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Abstract: We propose a diffuser-based lensless underwater optical signal detection system.
The system consists of a lensless one-dimensional (1D) camera array equipped with random
phase modulators for signal acquisition and one-dimensional integral imaging convolutional
neural network (1DInImCNN) for signal classification. During the acquisition process, the
encoded signal transmitted by a light-emitting diode passes through a turbid medium as well as
partial occlusion. The 1D diffuser-based lensless camera array is used to capture the transmitted
information. The captured pseudorandom patterns are then classified through the 1DInImCNN to
output the desired signal. We compared our proposed underwater lensless optical signal detection
system with an equivalent lens-based underwater optical signal detection system in terms of
detection performance and computational cost. The results show that the former outperforms
the latter. Moreover, we use dimensionality reduction on the lensless pattern and study their
theoretical computational costs and detection performance. The results show that the detection
performance of lensless systems does not suffer appreciably. This makes lensless systems a great
candidate for low-cost compressive underwater optical imaging and signal detection.
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1. Introduction

Underwater optical signal detection systems (UOSDS) are receiving growing interest among
researchers [1–3] for their crucial role in applications such as ocean exploration, defense, and
environmental monitoring. However, owing to the intrinsic and extrinsic properties of underwater
environments, such as scattering, absorption, and turbulence [4], building a low bit-error-rate and
high-speed optical signal detection system is a challenging task. Moreover, possible underwater
occlusion can lead to a higher bit-error rate for UOSDS. Recently, to overcome these issues, many
approaches, such as multi-modal sensing [5], diversity-reception-based optical communication [6],
and three-dimensional-integral-imaging-based (3D InIm) optical signal detection systems [7–9],
have been proposed. Among these approaches, 3D InIm-based approaches [7,9] could achieve
excellent detection performance under degradations such as partial occlusion and turbidity.

Traditionally, imaging devices have mostly consisted of optical elements such as lenses, mirrors,
etc., and image sensors. Lensless imaging is a relatively newer idea that replaces lenses with a
phase modulator [10], a programmable modulator [11], or an amplitude mask modulator [12].
Lensless imaging, compared to conventional lens-based systems, carries several advantages,
such as compact size, smaller weights, and larger field of view (FoV) [13]. In addition, since
lensless systems scatter the incoming information widely over the sensor as opposed to a lens
that focuses the information on small areas on the sensor, it offers better data compressibility for
applications such as storage and classification [14]. As such, lensless imaging-based approaches
started becoming popular in many applications, such as microscopy [15], 3D sensing [16], and
photography [12]. Moreover, with the advent of deep learning-based approaches, we could
realize cell classification [17] and disease classification [14] without complicated reconstruction
of images with better accuracy and at a lower cost.
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Even though 3D InIm-based approaches [7–9] perform well in degraded environments,
they incur a high computational cost. To address this, the one-dimensional integral imaging
convolutional neural network (1DInImCNN) [18] has been proposed, which, without performing
3D InIm reconstruction, makes use of information from multiple perspectives and classifies
optical signals through an end-to-end pipeline. Thus, 1DInImCNN outperforms the conventional
3D InIm-based approach [7] in both detection performance and computational cost. In the
current work, inspired by [14], we propose a novel diffuser-based lensless underwater optical
signal detection system (UOSDS) that combines lensless 1D camera array with 1DInImCNN
to minimize the computational cost and achieve better detection performance as compared to
the lens-based UOSDS. For our experiments, a lensless 1D camera array is used to capture the
temporally encoded optical signal transmitted using a light-emitting diode (LED). A water tank
filled with turbid water and artificial plants is used to mimic the degraded underwater environment.
The 1DInImCNN processes the videos captured by the lensless imaging system and outputs the
signal symbols. Our results show that the lensless UOSDS outperforms the lens-based UOSDS
in terms of detection performance. Furthermore, dimensionality reduction techniques are applied
to the lensless UOSDS, and the results show that our dimensionality-reduced lensless system is
capable of achieving considerably less computational cost compared to the lens-based systems
without affecting performance much.

