard deviation of 6.75 cm. YOLOv2 is you look only once v2 deep neural network.

372 As discussed earlier, we cannot make predictions more than a few length scales away. Thus, 
373 the maximum time gap between frames, or the minimum effective frame rate, will be 
374 determined by the object’s speed along the optical axis of the integral imaging setup. Length 
375 scale is one of the parameters of the Gaussian process kernel and it signifies the correlation 
376 between two points separated in space or time. Length scales for the mutual information curves 
377 are proportional to their full widths at half maxima (FWHMs). These depend on integral 
378 imaging system parameters, object characteristics, environmental conditions, and depth (axial 
379 distance) of the object from the integral imaging setup. Figure 6(a) shows length scales for our 
380 experimental mutual information curves as a function of object depth. For example, see Fig. 2 
381 for sample experimental scenes and Fig. 3 for sample mutual information curves. Figure 6(b) 
382 shows the maximum allowed axial speed of an object as a function of operational frames per 
383 second for a few object depths. These speeds represent the limit wherein depth tracking is more 
384 efficient than depth estimation, i.e. previous depths can aid in predicting the current depth.

385
386 Fig. 6. (a) Length scales for our experimental mutual information curves as a function of object 
387 depth. See Fig. 2 and 3 for sample experimental scenes and mutual information curves. (b) 
388 Maximum allowed axial speed of an object as a function of effective frames per second (fps) for 
389 a few object depths. Mps: meters per second.

390 Maximum axial speeds shown in Fig. 6(b) represent a theoretical upper limit. Figure 6(b) 
391 shows that more frames per second are needed for tracking as the object’s speed increases. 
392 These results are shown for ideal conditions, that is, no environmental degradations. However, 
393 several environmental or system parameters affect the depth tracking performance. For 
394 example, the number of 3D integral imaging reconstructions allowed per frame has a significant 
395 impact on the maximum trackable axial speed. Figure 7 provides an example of the effect of 
396 the number of 3D integral imaging reconstructions per frame on depth tracking. Figure 7(a) 
397 shows a sample fast axial speed depth profile. The object moves sinusoidally along the optical 
398 axis with an average axial speed of approximately 50 km per hour and a maximum axial speed 
399 of 100 km per hour (see Fig. 7(b)). Figures 7 (c), (d), and (e) show the true depth and the tracked 
400 depth of the object with 30 frames per second (fps) and two, four, and six 3D reconstructions 
401 per frame (rpf) respectively.
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Fig. 6. (a) Length scales for our experimental mutual information curves as a function of
object depth. See Figs. 2 and 3 for sample experimental scenes and mutual information
curves. (b) Maximum allowed axial speed of an object as a function of effective frames per
second (fps) for a few object depths. Mps: meters per second.
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axial speed of approximately 50 km per hour and a maximum axial speed of 100 km per hour (see
Fig. 7(b)). Figures 7(c), (d), and (e) show the true depth and the tracked depth of the object with
30 frames per second (fps) and two, four, and six 3D reconstructions per frame (rpf) respectively.

402
403 Fig. 7. (a) A sample fast axial speed depth profile. The object moves in a sinusoidal pattern along 
404 the integral imaging optical axis. (b) Axial speed profile corresponding to the depth profile 
405 shown in (a). We represent an object moving away from the imaging system with a positive 
406 speed and moving closer to the system with a negative speed. (c) - (e) True and tracked depths 
407 of the truck for the depth profile shown in (a) with two, four, and six 3D integral imaging 
408 reconstructions per frame (rpf) respectively. Fps: frames per second.

409 Figure 7 (c)-(e) shows that two 3D integral imaging reconstructions are not enough to 
410 provide accurate depth tracking at high axial speeds. Although four 3D reconstructions can 
411 track depth with reasonable accuracy for relatively fast speeds, even four reconstructions are 
412 insufficient for extremely fast-moving objects.
413 One of the main applications of integral imaging is to mitigate the effects of degraded 
414 environments like partial occlusion. We test our system on two different partial occlusions. 
415 Figures 8(a) and (d) show a sample experimental image scene with two different occlusions. 
416 Figures 8(b) and (e) show the 3D integral imaging reconstructions of scenes in Fig. 8(a) and 
417 (d) respectively at the plane of the occlusion. Figures 8(c) and (f) show the 3D integral imaging 
418 reconstructions of scenes in Fig. 8(a) and (d) respectively at the plane of the truck. Figures 9(a) 
419 and (b) show sample mutual information vs reconstruction depth curves corresponding to the 
420 two occlusions shown in Fig. 8(a) and (d).

