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PATTERSON-SULLIVAN MEASURES FOR TRANSVERSE SUBGROUPS

RICHARD CANARY, TENGREN ZHANG, AND ANDREW ZIMMER

ABSTRACT. We study Patterson-Sullivan measures for a class of discrete subgroups of higher
rank semisimple Lie groups, called transverse groups, whose limit set is well-defined and trans-
verse in a partial flag variety. This class of groups includes both Anosov and relatively Anosov
groups, as well as all discrete subgroups of rank one Lie groups. We prove an analogue of the
Hopf-Tsuji-Sullivan dichotomy and then use this dichotomy to prove a variant of Burger’s Man-
hattan curve theorem. We also use the Patterson-Sullivan measures to obtain conditions for
when a subgroup has critical exponent strictly less than the original transverse group. These
gap results are new even for Anosov groups.
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If T is a discrete subgroup of the group PO(d,1) of isometries of hyperbolic d-space H¢,
Patterson [38] and Sullivan [46] constructed a probability measure p supported on the limit set
A(T) of T" which transforms like the d-dimensional Hausdorff measure, where ¢ is the critical
exponent of the Poincaré series of I'. Alternatively, one may view § as the exponential growth
rates of the number of orbit points of I' in a ball of radius T'. The Hopf-Tsuji-Sullivan dichotomy
asserts, in part, that the action of T’ on the set A(T')?) of pairs of distinct points in the limit

Canary was partially supported by grant DMS-1906441 from the National Science Foundation. Zhang was
partially supported by the NUS-MOE grant R-146-000-270-133 and A-8000458-00-00. Zimmer was partially
supported by a Sloan research fellowship and grants DMS-2105580 and DMS-2104381 from the National Science
Foundation.

1



2 CANARY, ZHANG, AND ZIMMER

set is ergodic with respect to the measure u ® p if and only if the Poincaré series of I' diverges
at its critical exponent. Equivalently, it says that the non-wandering part of the geodesic flow
on I\T'HY is ergodic with respect to its Bowen-Margulis-Sullivan measure if and only if the
Poincaré series of I" diverges at its critical exponent.

In this paper, we study Patterson-Sullivan measures for a class of discrete subgroups of higher
rank semisimple Lie groups, called transverse groups. This class of groups includes both Anosov
and relatively Anosov groups as well as all discrete subgroups of rank one Lie groups. Transverse
groups were previously studied by Kapovich, Leeb and Porti [29], who called them regular,
antipodal groups. Patterson-Sullivan measures for discrete subgroups of higher rank Lie groups
were first studied by Albuquerque [1] and Quint [40]. Recently Patterson-Sullivan measures for
Anosov groups have been extensively studied by Dey-Kapovich [22], Sambarino [44], Burger-
Landesberg-Lee-Oh [12], Lee-Oh [34, 35] and others.

We prove a generalization of the Hopf-Tsuji-Sullivan dichotomy to our setting. Using this
dichotomy we prove a variant of Burger’s Manhattan curve theorem [11]. We also use Patterson-
Sullivan measures to obtain conditions for when a subgroup has critical exponent strictly less
than the original transverse group. These gap results are new even for Anosov groups.

In this introduction, we will restrict our discussion to the setting of transverse subgroups
of PSL(d,K), where K is either the real numbers R or the complex numbers C. In the body
of the paper, we will consider transverse subgroups of connected semisimple real Lie groups of
non-compact type with finite center.

In this setting Patterson-Sullivan measures are probability measures on partial flag manifolds
defined using a natural cocycle (studied by Quint [40]) for the action of PSL(d, K) on the partial
flag manifold, which is an analogue of the Busemann cocycle in rank one. To define this cocycle
we need some preliminary definitions. Let

a:= {diag(ai,...,aq) € sl(d,K) : a1 +---+aqg =0}
denote the standard Cartan subspace of sl(d,K) and let x : PSL(d,K) — a denote the Cartan
projection which is given by
r(g) = diag(log1(g), - - -, logaa(g))
where 01(g) > -+ > 04(g) are the singular values of some (equivalently, any) lift of g to SL(d, K).
Let A :={aq,...,a4-1} C a* denote the standard system of simple restricted roots, i.e.

aj(diag(ai,...,aq)) = aj — aj+1
for all diag(aq,...,aq) € a.
When 6 = {a;,,...,0; } C A is symmetric (i.e. oy € 6 if and only if oy, € 0), we say that
a subgroup I' of PSL(d, K) is Pg-divergent if
oo = lim min ax(k(y,)) = lim min log oee1 ()

whenever {v,} is a sequence of distinct elements of I'. A Py-divergent group is discrete and has
a well-defined limit set Ay(T") in the partial flag variety

Fo:={(F",...,F*): dim (F/) =j forall aj €6, and F"" C F*> C--- C F'*}.
A Py-divergent subgroup I' C PSL(d,K) is called Py-transverse if whenever F,G € Ag(I') are
distinct, then F' and G are transverse (i.e. for all o; € 0 the j-plane component FV of F' is

transverse to the (d — j)-plane component G¢=7 of G'). We note that in the literature, divergent
groups are sometimes called regular and transverse groups are sometimes called antipodal groups

(e.g. [29]).
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Let
ag := {diag(ai,...,aq) € a:a; = a4 for all o; ¢ 6}
denote the partial Cartan subspace and let
aj = {diag(a1,...,aq) Eag: a1 > ay > -+ > aq}

denote the partial positive Weyl Chamber. For o € A, let w, € a* denote the fundamental
weight associated to a. One can check that {wqla,}aco is a basis of aj. Then there is a well-
defined partial Cartan projection kg : PSL(d, K) — ay with the defining property that

wa(k(g)) = walke(g))
for all @ € # and g € PSL(d,K).
Quint [40] proved that there exists a cocycle By : PSL(d,K) x Fg — ag, called the partial
Twasawa cocycle, with the defining property that if g € PSL(d,K), F' € Fy and «; € 6, then

Jis) ol
Way; (Be(ng)) =log ——"— H ”
for any v € A7 F7 — {0}, where A\’ is the j-th exterior power, and ||-|| denotes both the standard
norm on K¢ and the induced norm on A’ K%
Using this cocycle we can define conformal measures and Patterson-Sullivan measures.

Definition 1.1. Given ¢ € aj and a Py-divergent group I' C PSL(d,K), a probability measure
@ on Fy is called a ¢-conformal measure for I' of dimension 3 if for any v € I', the measures
1, Y« b are absolutely continuous and

DYt —Bo(Bo(y~1.))
dp
almost everywhere. If, in addition, supp(u) C Ag(T"), then we say that p is a ¢-Patterson-Sullivan
measure.

In our setting, we do not assume that I" has any irreducibility properties and so there can exist
many non-interesting conformal densities, e.g. if I' fixes a flag F' € Fy, then a Dirac measure
centered at F' will be a conformal measure of dimension zero. Hence to develop an interesting
theory in the setting of (non-irreducible) transverse groups, it is reasonable to restrict to the
setting where the measure is supported on the limit set.

Given a discrete subgroup I' C PSL(d,K) and ¢ € aj, let 6(T') be the (possibly infinite)
critical exponent of the Poincaré series

— Z e~ 5¢(ro(7))

vyel

that is 0?(T') € [0, +0c0] is the unique non-negative number where in(s) converges when s >
§%(T) and diverges when s < §%(I'). If ' € PO(d, 1) € PSL(d+1,R) is a discrete group, then the
traditional Busemann cocycle is By, , the traditional Poincaré series is simply Qp' and classical
Patterson-Sullivan measures are a;-Patterson-Sullivan measures in our language.

The standard proof, originating in work of Patterson [38], implies that if I' C PSL(d,K) is
Po-divergent, ¢ € aj and §%(T") < +oo, then there exists a ¢-Patterson-Sullivan measure for
I’ of dimension §¢(I"), see Proposition 3.2. Dey and Kapovich [22] previously established the
same result in the slightly more restrictive setting when ¢ is positive on the entire partial Weyl
chamber a;r It is straightforward to show that if I" is Py-divergent and ¢ is positive on the

-Benoist limit cone, then 6?(I') < 400, see Proposition 2.7.
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One immediate consequence of the existence of Patterson-Sullivan measures is a criterion for
when there is strict inequality between the critical exponent associated to a transverse group
and a subgroup. The study of this “entropy gap” was initiated by Brooks [10] in the setting
of convex cocompact Kleinian groups. Coulon, Dal’bo and Sambusetti [18] showed that if T
admits a cocompact, properly discontinuous action on a CAT(—1)-space, then a subgroup of
I' has strictly smaller critical exponent if and only if is is co-amenable. The most general
current results are due to Coulon, Dougall, Schapira and Tapie [19] who work in the setting of
strongly positively recurrent actions on Gromov hyperbolic spaces. Our criterion is obtained
using techniques due to Dal’bo, Otal and Peigné [21] .

Theorem 1.2 (see Theorem 4.1). Suppose I' C PSL(d,K) is a non-elementary Pg-transverse
subgroup, ¢ € ay and §%(T') < +oo. If G is a subgroup of T' such that Q‘é(é‘z’(G)) = 400 and
Ag(G) is a proper subset of Ag(I"), then

52(I) > 6%(@).

In the setting of Anosov groups, we see that there is always an entropy gap for infinite index,
quasiconvex subgroups.

Corollary 1.3 (see Corollary 4.2). Suppose I' C PSL(d,K) is a non-elementary Pg-Anosov sub-
group and G is an infinite index quasiconvex subgroup of I'. If ¢ € aj and §%(T) < +oo, then
5%(T) > 6%(Q).

For Fuchsian and Kleinian groups, there is a stark contrast in the dynamics of the action of the
group which depends on whether or not the Poincaré series diverges at its critical exponent. The
analysis of this contrast is known as the Hopf-Tsuji-Sullivan dichotomy and has many aspects.
We obtain a version of this dichotomy for transverse groups.

To state the dichotomy precisely we need a few more definitions. A Py-transverse subgroup
I' € PSL(d,R) acts on its limit set Ag(I") as a convergence group (see [29, Section 5.1] or [15,
Proposition 3.3]), and hence one can define the set of conical limit points A§*"(I') C Ag(T"). In
the case when T is Pgp-Anosov, A (T') = Ag(T"). We also let Ag(T')? C Ag(T")? denote the space
of pairs of transverse flags in the limit set.

Let ¢ : @ — a be the involution given by

L(diag(al, as..., ad)) = diag(—agq, —ag—1,...,—a1).
Then given ¢ € ap, let ¢ = ¢oL € ap. More explicitly, if ¢ = Za]-GG bjwa,, then ¢ =
Zocj < bd_jwa]' :
The following theorem is our version of the Hopf-Sullivan-Tsuji dichotomy for transverse
groups.

Theorem 1.4 (see Proposition 8.1, Proposition 9.1, Corollary 12.1 and Corollary 12.2). Suppose
I' C PSL(d,K) is a non-elementary Pg-transverse subgroup, ¢ € aj; and 6 := 5_¢(F) =6%(T) < +o00.
Let p be a ¢p-Patterson-Sullivan measure of dimension B for I' and let i be a ¢p-Patterson-Sullivan

measure of dimension B for I'. Then 8 > § and we have the following dichotomy:

o [If Q?(ﬁ) = 400, then B =6, and p and [ are the unique Patterson-Sullivan measures
of dimension §. Moreover:
(1) (A" (1)) = p(Ag°(I')) = 1. In particular, i and i have no atoms.
(2) The action of T on (Ag(T)?)
(8) The action of I' on (Ap(T"
(4) The action of T' on (Ag(T

Q) is conservative.
A ® p) is ergodic.

(2
(2
, ) 1s ergodic.
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o If Q?(,B) < +o0, then:
(D) p(AG(T)) = p(Ag™(I')) = 0.

(II) The action of ' on (Ag(T)®), i @ ) is dissipative.
(III) The action of T' on (Ag(T)?), i @ p) is non-ergodic.
Notice that if 5 = ¢, then statements (1), (2) and (3) are all equivalent to Q?(é) = 400, and

statements (I), (II) and (III) are all equivalent to Q?(é) < +00.

The “divergent” case of Theorem 1.4 contains several important classes of groups. Sambarino
[44, Cor. 5.7.2] proved that for an Anosov group, the Poincaré series diverges whenever the
critical exponent is finite (this was previously established by Lee-Oh [34, Lem. 7.11] and Dey-
Kapovich [22, Thm. A] in certain cases). In the sequel to this paper we will prove the same
result for relatively Anosov groups.

As an application of Theorem 1.4, we show that if I' is Pg-transverse, then the critical exponent
is a concave function on the space of linear functionals which diverge at their finite critical
exponent. Moreover, we characterize exactly when it fails to be strictly concave in terms of the
associated length functions. More precisely, given ¢ € aj, the ¢-length of g € PSL(d, K) is

() = Tim L (rolg").

n—oo

Theorem 1.5 (see Theorem 13.1). Suppose I' C PSL(d,K) is a non-elementary Pg-transverse
subgroup, ¢1,¢2 € afy and §1(T) = 622(T) = 1. If ¢ = A1 + (1 — X)¢p2 where X € (0,1), then

5O(I) < 1.

Moreover, if 6*(T') = 1 and Q? diverges at its critical exponent, then (%1 (y) = £22() for all
vyel.

We will explain in Section 13 why one might regard this as a variant of Burger’s Manhattan
Curve Theorem. By applying a result of Benoist [2], we can conclude that strict concavity holds
whenever I is Zariski dense.

Corollary 1.6 (see Corollary 13.2). Suppose I' C PSL(d,K) is Zariski dense and Py-transverse,
b1, d2 € @, ¢1 # do and 61 (T) = 6%2(0) = 1. If ¢ = A1 + (1 — N)dp where A € (0,1) and Q7
diverges at its critical exponent, then §%(I') < 1.

1.1. The geometric framework for the proofs. The key idea in our proofs is to associate to
any Pg-transverse group I' a metric space that I' acts on by isometries, where the boundary
action of I' on Ay(I") embeds into the action of I' on a compactification of that metric space.
The metric space we construct has enough hyperbolic-like behavior that some of the classical
arguments in hyperbolic geometry can be adapted to work in our setting. This approach to
studying transverse groups builds upon on our earlier work in [15].

The metric spaces we consider in this construction are properly convex domains €2 C ]P’(Rdo)
endowed with their Hilbert metrics. A discrete subgroup I'g C PSL(dp,R) which preserves a
properly convex domain Q C P(R%) is called projectively visible when the limit set Aq(Tg) C S
is C''-smooth and strictly convex (precise definitions are given in Sections 5 and 6).

The class of projectively visible groups contains the class of Kleinian groups, i.e. discrete
subgroups of the isometry group Isom(Hﬁé) of real hyperbolic d-space. This follows from the
identification of PO(m, 1) = Isom (H% ) using the Klein-Beltrami model and the fact that PO(m, 1)
preserves the unit ball in an affine chart.

Given a projectively visible group I'y C PSL(do,R), a representation p : I'y — PSL(d, K)
is called Py-transverse if its image I := p(I'g) is a Py-transverse subgroup and there exists a
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p-equivariant boundary map £ : Aq(T'g) — Fy which is a homeomorphism onto Ay(T") (again,
precise definitions are given in Sections 5 and 6).

To continue our analogy with hyperbolic geometry, we note that if I' C Isom(HZ) = PO(m, 1)
is convex co-compact, then the class of Py-transverse representations of I' coincides with the
class of Pyg-Anosov representations of I'.

In [15], we proved that any Pg-transverse subgroup of PSL(d, K) can be realized as the image
of a Pyg-transverse representation. In this paper we extend this result to the general semisimple
Lie group case, see Theorem 6.2. Using this perspective we will prove a version of the shadow
lemma, which is one of the foundational tools in our arguments.

Shadows in Hilbert geometries can be defined exactly as in hyperbolic geometry: Given a
properly convex domain Q C P(R%), points b,p € , and 7 > 0, let O,(b,p) denote the set of
points x € 0 for which the projective line segment in Q with endpoints b and z intersects the
open ball of radius r (with respect to the Hilbert metric on ) centered at p.

Proposition 1.7 (see Proposition 7.1). Suppose 8 C A is symmetric, Q C P(R%) is a properly con-
vex domain, Ty C Aut(QQ) is a non-elementary projectively visible subgroup, p : Ty — PSL(d, K)
a Pg-transverse representation with limit map & : Aq(Ig) — Fg, I' := p(I'y), ¢ € aj and p is a
¢-Patterson-Sullivan measure for I' of dimension 5. For any by € ), there exists Ry such that:
if > Ry, then there exists C' = C(bg,r) > 1 so that

1 Bolra(p(1) < M(f (O, (b, ¥(bo)) N AQ(Fo))) < CeBolra(p(7))
for all v € Ty.

The transverse representations perspective also allow us to construct a dynamical system
associated to a transverse group. In particular, given a transverse representation p : I'g —
PSL(d,K) of a projectively visible group I'g C Aut(€2) we can consider the unit tangent bundle
T of Q) (relative to the Hilbert metric) and the subspace U(Tg) C T of directions where the
associated projective geodesic lines has forward and backward endpoints in Aq(T'g), the limit set
of I'y. The subspace U(I'p) is invariant under the geodesic flow and, by the projectively visible
assumption, homeomorphic to Ag )(Fo) x R. We then use our Patterson-Sullivan measures to
construct a Bowen-Margulis-Sullivan measure on the quotient I'g\ U(T).