The rest of the paper is organized as follows: Section 2 covers a brief review of the 1DInImCNN
approach, experimental setup and data collection, and procedures for applying dimensionality
reduction. The results and discussions regarding theoretical computational costs and detection
performance are included in Section 3. Finally, Section 4 concludes this paper.

2. Methodology

The proposed lensless UOSDS aims to achieve performance enhancement and cost efficiency
compared to the traditional lens-based UOSDS. Figure 1 shows the block diagram for the
proposed system. Here, we used an end-to-end optical signal detection system that combines
image acquisition and signal detection without the need for an intermediate reconstruction stage.
For image acquisition, diffuser-based lensless cameras aligned in the 1D configuration are used.
For signal detection, 1DInImCNN [18] is used to classify the videos captured by the lensless 1D
camera array. The inputs to 1DInImCNN are the videos that contain pseudorandom patterns
caused by the illumination from the optical transmitter. The outputs of the 1DInImCNN are the
decoded signals.

Fig. 1. Block diagram for the proposed lensless underwater optical signal detection system
(UOSDS).
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2.1. Experimental setup

Figure 2 shows the experimental setup. We used a 630 nm light-emitting diode (LED) for
transmitting the optical signals. A 7-bit gold code sequence encodes the symbol sequences into
signal sequences. Specifically, in the experiment, the encoded signal sequence [1,1, 0, 0, 1, 0,
1] represents the symbol “1” and the flipped sequence [0, 0, 1,1, 0, 1, 0] represents the symbol
“0” during the transmission. The transmitter is programmed using an Arduino board to send the
encoded signal sequences at the frequency of 20 Hz. We use the “LED on” condition to represent
signal bit “1” and “LED off” to represent signal bit “0”.

Fig. 2. Experimental setup for the lensless underwater optical signal detection system
(UOSDS). Three lensless cameras are aligned and each equipped with a diffuser. An
underwater environment with turbidity and partial occlusion is created inside a water tank.

A water tank of dimension 200mm × 200mm × 200mm is placed in front of the transmitter to
create a degraded underwater environment. Degraded environments such as turbid water and
partial occlusion are created by adding anti-acid and placing artificial plants into the water tank.
The Beer-Lambert’s law, I = Ioe−αz, is used to measure the turbidity as done in [8]. Here, I is the
intensity of the light after traveling z distance in the turbid medium. Io is the initial intensity
before traveling in the turbid medium. z is the distance, and α is the attenuation coefficient in
units of mm−1.

A one-dimensional lensless camera array equipped with holographic diffusers constitutes
the receivers for the transmitted optical signals. Three Mako G-319 cameras are aligned in
a one-dimensional configuration, shown in Fig. 2. The pitch between each camera is 80 mm.
Holographic diffusers are used to replace the traditional zoom lens. The diffusers have a thickness
of 0.78 mm and are applicable in the wavelength range of 400 to 700 nm. The diffusing angle
is 0.5 degrees, measured in full width half maximum (FWHM), and the substrate is made of
polycarbonate. The holographic diffusers are cut in a circular shape with a diameter of 17 mm in
order to be placed in front of the camera. During data collection, three cameras are synchronized,
and the frame rate is set to the transmitted signal frequency to achieve synchronization [19]
between the transmitter and receivers. The bit rate of the proposed optical signal detection system
can be potentially improved through the advancement in high-speed cameras [20], which can
achieve more than 1,000,000 frames per second. The nature of the lens-based imaging systems is
that lenses can converge light, as opposed to the nature of the lensless diffuser-based imaging
systems that scatter light across the sensors. Intuitively, the maximum pixel intensity for lensless
imaging systems is much lower than that for lens-based imaging systems. Therefore, to have
equivalent lensless imaging systems compared to lens-based imaging systems, we maintain the
same maximum pixel intensity for both systems in the experiment. The camera’s resolutions
are set to 1600 × 1200 pixels, and collected videos are resized to 400 × 300 pixels to ease the
processing burden for the neural network during the training and testing stage.
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2.2. One-dimensional integral-imaging convolutional neural network (1DInImCNN)