(a)

(c) (d) (e)

(b)

Fig. 7. (a) A sample fast axial speed depth profile. The object moves in a sinusoidal pattern
along the integral imaging optical axis. (b) Axial speed profile corresponding to the depth
profile shown in (a). We represent an object moving away from the imaging system with a
positive speed and moving closer to the system with a negative speed. (c) - (e) True and
tracked depths of the truck for the depth profile shown in (a) with two, four, and six 3D
integral imaging reconstructions per frame (rpf) respectively. Fps: frames per second.

Figure 7(c)-(e) shows that two 3D integral imaging reconstructions are not enough to provide
accurate depth tracking at high axial speeds. Although four 3D reconstructions can track depth
with reasonable accuracy for relatively fast speeds, even four reconstructions are insufficient for
extremely fast-moving objects.

One of the main applications of integral imaging is to mitigate the effects of degraded
environments like partial occlusion. We test our system on two different partial occlusions.
Figures 8(a) and (d) show a sample experimental image scene with two different occlusions.
Figures 8(b) and (e) show the 3D integral imaging reconstructions of scenes in Fig. 8(a) and (d)
respectively at the plane of the occlusion. Figures 8(c) and (f) show the 3D integral imaging
reconstructions of scenes in Fig. 8(a) and (d) respectively at the plane of the truck. Figures 9(a)
and (b) show sample mutual information vs reconstruction depth curves corresponding to the two
occlusions shown in Fig. 8(a) and (d).

Figure 10 shows the depth tracking results for the partially occluded truck corresponding to
the scenes in Fig. 8(a) and (d). We use two 3D reconstructions per frame (rpf) for the scenes
in Fig. 8(a). However, this is not sufficient for severe occlusion as is the case in Fig. 8(d), and
hence we use three 3D reconstructions per frame. More reconstructions per frame are required
for depth tracking as the mutual information peak gets less pronounced.

We also test our system for a scene with partial occlusion and low illumination conditions.
Figure 11(a) shows a sample experimental image of the scene with low illumination conditions
of approximately 6 photons per pixel and partial occlusion. The scenes are captured using a
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421
422 Fig. 8. (a) Sample experimental scene with partial occlusion. (b) 3D integral imaging 
423 reconstruction of the scene in (a) at the depth of the occlusion. (c) 3D integral imaging 
424 reconstruction of the scene in (a) at the depth of the truck. (d) Sample experimental scene with 
425 a more severe occlusion. (e) – (f) 3D integral imaging reconstruction of the scene in (d) at the 
426 depths of the occlusion and truck respectively.

427
428 Fig. 9. (a) Mutual information (MI) vs. reconstruction depth (recon. depth) for the truck 
429 corresponding to the scene in Fig. 8(a). (b) Mutual information (MI) vs. reconstruction depth for 
430 the truck corresponding to the scene in Fig. 8(d). The small secondary peak in (b) at 2020 mm 
431 corresponds to the location of the partial occlusion. The same peak is also present in (a) but is 
432 not as pronounced. (c) Comparison of mutual information curves in (a) and (b) with that of the 
433 mutual information curve of Fig. 3(a) corresponding to the clear scene shown in Fig. 2(a).

434 Figure 10 shows the depth tracking results for the partially occluded truck corresponding to 
435 the scenes in Fig. 8(a) and (d). We use two 3D reconstructions per frame (rpf) for the scenes in 
436 Fig. 8(a). However, this is not sufficient for severe occlusion as is the case in Fig. 8(d), and 
437 hence we use three 3D reconstructions per frame. More reconstructions per frame are required 
438 for depth tracking as the mutual information peak gets less pronounced.
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(a) (b) (c)
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Fig. 8. (a) Sample experimental scene with partial occlusion. (b) 3D integral imaging
reconstruction of the scene in (a) at the depth of the occlusion. (c) 3D integral imaging
reconstruction of the scene in (a) at the depth of the truck. (d) Sample experimental scene
with a more severe occlusion. (e) – (f) 3D integral imaging reconstruction of the scene in (d)
at the depths of the occlusion and truck respectively.

421
422 Fig. 8. (a) Sample experimental scene with partial occlusion. (b) 3D integral imaging 
423 reconstruction of the scene in (a) at the depth of the occlusion. (c) 3D integral imaging 
424 reconstruction of the scene in (a) at the depth of the truck. (d) Sample experimental scene with 
425 a more severe occlusion. (e) – (f) 3D integral imaging reconstruction of the scene in (d) at the 
426 depths of the occlusion and truck respectively.