This dynamical system is critical in our work. For instance to prove that the boundary actions
are ergodic in Theorem 1.4, we use a general version of the Hopf Lemma, due to Coudéne [17],
to show that the geodesic flow is ergodic with respect to the Bowen-Margulis-Sullivan measure.

Historical remarks: In this section we briefly discuss some important prior works concerning
Patterson-Sullivan measures for discrete subgroups in higher rank semisimple Lie groups.

(1) Both Albuquerque [1] and Quint [40] study Patterson-Sullivan measures in the setting
of Zariski dense, discrete subgroups of a semisimple group with finite center. Quint’s
measures live on flag varieties, as ours do, while Albuquerque’s lie on the visual boundary
of the associated symmetric space. Link [36] showed if the ray limit set has positive
measure, then the action of the group on the ray limit set is ergodic with respect to the
measures constructed by Albuquerque.

(2) Dey and Kapovich [22] study Patterson-Sullivan measures in the setting of Pg-Anosov
subgroups. They proved that when I' is a Py-divergent subgroup and ¢ € aj is positive
on a(';, that there is a ¢-Patterson-Sullivan measure. In addition, when I' is Py-Anosov,
they also prove that the Patterson-Sullivan measure is unique, the conical limit set has
full measure and the action of I on Ay(T") is ergodic. Their approach is based heavily on
studying the action of I on the associated symmetric space.
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Sambarino [43, 44] used the thermodynamical formalism to provide an alternative proof
of Dey and Kapovich’s results for all ¢ € a} such that 6?(I') < co. Further, he shows
that the action of ' on Ag(I")? is ergodic and characterizes linear functionals with critical
exponent as exactly those which are strictly positive on the Benoist limit cone. The
thermodynamical formalism requires the existence of an associated dynamical system
with a Markov coding and this is currently only known to exist for Anosov subgroups
and a few other specific groups.

In the case when I' is a Pyg-Anosov group which is isomorphic to the fundamental group
of a closed negatively curved manifold one can use the perspective in [33] to obtain nicely
behaved Patterson-Sullivan measures, for details of this approach see [42].

Lee-Oh [35] prove that if I" is Zariski dense and Anosov with respect to a minimal
parabolic subgroup, then any ¢-conformal measure of dimension 6?(T) is supported
on the limit set and hence a Patterson-Sullivan measure. They also show that the ¢-
Patterson-Sullivan measure is unique. They derive their result as a consequence of a
Hopf-Tsuji-Sullivan dichotomy for the maximal diagonal actions.
Burger-Landesberg-Lee-Oh [12] establish a Hopf-Tsuji-Sullivan dichotomy for the actions
of discrete Zariski dense subgroups on directional limit sets with respect to a directional
Poincaré series. This version of the dichotomy is different than the one we consider,
for instance in Burger-Landesberg-Lee-Oh’s dichotomy Anosov groups always fall into
the convergent case when the rank of the semisimple Lie group is at least four. Using
different techniques, Sambarino [44] gave an extension of this dichotomy to more general
subsets of simple roots.

Quint [40] proves the analogue of our shadow lemma for Zariski dense groups. His
proof makes crucial use of Zariski density in place of our transversality assumption. Our
shadow lemma, unlike Quint’s, can be applied to transverse subgroups whose Zariski
closures are not connected or not semisimple. Albuquerque [1] and Link [36] also establish
shadow lemmas in their setting. Unlike Quint [40], we only deal with real Lie groups as
opposed to Lie groups over local fields. This reality assumption is needed in order for us
to associate a flow space to a transverse subgroup, see Theorem 6.2 and Section 5.3.
Bray [8], Blayac [5], Zhu [48] and Blayac-Zhu [7] study Patterson-Sullivan measures
for discrete subgroups I' C PGL(d,R) which preserve a properly convex domain €. In
their work, the measures have Radon-Nikodym derivatives which involve the Busemann
functions obtained from the Hilbert metric, instead of partial Iwasawa cocycles used
in other works (including this one). When such discrete subgroups I' are {a1,aq-1}-
transverse (for example, when every point in the orbital limit set Aq(T") of T' is a smooth
and strongly extremal point of 9€2), the Patterson-Sullivan measures they consider are
the pushforward via the natural projection p : Fro, o, 3 — P(R?) of some (wa, +Way, ,)-
Patterson-Sullivan measure for I'.

Quint [40] defined ¢-Patterson-Sullivan measures as the measures p that satisfy the
(almost everywhere) equation

DYt —4(Bo(v1,))
dp

instead of the equation given in Definition 1.1. Notice that p is a ¢-Patterson-Sullivan
measure for I' of dimension § in the sense of Definition 1.1, if and only if y is a S¢-
Patterson-Sullivan measure for I' in the sense of Quint. Furthermore, if ¢ := §%(I")¢,
then 0¥ (T") = 1. Thus, every ¢-Patterson-Sullivan measures for ' of dimension §%(T) in
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the sense of Definition 1.1 is a ¥-Patterson-Sullivan measures for I' in the sense of Quint
for some 1 such that 6¥(I') = 1.

Acknowledgements. We thank Hee Oh, Andrés Sambarino and Aleksander Skenderi for helpful
comments on an earlier version of this paper. We also thank the referee of the original version for
many helpful suggestions which improved the readability of the manuscript and for encouraging
us to give a more complete statement of Theorem 1.4.

2. BACKGROUND AND NOTATION

In this section, we recall some required background from the theory of semisimple Lie groups,
as well as certain properties of discrete subgroups of semisimple Lie groups.

2.1. Semisimple Lie groups. First, we recall some basic terminology and facts from the theory
of semisimple Lie groups. For the rest of the paper, let G be a connected semisimple real Lie
group without compact factors and with finite center, let g denote the Lie algebra of G, and let
b be the Killing form on g.

Fix a Cartan involution T of g, i.e. an involution for which the bilinear pairing (-, ) on g given
by (X,Y) := —b(X,7(Y)) is an inner product. Let

g=tdp

denote the associated Cartan decomposition, i.e. € and p are respectively the 1 and —1 eigenspaces
of 7. Note that the Killing form is negative definite on £ and positive definite on p, so € is a
maximal compact Lie subalgebra of g. Let K C G denote the maximal compact Lie subgroup
whose Lie algebra is €.

Next, fix a maximal abelian subspace a C p, also called a Cartan subspace. Then let

0=200% P o

aeX

be the restricted root space decomposition associated to a, i.e. for any a € a*
0o ={X €g:[H,X]|=a(H)X for all H € a},

and
Y:={aeca" —{0}:9, #0}

is the set of restricted roots. One can verify that 7(ga) = g—q, [30, Chap. VI, Prop. 6.52], so
X=X

Next fix an element Hy € a — |, v ker a, and let

ace¥
Yi={ae€X¥:a(Hy)) >0} and X~ :=-%T.

Note that ¥ = T UX ™. Let A C ¥ be the associated system of simple restricted roots, i.e.
A consists of all the elements in X1 that cannot be written as a non-trivial linear combination
of elements in XT. Since X is an abstract root system on a*, see [30, Chap. VI, Cor. 6.53], it
follows that A is a basis of a* and every o € X is a non-negative (integral) linear combination
of elements in A, see [26, Chap. III, Thm. 10.1].
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2.1.1. The Weyl group and the opposition involution. The Weyl group of a is
W = Nk(a)/Zk(a),

where Nk (a) C K is the normalizer of a in K and Zk(a) C K is the centralizer of a in K. Then W
is a finite group that is generated by the reflections of a (equipped with (-, -)) about the kernels
of the restricted roots in A, see [30, Chap. VI, Thm. 6.57]. As such, W acts transitively on the
set of Weyl chambers, that is the closure of the components of

a— U ker c.
aey
Of these, we refer to
ot i={X €a:a(X)>0foral ac A}
as the positive Weyl chamber.
In W, there exists a unique element wg, called the longest element, such that

wg(a+) = —a’.

We can then define an involution ¢ : a — a by «(H) = —wyq - H. This is known as the opposition
inwolution, and has the following properties.
Observation 2.1.
(1) If ko € Nk(a) is a representative of the longest element wy € W, then
Ad(kﬂ)ga = 0-1*(a) (1)
for all a € X.
(2) M(A) = A.

2.1.2. Parabolic subgroups and flag manifolds. Given a subset § C A, the parabolic subgroup
associated to 0, denoted by Py = P;r C G, is the normalizer of

Ug = u; = @ Ja
aGZ;
where Zj := X"\ Span(A \ 0). The flag manifold associated to 0 is
Fo= }'g := G/Py.
Similarly, the standard parabolic subgroup opposite to Py, denoted by Py, is the normalizer of
Ll; = @ g1 (a)»
aeE;
and the standard flag manifold opposite to Fy is
Fy =G/P,.
Notice that if kg € Nk(a) is a representative of the longest element wg € W, then Equation (1)

implies that
koPy ko' = ko' Pyko=PT. (2)

We say that two flags F} € .7:(;" and Fy € F, are transverse if (F1, F») is contained in the
G-orbit of (P;’, P,) in .7-";’ x F, . Then for any flag F' € ]_—;)t’ let Zp C FJ denote the set of flags
that are not transverse to F'. One can verify that the set of transverse pairs in F ('; x Fp is an

open and dense subset, so Zf is a closed subset with empty interior. Furthermore, Zr = Zp/ if
and only if F = F”.
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2.1.3. Cartan projection. Let k : G — a' denote the Cartan projection, that is k(g) € a™ is the
unique element such that

g= me" 9y
for some m, ¢ € K (in general m and ¢ are not uniquely determined by ¢). Such a decomposition
g = me"9)¢ is called a KAK-decomposition of g, see [27, Chap. IX, Thm. 1.1]. Since t(—at) =
a’, we have the following observation.

Observation 2.2. ((x(g)) = k(g~!) for all g € G.

In terms of the KAK-decomposition, the actions of G on ]:;“ and F, have the following
behavior. See Appendix A for a proof.

Proposition 2.3. Suppose F* ¢ .7-%, {gn} is a sequence in G and g, = mpet9)e, is a KAK-
decomposition for each n > 1. Then the following are equivalent:
(1) mp Py — FT, 0,1 Py — F~ and limy, 0 (k(gn)) = 0o for every a € 6,
(2) gn(F) — F* for all F € .7-"; \Zr-, and this convergence is uniform on compact subsets
of Fo\Zp-.
(3) g (F) = F~ for all F € Fy \Zp+, and this convergence is uniform on compact subsets
of Fy \Zp+.
(4) There are open sets UT C fei such that g,(F) — F* for all F € U and g, *(F) — F~
forall FelU™.

2.1.4. Weights and partial Cartan projections. For any a € 3, let H, € a satisfy the defining

property
(Ha, X) = (X)

for all X € a. Then for any non-zero E € g,, Spang(E,7(E),H,) C g is a Lie sub-algebra

isomorphic to sl(2,R), and this isomorphism identifies
2H . 1 0
H., = m € Spang (E,7(E), H,) with (0 _1) € sl(2,R),

see [30, Chap. VI, Prop. 6.52]. The element H/, is called the coroot associated to a. If a € A,
the fundamental weight associated to « is then the element w, € a* such that

)1 ifa=8,
““Mﬁ_{o if %8
for all 5 € A.
Given a subset § C A, the partial Cartan subspace associated to 0 is
ap:={H €a:a(H)=0foral a e A\ 6}
Since (A \ 0) U {w, : « € 0} is a basis of a*, there is a unique projection
Po - a— ay
such that wa(X) = wa(pe(X)) for all @ € 6 and X € a. Then the partial Cartan projection
associated to 0 is
kg :=pgok:G— ag.
One can show that {wq|a, : & € 0} is a basis of aj and hence we will identify
ajy = Span{w, : « € 0} C a*.
Note that wqa(ke(g)) = wa(k(g)) for all @ € 6 and g € G. So

$(ro(9)) = ¢(k(9)) (3)
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for all ¢ € aj and g € G.
Given ¢ € aj we define the ¢-length of an element g € G as

(?(g) = lim %QW@(Q”))

(notice that this limit exists by Fekete’s Subadditive Lemma). Equivalently, one can define the
length using the Jordan projection.

2.1.5. The partial Iwasawa cocycle. Let U := exp(ua). The Twasawa decomposition states that
the map
(k,a,u) € Kxexp(a) x U kau € G

is a diffeomorphism, see [30, Chap. VI, Prop. 6.46]. Using this, Quint [40] defined the Iwasawa
cocycle

B:GXFA—a
with the defining property that gk € K-exp(B(g, F)) - U for all (g, F) € G x Fa, where k € K
is an element such that ' = kPA. The map B is known as the Iwasawa cocycle.

For any # C A, note that Po C Py, so the identity map on G induces a surjection Ily : Fao — Fy.

The partial Twasawa cocycle is the map

Bg : G x ]:9 — Ay
defined by By(g, F') = pe(B(g, F")) for some (all) F’ € IT,; ' (F). By [40, Lem. 6.1 and 6.2], this
is a well-defined cocycle, that is

B9(9h7 F) = B@(gv hF) + B@(ha F)

for all g,h € G and F' € Fy.
We will use two estimates from [40]. In the next two lemmas, let ||-|| denote the norm of the
inner product (-,-) on a.

Lemma 2.4 (Quint [40, Lem. 6.5]). For any € > 0 and distance dr, on Fy induced by a Riemann-
ian metric there exists C = C(e,dr,) > 0 such that: ifg € G, g = me ¢ is a KAK-decomposition,

F e Fy and dF, (F, Ze—ng) > ¢, then
1By (g, F') — ro(9)|| < C.

Lemma 2.5 (Quint [40, Lem. 6.6]). For any ¢ > 0 and g € G there exists C = C(e,g) > 0 such
that: if h € G and min,ecg a(k(h)) > C, then

|ko(gh) — kg(h) — Bo(g, Up(h))|| < e.

2.2. When @ is symmetric. In this section, as in much of the paper, we will consider the case
when 6 C A is symmetric, that is .*(6) = 6.

As before, let kg € Nk(a) be a representative of the longest element wy € W. Then ko Py &, L=
ko_l Po ko = P, , see Equation (2). So we can identify Fy with F, via the map

9P, — gkoPy = gk ' Py.

Using this identification, we can speak of two elements in Fy being transverse. More explicitly,
the flags g1 Py and g2 Py in Fy are transverse if and only if there exists g € G such that gg; € Py
and ggako € P, . With some abuse of the notation, for a flag I’ € Fy, we now let Zp C Fy
denote the set of flags that are not transverse to F.

Following the notation in [23], we define a map

Ug:G— Fy
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by fixing a KAK-decomposition g = mge“(g)fg for each g € G and then letting Uy(g) := my Pp.

One can show that if a(k(g)) > 0 for all o € 6, then Uy(g) is independent of the choice of

KAK-decomposition, see [27, Chap. IX, Thm. 1.1], and hence Uy is continuous on the set
{g€G:a(k(g)) >0forall acb}.

Observation 2.2 implies that Ad(ko)(—x(g)) = k(g~!) and so
_ I N _
0 = () e (kmy )
is a KAK-decomposition of g~!. So we may assume that Mmg-1 = Eg_lkal and £g-1 = komgl for
all g € G. Then
Up(g™") =€, kg ' Po,

which under our identification F, = Fjy coincides with Eg_l P,
Then, in the symmetric case, Proposition 2.3 can be restated as follows.

Proposition 2.6 (Proposition 2.3 in the symmetric case). Suppose 0 C A is symmetric, F* € Fy
and {gn} is a sequence in G. The following are equivalent:

(1) Up(gn) — F, Uyp(g; ) — F~ and lim,, o a(k(gn)) = 0o for every a € 0,

(2) gn(F) — F* for all F € Fg\Zp-, and this convergence is uniform on compact subsets
of Fo\Zp-.

(3) g, 2 (F) — F~ for all F € Fg\Zp+, and this convergence is uniform on compact subsets
of Fo\Zp+.

(4) There are open sets UT C Fy such that g,(F) — F* for all F € U and g, (F) — F~
forall F e U™.

2.3. Discrete subgroups of semisimple Lie groups. Next, we discuss some terminology for dis-
crete subgroups of G and their basic properties.

2.3.1. Critical exponents. Let I' C G be any discrete subgroup and let § C A. For any ¢ € ap,
let Qi’f(s) denote the Poincaré series

Q?(S) _ Z e 50(ra (7))
yel’
Let 62(T") be the critical exponent of Ql‘é(s), ie.
§%(0) = inf{s > 0: Q¥(s) < +oo}.
Equivalently,
1
§®(I') = limsup T log#{y €T : ¢p(kg(7y)) < T}.

T—00
The 6-Benoist limit cone of I is the cone

By(T) := {H € a] : there exists {y,} C I and ¢, \, 0 such that t,rg(y,) — H}.

Set
By(I)* := {p€ay:¢>0o0nBy(I)—{0}}.
We observe that for any ¢ € By(I')*, the critical exponent 6?(I") is finite.