In this paper, we use 1DInImCNN [18] due to its superior performance in underwater optical
signal detection applications. Figure 3 shows the structure for 1DInImCNN. It consists of
multiple input layers, each with size [x, y, d, c]. Here, x and y represent the lateral dimensions
of the input videos. d is the number of frames for each input video, and c is the number of color
channels for input videos. d is set to 7 since we use a 7-bit encoding scheme, and c is set to 3
because we used a standard RGB camera to capture the videos. A depth concatenation layer that
combines the input videos in the third dimension (d-dimension) integrates different input videos
into one matrix for feature extraction and classification. A 3D convolution layer containing 32
kernels of size [7,7,7] and a stride of [5,5,7] is used to extract information from each of the input
videos. The 3D convolution layer is followed by a 3D max-pooling layer with a pool size of
[4,4,4] and stride size of [2,2,2] to downsample the feature maps. A proper max-pooling layer
helps to select the sharpest features, resulting in possible increasing classification performance,
and can reduce the size of the feature, hence decreasing the computational cost. After the 3D
max-pooling layer, three 3D convolutional layers that have 64, 128, and 64 kernels, respectively,
follow to extract the high-level features. They have kernel sizes of [5,5,5], [3,3,2], and [1,1,1],
respectively, with a stride of [3,3,1], [2,2,1] and [1,1,1] respectively. Widely accepted modules
such as batch normalization [21] and ReLU activation functions follow each 3D convolution
layer in 1DInImCNN. Finally, a fully connected layer with an output size of 3 follows the last
3D convolution layer to output the possible three classes from the videos. For three-input
1DInImCNN, the input videos from 3 cameras are utilized. For comparison with 2D imaging
(single camera), we use the same network architecture but only with a single input. Videos
captured by the center camera are used for 2D imaging.

Fig. 3. Structure for n-input 1DInImCNN

2.3. Data collection and generation of training and testing data

Figure 4(a) shows the experimental condition during the collection of the training data. We
collected data under five gradually increasing levels of turbidities. For a particular level of
turbidity, we transmit four 8-symbol sequences [1, 0, 0, 1, 1, 0, 1, 0], each of which is encoded
using the 7-bit Gold code sequence mentioned above. From captured videos, we can make
training videos for three classes: class 0, class 1, and class idle (i.e., data belonging to neither of
the other two classes). For training videos in class 0, each video has a number of frames equal to
the length of the encoding scheme, and the frames capture the bit information [0, 0, 1, 1, 0, 1,
0] in sequential order. Similarly, for training videos in class 1, the frames should capture the
bit information [1, 1, 0, 0, 1, 0, 1] in sequential order. For videos in the class idle, they should
include all possibilities that might arise from all possible 7-bit sequences. Due to the particular
encoding scheme used in this work, there are only 36 possible signals that might be generated.
Excluding the signal for class “0” and class “1”, we are left with only 34 combinations. We make
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one video for each combination among 34 combinations, and we have 34 videos in class idle. To
deal with the imbalanced training dataset, we apply random minority oversampling to class 1 and
class 0 to increase the size of the training data. Thus, for one particular turbidity, we have a total
of 102 videos. We repeat the procedure for five turbidity levels. Table 1 shows the attenuation
coefficients for training data. Figure 4(b) and Fig. 4(c) show sample images that capture the LED
“on” state in α= 0.0037 mm−1 and 0.0095 mm−1, respectively.

Fig. 4. Experimental setup for training and testing data collection and sample collected
images. (a): experimental condition for collection of training videos. (b-c): sample images
of training data captured by the center camera from a lensless 1D camera array at α=0.0037
mm−1 and 0.0095 mm−1, respectively. (d): experimental condition for collection of testing
videos. (e-f): sample images of testing data captured by the center camera from a lensless
1D camera array at α=0.0170 mm−1 and 0.0198 mm−1, respectively.