427
428 Fig. 9. (a) Mutual information (MI) vs. reconstruction depth (recon. depth) for the truck 
429 corresponding to the scene in Fig. 8(a). (b) Mutual information (MI) vs. reconstruction depth for 
430 the truck corresponding to the scene in Fig. 8(d). The small secondary peak in (b) at 2020 mm 
431 corresponds to the location of the partial occlusion. The same peak is also present in (a) but is 
432 not as pronounced. (c) Comparison of mutual information curves in (a) and (b) with that of the 
433 mutual information curve of Fig. 3(a) corresponding to the clear scene shown in Fig. 2(a).

434 Figure 10 shows the depth tracking results for the partially occluded truck corresponding to 
435 the scenes in Fig. 8(a) and (d). We use two 3D reconstructions per frame (rpf) for the scenes in 
436 Fig. 8(a). However, this is not sufficient for severe occlusion as is the case in Fig. 8(d), and 
437 hence we use three 3D reconstructions per frame. More reconstructions per frame are required 
438 for depth tracking as the mutual information peak gets less pronounced.
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Fig. 9. (a) Mutual information (MI) vs. reconstruction depth (recon. depth) for the truck
corresponding to the scene in Fig. 8(a). (b) Mutual information (MI) vs. reconstruction
depth for the truck corresponding to the scene in Fig. 8(d). The small secondary peak in
(b) at 2020 mm corresponds to the location of the partial occlusion. The same peak is also
present in (a) but is not as pronounced. (c) Comparison of mutual information curves in (a)
and (b) with that of the mutual information curve of Fig. 3(a) corresponding to the clear
scene shown in Fig. 2(a).

low-light camera. For reference, the same scene in high illumination is shown in Fig. 11(b). The
partial occlusion used in this scene is the same as that in Fig. 8(a). Figure 11(c) shows the mutual
information curve for the truck in a low-illumination and partially occluded scene (Fig. 11(a)).

Figure 12 shows the depth tracking results for the truck corresponding to the scenes in Fig. 11(a).
We use three 3D reconstructions per frame (rpf) and 30 frames per second (fps) for tracking.

3D Integral imaging improves the detector’s performance in adverse environmental conditions
like low illumination and partial occlusion. Detector performance is the most significant factor
in the overall tracking accuracy. We use a simple motion profile of the truck to evaluate the
detector score with and without integral imaging. We compute the detector score on each frame
for the 2D scene as well as the 3D integral imaging reconstructed scene as the truck moves from
400 cm to 800 cm axially at approx. 1.8 meters per second. For each frame, the 3D integral
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439
440 Fig. 10. Experimental depth tracking results for scenes shown in Fig. 8 with partially occluded 
441 truck. The motion of the truck is captured at 30 frames per second (fps). (a) True and tracked 
442 depths of the truck in the scene shown in Fig. 8(a) for a sample motion profile. The 
443 corresponding depth error has a mean of 9.01 cm and standard deviation of 5.09 cm. Two 3D 
444 reconstructions per frame (rpf) are used for depth tracking. (b) The axial speed of the truck 
445 corresponding to the depth profile shown in (a). We represent an object moving away from the 
446 imaging system with a positive speed and moving toward the system with a negative speed. (c) 
447 True and tracked lateral positions (x-pos, y-pos) of the truck for the same motion profile. (d), (e), 
448 and (f) show the same results as (a), (b), and (c) respectively for the scene with a partially 
449 occluded truck as shown in Fig. 8(d). The depth error for curve in (d) has a mean of 10.30 cm 
450 and standard deviation of 5.74 cm. Three 3D reconstructions per frame (rpf) are used for depth 
451 tracking as two reconstructions are not sufficient for the severe occlusion present in the scenes. 
452 Mps: meters per second.