Proposition 2.7. Suppose I' C G is a discrete group and § C A. If ¢ € By(I)F, then 6(I') < +oc.
In particular, if ¢ is positive on a;’, then 62(T") < 4o0.
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Proof. Equation (3) implies that ¢ is positive on Ba(I') — {0}. Then, since Ba(I") is a cone and
¢ is linear, there exists A > 0 such that
¢(H) = A|H|

for all H € Ba(T').
We claim that there exists B > 0 such that

o(s(1) = 5 ()|~ B (1)

for all v € I'. Suppose not. Then for each n > 1 there exists -, € I' where

A
¢(r(m) < 5 [l6(m)ll = n.
This implies that ||k(y,)|| = +oo. Passing to a subsequence we can suppose that mm(%) —
H € BA(T'). Then
A= Al < o) = Jim 6 (2wt ) <
= = lim — K —.
. e U\ JIn (1) = 2
So we have a contradiction and hence such a B > 0 exists.
Let X := G/K and zp := K € X. Then endow X with a G-invariant Riemannian symmetric
metric scaled so that
dx (0, gz0) = [[K(9)]
for all g € G. Since ¢(kg(g)) = ¢(k(g)) for all g € G, the inequality (4) implies that

{veTl:¢ko(y)) <T}C {’y e I': dx(zo,yx0) < % + 2AB}

Thus, 6%(T) < 26x ('), where

1 r: T
dx(T) := limsup og# {7 € I' : dx(x0,720) < }
T—o0 T
Recall that the volume growth entropy of X is
1 lx (B
h(X) := limsup og Volx (Br (o))
T—o00 T

where Voly is the Riemannian volume on X and Bp(xg) C X is the open ball of radius 7' > 0
centered at xg. Since X has bounded sectional curvature, volume comparison theorems imply
that h(X) < 4o0.

Fix ro > 0 and for T'> 0 let I'p := {y € T : dx(z0,yx0) < T}. Then

_ 1 #FQT’O
#FT = m ’YEZFT VOIX (B’!‘o (71’0)) S mV01X<BT+TO (x[)))
Thus 0x(T') < h(X) < 0. O

2.3.2. Py-divergent groups. A subgroup I' C G is Py-divergent if a(k(vy,)) — oo for any a € 6
and any sequence {7,} in I' of pairwise distinct elements. Notice that by Observation 2.2, a
subgroup I' C G is Py-divergent if and only if it is Py, (g)-divergent.

The 6-limit set Ag(T") of T" is the set of accumulation points in Fy of {Uy(y) : v € T'}. Using
Proposition 2.6, one can verify that Ay(T") is a closed, I'-invariant subset of Fy. We will say that
' is non-elementary if Ap(T") is infinite.

We note that in the literature, divergent groups are sometimes called regular groups (e.g.
20]).
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2.3.3. Pg-transverse groups. In this subsection we assume that § C A is symmetric, i.e .*(0) = 6.
A Py-divergent subgroup I' C G is Pg-transverse if Ag(T") is a transverse subset of Fy, i.e. distinct
pairs of flags in Ay(T") are transverse. We note that in the literature, transverse groups are
sometimes called antipodal groups (e.g. [29]). One crucial feature of Py-transverse groups is
that T" acts on Ay(T") as a convergence group.

We recall that the action, by homeomorphisms, of a group I'g on a compact metric space X
is said to be a (discrete) convergence group action if whenever {~,} is a sequence of distinct
elements in Iy, then there are points x,y € X and a subsequence, still called {,}, so that v,(2)
converges to z for all z € X \ {y} (uniformly on compact subsets of X \ {y}).

Proposition 2.8 ([29, Section 5.1], [15, Proposition 3.3]). If I is Py-transverse, then I' acts on
Ag(T) as a convergence group. In particular, if T is non-elementary, then T' acts on Ay(T)
minimally, and Ag(T") is perfect.

If a group I'y acts on a metric space X as a convergence group, we say that a point z € X
is a conical limit point for the convergence group action if there exist distinct a,b € X and a
sequence {7, } in Iy so that =, (z) converges to a and v, (y) converges to b for all y € X \ {z}.

When I" C G is Py-transverse, the set of conical limit points for the action of I' on Ag(T") is
called the 0-conical limit set and is denoted Ag**(T").

2.3.4. Anosov groups. Anosov groups were introduced by Labourie [32] in his work on Hitchin
representations and were further developed by Guichard-Wienhard [25] and others. They are a
natural generalization of the notion of a convex cocompact subgroup of a rank one Lie group
into the higher rank setting. There are now many different equivalent definitions, and we give a
definition which is well-adapted to our setting.

Following [29], a Pp-transverse subgroup I' C G is said to be Pg-Anosov if T' is Gromov
hyperbolic with Gromov boundary 9I' and there exists a ['-equivariant homeomorphism ¢ :
or — Ag (F)

2.4. A helpful reduction. Since G is semisimple, we may decompose its Lie algebra g = @7‘:1 9;
into a product of simple Lie algebras. For each 1 < j < m, let G; C G denote the connected
subgroup with Lie algebra g;. The subgroups Gy, ..., G, are called the simple factors of G. One
can verify that each simple factor of G is a closed, normal subgroup and

G=Gi--- Gy,

is an almost direct product, i.e. any distinct pair of simple factors of G commute, and the
intersection between G; and Gy ---G;_1Gj41 - Gy, is finite for all j.

In this section we explain why one can often reduce to the case where G has trivial center and
the fixed parabolic subgroup contains no simple factors of G. The main construction needed for
this reduction is a well-behaved quotient of G.

Proposition 2.9. For any 0 C A symmetric, there is a semisimple Lie group G' without compact
factors and with trivial center, and a quotient p : G — G’ with the following properties:

(1) There exists a Cartan decomposition g’ = ¥ @ p’ of the Lie algebra ¢’ of G, a Cartan
subspace &' C p', and a system of simple restricted roots A" C (a')*, so that (dp)iq : g — ¢
sends €, p and a to ¥, p’ and o' respectively, and (dp) : (a)* — a* identifies A" with a
subset of A that contains 6.

(2) The parabolic subgroup Py C G' corresponding to 0 C A’ satisfies p~*(Py) = Py, and
does not contain any simple factors of G'. Furthermore, if Fp := G'/ P}, then the map
£ Fog — F)y given by € : gPg — p(g) Py is a p-equivariant diffeomorphism which
preserves transverality.
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et kg : G — ay and Ky : — (a e the partial Cartan projections, and let By :

3) Let G 5 and Ky : G 07T be th tial Cart jecti d let B
GxFy — ag and Bj : G' x Fjy — ay, be the partial Iwasawa cocycles. Then (dp)iq : g — ¢
restricts to an isomorphism from ag to a’e, and satisfies

(dp)ia(re(9)) = ry(p(g)) and (dp)ia(Bo(g, F')) = By(p(g), £(F))
forallg € G and F € Fy,

Once we have such a Lie group G’ and quotient map p : G — G’ as in Proposition 2.9, then for
any Pg-transverse subgroup I' C G and any ¢ € aj, we may set I := p(I") and ¢’ := ¢o (dp)id|;61.
By Proposition 2.9, it follows that

(I) p|r has finite kernel, I is Py-transverse, £(Ag(T")) = Ag(I”) and £(AS™(T)) = Ag(TY).

(ID) ¢(ro(7)) = ¢/ (ry(p(v))) for all v € T

(1) 6(By (v, F)) = &/ (By(p(), £(F))) for all 7 € T and F € Ag(T).

Thus, any result for I' C G and ¢ € ay that depends only on Ag(I"), Ag°"(I"), ¢ o kg and ¢ o By
will hold if and only if they also hold for IV C G’ and ¢’ € aj,. In many situations, this allows
us to assume without loss of generality that G has trivial center and Py does not contain any
simple factors of G.

Proof of Proposition 2.9. Let py C g be the Lie subalgebra corresponding to Py. If we set
J:={j:g;Npg=0} and J :={j:9; Cpo},
then JU J¢ = {1,...,m}.
Let H:= Z(G)[[;csc Gj C G, G':= G/H and p : G — G’ be the quotient map. Then observe
that via the map (dp)iq, we may identify:
=Py, (5)

jeJ
In particular, G’ is semisimple without compact factors, and has trivial center.
First, we prove part (1). Observe that we may decompose
m m m m m m
t=Pt. r=Pr;, =P, ==J%, A=[JA, and o =P/,

j=1 J=1 J=1 J=1 Jj=1 J=1
where g; = €; @ p; is a Cartan decomposition of g;, a; C p; is a Cartan subspace, 3; is the set
of restricted roots for a; and A; C X, is a system of simple restricted roots and a;“ C aj is the
positive Weyl chamber relative to A;. Hence, if we set

¢ = @Ej, p = @pj, a = @aj, Y= U ¥, A= U A; and (o)t = @aj
jeJ jeJ jed jeJ jeJ jeJ

then via the identification (5), g’ = ¢ @ p’ is a Cartan decomposition of g’, a’ C p’ is a Cartan
subspace, ' is the set of restricted roots for a’, A’ C ¥/ is a system of simple restricted roots
and (a’)* is the positive Weyl chamber relative to A’. Furthermore, from the definition of Py,
if G; is a simple factor of G that lies in Py, then 6 does not intersect A;. This proves part (1).

Next, we prove part (2). The fact that Py = p~1(Pj) is a straightforward verification from
the definition of Py and Pj. This fact, together with (5) imply that Pj does not contain any
simple factors of G'. It is clear that £ is a p-equivariant diffeomorphism. To see that £ preserves
transversality, simply note that the proof that Py = p~1(P}) also verifies that P, = p YH((Py)7).
Thus, part (2) holds.

Part (3) holds because with our choice of a’, p sends the Cartan and Iwasawa decompositions
of G to the Cartan and Iwasawa decompositions of G’ respectively. O
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3. PATTERSON-SULLIVAN MEASURES FOR DIVERGENT GROUPS

Patterson-Sullivan measures were first constructed by Patterson [38] for Fuchsian groups.
Subsequently they were constructed in many settings where there is a natural boundary at
infinity and some amount of Gromov hyperbolic behavior. Almost all these constructions mimic
Patterson’s original constructions with technical modifications appropriate to the setting.

Given # C A symmetric, we will now construct Patterson-Sullivan measures for Py-divergent
subgroups, using the #-limit set of the group as the natural boundary. More precisely, given
¢ € ay and a Pyp-divergent group I' C G, a probability measure p on Fy is called a ¢-conformal
measure for I' of dimension B if for any v € I', the measures p and v, are absolutely continuous
and
D () = o=BoBo L)

dp
If, in addition, supp(u) C Ag(T'), then u is a ¢-Patterson-Sullivan measure.

Remark 3.1.

(1) Since the Radon-Nikodym derivative d;l*—;“ is only defined almost everywhere, the above
equation should be understood to hold only almost everywhere. The same abuse of
notation will be used throughout the paper.

(2) Notice that in the definition of the partial Iwasawa cocycle By, we implicitly made a
choice of a Cartan decomposition of g (equivalently, a choice of maximal compact K C G)
and a choice of a maximal abelian subspace a C g that is orthogonal (in the Killing form)
to the Lie subalgebra £ C g of K. In this paper, we fix once and for all a choice of K, and
we only consider ¢-conformal measures with respect to this fixed K. The choice of K is
equivalent to a choice of basepoint for H" in the classical case.

Also, recall that §%(T) is the critical exponent of the Poincaré series

Qi’f(s) - Z e 50(ro (7))

vel’

Proposition 3.2. If 0 C A is symmetric, I' C G is Pg-divergent, ¢ € aj and §%(T) < 400, then
there is a ¢-Patterson-Sullivan measure p for I' of dimension %(I).

In the case when I' is a Py-Anosov subgroup, Proposition 3.2 is a consequence of the fol-
lowing theorem of Sambarino [44], who completely classified the linear functionals which admit
Patterson-Sullivan measures (see also Lee-Oh [34] for the case when I' is Zariski dense and
Anosov with respect to a minimal parabolic subgroup and Kapovich-Dey [22] for the case when
¢ is symmetric and positive on a;).

Theorem 3.3 (Sambarino [44]). If § C A is symmetric, I' C G is Pg-Anosov and ¢ € aj), then
the following are equivalent

(1) ¢ € By (I),

(2) 6*(T') < +oo, and

(8) T' admits a ¢-Patterson-Sullivan measure of dimension 6%(T).

Moreover, if §*(I') < +o0, then Qfl diverges at its critical exponent.

The strategy to prove Proposition 3.2 is to first observe that one can regard I'UAy(T") as a well-
behaved compactification of I'. Using this compactification one can simply repeat Patterson’s
construction verbatim.
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Lemma 3.4. Suppose 0 C A is symmetric. If T' C G is Pg-divergent, then the set I'U Ag(T") has
a topology that makes it a compactification of I'. More precisely:

(1) T UAy(T) is a compact metrizable space.

(2) If T has the discrete topology, T' — T'U Ag(T') is an embedding.

(8) If Ag(T") has the subspace topology from Fg, then Ag(I') — T'U Ag(T") is an embedding.
(4) A sequence {v,} in T' converges to F in Ag(T") if and only if

migloz(n(’yn)) — oo and Up(y,) — F.
ae

(5) The natural left action of T' on T'U Ag(T") is by homeomorphisms.
Moreover, for any n € T' the function By(n,-) : T U Ayg(T') — ag defined by

B ) re(nz) — Ke(x) ifxel,
By(n,x) = {Be(n, o) 2 ¢ AT,

s continuous, where the map By : G X Fg — ag is the partial Iwasawa cocycle.

Proof. We will construct an explicit metric on I' U Ay(T"). First let dr denote the discrete metric

on I', that is
1 ify 2,
dr(y1,72) = L >
0 ify =12
Second, fix a metric dg on Fp which is induced by a Riemannian metric. By scaling we can
assume that in the metric dg, the diameter of Fy is 1. Finally, define mgy : I' — (0, 1] by

mo(r) = exp (~min () ).

a€cl

We now define a metric d on I' U Ag(T") as follows:
o If v1,72 € ', then

d(v1,72) = max{mg(y1), me(72) }dr(v1,72) + do(Ug(71), Us(12))-
o If y eI and F € Ayg(T), then

d(7y, F') = mg(v) + da(Ug(7), F).

o If 1, Fy € Ap(T"), then
A(F1, Fy) = dg(Fr, F).

It is straightforward to check that d defines a metric. Also, from the definition of d, it is
clear that the restriction of d to I' and Ag(I") induce the discrete topology on I' and the usual
topology on Ag(I') respectively, so (2) and (3) holds. To see that (4) holds, note that v, — F
if and only if mg(v,) — 0 and dg(Up(yn), F') — 0, which is in turn equivalent to requiring
mingeg a(k(yn)) = 0o and Up(y,) — F.

Next we prove the compactness in (1) by taking a sequence {z,} in I' U Ap(T") and showing
that it has a convergent subsequence. Observe that {z,} either has

(i) a subsequence that lies in Ag(T),
(ii) a subsequence that lies in a finite subset of T, or
(iii) a subsequence that lies in I', but does not lie in any finite subset of T

If (i) or (ii) holds, then the compactness of Ay(I') and the compactness of finite subsets of '
respectively imply {z,} has a convergent subsequence. If (iii) holds, then by taking a further
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subsequence {v;} of {z,}, we may assume that Up(y;) — F for some F € Fy. Since the Py-
divergence of I' implies that min,cp o(x(7;)) — 0o, we may apply (4) to deduce that v; — F.
So {z,} has a convergent subsequence.

Since the left T' action on I' and the T" action on Ag(T") are both clearly continuous, to prove
part (5) it suffices to show: if n € T and {~,} is a sequence in I' converging to F* € Ay(T),
then 7y, — n(F*1). By compactness, it suffices to consider the case when 7y, — F’ and show
that F/ = n(F*). Notice that (4) implies that min,eg a(k(7,,)) — oo and Uy(y,) — FT. Then
using Proposition 2.3 and passing to a subsequence we can suppose that there exists F'~ € F,
such that v, (F) — F* for all F € Fy\Zp- and this convergence is uniform on compact subsets
of Fo\Zp-. Then ny,(F) — n(F7T) for all F € Fy\Zp- and this convergence is uniform
on compact subsets of Fy\Zp-. So Proposition 2.3 implies that min,ecp a(k(ny,)) — oo and
Us(nyn) — n(FT). So part (4) implies that 77y, — n(FT). So part (5) is true.

Finally notice that Lemma 2.5 and part (4) of this proposition imply the “moreover” part. O

Proof of Proposition 3.2. Let ¢ := §%(T"). Endow I' U Ag(T") with the topology from Lemma 3.4
and for z € I'U Ag(T") let D, denote the Dirac measure centered at z. By [38, Lem. 3.1] there
exists a continuous non-decreasing function h : Rt — R™ such that:

(1) The series
Z h ( (ko (7)) ) e~ 50k (7))
vyel
converges for s > § and diverges for s < 4.
(2) For any € > 0 there exists A9 > 0 such that: if s > 1 and A > Ag, then h(As) < sh(N).

(In the case when in diverges at its critical exponent, we can choose h = 1.) Then for s > §
consider the probability measure

ko(7) ) p—358(r0(7))
VEF( o) ¢,

on I' U Ap(T"). By compactness, the family of measures {us}s>s admits a subsequential weak
limit as s \,J , i.e. there exists {s,} C (J,00) so that lim s, = ¢ and

o= lim pg,

exists. We will prove that p is a Patterson-Sullivan measure of dimension 9.
Notice that if A C I is a finite set, then

n(A) = lim — (1 ; Z h (eqb(na(v))) —snd(ko (7)) — (. Z h ( ) e—00(ro (7)) —

yEA yeEA

Hence supp(p) C Ag(T).
To verify the remaining property, fix n € T, let

By(n™",) s TUAg() > R
be the continuous function defined in Lemma 3.4, and define the function g, : TUAy(I') — R by

h(e¢<""6(2))+¢(1§9(n—1,z)) '
gn(Z) = h(e¢<~9(z>>) if zeT,
1 if z € Ag(T).