Table 1. Turbidity levels (α in mm−1) for training data

Clear water Turbid Level 1 Turbid Level 2 Turbid Level 3 Turbid Level 4

Attenuation coefficient α 0.0007 0.0037 0.0064 0.0095 0.0145

Figure 4(d) shows the experimental setup for collecting the testing data. Regarding testing
data collection, we placed artificial plants inside the water tank to mimic the occlusion in the
underwater environment. We have adjusted eight levels of turbidity to test the performance of the
trained classifiers, and Table 2 shows the attenuation coefficients used for testing data. Figure 4(e)
and Fig. 4(f) show sample images from testing data that capture the LED “on” in α= 0.0170
mm−1 and 0.0198 mm−1, respectively. During the collection of testing data, under a particular
level of turbidity, we use the LED to transmit 64 symbols of sequence and use the lensless camera
array to capture this 448-bit long signal sequence. To make testing videos for each class, we use
a sliding window approach to sequentially slice the long video into 7-frame videos. Figure 5
shows the process of applying the sliding window approach. Suppose we have a long video with
k frames, and we label each frame sequentially from 1 to k. To make the first video, we used
frame number 1 to frame number 7. After the first video, we used the images from frame number
2 to frame number 8 to make the second video. By repeating this procedure, the last video is
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made from frame number k − 6 to frame number k. After slicing, we have 32 videos for both
class 0 and class 1, and we have 272 videos in class idle.

Fig. 5. Demonstration of sliding window approach for test data.

Table 2. Turbidity levels (α in mm−1) for testing data. α is the
attenuation coefficient.

Attenuation coefficient α in mm−1

Clear water 0.0010

Turbid Level 1 0.0032

Turbid Level 2 0.0071

Turbid Level 3 0.0170

Turbid Level 4 0.0176

Turbid Level 5 0.0198

Turbid Level 6 0.0215

2.4. Dimensionality reduction

In [14], researchers show that, by applying dimensionality reduction to the images taken from
a lensless single random phase encoding (SRPE) system, the resultant one-dimensional (1D)
or two-dimensional (2D) strips of pixels can still retain information adequate for carrying out
classification. In our experiment, we also include the performance of the classifiers trained using
the dimensionality-reduced training data. The optimally trained classifiers are evaluated using
the dimensionality-reduced testing data generated from the original testing data. Figure 6 shows
example images before and after applying dimensionality reduction. Dimensionality reduction
is applied to videos by randomly taking the 1D rows or columns of pixels. To be specific, the
dimensionality-reduced training videos have the dimension of [1, v, d, c] or [v, 1, d, c]
when we want to take a 1D vector of size v from the original training data. For our experiment,
we used three values for v (50, 100, and 150 pixels). To generate the dimensionality-reduced
training videos, we will randomly pick one location from the original training videos, assuming
[j, k, 1, 1]. Then, we will randomly choose the horizontal or vertical orientation to apply a line
crop sized v pixels. After determining the location and orientation of the 1D vector, we can gener-
ate the training data using [j : (j + v − 1), k, 1 : d, 1 : c] or [j, k : (k + v − 1), 1 : d, 1 : c]
matrix operations. For training videos from 3-input 1DInImCNN, the three input videos need to
use the same location and orientation to generate three dimensionality-reduced training videos.
We repeat the same procedure for every instance in the original training data to generate the
dimensionality-reduced training data. The 1D adaptation of the same neural network architecture
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in Fig. 3 has been utilized for training, hyperparameter tuning and testing the network. Specifically,
for 1D adaptation of the 3-input 1DInImCNN, we set the first dimension of kernel sizes and
stride sizes to 1 for all the layers. We repeat the same procedure for other networks.

Fig. 6. (a) Sample image from the training data before applying dimensionality reduction.
(b) The cropped vector after applying the dimensionality reduction to the corresponding
sample image using a 1D vector with a size of 50 pixels. The y-axis of (b) shows the pixel’s
intensity and the x-axis shows the vector index.

To generate the dimensionality-reduced testing data, we use the same procedure as done with
the training dataset. However, for the test dataset, from a single testing video, we picked 20
random combinations of positions and orientations to generate 20 dimensionality-reduced testing
videos. This has been done to get an averaged performance by eliminating small discrepancies
in performance across different locations and orientations. The size of dimensionality-reduced
testing data for one particular turbidity for class 0, class 1, and class idle are 640, 640, and 5440,
respectively.