453 We also test our system for a scene with partial occlusion and low illumination conditions. 
454 Figure 11(a) shows a sample experimental image of the scene with low illumination conditions 
455 of approximately 6 photons per pixel and partial occlusion. The scenes are captured using a 
456 low-light camera. For reference, the same scene in high illumination is shown in Fig. 11(b). 
457 The partial occlusion used in this scene is the same as that in Fig. 8(a). Figure 11(c) shows the 
458 mutual information curve for the truck in a low-illumination and partially occluded scene (Fig. 
459 11(a)).
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Fig. 10. Experimental depth tracking results for scenes shown in Fig. 8 with partially
occluded truck. The motion of the truck is captured at 30 frames per second (fps). (a) True
and tracked depths of the truck in the scene shown in Fig. 8(a) for a sample motion profile.
The corresponding depth error has a mean of 9.01 cm and standard deviation of 5.09 cm.
Two 3D reconstructions per frame (rpf) are used for depth tracking. (b) The axial speed of
the truck corresponding to the depth profile shown in (a). We represent an object moving
away from the imaging system with a positive speed and moving toward the system with a
negative speed. (c) True and tracked lateral positions (x-pos, y-pos) of the truck for the same
motion profile. (d), (e), and (f) show the same results as (a), (b), and (c) respectively for the
scene with a partially occluded truck as shown in Fig. 8(d). The depth error for curve in
(d) has a mean of 10.30 cm and standard deviation of 5.74 cm. Three 3D reconstructions
per frame (rpf) are used for depth tracking as two reconstructions are not sufficient for the
severe occlusion present in the scenes. Mps: meters per second.

imaging scene is reconstructed at the tracked depth. Table 1 summarizes the scores for two
different partial occlusions (Fig. 8(a) and Fig. 8(d)) and a partial occlusion in low illumination
(Fig. 11(a)). Table 2 presents the percent of frames with failed detections – where a failed
detection is characterized by a detection score of less than 0.5.

Table 1. Average detector scores for 2D imaging vs. 3D integral imaging in
degraded environmentsa

Degradations Average Detector
Score – 2D

Average Detector
Score – 3D

Partial occlusion – 1 (see Fig. 8(a)) 0.8446 0.9424

Partial occlusion – 2 (see Fig. 8(d)) 0.7518 0.9114

Partial occlusion and low illumination (see Fig. 11(a)) 0.8265 0.9263

aScene shown in Fig. 11(a) uses similar partial occlusion as that in Fig. 8(a).

Visualization 1 shows a sample video of the experimental results comparing 2D tracking and
3D tracking using the proposed approach. In this video, a green-colored box represents a valid
detection using YOLOv2 deep neural network (detection score more than 0.5) and a red-colored
box represents the true 2D bounding box of the object corresponding to a failed detection. As

https://doi.org/10.6084/m9.figshare.24911007
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460
461 Fig. 11. (a) Sample experimental scene with low-illumination noisy conditions of approximately 
462 6 photons per pixel and partial occlusion. The scenes are captured using a low-light camera. (b) 
463 The same scene as in (a) with high illumination. (c) Mutual information (MI) curve as a function 
464 of reconstruction depth (Recon. depth) for the truck in scene (a). (d) Comparison of the mutual 
465 information curve in (c) for low illumination and partial occlusion with that of the high-
466 illumination scene with partial occlusion as shown in Fig. 8(a).

467 Figure 12 shows the depth tracking results for the truck corresponding to the scenes in Fig. 
468 11(a). We use three 3D reconstructions per frame (rpf) and 30 frames per second (fps) for 
469 tracking.

470
471 Fig. 12. Experimental depth tracking results for scenes with partial occlusion and low 
472 illumination conditions (see Fig. 11(a)). The motion of the truck is captured at 30 frames per 
473 second (fps). (a) True and tracked depths of the truck in scenes shown in Fig. 11(a) for a sample 
474 motion profile. The corresponding depth error has a mean of 7.62 cm and standard deviation of 
475 5.29 cm. Three 3D integral imaging reconstructions per frame (rpf) are used for depth tracking. 
476 (b) The axial speed of the truck corresponding to the depth profile shown in (a). We represent 
477 an object moving away from the integral imaging system with a positive speed and moving 
478 towards the imaging system with a negative speed. (c) True and tracked lateral positions (x-pos, 
479 y-pos) of the truck for the same motion profile.
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Fig. 11. (a) Sample experimental scene with low-illumination noisy conditions of approxi-
mately 6 photons per pixel and partial occlusion. The scenes are captured using a low-light
camera. (b) The same scene as in (a) with high illumination. (c) Mutual information
(MI) curve as a function of reconstruction depth (Recon. depth) for the truck in scene (a).
(d) Comparison of the mutual information curve in (c) for low illumination and partial
occlusion with that of the high-illumination scene with partial occlusion as shown in Fig. 8(a).
(Visualization 1)
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465 information curve in (c) for low illumination and partial occlusion with that of the high-
466 illumination scene with partial occlusion as shown in Fig. 8(a).