Notice that property (2) of h implies that g, is continuous.
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For any continuous function f : T'U Ap(I') — R and s > J, we have

/f Ydnps(2) = 1 Zh( (ko(7) )e—s¢(f$e(v))f(n,y)

QS 'yGF

Z h (e (ko (n~ "y )) e—sqﬁ(ﬁe(n*lv))f(,y)

'yEF

(
1
Q(s)

i <€¢(H9(v))+¢(39(17‘1,7))>
)

(k01 —36(ra(x))  —s¢(Bo(n~1
;h( ) )e et (o) F)
) £

:/f(z)e3¢(39(”_1’Z))gn(z)dus(z).

Then taking limits and recalling that p is supported on Ag(I"), we obtain

dn*/“‘(p) — ¢ 9¢(Bo(n™'F)).
dp
So u is a Patterson-Sullivan measure of dimension 6. 0

4. ENTROPY DROP

It is natural to conjecture, in analogy with results of Coulon-Dal’bo-Sambusetti [18], that if
Iy is a subgroup of a Pg-Anosov group I', ¢ € a} and 6°(I') < +oo, then §%(I") = §%(I'y) if and
only if I'y is co-amenable in I". (Glorieux and Tapie [24] have studied this conjecture when I'y is
normal in I" and Zariski dense.) We apply an argument of Dal’bo-Otal-Peigné [21] to obtain a
criterion guaranteeing entropy drop for subgroups of transverse groups. As a consequence, we
obtain generalization of a result of Brooks [10] from the setting of geometrically finite hyperbolic
3-manifolds into the setting of Anosov groups.

Theorem 4.1. Suppose 0 C A is symmetric, I' C G is a non-elementary Pg-transverse subgroup,
¢ € ay and §%(T) < +oo. IfT'g is a subgroup of I such that Qi’fo diverges at its critical exponent
and Ng(Ty) is a proper subset of Ag(T"), then

62() > 6%(Tp).

Proof. Let p be a ¢-Patterson-Sullivan measure for I' of dimension 5¢(T).
Fix an open subset W C Ay(T") such that W N Ap(Ty) = 0. We claim that

N:=#{yeTog:yWNW # 0}

is finite. Otherwise there would exist an infinite distinct sequence {7,} C I'g with v, W NW #
(). Then using Proposition 2.6 and passing to a subsequence we can suppose that there exist
Ft F~ € Ay(Ty) such that ~,(F) — FT uniformly on compact subsets of Fy\Zp-. Since
Ag(T) is a transverse set, we see that W is a compact subset of Fy\Zp-. Hence v, W NW = ()
for n large. So we have a contradiction and hence N is finite.

Fix a distance dr, on Fy which is induced by a Riemannian metric. Since Ag(I'g) is the set
of accumulation points of {Up(y) : v € L'}, there is a finite subset S C I'g and € > 0 so that

dry (F Zuy(y) = €
for all F € W and v € 'y \ S. Then Lemma 2.4 implies that there exists C' > 0 such that
¢(Bo(v, F)) < ¢p(rkg(7)) +C (6)
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for all '€ W and v € I'g\ S (recall that 6 is symmetric and so we can identify Fg and F, , see
Section 2.2).

Since I'g C T, it is immediate that §?(I') > §%(I'g). Suppose for contradiction that & :=
§%(T") = 6?(I'g). Notice that

Y (W) = 7 (W) = /W ¢~ 00B001F) gy (F),

so (6) implies that
p(y(W)) = e7Cem0m 0y ()

for all v € Ty \ S. Since Q?O diverges at its critical exponent,

—6C
L= p(ao(D) 2 1 3 wla(w)) = WS et — o

~v€lg ~vyelo\S

which is a contradiction. O

One immediate consequence of our criterion is an entropy gap result for quasiconvex subgroups
of Anosov groups. We recall that a subgroup I'g of a hyperbolic group I' is quasiconvex if there
exists K > 0 such that any geodesic joining two points in I'g in the Cayley graph of I" (with
respect to some finite presentation of I') lies within distance K of the vertices associated to T'y.

Corollary 4.2. Suppose  C A is symmetric, I' C G is a non-elementary Py-Anosov subgroup
and L'y is an infinite index quasiconvex subgroup of I'. If ¢ € aj and §%(T') < 400, then

62(T) > 6%(Tp).

Proof. Since I' C G is a non-elementary Py-Anosov subgroup and I'y is a quasiconvex subgroup
of ', Canary, Lee, Sambarino and Stover observed (see [14, Lem. 2.3]) that 'y C G is also a
Pg-Anosov subgroup. Furthermore, since I'g C T is infinite index we see that 9Ty is a proper
subset of 9T, so it follows that Ag(I'g) is a proper subset of Ag(I'). Theorem 3.3 implies that

Q?O diverges at its critical exponent, so the corollary now follows from Theorem 4.1. ]

Remark 4.3.

(1) In Corollary 4.2 it is not enough to assume that I'g is infinite index and finitely generated,
since the results fails when I' C PO(3, 1) uniformizes a closed hyperbolic 3-manifold which
fibers over the circle and T’y is the fiber subgroup. In this case, if we set 6 := {a1, as},
then I' C PGL(4,R) is Py-Anosov and I'y C T is an infinite index, finitely generated
subgroup. However, in this case, (") = §*1(I'y), see [13, Cor. 4.2].

(2) Theorem 4.1 also gives a new proof of [15, Prop. 11.5].

5. PROJECTIVELY VISIBLE GROUPS AND THEIR GEODESIC FLOWS

In this mostly expository section, we recall the definition of projectively visible groups from [28]
and state some of their basic properties. Projectively visible groups are a class of transverse
groups and we will see in the next section that every transverse group can be identified with a
projectively visible group in a useful manner



PATTERSON-SULLIVAN MEASURES FOR TRANSVERSE SUBGROUPS 21

5.1. Properly convex domains. We briefly recall some properties of properly convex domains,
the Hilbert metric, and the automorphism group of a properly convex domain. For a more
detailed discussion we refer the reader to the survey article of Marquis [37].

Suppose ) C ]P’(Rd) is a properly convex domain, that is an open set which is convex and
bounded in some affine chart of P(R?). Then a supporting hyperplane to Q at a point z € N
is a projective hyperplane H C P(R?) (i.e. the projectivization of a codimension one linear
subspace) that contains x but does not intersect 2. By convexity, every boundary point of 92
is contained in at least one supporting hyperplane and a boundary point which is contained in
a unique supporting hyperplane is called a C'-smooth point of 0§). In the case when z is a
C'-smooth point of 99, we let T,,092 denote the unique supporting hyperplane at x.

For any pair of points z,y € €, let [z,y]o denote the closed projective line segment in
with z and y as its endpoints. Similarly, (z,y)q = [z,y]a — {z,y}, [z,y)q = [z,y]a — {y} and
(z,9la = [z,y]o — {z}.

A properly convex domain {2 admits a natural Finsler metric dg, called the Hilbert metric.
Given a pair of points p,q € Q, let x,y € 09 be the points such that that x,p, ¢,y lie along
[,y]q in that order. Then
|z = ally —pl
|z —plly —dal’
where |-| denotes some (any) norm on some (any) affine chart containing z,p, q,y. Observe that
all projective line segments in €2 are geodesics of the Hilbert metric.

Although the Hilbert metric is rarely CAT(0), the distance function has the following well
known and useful convexity property, for a proof see for instance [28, Prop. 5.3].

da(p,q) :=log

Proposition 5.1. Suppose 2 C P(Rd) is a properly conver domain, x € Q and q1,q2 € Q. If
pE [ql,l‘)Q, then

do(p, (g2, ¥)e) < da(qr, 2)-
Given a properly convex domain Q C P(R?), we denote by Aut(€2) C PGL(d,R) the subgroup

that leaves € invariant. The group Aut(£2) preserves the Hilbert metric and acts properly on €.
The full orbital limit set of a discrete infinite subgroup I' C Aut(Q) is

Aq(T) := {l’ €Nz = nh_)nolo Tn(p) for some p € ) and some {v,} C F} .

We also let AG™(I') C Aq(I") denote the set of limit points z € Aq(I") where there exist by € 2,
a sequence {7,} in I' and some r > 0 such that 7,,(by) — = and dq(vn(bo), [bo, x)q) < 7 for all
n.

5.2. Properties of projectively visible groups. If ) is a properly convex domain, we say that a
discrete subgroup I' C Aut(Q) is projectively visible if

(1) (z,y)a C 2 for any two points z,y € Aq(I") and

(2) every point in Aq(T') is a C'-smooth point of 9.

The following proposition collects elementary properties of projectively visible groups and
shows, in particular, that they are examples of transverse subgroups.

Proposition 5.2. If Q ¢ P(R?) is a properly convex domain and T' C Aut(Q) is a projectively
visible subgroup, then the following hold:

(1) If by € Q, then Aq(T") = T'(by) N IN.
(2) If 0 = {1, 41}, then T' C PGL(d,R) is a Py-transverse subgroup, with

Ag(D) = {(2, T,0Q) : = € Ag(D)}.
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In particular, T' acts as a convergence group on Aq(T).

(3) If {n} is a sequence in ' and there exists by € Q such that v,(bg) — = € Aq(T") and
Y — T € P(End(R?)), then T is the projectivization of a rank 1 linear map whose image
is x. Purthermore, if v, (bo) — y, then ker(T) = T,0.

(4) x € Aq(T") is a conical limit point (in the convergence group sense) if and only if x €
AS™(T).

Proof. (1): By definition I'(bg) N 92 C Aq(T"). To show the other inclusion, fix x € Aq(I"). Then
there is a sequence {7,} in I' and bj € Q2 such that ~,(b;) — x. Passing to a subsequence we
can suppose that v, (bg) — «’. Since

nh—>r2<> dQ('Yn(bE))a'Yn(bO)) = dQ( 67 bo),

the definition of the Hilbert metric implies that [z, 2']q C 9. Then, since T is visible, we must
have x = 2’ € T'(by) N ON2.

(2): This was established as [15, Prop. 3.5].

(3): First, ker(T)NQ = () by [28, Prop. 5.6]. Next, note that T(Q) C Aq(T); indeed, if b € Q,
then b ¢ ker(T") and hence

T(b) = lim ~,(b) € Aq(T).

n—oo

Thus, if b € 2, then
[T'(b), z]o = [T'(b), T'(bo)]e = T'([b, bola) C Aa(T),

so T(b) = = because T(b),z € Aq(l') and T' C Aut(Q) is projectively visible. Since Q C P(R?)
is open and T'(2) = {z}, it follows that T is the projectivization of a rank 1 map whose image
is 7. By [28, Prop. 5.6], if v, 1(bg) — v, then y lies in the kernel of T'. Since ker(T) N = §) and
y is a C'l-smooth point, we have ker(T) = T,09.

(4): This was established as [15, Lem. 3.6]. O

5.3. The geodesic flow. Following earlier work of Benoist [3], Bray [8] and Blayac [5, 6], we now
develop the theory of the geodesic flow of a projectively visible group.

First given a properly convex domain Q C P(R?), let T'Q C TQ denote the unit tangent
bundle with respect to the infinitesimal Hilbert metric. Given v € T, let v, : R — € denote
the unique geodesic line with +,(0) = v and whose image is a projective line segment. Also, let

.
vt = tilgcnoo Yo(t) € OS2
The subspace T2 has a natural flow, called the geodesic flow, which is defined by ¢(v) = 7. (t).
Using this flow, we may define a metric dy1 on 7€ by

drig(v,w) == max do(m(i(v)), 7(er(w)))
where 7 : T'Q — Q takes a vector to its basepoint. It is well-known (see [3, Lem. 3.4] for
a proof) that two geodesic rays that end at the same C'-smooth point in the boundary are
asymptotic.

Lemma 5.3. Suppose Q@ C P(Rd) is a properly conver domain, v,w € T'Q and vt = wt. If
vt =wT is a C'-smooth point of L), then there exists T € R such that

tliglo drig(e+r(v), pr(w)) = 0.
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Next, given a projectively visible subgroup T' C Aut(f2), let U(T') C T'Q denote the space of
all unit tangent vectors v where v+, v~ € Aq(T'). Note that U(T) is ¢¢-invariant and I'-invariant,
further the I'-action on U(T") is properly discontinuous, and the ¢s-action on U(I') commutes
with the I'-action. As such, ¢; descends to a flow, still denoted ¢, on the quotient

U(I) ==\ U().
Since the Hilbert metric on 2 is a length metric, we can define a metric dp\o on MQ by
dr\q(a,b) = inf{dq(a, l~)) :p(a) = a and p(l;) =b}
where p : Q — I'\Q is the natural projection. Then we may define a metric on I'\T*€ by

dp\pi(v, w) = e dp\o (7(1(v)), T(pr(w)))

where 7 : T\TQ — T'\Q takes a vector to its basepoint. Notice that if p : T'Q — I'\T') is the
natural projection, then

dr\710(p(v), p(w)) < drig(v, w) (7)

for all v, w € T'Q.
Let Aq(I')(?) denote the set of distinct pairs in Aq(T)2. Since I is a projectively visible group,
U(T) is homeomorphic to Aq(I')? x R. Using horofunctions, this homeomorphism can be made

explicit. Bray [8, Lem. 3.2] showed that if 3 is a C''-smooth point of 9, there is a well-defined
horofunction at y

hy : Q2 xQ—R
given by
hy(a,b) := lim do(z,a) — da(z,b),

T—Y

where the limit is taken over all sequences of points x in {2 that converge to y. Since I' C Aut(£2)
is projectively visible, every point in Aq(I') is a C'-smooth point of 92, so h,, is well-defined for
all y € Aq(T).

For every by € Q, the Hopf parameterization of U(T") determined by by is the identification

U(I) = Ao(D)? xR,
where v € U(T) is identified with (v™, v, hy+ (b, w(v))). In this parameterization, the flow ¢,
on U(T) is given by
(Pt(fl:, Y, 8) = (ZE, Y,s + t)7
and the T" action on U(T") is given by

Y(@,y,8) = (v(2), YY), s + hy (v (bo), bo))-

6. TRANSVERSE REPRESENTATIONS AND BOWEN-MARGULIS-SULLIVAN MEASURES

By results from [15] and Appendix B, we deduce that any Py-transverse subgroup I' C G
is the image of a well-behaved representation of a projectively visible subgroup I'y C Aut(Q).
Then, given ¢ € aj with §%(T") < 400, we produce a geodesic flow-invariant measure mg on the
unit tangent bundle of 2, which we call the Bowen-Margulis-Sullivan measure. Later, we will
use this measure in our proof of the ergodicity properties of the Patterson-Sullivan measure.
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6.1. Transverse representations. If § C A is symmetric, 2 C P(Rd) is a properly convex domain
and Ty C Aut(Q) is a projectively visible subgroup, a representation p : 'y — G is said to be
Pg-transverse if there exists a continuous p-equivariant embedding

f : AQ (Fg) — ]'—9
with the following properties:

(1) £(Aq(To)) is a transverse subset of Fy,
(2) if {y,} is a sequence in Ty so that 7, (bg) — = € Aq(To) and v, *(by) — y € Aq(Ty) for
some (any) by € €, then p(v,)(F) — §(x) for all F' € Fy\Z¢(,.
We refer to £ as the limit map of p.
The following observation is a consequence of Proposition 2.3.

Observation 6.1. If p : Iy — G is a Py-transverse representation, then I' := p(I'g) is a Py-
transverse subgroup and the limit map ¢ induces a homeomorphism Aq(T'g) — Ag(T"). Moreover,
(1) &(AG" (To)) = AG™(T).
(2) If {7} is a sequence in Iy so that v,(by) — = € Aq(To) for some by € Q, then
Uo(p(yn)) = &(z) and a(k(p(yn))) — oo for all a € 6.

Proof. We begin by proving (2). Fix a sequence {v,} in Iy so that v,(by) — = € Aq(Ty) for
some by € . By compactness it suffices to consider the case where F'* := lim,, o Ug(p(7n))
and

L := lim mina(k(p(yn))) € RxoU{+o0}

n—o00 acl

both exist, then show that £(x) = F* and L = +o0o. Passing to a subsequence we can suppose
that 4,1 (bo) — y. Then by definition p(v,)(F) — &(x) for all F € Fg\Z¢(, and p(v, ') (F) —
§(y) for all F' € Fg\Z¢(yy. Since Fo \Z¢(y) and Fg \ Z¢(,) are both open, Proposition 2.6 implies
that £(z) = F* and L = +o00. Thus (2) is true.

Then I' := p(T'y) is a Pp-divergent subgroup and £ induces a homeomorphism Aq(I'g) — Ag(T).
Further, by definition, Ag(I") = £(Aq(To)) is a transverse subset and hence I" is Py-transverse.
Finally, Proposition 5.2(4) implies that £(A&™(T'o)) = Ag™(I'o). O

The next two results were established in [15] in the special case when G = PSL(d,R). In
Appendix B we explain how to reduce the general case to this special case.

The first result states that under mild conditions on G and 6, see Section 2.4, every transverse
group is the image of a transverse representation.