3. Result and discussion

We compare the performance of the proposed lensless system with an equivalent lens-based system
and a dimensionality-reduced lensless system. Theoretical analysis of the computational cost and
detection performance analysis has been done. The detection performance and computational
cost for lens-based underwater optical signal detection with dimensionality reduction are not
considered in our experiments because the lens-based systems, unlike lensless systems, do not
scatter the information of the transmitted signal across the entire sensors.

3.1. Analysis of detection performance and computational cost

In this subsection, we compare the detection performance and computational cost between 2
different systems: the lensless UOSDS and the lens-based UOSDS. 1DInImCNN is used in both
systems to classify the optical signals. For lens-based UOSDS, we used the procedure from the
previously published paper [18] to collect the training and testing data. For the networks from
both systems, we use Bayesian optimization to select the optimal hyperparameters. Training
data and validation data are split into 90% and 10%, and classification accuracy is used as the
metric to select the optimal classifiers. Mini-batch size is optimized in the range between 4 to 50.
The initial learning rate is optimized in the range between 0.001 and 0.001 in the log scale. L2
regularization is optimized in the range between 10−10 to 0.01 in the log scale. We trained all the
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networks in one computer with the following configuration: Intel i9-10940X CPU and Nvidia
Quadro RTX A5000.

To evaluate the classification performance of a multiclass classification problem with the
imbalanced dataset, we choose to use the Matthew correlation coefficient (MCC) as the main
metric. Compared to metrics such as area under the curve (AUC) and receiver operating
characteristic (ROC), MCC can reveal more information regarding the classification performance
[22,23]. Also, MCC is widely adopted in evaluating classification performance in machine
learning literature [24–26]. The values of MCC should be greater or equal to -1 and less than
or equal to 1. 1, 0, and -1 represent the perfect classification, random classification, and worst
classification, respectively.

Figure 7 shows the classification performance of the lensless and lens-based systems across
different turbidity levels. The number of pixels for each camera are 400× 300 pixels or 1× 50
pixels as indicated in Fig. 7. For the dimensionality-reduced diffuser-based multi-camera
configuration with 1×50 pixels per camera, we compute the MCC value for a particular turbidity
by averaging MCC values across 20 different testing videos using dimensionality reduction from
one particular full-resolution test video. From Fig. 7, all approaches result in perfect detection for
α ≤ 0.0176 mm−1. However, as turbidity increases, the detection performance for all approaches
start decreasing. At higher turbidities (α = 0.0198 mm−1 and 0.0215 mm−1), the classifier trained
with the lensless dataset can outperform the classifier trained with the lens-based dataset for
both multi-camera configuration and single-camera configuration. Moreover, the multi-camera
system has better performance compared to the single camera system for both lensless and
lens-based system. The classification performance decreases with decrease in the number of
pixels. However, the dimensionality-reduced multi-camera configuration still has classifiable
information, and it reaches perfect detection performance for α ≤ 0.0176 mm−1 (see Fig. 7).
Also, by comparing lens-based multi-camera configuration with 400×300 pixels per camera to
dimensionality-reduced diffuser-based multi-camera configuration in Fig. 7, we can infer that the
performance of the dimensionality-reduced classifier is even comparable to the classifier which
uses lens-based full-resolution videos. In α=0.0215, the dimensionality-reduced classifier can
slightly outperform the lens-based multi-camera configuration with 400×300 pixels.

The advantages for the classifiers trained using a dimensionality-reduced dataset achieve
not only comparable performance but also a great reduction in the computational cost. To
theoretically analyze the computational cost, the number of floating point operations (FLOPs) is
used as a metric. FLOPs are widely used in machine learning literature to measure the complexity
of neural networks [27–29]. In [18], the derived equations are shown for 3D convolutional
layers, 3D max-pooling layers, ReLU layers, and fully connected layers, and they can be used
to analyze the FLOPs used in our neural networks. The number of FLOPs used for lens-based
multi-camera configuration with 400×300 pixels and dimensionality-reduced diffuser-based
multi-camera configuration with 1×50 pixels are 1.114×109 and 4.649 × 106. The lowest
dimensionality-reduced lensless UOSDS considered is 240 times better in computational costs
compared to the lens-based UOSDS.