467 Figure 12 shows the depth tracking results for the truck corresponding to the scenes in Fig. 
468 11(a). We use three 3D reconstructions per frame (rpf) and 30 frames per second (fps) for 
469 tracking.
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471 Fig. 12. Experimental depth tracking results for scenes with partial occlusion and low 
472 illumination conditions (see Fig. 11(a)). The motion of the truck is captured at 30 frames per 
473 second (fps). (a) True and tracked depths of the truck in scenes shown in Fig. 11(a) for a sample 
474 motion profile. The corresponding depth error has a mean of 7.62 cm and standard deviation of 
475 5.29 cm. Three 3D integral imaging reconstructions per frame (rpf) are used for depth tracking. 
476 (b) The axial speed of the truck corresponding to the depth profile shown in (a). We represent 
477 an object moving away from the integral imaging system with a positive speed and moving 
478 towards the imaging system with a negative speed. (c) True and tracked lateral positions (x-pos, 
479 y-pos) of the truck for the same motion profile.
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Fig. 12. Experimental depth tracking results for scenes with partial occlusion and low
illumination conditions (see Fig. 11(a)). The motion of the truck is captured at 30 frames
per second (fps). (a) True and tracked depths of the truck in scenes shown in Fig. 11(a) for a
sample motion profile. The corresponding depth error has a mean of 7.62 cm and standard
deviation of 5.29 cm. Three 3D integral imaging reconstructions per frame (rpf) are used for
depth tracking. (b) The axial speed of the truck corresponding to the depth profile shown in
(a). We represent an object moving away from the integral imaging system with a positive
speed and moving towards the imaging system with a negative speed. (c) True and tracked
lateral positions (x-pos, y-pos) of the truck for the same motion profile.
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we can see, 2D imaging fails sporadically in tracking the object in degraded environments. In
comparison, 3D integral imaging-based tracking performs much better in similar circumstances.

Table 2. Percent of failed detections for 2D imaging vs. 3D integral imaging in
degraded environmentsa

Degradations Percent of Failed
Detections – 2D

Percent of Failed
Detections – 3D

Partial occlusion – 1 (see Fig. 8(a)) 4.54 0

Partial occlusion – 2 (see Fig. 8(d)) 10.60 0

Partial occlusion and low illumination (see Fig. 11(a)) 6.06 0

aScene shown in Fig. 11(a) uses similar partial occlusion as that in Fig. 8(a).

5. Conclusions

We have considered 3D object tracking with integral imaging using mutual information and
Bayesian optimization. Integral imaging has several advantages over conventional 2D imaging
for object detection in adverse environmental conditions such as low light and partial occlusion.
Additionally, its depth sectioning ability also aids in object classification in a multi-object scenario
in the presence of 3D background noise. We postulate that object tracking could benefit from
using 3D integral imaging instead of conventional 2D imaging in two main aspects – improvement
of detector performance in degraded environments and improvement of object association due to
integral imaging’s depth sectioning ability. The use of integral imaging requires depth tracking
in addition to conventional 2D object tracking. A recent study estimates an object’s depth
by computing mutual information between the object’s bounding box in the 3D reconstructed
scene and the 2D central image [30]. We have improved upon this method by using Bayesian
optimization to continuously track the object’s depth. We evaluated our proposed method on
laboratory scenes with an object free to move in all three dimensions. Our preliminary results
show that 3D integral imaging object tracking outperforms 2D object tracking in degraded
environments, and as few as two 3D reconstructions per image frame may be sufficient to track
an object’s depth. For faster-moving objects, more 3D reconstructions per frame are required.
Two 3D reconstructions are the theoretical minimum number of 3D reconstructions required for
depth estimation with our approach as one 3D reconstruction leads to a correspondence problem.

This manuscript provided a proof-of-concept for using integral imaging in 3D object-tracking
applications. However, a rigorous study of its performance or various applications was not
considered here as it is outside the scope of this work. In the future, rigorous benchmarking on
multi-object tracking datasets is needed for this approach. However, most of the standard datasets
available use traditional 2D imaging techniques to capture image frames. Thus, new datasets
also need to be collected using 3D integral imaging. Additionally, this approach also needs to be
tested in other degraded environments like under-water and other sources of noise like brownout
conditions. We also plan to study the effects of various integral imaging system parameters such
as the number of cameras, pitch size, and sensor size [89] on 3D object tracking. We postulate
that our approach can be used in many real-world tracking scenarios currently handled by 2D
imaging [90]. A few examples of such applications are vehicle tracking for autonomous driving,
pedestrian tracking on streets, microscopy [25,91,92], and gesture recognition and tracking [93].
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