Theorem 6.2. Suppose Z(G) is trivial, 0 C A is symmetric and Py contains no simple factors of
G. IfI' C G is Pyg-transverse, then there exist d € N, a properly convexr domain Q C }P’(]Rd), a

projectively visible subgroup I'y C Aut(Q2) and a faithful Pg-transverse representation p : I'o — G
with limit map & : Aq(To) = Fp such that p(T'g) =T and §(Aq(To)) = Ap(T).

It will be useful throughout the paper, to understand how the Cartan projection behaves under
multiplication of group elements. The next lemma assures that when two elements translate a
basepoint by € 2 in roughly the same direction, then the Cartan projection is coarsely additive.

Proposition 6.3. Suppose 8 C A is symmetric,  C P(Rd) is a properly conver domain, I'g C
Aut(Q) is a projectively visible subgroup and p : T'g — G a Py-transverse representation. For
any bg € Q and r > 0, there exist C > 0 such that if v,n € 'y and

do (7(bo), [bo, n(bo)la) <,
then

|x6(p(m)) = ra(p(7)) = ra(p(y""m))|| < C.
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6.2. The Bowen-Margulis-Sullivan measure. Suppose # C A is symmetric, ) C I[D(Rd) is a
properly convex domain, I'y C Aut(2) is a non-elementary projectively visible subgroup and
p: Ty — G is a Py-transverse representation with limit map & : Aq(Tg) — Fy. Let T' := p(Ty).

As in Section 2, let ¢ : @ — a denote the opposite involution. Then fix ¢ € a; with § :=
§?(I') < 400 and let

p:=¢oLE ap.
Notice that ¢(kg(g)) = ¢(rg(g~ ")) for all g € G, and so §%(T") = 6*(I') < +oo. Finally, suppose
© is a ¢-Patterson-Sullivan measure for I' and [ is a ¢-Patterson-Sullivan measure for I", both
with dimension f.
The goal of this section is to construct, using p, ¢ and f, a measure m on U(Fo) that is
p¢-invariant. We will call this measure the Bowen-Margulis measure associated to p, p and .
Let F é2) denote the space of pairs of transverse flags in Fy. Then there exists a continuous
function
R =)
[ s ]9 : ’FQ — ayp,

called the Gromov product such that
[g(F)ag(G)]Q_[F7G]9:_LOBG(.Q?F)_BG(g)G) (8)

for all g € G and (F,G) € ]__‘(92)’ see [43, Lem. 4.12].
Identify U(I'g) = Aq(I'9)® x R via the Hopf parametrization based at a point by € . Then
define a measure m on U(T'g) by

din(z,y, s) = e PPE@EW) R (g (2)) @ du(€(y)) @ dt(s)

where dt is the Lebesgue measure on R. This measure is clearly ¢;-invariant. Furthermore,
Equation (8) and the quasi-invariance property of p and f, imply that m is I'p-invariant. There-
fore, m descends to a measure m on U(I'g) that is ¢s-invariant.

7. A SHADOW LEMMA FOR TRANSVERSE REPRESENTATIONS

Sullivan’s shadow lemma, originally proven in the setting of convex cocompact Kleinian groups
[45], is a central tool in the analysis of Patterson-Sullivan measures in many settings. It gives
estimates from above and below on the measure of a shadow in the sphere at infinity of a ball
about an orbit point from a light based at the basepoint.

In the setting of properly convex domains, shadows can be defined as follows: If §2 is a properly
convex domain, b,p €  and r > 0, one defines the shadow

O, (b,p) :={x € 92 : da(p, [b,x)q) < r}.
Our version of Sullivan’s shadow then has the following form.

Proposition 7.1. Suppose 8 C A is symmetric, ) C IP’(IR{d) is a properly conver domain, I'g C
Aut(Q) is a non-elementary projectively visible subgroup, p : To — G a Py-transverse represen-
tation with limit map & : Aq(To) — Fo, I' := p(Lo), ¢ € a) and p is a ¢-Patterson-Sullivan
measure for I' of dimension 5. For any by € S, there exists Ry such that: if r > Ry, then there
exists C = C(bp, 1) > 1 so that

C~te Polra(p(1)) < M(f(or(bo,’y(bo)) N AQ(FO))> < CePora(p(1)))

for all v € Ty.
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Proof. For notational convenience, we let v be the measure on 02 defined by

v(A) = p(E(AN Ag(To))).

By Proposition 2.8, the action of I' on Ay(T") is minimal, so the support of p is Ag(T"). Also,
since Ag(I") = £(Aq(T0)), it follows that Aq(I'g) is the support of v. This observation, together
with a compactness argument, yields a lower bound on the measure of (large enough) shadows
of by based at any point in I'(bg).

Lemma 7.2. For any by € €2, there exist €y, Rg > 0 such that
v(ORr,(2,b0)) > €o
for all z € Ty(bp).
Proof. Suppose not. Then for every n > 1 there exists z, € I'g(by) such that
v(On(zn,bo)) <277

Passing to a subsequence we can suppose that z, — z € T'o(by) U Aq(T'g). If z € T'y(bg), then
o
J On(zn,b0) = 09
n=N

for every N > 1. On the other hand, if z € Aq(T'y), then by assumption, (z,y)q C Q for every
y € Aq(Tp) \ {z}. This implies that dg(bo, (z,y)a) < 400, so

U On(zna bO) D) AQ(FO) - {Z}

n=N
for every N > 1. Thus, in either case
v(Aa(lo) —{z}) < lim_ > v(On(2n,bo)) = 0.
n>N
Since Aq(Ty) — {2z} is open in Aq(Ty), which is the support of v, this is impossible. O

Next we use Proposition 6.3 to show that if © € Aq(Tp) lies in the shadow O, (bg,~(bo)) for
some v € [y, then By(p(y)~!,&(x)) can be approximated by g (p(7)).

Lemma 7.3. For any r > 0, there exists C1 > 0 such that

6(Ba(p() ™", &(2)) + ro(p()))| < Ca
for all v € Ty and x € O, (bo,v(bo)) N Aq(To).
Proof. Since x € Aq(T'y), by Proposition 5.2(1), there exists a sequence {n,} in Ty such that
Mn(bo) — x. Since x € O, (by,v(bo)), we have

da(v(bo), [bo, z)0) <
and hence

da (v(bo), [bo, 7 (bo)]) <7

for sufficiently large n. So, by Proposition 6.3, there exists C1 > 0 which depends on r and ¢,
so that

|6 (ra(p(7) + ro(p(v ' nn)) = rolp(nn))) | < C1
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for sufficiently large n. Further, Observation 6.1 implies that Up(p(n,)) — &(x). So, by the
“moreover” part of Lemma 3.4,

|0(Bo(p(1) ™1, 6()) + ro(p(7)))| = lim [6(Bo(p(v) ™", Us(p(nn))) + r0(p(7)))]
= lim [¢(kg(p(v""n)) — Ko (p(1n)) + Ko(p(7)))| < C1. O

Now we can complete the proof of Proposition 7.1.
Let €y, Ry > 0 be the constants given by Lemma 7.2 (which depend on by). For any r > Ry
and v € T'y,

Or(bo,y(bo))
So Lemma 7.3 implies that there is some C7 > 0 (which depends on r) such that
V(Or(V_l(bo), bo))

ePo(ra(p(7))))—=BC1 <
V(Q«(bo, ’Y(bo)))

< BHRo(p()))+ECH

Since r > Ry, Lemma 7.2 implies that ¢y < V(OT(’)/_l(bo), bo)) <1,s0
coe PO e Boro(p(7)) < V(Or(bo,’y(bo))> < P01 e Bo(Ro(p(M)).
Hence the lemma holds with C := e#C1¢; L O

8. CONSEQUENCES OF THE SHADOW LEMMA

In this section, we collect several standard consequences of the shadow lemma. Most impor-
tantly, we see that conical limit points cannot be atoms for any Patterson-Sullivan measure and
that if the ¢-Poincaré series converges in the dimension of the measure, then the conical limit set
has measure zero. Later, we will see that if the ¢-Poincaré series diverges at its critical exponent,
then the conical limit set has full measure in the ¢-Patterson-Sullivan measure associated to the
critical exponent.

Proposition 8.1. Suppose 8 C A is symmetric, ' C G is a non-elementary Pg-transverse sub-
group, ¢ € ay and p is a ¢-Patterson-Sullivan measure with dimension 3.

(1) B> 6%().

(2) If y € AP (L), then p({y}) =0.

(3) If QA(B) < +oo, then u(Ag™(T)) = 0.

(4) If {T'y} is a sequence of increasing subgroups with I' = UT',,, then

i ¢ — 59
TLIL)II;O(S (T'y) = o%(I).

The rest of the section is devoted to the proof of the proposition. Fix a non-elementary,
Py-transverse group I' C G, ¢ € aj and a ¢-Patterson-Sullivan measure p with dimension f3.

Using the discussion in Section 2.4 we may assume that G has trivial center and that Py
does not contain any simple factors of G. By Theorem 6.2, there is a properly convex domain
Q c P(R?), a projectively visible subgroup I'y C Aut(€) and a faithful Py-transverse represen-
tation p : I'g — G with limit map & : Aq(T'g) — Fp so that p(I'o) = T" and £(Aq(Ty)) = Ag(T).
Further, {(AG"(T'o)) = A5 (I"), see Observation 6.1. Define a probability measure v on 92 by

v(A) = p(&(AN Aa(Ty))).
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Fix by € Q. By the Shadow Lemma (Proposition 7.1) there is some Ry > 0 such that for
every r > Ry there exists a constant C; = Cy(r) > 1 where
Cfle—ﬂfb(ne(p(v))) < (O (bo, ¥(bo))) < CyePolre(p(7)) (9)
for all v € T.

Proof of part (1). We will make use of a subdivision of the group into sets of the form

Ani={y€To:n < ¢(ro(p(7))) <n+1}.

We observe that if elements in a single A,, have overlapping shadows, then they are nearby.

Lemma 8.2. For any r > 0, there exists Co = Cay(r) > 0 such that: if y1,72 € A, and
Oy (bo, 71(bo)) N Or(bo, y2(bo)) # 0, then

da(71(bo),12(bo)) < Co.

Proof. Fix = € Oy (bo,v1(bo)) N Or(bo,v2(bo)) # 0. Then for j = 1,2, there exists p; € [bo, x)
such that do(p;,vj(bo)) < r. After possibly relabelling we may assume that p; € [by,p2]. By
Proposition 5.1,

da(71(bo); [bo, y2(bo)]) < da(71(bo), p1) + da(p1, [bo, V2(bo)]) < r+ da(p2,72(bo)) < 2r.
Then by Proposition 6.3 there exists a constant C' > 0 (which depends on r) such that

9 (o(p(0n)) + ra(p(ri12)) — molp(2)))| < C.

Since 71,72 € A, it follows that
P(ro(p(77 t2))) < C + 1.

Thus, if we choose
Oy := max{da(bo,v(bo)) : v € I'o and ¢(ke(p(7))) < C + 1},
then
do (71 (bo), 72(bo)) = da(bo, 71 "12(bo)) < Co. O

Fix r > Ry, and let Cy > 0 be the constant given by Lemma 8.2 for 7. For each n, let A/, C A,
be a maximal collection of elements such that

da(71(bo), 72(bo)) > Co
for all distinct 1,72 € A},. Observe that if
N = #{y € To : da(v(bo), bo) < Ca},

then # A/, > %# A,
By Lemma 8.2,

Oy (b0, 71(bo)) N Or(bo, v2(bo)) =0
for all 71,72 € Aj,. Thus, by (9),

1 1
1 =v(Aq(l0)) > Z v(Or(bo,¥(bo))) > & Z ¢ Bo(ko(p(1)) > a# Al g=Bl+1),

yEA, yeA,

This implies that # A, < N# A, < C;NeP(+1), Then

1
6%(T) = limsup — log # A, < 5. O

n—oo N
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Proof of part (2). We first observe that [ is positive. If this were not the case, then part (1)
implies that 5 = 0, or equivalently, that p is a I-invariant measure on Ay(I"). However, this is
impossible because I' acts as a non-elementary convergence group on Ag(T).

Let y € A (I"). By Observation 6.1(1), z := £ (y) € A" (). Then, by definition, there
is some r > 0 and a sequence {7,} in I'g such that v, (by) — x and dq(vn(bo), [bo,z)) < r for all
n. We may assume that r > Ry.

By part (1), (') < 8 < +00, so Q?(s) converges for s sufficiently large. This implies that

lim (kg (p(1m))) = 400
Since z € O, (bg,yn(bo)) for all n and S > 0, it follows from (9) that
n({y}) < liminf v(O;(bo, vu(bo))) < C1lim inf eA¢e(p(m))) — (), O

Proof of part (3). For r > 0 let Aqp,r(I'0) C Aq(Ig) denote the set of limit points z where
there is a sequence {7,} in I'g such that v, (by) — = and dq (v, (bo), [bo, x)) < r for all n. Notice
that AG™(Fo) = U,en Apo,n(Lo). Therefore, it suffices to show that p(§(Aqp,,(I'o))) = 0 for
all r > RQ.

Fix r > Ry, fix an enumeration I' = {7y1,72,...} and let F), := {71,...,v}. Then for any n,

AaprTo) € | Or(bo,v(b0)),
yel'—F,
so by (9),

V(Aﬂ,bo,r(ro))ﬁ Z V(Or(bo,’)/(bo)))ﬁcl Z e~ Bd(ka(p(7)))
NET—F, YET—F,

However, since Q?(ﬁ) < +o0,
; —Bo(ka(p(7))) —
Jm, ) e =0
yel'—Fy,
Therefore, I/(AQ}[,()’T(F())) =0 for r > Ry. O

Proof of part (4). Since {I',} is a sequence of increasing subgroups, 6?(I'1) < §?(I'z) < ... and
hence 6 := lim,, o 6?(I',) € RU{4o0} exists. Further, § < §?(T"). If § = +o0, then

6%(I) = +o0 = lim 6%(Ty).

If § < +00, then for each n there exists a ¢-Patterson-Sullivan measure p,, for I';, with dimension
§%(T). If p is a weak-* limit point of {1, }, then u is a ¢-Patterson-Sullivan measure for I' with
dimension 6. Hence by part (1) we have § > §®(T). O

9. THE CONICAL LIMIT SET HAS FULL MEASURE IN THE DIVERGENT CASE

In this section we show that the Patterson-Sullivan measure is supported on the conical limit
set in case when the associated Poincaré series diverges at its critical exponent. The proof is
similar to Roblin’s [41] argument for the analogous result in CAT(—1) spaces — in that we use
a variant of the Borel-Cantelli Lemma. However, we use a different variant of the lemma and
apply it to a different collection of sets. This seems to simplify the argument and this approach
was developed during discussions between the authors and Pierre-Louis Blayac.
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Proposition 9.1. Suppose 0 C A is symmetric, ' C G is a non-elementary Pg-transverse sub-
group, ¢ € ay, §%(T) < 4o and u is a ¢-Patterson-Sullivan measure for T' with dimension

§:=0%(I). If Q?(é) = +o0, then p(A(I')) = 1. In particular, p has no atoms.

We will use the following variant of the Borel-Cantelli Lemma, sometimes called the Kochen-
Stone Lemma.

Lemma 9.2 (Kochen-Stone Lemma [31]). Let (X, pn) be a finite measure space. If {A,} is a
sequence of measurable sets where Y > | u(Ayp) = 400 and

2i<mn<n H(An N Ap)

—00 N
(0 m(4n))

then the set {x € X : x is in infinitely many of Ay, As, ...} has positive p measure.

For the rest of the section fix I', ¢ and p as in the statement of Proposition 9.1. Using the
discussion in Section 2.4 we may assume that G has trivial center and that Py does not contain
any simple factors of G. Then by Theorem 6.2, there is a properly convex domain 2 C P(Rd), a
projectively visible subgroup I'g C Aut(£2) and a faithful Py-transverse representation p : I'o — G
with limit map & : Aq(I'g) — Fg so that p(I'g) =T and {(Aq(T'0)) = Ap(I"). Define a measure
v on Jf) by

v(A) = n(€(AN Aa(To)))-
Fix by € Q. Then using Proposition 7.1 we may fix C,r > 0 such that
ée—&b(ﬁe(/?(’r))) < 1 (Or(bo, Y(by))) < Ce99ralp() (10)
for all v € T'y. Fix an enumeration I'g = {71,72, ... } and let T}, := dq(bg, v (bo)). By reordering
we may assume that
T <To<T3<
Then let A,, := O,(by,vn(bo)). We will verify that the sets {A,} satisfy the hypotheses of
Lemma 9.2.
The first hypothesis in Lemma 9.2 is easy to check. Directly from Equation (10) we obtain
oo 1 oo
Z v(A,) > e Z =60 (ko (p(n))) *Qr( ) = +00.
n=1 n=1

Verifying the second hypothesis in Lemma 9.2 is slightly more involved. We require the
following technical result, which informally says that the “boundaries” of sums of the form
Ziv:l e 0¢(so(p(1m)) are controlled by their “interiors.”

For N € N, set

N :=max{n e N: T, <Tn + 2r}.