Figures 8 and 9 show the boxplots that summarizes the results for lensless diffuser-based system
with dimensionality-reduced configurations. The boxplot is generated using 140 MCC values
from seven different turbidity levels and 20 different dimensionality-reduced configurations
for each turbidity level. Table 3 summarizes the statistics derived from Fig. 8 and Fig. 9.
Figure 8, Fig. 9, and Table 3 shows that the detection performance is enhanced with increased
number of pixels. Since three camera configuration utilizes thrice the number of pixels than
a single camera configuration, we considered equal number of pixels for single camera and
three camera configurations for fairness. Thus, in addition to comparing three camera 1×50
configuration with a single camera 1×50 configuration, we also consider single camera 1×150
configuration that has the same number of pixels as that of the three camera 1×50 configuration.
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Fig. 7. Matthew correlation coefficient (MCC) for the proposed diffuser-based lensless un-
derwater optical signal detection system (UOSDS), previously proposed lens-based UOSDS,
dimensionality-reduced lensless underwater optical signal detection system (UOSDS), and
dimensionality-reduced diffuser-based lensless system across different turbidity levels. The
MCCs for dimensionality-reduced diffuser-based multi-camera with 1×50 pixels are calcu-
lated by averaging 20 MCCs since we have generated 20 different dimensionality-reduced
test videos from one full resolution test video. Here, multi-camera uses three cameras.

The minimum, 25th percentile, and the variance in Fig. 9 and Table 3 show that the lensless
single camera configuration with 1×150 pixels has worse detection performance compared to the
lensless three camera configuration with 1×50 pixels. Furthermore, variance in the detection
performance (see Table 3) lowers as we increase the number of pixels in lensless imaging across
all the configurations considered thus far. Thus, for lensless system, we conclude that the
detection performance increases and becomes more stable with increasing number of pixels.
Also, multi-camera system outperforms equivalent (same number of pixels) single camera system
in both detection performance and computational cost.

Table 3. Summary of computational costs (based on FLOPs) and statistics derived from Fig. 8 and
Fig. 9 for the lensless diffuser-based system with dimensionality-reduced configurations.

Minimum Variance 25th percentile Medium Maximum FLOPs

Single camera 1×50
pixels

0.351 0.0626 0.523 1 1 2.00 × 106

Single camera 1×150
pixels

0.684 0.0120 0.796 1 1 5.47 × 106

Three camera 1×50
pixels per camera

0.729 0.0091 0.850 1 1 4.65 × 106

Three camera 1×100
pixels per camera

0.841 0.0023 0.931 1 1 9.30 × 106
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Fig. 8. Boxplots summarizing the performance using Matthew correlation coefficient for
dimensionality-reduced classifiers in lensless three camera configurations. The comparison
is performed between 1×50 pixels per camera and 1×100 pixels per camera. The lower
bound of the blue box indicates the 25th percentile for all MCC values in the box. The black
bar indicates the minimum value and the red bar indicates the medium value.

Fig. 9. Comparison of single camera and three camera lensless configurations with
dimensionality reduction. Here, the comparison is performed between three camera
configuration with 1×50 pixels per camera, single camera configuration with 1×50 pixels
per camera, and single camera with 1×150 pixels per camera. The lower bound of the blue
box indicates the 25th percentile for all MCC values in the box. The black bar indicates the
minimum value and the red bar indicates the medium value.

4. Conclusion

In conclusion, we have proposed an underwater optical signal detection system that combines
lensless imaging, 1D camera array, and 1DInImCNN. We compared the proposed system with
previously proposed lens-based 1DInImCNN. The results show that our proposed lensless UOSDS
can outperform the lens-based UOSDS under the experimental conditions considered. Moreover,
we studied the dimensionality reduction in lensless underwater optical signal detection systems
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and analyzed its performance. The results show that, by applying the dimension reduction to the
lensless UOSDS, the computational cost can be significantly minimized without degrading the
detection performance much.
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