Lemma 9.3. There exists C’l > 1 such that: if N > 1, then

Z e 09(re(p(1m))) < Cy Z e~ ¢(ro(p(n))

Proof. Note that if T,,, T,,, € [Tn,Tn + 2r] and O, (bg, ¥ (bo)) N O (bo, Ym (b)) # 0, then
da(bo, vy, "ym(bo)) = da(va(bo), i (bo)) < 61

Thus, if we set
M = #{y € I'g : da(bo, y(bo)) < 67},
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then every point in 0 lies in at most M different sets of the form O, (b, v, (b)) such that
T, € [Tn,Tn + 2r]. This implies that

N’ N’

S v(An) = Y v (0p(bo, (o)) < Mu(99) =
n=N+1 n=N-+1
Then by Equation (10),
N/
Ze_&i’(’fe(p(%z))) — Z —5¢(ro(p(yn)) + Z _5¢(59 (vn))) < Z —¢(ra(p(n))) + CM
n=1 n=1 n=N-+1 n=1
CM al
- =3¢ (ko (p(1n)))
= <1 " e5¢(ﬁe(P(71)))> z_:le
for all N > 1. The lemma now holds with Cy :=1 + %. ]

The next lemma verifies that the sequence {A,,} satisfy the second hypothesis of Lemma 9.2.
Lemma 9.4. There exists Co > 0 such that: if N > 1, then

> v(AnNAp) <G <§: V(An)> .

1<n,m<N n=1
Proof. Let
Ay :={(m,n):1<n<m< N and A,, N A4, # 0}.
One can show (see the proof of Lemma 8.2) that if (m,n) € Ay, then
da(n(bo), [bo, ym (bo)]e) < 2r.

Then Proposition 6.3 implies

S |Ka(p(m)) + Ko(p(v " vm)) — Ko (p(m))|| < oo, (11)

and so by Equation (10), there exists a constant C’ > 0 such that
V(Ap N An) < v(O,(bo, Y (bo))) < C' ¢80 (ko (p(1n))) o =66 (ke (p(vn ' Ym)))
for all (m,n) € Ay. Also,
da(bo, 7, " Ym(bo)) = da(va(bo), Ym(bo)) < da(va(bo), [bo, ¥ (bo)]e) + de(bo, ¥m(bo))
<+ T, <2r+Ty

for all (m,n) € Ay. In particular, if (m,n) € Ay, then 7, ', = 75 for some k < N'.
These observations, Lemma 9.3 and Equation (10) imply that if N > 1, then

Z v(Ap N Ap) <2 Z v(A, N Ap) < 20 Z o 00(r0(p(1n))) o =80 (ke (p(vn ' ¥m)))

1<n,m<N (m,n)EAN (m,n)eEAN

N N 2
< ¢! Z Z e 0o (p(1n)) g=00(ke (P(W))) < 2"y (Z e—09( He(P(%))))

k=1n=1 n=1

N 2
< 2C'C,C? (Z V(An)> . O
n=1
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We may now apply Lemma 9.2 to the finite measure space (02, v) and the sequence {A,} to
finish the proof of Proposition 9.1.

Proof of Proposition 9.1. We first show that p(Ag°"(I')) > 0. By Lemma 9.2, if we set
Y :={z € 00 : x is in infinitely many of A, Ag, ...},

then v(Y) > 0. Notice that if € Y, then there is a sequence {v,} in 'y such that v, (by) — =
and

do(n(bo), [bo, z)) <
for all n > 1. Thus Y C AG"(I'g). By Observation 6.1(1), £(Y) C Ag°™(T'), so

p(Ag” (1) = u(€(Y)) = v(Y) > 0.
Now suppose for contradiction that u(Ag*"(I")) < 1. If we set S := Ap(I") — Ag°"(I"), then
w(S) > 0, so we may define a probability measure ugs on Ag(I") by

1
ps(A) : H(S)M(A ns).
By definition, pg(Ag(I')) = 0. On the other hand, since S is I'-invariant, pg is a ¢-Patterson-
Sullivan measure for I' of dimension 6, so the above argument implies that pg(Ag**(I")) > 0,
which is a contradiction. Therefore, p(Ag°"(I')) = 1.
By Proposition 8.1, y1 has no atoms in Ag°"(T"). Since p(Ag°™(I')) = 1, we conclude that u has
no atoms. O

10. NON-ERGODICITY OF THE FLOW IN THE CONVERGENT CASE

In this section, we prove that the geodesic flow of a transverse representation is dissipative
and non-ergodic if its image is in the convergent case of our Hopf-Sullivan-Tsuji dichotomy.

Proposition 10.1. Let Q C P(R?) be a properly convexr domain, let Ty C Aut(Q) be a non-
elementary projectively visible subgroup and let p : T'g — G be a Py-transverse representation
for some symmetric 6 C A. Suppose ¢ € aj satisfies § := §%(p(Tg)) < +oo. Let pu and fi
respectively be ¢ and ¢-Patterson-Sullivan measures for p(T'o) of dimension B, and let m be the
Bowen-Margulis measure on U(Fo) associated to p, p and f. If Q?((S) < +o0, then

(1) the Ty x R-action on (U(To), m) is dissipative,

(2) the action of the geodesic flow on (U(Fo),m> is dissipative, and

(3) the action of the geodesic flow on <G(F0),m> is non-ergodic.

Before proving Proposition 10.1, we briefly discuss the notions of dissipative and conservative
dynamical systems. Suppose that X is a standard Borel space, H is a locally compact, second
countable, unimodular group that acts measurably on X, dh is a Haar measure on H, and m a
H-quasi-invariant, o-finite measure on X. If A C X has positive m-measure, we say that A C X
is wandering if for m-almost every = € A, [, _,; 1a(h(z))dh < +oco. Then let D C Q be the
union of all wandering sets, and let C := Q —D. We say that H-action on (X, m) is conservative
(resp. dissipative) if m(D) = 0 (resp. m(C) = 0).

Given a m-integrable, positive function f : X — (0,00), we may decompose X into

Cpim {1‘ €X: /Hf(h(x))dh - +oo} and Dy = {x €X: /Hf(h(z:))dh < +oo}.

In the case when the measure m is H-invariant, it is known (see for instance [5, Fact 2.27]) that
C; = C and Dy = D up to measure zero sets.
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Proof of Proposition 10.1. Proof of (1). Suppose for contradiction that the I'y x R-action on
(U(Tp), m) is not dissipative. Then there is a m-integrable, positive function f : U(I'g) — (0, c0)
and a compact set

K CcCy:=qveUy): Z/fy w(v))dt = +o00

Y€l

such that m(K) > 0. For any R > 0, let

Kr={vekK: Z/le ©i(v))dt < R
7€l

Since K C Cy, the integral
Lo X [ 10 atomnm@atane) = [ 30 [ e atiame)
U(T'o) ~v€ly KEEVGFO
is infinite if m(Kg) > 0. On the other hand, since m is I'g x R-invariant,

/U(FO Z/fv 0 (V) 1, (v)dt dim(v) = /U(FO Z/lKR ~ - i (v))dt dim(v)

VEF v€Tg
<R/ m(v) < +o0.
U(To)

It follows that m(Kg) = 0 for all R > 0, or equivalently, that

Z/ley oi(v))dt = 400

~v€lo

for m-almost every v € K. This in turn implies that for almost every v € K, there are diverging
sequences {t,} in R and {~,} in Iy such that v,¢, (v) € K, and so at least one of the forward
endpoint v or backward endpoint v~ of v is in AG™(I'y). Thus,

n(€(AG" (o)) > 0,

since m(K) > 0. However, by Proposition 8.1, u(§(AG"™(I'0))) = 0, which is a contradiction.
Proof of (2). Let f: U(I'g) — (0,00) be a m-integrable, positive function. By part (1), we
may define an m-integrable, positive function I : U(I'g) — (0,00) by F([v]) := >_ cp (v - v).

Furthermore, for m-almost every [v] € U(I),

/}RF(%( Z/fv @¢(v))dt < +o0.

~v€lo

Proof of (3). Pick a compact set K C U(Fo) with non-empty interor. Let f : U(Fg) — (0,00)
be a m-integrable, positive function that takes the value 1 on the compact set gp[o,l](K ). Part

(2) implies that for m-almost every v € U(I'g), we have

/ F(i(0))dt < +o0,
R

so there is some T3, > 0 such that ¢:(v) ¢ K for all ¢t ¢ [T, T,].
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Suppose for contradiction that the action of the geodesic flow on (U(Fo), m) is ergodic. Then

for m-almost every v € U(Fo), the flow line of v is dense in G(Po). Thus, there is some vy € U(Fo)
and some 1" := T, > 0 such that U(I'g) = pr(vo) and

O (00,1 (V0) U100y (v0) € U(Tp) — K.

It follows that the interior K of K lies in Ol-T,T) (vg). However, it is easy to see that no open

set in G(Fo) is homeomorphic to a subset of the interior of a line segment. O

11. ERGODICITY OF THE FLOW IN THE DIVERGENT CASE

In this section, we prove that the geodesic flow of a transverse representation is conservative
and ergodic if its image is in the divergent case of our Hopf-Sullivan-Tsuji dichotomy.

Theorem 11.1. Let Q C P(R?) be a properly convex domain, let Tg C Aut(Q) be a non-elementary
projectively visible subgroup and let p : To — G be a Py-transverse representation for some
symmetric 0 C A. Let ¢ € ap, let p and [i respectively be ¢ and ¢-Patterson-Sullivan measures

for p(To) of dimension § := §%(p(To)), let m be the Bowen-Margulis measure on U(Fo) associated
to p, i and i, and let m be the lift of m to U(Ly). If Qﬁ(ro)(é) = +00, then

(1) the action of the geodesic flow on (U(Fo),m> is conservative, and
(2) the action of the geodesic flow on (U(Fo),m> is ergodic.

Before starting the proof of Theorem 11.1, we recall a result of Coudéne. Suppose {p;} is
a continuous flow on a metric space X which preserves a Borel measure m. The strong stable
manifold of x € X is

W) = {y € X : lim d(i(w), w(y)) = 0}

and the strong unstable manifold of x € X is

W) = {y € X+ tim_d(eile), ) = 0.

A measurable function f : X — R is W -invariant if there exists a full measure set X’ C X
where f(z) = f(y) whenever z,y € X' and y € W*(z). Similarly, a measurable function
[+ X — R is W-invariant if there exists a full measure set X’ C X where f(z) = f(y)
whenever z,y € X' and y € W5 (z).

Theorem 11.2 (Coudene [17]). Let X be a metric space, {1} a continuous flow on X and m a
{1 }-invariant Borel measure on X such that (X, m,{¢:}) is conservative. Suppose that there is
a full measure subset of X that is covered by a countable family of open sets with finite m-measure.
Then every flow-invariant, m-measurable function on X is W*3-invariant and W*"-invariant.

Proof of Theorem 11.1. Proof of (1). Fix a m-integrable, positive, continuous function f :

~

U(T9) — (0,00). Then let
Fi=fop:UTy) R,
where p : U(I'g) = U(I'g) is the quotient map. To show that the action of the geodesic flow on

<G(F0), m | is conservative, it suffices to show that

/ﬂ%ww:/ﬂwMWMt
R R
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is infinite for m-almost every v € U(Ty).
By Proposition 9.1 and Observation 6.1(1), the set

R = {v e U(Ty) : vt € Affn(Fo)}

has full m-measure.
Fix v € R. Then there is some r > 0 and a sequence {7, } in Iy such that v, (7(v)) — v* and

do (Y (7 (v)), [r(v), v )a) <r

for all n, where 7 : T1Q — Q is the projection map. In particular, there exists a compact subset
K c U(T'y), which depends on r > 0, such that

{teR:¢pi(v) el - K}
has infinite Lebesgue measure. Since f is T'y-invariant and continuous,
inf = mi > 0.
willh i1 (0) = iR S ()

Hence
[ Floroya =+
R

Since v € R was arbitrary and R has full m-measure,

/ Flr(v))dt = +oo
R

for m-almost every v € U(T'y).
Proof of (2). Notice that Equation (7) implies that

p(W**(v)) C W*(p(v)) and p(W*(v)) € W*(p(v))

for all v € U(Ty), so the lift of a W*s-invariant (respectively WU-invariant) function on U(Tg) is
a W#-invariant (respectively W*"-invariant) function on U(I'g). By definition, G(Fo) is covered
by a countable family of open sets of with finite m-measure, so by Theorem 11.2, it suffices to
show that if f : U(Ty) — R is a m-measurable, I-invariant, {¢;}-invariant, W**-invariant and
We¥-invariant function, then f is constant on a set of full m-measure.

Since f is W¥%%-invariant and W*"-invariant, by definition there exists a full m-measure set
Yo € U(Tp) such that f(v) = f(w) whenever v,w € Yy and v € W**(w) U W*5(w). Since f is
{¢+}-invariant, we can assume that Yp is also {¢;}-invariant. Let v and 7 be measures on OS2
given by

V(A) = p(E(ANATD) and  #(A) = i (E(AN Aa(To)).
where ¢ is the limit map of p. By the definition of m, we see that Yy = Y x R for some set
Y] € Aq(To)? of full 7 ® v-measure. Set

X = {y € Aq(Ty) : (x,y) € Y{ for v-almost every z € Aq(Ty)},

and note that (X ) = 1 by Fubini’s theorem. Hence, if we fix (vy,vd) € (Aa(To) x XT)NY{,
then the set
Y= {(z,y) € Yy : (z,05) € Y}
has full 7 ® v-measure, so Y := Y’ x R C U(I'p) has full m-measure.
Let (z,y,t) € Y. By Lemma 5.3, there is some s € R such that (z,y,t) € W*(z,vq, s), and
there is some r € R such that (z,v,s) € W*(vy, v, 7). By definition, (x,y,t), (z,vd,s), and
(vo_,v{f,r) lie in Yj, so

f(@,y,t) = f(z,v5,8) = fvg,vg.r) = flvg,vg,0).
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This proves that f is constant on Y. O

12. CONSEQUENCES OF ERGODICITY

In this section we record some consequences of Theorem 11.1. The first two corollaries com-
plete the proof of our Hopf-Sullivan-Tsuji dichotomy. We also show, in the divergent case,
that there is some R so that the uniformly R-conical limit set has full measure for the unique
Patterson-Sullivan measure of critical dimension and establish a rigidity result for pairs of trans-
verse representations with mutually non-singular BMS measures.

Corollary 12.1. Suppose I' C G is a non-elementary Pg-transverse subgroup for some symmetric
0 CA, ¢€ayandd:= §%(T") < +oo. Let p and i respectively be ¢ and ¢-Patterson-Sullivan
measures for I of dimension (3.
(1) If Q?(é) = 400 and B = 8, then the T-action on (Ag(D)P, i ® p) is conservative, and
the T' actions on (Ag(T)?, i @ 1) and on (Ap(T), 1) are ergodic.
(2) If Q?((S) < 400, then the T action on (Ag(T)?), i ® p) is dissipative and non-ergodic.

Proof. Using the discussion in Section 2.4 we may assume that G has trivial center and that Py
does not contain any simple factors of G. Then by Theorem 6.2, there is a properly convex domain
Q c P(RY), a projectively visible subgroup I'y € Aut(Q) and a Py-transverse representation
p:To — Gsuch that p(T'g) = T". Let £ : Aq(Tg) — Ap(T") be the p-equivariant boundary map
and let m be the Bowen-Margulis measure on U(FO) associated to p, p and fi.

Proof of (1). Theorem 11.1 part (3) implies that the geodesic flow on (G(Fo),m) is ergodic.
Any T-invariant subset of either (Ag(I')?), i @ ) or (Ag(I), i) that has positive but not full
measure, gives rise to a flow-invariant subset of (U(F 0), m) that has positive but not full measure.
Therefore, the actions of I' on (Ag(I)?), i ® p) and (Ag(I'), i) are both ergodic.

Next, suppose for the purpose of contradiction that the action of I on (Ag(I)?), i ® p) is not
conservative. Since the measure 6_5(15(["']9),& & pu on Ag(I‘)(z) is [-invariant, there is a positive,
continuous function f : Ag(T')®) — (0, 00) such that

Dy = (z,y) € Ag(T Zf ) < 400
vyer

has positive i ® p-measure. Since T' acts minimally on Ag(T), each open set in Ag(T')?) has
positive i ® y-measure. This, together with the fact that the action of T on (Ag(I)®), i ® p)
is ergodic, implies that almost every orbit is dense. Thus, there exists (xo,y0) € Dy with

Ag(T)®) =T - (xg, o), but this is a contradiction since f is positive and

Zf (20,Y0)) < 0.

yel’

Proof of (2). Let f: U(I'g) — (0, 00) be a m-integrable, positive function. By Proposition 10.1
part (1), we may define the 1 ® p-integrable, positive function

Fihom)® SR by FE(w ) &t)) = / f(r())

Furthermore, for i ® p-almost every (£(v™),£(v")) € Ag(T)?), we have

> Flp(ME@™), ol Z/f Y(pi(v)))dt < +o0.

p(v)er 7€l
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It follows that the T' action on (Ag(I)?), i ® p) is dissipative.

Proposition 10.1 part (3) implies that there is some subset of U(I'g) that is invariant under
the T’y x R-action, with positive but not full m-measure. This defines a subset of Ag(T')?) that
is invariant under the I'-action, with positive but not full i ® y-measure. Thus, the I' action on
(Ap(1)?) | i ® p) is non-ergodic. O

It follows, from a standard argument (see for instance [45, pg. 181]), that the Patterson-
Sullivan measure in the critical dimension is unique in the divergent case.

Corollary 12.2. Suppose I' C G is a non-elementary Pg-transverse subgroup for some symmetric
0 C A, ¢ca;andd:=1I) < +oo. If sz(d) = +o00, then there is a unique ¢-Patterson-
Sullivan measure pg for I' of dimension ¢.

For the next two results let Q € P(R?) be a properly convex domain, let Ty C Aut(Q) be a
projectively visible subgroup and let by € Q. For any R > 0, we denote by Ag’}}m r(Lo) the set
of points € AG"(I'g) for which there exists a sequence {v,} in I'g such that v, (by) — = and

dQ('Yn(bO)a [b03$)9) <R

for all n. The next corollary proves that if the image of a transverse representation is in the
divergent case, then there is an R > 0 such that the set of R-conical limit points have full
measure.

Corollary 12.3. Suppose p : T'g — G is a Py-transverse representation for some symmetric 6 C A,
¢ € a}, 6 :=5%(p(Lo)) < +oo and  is the ¢-Patterson-Sullivan measure for p(To) of dimension

0. If Qﬁ(ro)(é) = 400, then for any by € Q, there exists R > 0 such that

p (E(AGS,,r(T0))) = 1.
Proof. The following argument is standard, see for instance [45, pg. 190]. Define a measure v
on 0f) by
v(A) = p(E(AN Aa(To))).

Since Qﬁ(ro)(é) = +o00, by Proposition 9.1,
L= 0 (AF(0) = lim v (AR, ()

Hence there exists Ry > 0 such that v (Ag),ll;o,Ro (FO)) > 0.

Let L be the set of points x € Aq(T'y) for which there exist b € T'g(by) and a sequence {v,}
in Ty such that v, (b) — = and
da(7a(b), [b,2)a) < Ro
for all n. Observe that L is I'o-invariant, and v(L) > 0 because AG} x (I'o) C L. Hence by
Corollary 12.1, v(L) = 1.
It now suffices to show that L C AGY r .1(I'o). Fix € L. Then there exist b € I'o(bo), a
sequence {7, } in Ty, and a sequence {b,} in [b, 2)q where 7, (b) — x and

for all n. By Lemma 5.3, there exists a sequence {b],} in [by, 2)n such that
lim dg(by,b,) = 0.

n—oo

Since b € T'g(bg), we can write b = ~y(bg) for some v € I'y. Then
do(1n(bo), [bo, 7)a) < Ro + 1
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con

for all n sufficiently large. So x € AQ,bO,R0+1(F0)' O

Finally, we prove the following rigidity result for length functions which have non-singular
Bowen-Margulis-Sullivan measures.

Corollary 12.4. For j = 1,2, suppose p; : I'o = Gj is a Py, -transverse representation for some
symmetric 0; C Aj, ¢j € a;j and §; = 6% (pj(To)) < +oo. For 1 € {¢;j,¢;}, let puy be the
Y-Patterson-Sullivan measure for p;(I'o) of dimension §; and let m; denote the Bowen-Margulis-
Sullivan measure associated to pj, piy; and 1, - If Qp (To) ( j) = +oo for j = 1,2 and my is
non-singular with respect to ma, then:

(1) my = emy for some ¢ > 0.
(2) supyer, [0101(ka, (p1(7))) = d2dba(ka, (p2()))] < +00.

(3) 6171 (p1(7)) = 62672 (p2(v)) for all v € To.
If, in addition, G; is simple, Z(Gj) is trivial and p; has Zariski-dense image for j = 1,2, then
there is an isomorphism ¥ : Gy — Gg such that ps = Vo p;.

The proof of Corollary 12.4 requires the following lemma.

Lemma 12.5. Suppose Q C P(RY) is a properly convex domain and T' C Aut(Q) is a projectively
visible subgroup. Let dp be a distance on P(Rd) induced by a Riemannian metric. If r > 0,
bop € Q and {vn} is a sequence of distinct elements in I', then

Jim_ diam (Or(bo, 7 (bo))) = 0,
where the diameter is computed using dp.
Proof. Fix a subsequence {7y, } such that
111151_}801(1)13 diam (O (b, yn(bo))) = ]1520 diam (O;(bo, Yn; (b0))) -

Passing to a further subsequence we can suppose that v,;(bo) — = € Aq(I') and ~v,; — T €
P(End(R?)). To show that diam (O;(bo,Vn,(bo))) converges to 0, it suffices to fix a sequence
{y;} where y; € O,(bo, Yn,(bo)) for all j > 1 and show that y; — x. By definition, for each j > 1
there exists y; € [bo, y;) such that do(y}, yn;(bo)) < r. Then the sequence {7;].1 (y;)} is relatively
compact in Q. So by Proposition 5.2(3)

_ : =1,/ _ _
r=T <jlggo Vn, (yj)> lim 5,7, y)) = ]1550 Y.
Since y; € [bo, y;) for all j > 1, this implies that y; — . O
Proof of Corollary 12./. By the ergodicity of the flow {¢;} (see Theorem 11.1) and the assump-

tion that mq is non-singular with respect to mo, there exists ¢ > 0 such that m; = cmeo.
Note that for j = 1,2 and v € I'g,

£ (p5(1)) = Tim_ 6500, (054")))

n—oo

Thus, to prove part (3), it suffices to prove part (2).
For all ¢ € {(Z)l, P9, @1, <Z>2}, let v, be the measure on 0f) given by

vy (A) = py (E(AN Ap(To))).
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Fix r > 0 sufficiently large so that the Shadow lemma (Proposition 7.1) holds for the probability
measures Vg, and vg,. Then there is some C' > 0 such that

1 9202(k0, (p2(7)) _ Vg, (O (bo, v(bo))) _ 0652@(@2(,;2@)))
56516251('191(/31(’7))) - V¢2(Or(bo,’y(bo))) = ehdi(ke, (p1(7)))

(12)

for all v € T'y.
Fix a distance dp on P(Rd) induced by a Riemannian metric, fix z1, 29 € Aq(T'g) distinct and
let € := %dp(l‘l, x9). Lemma 12.5 implies that there exists a finite set S C I'g such that

diam (O (bo, ¥(bo))) < €
for all v € 'y — S. Hence, for each v € I'g — S, there is some i € {1,2} so that
Bi X Or(bﬂa’y(b())) C {(xay) € AQ(F0)2 : dIP(':va) > 6} = Ka

where B; := {y € Aq(Tg) : dp(y,x;) < €}. From the definitions of dm and dmsg, and the fact
that mq = cmo, we see that if we set

b1 (6 @6 W),
Co:=c max S @&’

then
1

50(%2 ® Vg, )(A) < (v, @ vy, )(A) < Colvg, @ vg,)(A)

for all Borel measurable sets A C K. Hence, if we set

Cq = Cgmax{ ¢ (
¢

then

1 < Ve, (Or(bo, v(bo))) < (13)

C1 ™ gy (O (bo,v(bo))) —

for all v € I'g — S.
Since S is finite, (12) and (13) imply that

52%3 0101 (ke (p1(7))) — d20p2(ke, (p2(7)))] < +o0.

To prove the last claim of the corollary, we use the following argument of Dal’bo and Kim [20].
Consider the product representation p; X po : I' = Gy X Go, let A denote the set of simple roots
of Gy X Gg, and let a denote the Cartan subspace of G; x Gy. Corollary 12.4(3) implies that the
A-Benoist limit cone B(p; X p2) lies in a hyperplane in a. A theorem of Benoist [2] then implies
that the Zariski closure Z of (p1 x p2)(T) is properly contained in G; x Ga.

Let 7; : Gi X Go — G; be the projection map. Then the kernel m3_;|7 is a normal subgroup
of G;, which is not all of G;. Since G; is simple and Z(G;) is trivial, we conclude that m3_;|7 is
injective. Since p; has Zariski dense image, m3_;|7 is also surjective. Hence, ¥ := my|z o 7T1‘21
is an isomorphism such that pa = ¥ o p;. t
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13. A MANHATTAN CURVE THEOREM

Sambarino [44] showed that when I' is Anosov, the entropy functional is concave and charac-
terizes when it is not strictly concave (see also Potrie-Sambarino [39]). One may view this as
an analogue of Burger’s Manhattan Curve Theorem [11], since in this setting both are conse-
quences of the convexity of the pressure function and rigidity results for equilibrium measures.
However, in our setting we do not have access to thermodynamic formalism, so we must adapt
other methods.

Theorem 13.1. Suppose 8 C A is symmetric, I' is a non-elementary Pg-transverse subgroup of

G and ¢1, ¢ € a} satisfy 6°1(T') = 692(T') = 1. If ¢ = A1 + (1 — A2 for some X € (0,1), then
§:=0%() < 1.

Moreover, if 6*(T) = 1 and Ql(é diverges at its critical exponent, then (%1 (y) = (22(y) for all
vyel.

As a consequence of Theorem 13.1, we use a result of Benoist [2] to show that equality never
occurs when I' is Zariski dense.

Corollary 13.2. Suppose 0 C A is symmetric, I' is a Zariski dense Pg-transverse subgroup of G,
and ¢1,¢2 € af are distinct and satisfy §%1(T') = 6%2(T) = 1. If ¢ = Ap1 + (1 — N)¢h2 for some
A€ (0,1) and Q? diverges at its critical exponent, then 6*(I') < 1.

Proof of Corollary 15.2. For g € G define
— 1 1 n + NI H 1 n +
v(g) := nh_}n;o ﬁli(g )€a” and vp(g) := nh_)n(f)lo Eng(g ) € ay

(these limit exists by Fekete’s Subadditive Lemma). Note that via the identification of aj as a
subspace of a* described in Section 2, we have

9i(7) = ¢j(u(7)) = ¢, (v(7))
for both j = 1,2 and all v € T.

Suppose for a contradiction that d?(I') = 1. By Theorem 13.1, ¢1(v(7)) = ¢o(v(7)) for all
~v € I, which implies that ¢; = ¢ on

C .= U'YEF R>0 V(’Y)
Since I' is Zariski dense, a result of Benoist [2] implies that C is a convex subset of a with
non-empty interior, so ¢1 = ¢, and we obtain a contradiction. O

Proof of Theorem 15.1. The general strategy of our proof is inspired by the proof of Theorem
1(a) in [11].

The first part follows immediately from the definition and Holder’s inequality which gives

that, for all s,
Qr(s) < QP (1@ ()
So our main work is to establish the “moreover” part of the theorem.

Suppose that 6*(T') = 1 and Q?(l) = +oco. For v € {gbl,gbg,gb, <Z_>1,¢_>2,¢_>}, let 1, denote a
-Patterson-Sullivan measure for I' of dimension 1.

Using the discussion in Section 2.4 we may assume that G has trivial center and that Py
does not contain any simple factors of G. Then by Theorem 6.2, there is a properly convex
domain Q C P(R?), a projectively visible subgroup I'y € Aut(Q) and a faithful Pg-transverse
representation p : I'g — G with limit map £ : Aq(Ig) — Fy so that p(I'g) =T" and £(Aq(Ty)) =
Ag(T).
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For ¢ € {(Z)l, bo, &, D1, Do, qg}, define a measure v, on 0f2 by

vp(A) = py (§(A N Aa(l0))) -

Fix by € Q. Recall, from Section 12, that AG} (o) C Aq(Ty) denotes the set of limit points
which are R-conical. By Corollary 12.3 we can fix R > 0 sufficiently large so that

Vo (A3, r(T0)) =1 and vz (AGY, £(To)) = 1.
Using the Shadow Lemma (Proposition 7.1) and possibly increasing R, we can also assume that
for every r > R there exists a constant C,. > 1 such that

C;te Vo) < 1y (Or(bo, (b)) < Cre™ Vel (14)

for all v E [' and 1/) € {¢17¢27¢7 (517(527(5}'
For all o, 8 € T'g and r > 0, let

Rr(a, B) := Or(bo, a(bo)) x Or(bo, B(bo))-
The following lemma is the crucial place where we use the fact that 6*(I') = §%1(I") = §%2(I").
Lemma 13.3. Ifr > R and o, B € 'y, then
(Vg @ V) (Ri(a, B)) < ci (1/(1-51 Q vy + vz, ® Vey) (Rr(at, B)). (15)
Proof. By repeated applications of the Shadow Lemma (14), we see that if «, 8 € T'¢, then
(VJS ® vg) (RT(CV, 5)) < CT2€—<Z>(N9(P(0¢)))e-¢('§e(ﬂ(ﬁ)))
_ (2~ (M10k0 (@) + (1080 ((00)) +X61 (50 (0(8) + (1= 1) 0(5)))

< Cvg, (Or(bo, a(b0))) v, (Or(bo, a(b0)))' ™ v, (Or(bo, B(00)))* v, (Or(bo, B(bo)))' ™
A 1-X
:C;}(ngl ®V¢1)(RT(O‘HB)> (V¢_>2®V¢2)(R7“<aaﬂ)) .
We may then apply the weighted Arithmetic Mean-Geometric Mean Inequality to see that
(vg @ vg) (Re(a, B)) < C7 (v, @ g, + 15, @ vg,) (Re(, B))
for all a, 8 € I'g. O

Our goal is to upgrade the inequality in Equation (15) to all Borel measurable sets in Aq(I'g)2.
We first show that shadows form a neighborhood basis of every point in Aq 4, r(I'0)-

Lemma 13.4. If z € Aqp, r(T0) and U is a neighborhood of x in ON), then there exists v € T’
such that

z € Og(bo,7(bo)) C U.
Proof. Fix a sequence {v,} in I' such that v,(bp) — « and disto(vn(bo), [bo,x)) < R for all

n > 1. Then x € Og(by, yn(bo)) for all n > 1 and Lemma 12.5 implies that Og(bg, yn(bo)) C U
when n is sufficiently large. O

Next, by the argument in [41, pg. 23], we observe that the shadows satisfy a version of the
Vitali covering lemma.

Lemma 13.5. If I C Ty andr > 0, then there exists J C I such that the sets {O,(bo,v(bo)) : v € J}
are pairwise disjoint and

L Or (b0, 7(b0)) < | Osr(bo, 7(bo)).

vyel yeJ
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We now leverage our covering lemma to upgrade Equation (15) to all measurable subsets of
A(Tp)2.

Lemma 13.6. There exists C > 0 such that: if A C Aq(To)? is a Borel measurable set, then
(vg @ vg)(A) < C (vz, @ vy, + 15, @ vy,) (A).
Proof. 1t suffices to prove the lemma in the case when A = A; x Ay for some Ay, Ay C Aq(T).
Fix € > 0. By the outer regularity of the measures, for both j = 1,2, there exists an open set
Uj D Aj with
(V(z;l Q vy, + vz, ® I/¢2) (Ul X Ug) < (l/d‘)l Q Vg, + V5, ® V¢2) (Al X Az) +e.
If we let I; :== {av € I'g : Og(bo, (bo)) C Uj}, then by Lemma 13.4
(A1 x A) NAGE rTo)* € |J  Rr(e,B8) C UL x Ua.
(047,3)611 x 1o

By Lemma 13.5, we can find a subset J; C I; such that the sets {ORr(bo, a(bo)) : @ € J;} are
pairwise disjoint and

| Or(bo,a(b)) € | Osr(bo, albo)).

aGIj OLGJj
Since we chose R > 0 such that vy (Ag),rl;o,R(FO)) =g (Ag),go,R(FU)) =1, it follows that
(5 @ vg) (A1 x Az) = (v @ vg) ((A1 X A2) N Ay r(T0)?)
< > (5®w) (Ren(a.B).
(a,ﬂ)€J1><J2
Then by repeated applications of Equations (14) and (15),
Z (v © vs) (Rsr(a, B)) < CpCsp Z (vg @ v)(Rr(a, B))

(,B)€J1x ]2 (,B)EJ1 X Jo
<CcyCi (vg, @ Vg, + 13, @Vg,) (Rr(, B8))
> URUsR &1 1 b2 b2 R &,
(a,ﬁ)eJliQ
< C%C’g‘R (ch31 Q Vg, + Vg, ® I/¢2) (U1 X Ug)
< CJEE%C?R (V¢_>1 Qg +vz, @ V¢2) (A1 X AQ) + C?%CE?RG'
Since € > 0 was arbitrary, it follows that
(l/qg & ll¢) (Al X Ag) < CIG%C?R (I/qgl @ Vg, + Vg, X 1/¢2) (Al X AQ). ]
Lemma 13.6 implies that v ® vy is absolutely continuous with respect to vg @ vy, +vg, Qvg,.
Therefore, after possibly relabelling, we can assume that vz ® vy is non-singular with respect to
Vg, O V-
We claim that Q?l(l) = +00. Otherwise, Proposition 8.1 would imply that
vg, (AQ" (Do) = vg, (AQ"(To)) = 0,
which is impossible since
ve(AQ" (To)) = v5(Ag" (T')) = 1
by Proposition 9.1.
Since v5®vy is non-singular with respect to vz ®vy,, the associated Bowen-Margulis measures

are non-singular. Hence by Corollary 12.4 we have ¢?(y) = ¢91(«) for all v € T'. Thus £%! () =
¢22(y) for all y € T, O
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Notice that the Holder inequality similarly proves a statement which is of the same form as
Burger’s Manhattan Curve Theorem. However, we are not able to give an analogous character-
ization of when equality occurs.

Theorem 13.7. Suppose 0 C A is symmetric, I'1,I's C G are Pg-transverse subgroups and there
exists an isomorphism p : T1 — Ta. If ¢ € aj and §%(T'1) = §%(T'2) = 1, then for any X € (0,1)
the weighted Poincaré series

3 o5 (Ao () +H1=Ne(ro(p(1))))

vel

has critical exponent § < 1.

APPENDIX A. PROOF OF PROPOSITION 2.3
In this section we prove Proposition 2.3 which we restate here.

Proposition A.1. Suppose F* ¢ ]:oi, {gn} is a sequence in G and g, = mpe®9)0, is a KAK-
decomposition for each n > 1. The following are equivalent:
(1) mp Py — FT, £, Py — F~ and a(k(gy)) — 400 for every o € 0,
(2) gn(F) — F* for all F € ]-";' \Zr-, and this convergence is uniform on compact subsets
of ]-";' \Zp-.
(3) g, "(F) = F~ for all F € F \Zp+, and this convergence is uniform on compact subsets
Of}E_\ZF+.
(4) There are open sets Ut C F5 such that g,(F) — F* for all F € U" and g, (F) — F~
forall FelU™.

It is well-known that
exp:u, — Uy :=exp(uy,)
is a diffeomorphism. Furthermore, the Langlands decomposition (see for instance [47, Thm.
1.2.4.8]) of parabolic subgroups states that the map

u, ) € U, X Lg— ul € P,
0 0

is a diffeomorphism, where Ly := Py NP, . It follows that U, acts simply transitively on Fy \ZP;.

Thus, the map
Jw:u;-%.Fg\Zbg

given by T(X) = eXPy is a diffeomorphism.
Note that if H € a and X € u,, then

eHT(X) = efleXPy = efleXe Py = MNPy — 7 (Ad(eH)(X)) . (16)

Furthermore, if we decompose
X=> Xacu,

aEEJ
where X_, € g_, forall a € E;’, then
Ad(e")(X) = Y Ad(")(X o) = > e X, (17)
aGEg aeEg

Together, Equations (16) and (17) imply the following observation.



44 CANARY, ZHANG, AND ZIMMER

Lemma A.2. Let {H,} be a sequence in at. If a(H,) — +oo for all a € 0, then el ' — Py for
all F e Fy \ZP;, and this convergence is uniform on compact subsets of Fg \ZP;.

Using Equations (16) and (17), we can also prove the following lemma.

Lemma A.3. Let g, = mne™97)0, be as in the statement of Proposition A.1.

(1) If there is an open set U C F, such that g,(F) — Ft for all F € U, then m,, Py — FT
and a(k(gn)) — +oo for every a € 6.

(2) If there is an open setU C F, such that g, (F) — F~ for all F € U, then {;' Py — F~
and a(k(gn)) — 400 for every a € 6.

Proof. By compactness, it suffices to consider the case where m, — m € K and ¢, — ¢ € K.

(1): We first prove that a(k(gn)) — 400 for all o € 0. If this is not the case, then by taking
a subsequence, we may assume that there is some ag € 6 such that ag(k(gn)) — ¢ € [0, 00).
Choose F, F' € U such that ¢(F),((F') € Fy \ZP;, and if we decompose

T UF) = Y X_o and THUF) = > X',

aGE;' aeE;'
where X_, X’ , € g_q for all @ € 5, then X_4, # X’ . Then by (16) and (17),

i T (e (n) _ K(gn)yp—1 _c - —a(r(gn))
Tim T ("0, (F)) = lim Ad(e™9)T7 (6 (F)) = € X g, + lim Yoo X_a.

aGZ]g'—{ao}

Similarly,
lim T7Y(e"9n) ¢, (F')) = e ¢ X’

n—00 —ao

+ lim Z e~ oklgn)) X7

—a
n—o00
0462:9F —{ao}

so lim;, o0 me”(gn)ﬁn(F) £ lim,, o me9n)g,, (F"), which implies that
. . /
Jim_g,,(F) # Tim gn(F7).

This is a contradiction because F, F’ € U.
Next, we prove that m, Py — F7T, or equivalently, mPg = F*. Let I € Fg such that F is
transverse to /'~ and £(I") is transverse to P, . Then there is some compact subset K C Fy \ZP;

such that ¢, (F) € K for all sufficiently large n. Since a(k(gn)) — +oo for all a € 6, Lemma A.2
implies that

e9n) g, (F) — Py,
which implies that
gn(F) = mne“(gn)ﬁn(F) — mPy.

It follows that mPy = FT.
(2): As in Section 2, let kg € Nk(a) be a representative of the longest element wy € W.
Observation 2.2 implies that Ad(ko)(—#(g)) = k(g™ ?) for all g € G, and so

gt = (68 erlan ) (kom;?)

is a KAK-decomposition of g, .
Further, P« ) = ko P, ko ! see Equation (2), so we can define a G-equivariant diffeomorphism

Dy : fe_ — “/_-.L*(G)
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by ®4(gPy) = gkoP,g). Then g, '(F) — ®g(F~) for all F € ®g(U). So by part (1), we
see that £, k;" Py = ®o(F7) and a(k(gy')) — +oo for all v € 1*(6). Since ®y((,' Py) =
0 kg Py (g this implies that ¢, 1 P, — F~. Further, by Observation 2.2,

a(r(g)) = (@) (k(g™))

for all g € G and all a € 6. So we see that a(r(g,)) — +oo for all a € 6. O

Proof of Proposition A.1. 1t follows immediately from Lemma A.3 that (4) implies (1), and it
is obvious that (2) and (3) together imply (4). It thus suffices to show that (2) and (3) are
both individually equivalent to (1). By compactness, it suffices to consider the case where
my, = m € Kand 4, — £ € K.

We first prove that (1) implies (2). Since a(k(gn)) = 400 for all a € §, Lemma A.2 implies

lim e"9n) F = Py

n—oo
for all F' € Fy \ZPg7 and this convergence is uniform on compact subsets of Fjy \ZPg' Since,
mPy=FT and (' P, = F~, it follows that

lim g,(F)=F*

n—oo
for all F' € Fy\Zp-, and this convergence is uniform on compact subsets of Fy\Zp-.
Next, we prove (2) implies (1). By Lemma A.3, m,, Pg — F and a(x(g,)) — +oo for every
a € 0, so it suffices to show that ¢! P, — F~, or equivalently, that /F"~ = P, . If this were not
the case, then there exists some F € ZP; \ Zyp-. Then there is a compact set K C Fyp\Zp-
such that £, 1(F) € K for all sufficiently large n. Then by assumption,
m lim e®*9)F = lim g0, 'F = F* = mPy,

n—00 n—00 n

so ef9n) F — Py. However, {e”(gn)} C Py, so each e"9n) preserves the closed set ZPg’ which
implies that
Po = lim "9 F ez, .
n—o0 4
Since Py and P, are transverse, we have a contradiction.

Finally, we prove that (1) and (3) are equivalent. Let kg € Nk (a) be a representative of the
longest element wg € W, and let

Q>9 : .772; — ~7?L*(0)
be the G-equivariant homeomorphism given by ®4(g P, ) = gko P,«(). Observe that

Co(Fg \Zr+) = Fur0) \Zo1 ) (po)s

so (3) can be rewritten as:

(3) g, {(F) — ®g(F~) for all F € Fore0) \Zp1 (> and this convergence is uniform on
#(0)

compact subsets of F,«(g) \ 241

v*(6)
By Observation 2.2, a(k(gn)) = t*(a)(k(g; 1)) for all n € N and all o € A. Thus, (1) can be
rewritten as:
(1) mpky! Pr) = @;%9)(F+), T Py = ®o(F7) and a(k(g,')) = +oo for every
a € *(6).

(F+)
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We also saw in the proof of Lemma A.3(2) that if g, = m,e"97)¢, is a KAK-decomposition of
g € G, then
g = (6 kg e ) (ko)

is a KAK-decomposition of g,!. Thus, the equivalence between (1) and (2) implies the equiva-
lence between (1’) and (3’). O

APPENDIX B. PROOFS OF THEOREM 6.2 AND PROPOSITION 6.3

In this appendix we prove Theorem 6.2 and Proposition 6.3.

When G = PSL(d, K), where K is either the real numbers R or the complex numbers C, recall
from the introduction that A := {aq,...,aq-1} C a* denotes the standard system of simple
restricted roots, i.e.

aj(diag(ar,...,aq)) = aj — aj41

for all diag(az,...,aq) € a. To simplify notation, we replace subscripts of the form {a;,, ..., o, }
with 41,...,4;. For instance,

Frd-1=Flaragy and Ura-1(9) = Ugay 0y 13(9)-

As mentioned before, in the case when G = PSL(d, K), Theorem 6.2 and Proposition 6.3 were
proven in [15]. We will use results from [23] to prove the following proposition, which allows us
to generalize these results in [15] to general G.

Proposition B.1. For any symmetric 0 C A and x € Y .o N-wq there exist d € N, an irreducible
linear representation ® : G — SL(d,R) and a ®-equivariant smooth embedding

€:Fo— Fra1(RY

such that:

(1) F1, Fy € Fy are transverse if and only if £(F1) and {(F») are transverse.
(2) There exists N € N such that

logo1(®(g)) = Nx(x(9))

for all g € G.
(3) a1(k®(g))) = mingeq a(k(g)) for all g € G.
(4) If mingeg a(k(g)) > 0, then

§(Us(9)) = Ur,a-1(2(9))-

(5) T' C G is Py-divergent (respectively Pg-transverse) if and only if ®(I") is Py q_;-divergent
(respectively Py q_1-transverse). Moreover, in this case

E(Ao(T)) = Arg1(2(T)).

(6) If p : To — G is a Py-transverse representation with boundary map &, : Aq(I'g) — Fo,
then ® o p is a Py 4_1-transverse representation with boundary map § o &,.

Delaying the proof of Proposition B.1 for a moment, we prove Theorem 6.2 and Proposi-
tion 6.3.
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B.1. Proof of Theorem 6.2. Let ® : G — PSL(d,R) and &g : Fy — Fl,d,l(Rd) satisfy Proposi-
tion B.1 for some x € Y g N-wq.

Then ®(I") is Py 4_i-transverse and so by [15, Thm. 4.2] there exist dy € N, a properly
convex domain Q € P(R%), a projectively visible subgroup I'y C Aut(£2) and a faithful Pid—1-
transverse representation pg : I'o — PSL(d, R) with limit map &y : Aq(T) — ]:Ld_l(]Rd) so that
po(Fo) = CI)(F) and

éo(Aa(T0)) = Ava1(B(1) = Eo(Aa(D)),

We claim that ® is injective. Since G is semisimple, ker ® is either discrete or contains a
simple factor of G. Since £ : Fg — F 1,d_1(Rd) is a ®-equivariant embedding, ker ® must act
trivially on Fy. So ker ® C Py. By assumption Py contains no simple factors of G, so ker ® is
discrete. However then, since ker ® is also normal, we see that ker ® is contained in the center
of G which by assumption is trivial. Hence @ is injective.

Then p:= ® 1o pgand £ := £o Lo ¢y are well defined and have the desired properties.

B.2. Proof of Proposition 6.3. We start by recalling a result in [15] about transverse represen-
tations into PSL(d,K). Let dpgagy be a distance on P(R%) induced by a Riemannian metric.
Given a properly convex domain Q C P(R%) and by € Q let

thy = 2\ {bo} — 9
denote the radial projection map obtained by letting ¢y, (2) € 02 be the unique point so that

z € (bo, tpy(2))q. The following lemma was proven as Lemma 6.2 and Observation 6.3 in [15].

Lemma B.2. Suppose 6 C {ai,...,aq-1} is symmetric. Let p : Ty — PSL(d,K) be a Py-
transverse representation, where Ty is a projectively visible subgroup of Aut(QY) for some properly
convexr domain ) C P(Rdo). For any bg € Q and € > 0, there exist C' > 0 such that if v,n € I'g
and

dP(RdO) (Lbo (V_I(bo))v Lbo (77(50))) 2 €
then

war, (R(p(m) = K(p()) = n(o(m))| = €
for all oy, € 6.
Lemma B.2 can be restated as follows.

Lemma B.3. Suppose 6 C {ai,...,aq_1} is symmetric. Let p : Ty — PSL(d,K) be a Py-
transverse representation where Iy is a projectively visible subgroup of Aut(§2) for some properly
convex domain Q C P(R%®). For any by € Q and r > 0, there exist C > 0 such that if v,n € Ty
and

da (7(bo), [bo, n(bo)]a) <,
then

o (R0 (m) = £(p(3)) = Koy~ m) )| < ©
for all oy, € 6.

Proof. Suppose not. Then there exist oy € 6 and sequences {7, }, {n,} in I" such that

Ao (1 (bo). [0, (bo)le) < 7 but fua, (A(o(m)) = K(p()) = K(p(3 ) )| = .

Since
|5(p(m)) = Ko nn)) || < Vdmax {log o1(p(v, 1)), log o1 (p()) }
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{4} is a diverging sequence. A similar argument also shows that {~, 'n,} is diverging.
Since both {~,} and {v, 'n,} are diverging and

da (bo, [vm " (b0), ¥ "1 (B0)]e2) = da ((bo), [bo, 1 (bo)]a) < 7,

it follows that there is some € > 0 so that
d]P(RdO) (/'bo (77;1([)0))7 Lbg (77;17771([)0))) > €

for all n. Thus, Lemma B.2 implies that ’wak (/ﬁ(p(nn)) — k(p(m)) — /ﬁ(p(%jlnn))ﬂ has a uni-
form upper bound, which is a contradiction. ]

Proof of Proposition (.5. Since {walay },cq 15 @ basis for ag, it suffices to fix 3 € 0 and find C > 0
such that: if v,n € I'g and

do (7(bo), [bo, n(bo)]a) <,
then

lwg (ke(p(1m)) — Ka(p(7)) — Ka(p(n)))| < C.

Let x1 := > copwWa and X2 := wg + Y cgWa- For j = 1,2, let ®; : G — PSL(d;, R) satisfy
Proposition B.1 for x;, and let p;j := ®; o p. Then p; is a Py 4,1-transverse representation and
there exists N; € N such that

1
x5 (5o (p(yn)) = Ko (p(7)) = Ko (p())] = 7~ |waq (Kps(vm) = K(p;(7)) = K(p;j(m))]
J
for all v, € I'. Applying Lemma B.3 to pj, there exists C; > 0 such that: if v, € I'y and

do (v(bo), [bo, n(bo)]a) < 7,
then

way (R(pj(yn) = K(pi(v)) — K(pj())| < Cj.
Since x2 — X1 = wg, we then have: if v, € I'g and

da (v(bo), [bo, n(bo)]a) <,

then

(ws (sa(p(vm)) — ro(o(7) — malp(m))] < = + 2. .

Ny N
B.3. The proof of Proposition B.1. Fix a symmetricset § C Aand x € > g Nwy. By [23, Lem.
3.2, Prop. 3.3, Rem. 3.6 and Lem. 3.7] there exist N,d € N, an irreducible linear representation
®: G — SL(d,R) and a ®-equivariant smooth embedding

£:Fg— Fra:=Fra1(R%

such that:

(a) @ is proximal and has highest weight N'x, that is: if H € int(a®), then ®(e’?) is proximal
and the eigenvalue with largest modulus is eVX(1),

(b) ®(K) € SO(d,R) and ®(e%) is a subgroup of the diagonal matrices in SL(d, R).

(c) a1(r(®(g))) = mingep a(r(g)) for all g € G.

(d) Fi, Fy € Fy are transverse if and only if {(F),{(F2) € F1 41 are transverse.
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In the statement of Proposition B.1, parts (1) and (3) are restatements of properties (d) and
(c) of @ respectively, while part (2) is a consequence of properties (a) and (b) of ®. Part (5)
follows immediately from parts (1), (3), and (4), while part (6) follows immediately from part
(5) and Proposition 2.5. Thus, it suffices to prove part (4).

Let e, ..., eq be the standard basis of R?. Using properties (a) and (b), we can conjugate ®
by a permutation matrix and assume that
d(ef)ey = "X and  d(ef)ey = VX e, (18)

when H € a (where as usual y = x o). We first observe that the value of £(Py) is determined.
Lemma B.4. £(Py) = ((e1), (e1,...,€eq-1)).
Proof. Let F0+ = ((e1),(e1,...,€4-1) ) and 13’0_ := ((ea),(e2,...,eq) ). Fix H € int(a™). Then
by property (b) and Equation (18), ®(ef’) = diag(a1, ..., aq) is a diagonal matrix with

lai| > max{|a;| : 2 <j <d} and |ag| <min{|a;|:1 <5 <d—1}.
So R X

(" — Fy

for all F € F 1,d—1 transverse to Fo_ . Since ® is irreducible, there exists some F' € Fy such

that £(F') is transverse to Fo_ . Using Lemma A.2 and perturbing F' we may also assume that
e (F) — Py. Then

£(Pg) = lim £(e™F) = lim @(e"H)e(F) = Fyf. O

n—oo n—oo

Now we prove (4).
Lemma B.5. If minaega(x(g)) > 0, then £(Up(g)) = Uy a—1(®(g))-

Proof. Fix a KAK-decomposition g = mef¢. By properties (a) and (b), there exists a permuta-
tion matrix k € O(d) such that
®(g) = (@(m)k~ ") (k@(e™)k™1) (kD(¢))
is a singular value decomposition of ®(g). By Equation (18), k(e1) = e; and k(eq) = e4. Further,
by property (c), we have
a;(®(g)) >0 for j=1,d—1,
so by Lemma B.4,
Ura-1(®(9)) = (®(m)k~") ({e1), (e1, - ea—1)) = ®(m)({e1), (1, ..., eq-1))
(m)&(Py) = £(mPg) = £(Us(g))- O
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