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Abstract. We study Patterson-Sullivan measures for a class of discrete subgroups of higher
rank semisimple Lie groups, called transverse groups, whose limit set is well-defined and trans-
verse in a partial flag variety. This class of groups includes both Anosov and relatively Anosov
groups, as well as all discrete subgroups of rank one Lie groups. We prove an analogue of the
Hopf-Tsuji-Sullivan dichotomy and then use this dichotomy to prove a variant of Burger’s Man-
hattan curve theorem. We also use the Patterson-Sullivan measures to obtain conditions for
when a subgroup has critical exponent strictly less than the original transverse group. These
gap results are new even for Anosov groups.
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1. Introduction

If Γ is a discrete subgroup of the group PO(d, 1) of isometries of hyperbolic d-space Hd,
Patterson [38] and Sullivan [46] constructed a probability measure µ supported on the limit set
Λ(Γ) of Γ which transforms like the δ-dimensional Hausdorff measure, where δ is the critical
exponent of the Poincaré series of Γ. Alternatively, one may view δ as the exponential growth
rates of the number of orbit points of Γ in a ball of radius T . The Hopf-Tsuji-Sullivan dichotomy
asserts, in part, that the action of Γ on the set Λ(Γ)(2) of pairs of distinct points in the limit
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set is ergodic with respect to the measure µ⊗ µ if and only if the Poincaré series of Γ diverges
at its critical exponent. Equivalently, it says that the non-wandering part of the geodesic flow
on Γ\T 1Hd is ergodic with respect to its Bowen-Margulis-Sullivan measure if and only if the
Poincaré series of Γ diverges at its critical exponent.

In this paper, we study Patterson-Sullivan measures for a class of discrete subgroups of higher
rank semisimple Lie groups, called transverse groups. This class of groups includes both Anosov
and relatively Anosov groups as well as all discrete subgroups of rank one Lie groups. Transverse
groups were previously studied by Kapovich, Leeb and Porti [29], who called them regular,
antipodal groups. Patterson-Sullivan measures for discrete subgroups of higher rank Lie groups
were first studied by Albuquerque [1] and Quint [40]. Recently Patterson-Sullivan measures for
Anosov groups have been extensively studied by Dey-Kapovich [22], Sambarino [44], Burger-
Landesberg-Lee-Oh [12], Lee-Oh [34, 35] and others.

We prove a generalization of the Hopf-Tsuji-Sullivan dichotomy to our setting. Using this
dichotomy we prove a variant of Burger’s Manhattan curve theorem [11]. We also use Patterson-
Sullivan measures to obtain conditions for when a subgroup has critical exponent strictly less
than the original transverse group. These gap results are new even for Anosov groups.

In this introduction, we will restrict our discussion to the setting of transverse subgroups
of PSL(d,K), where K is either the real numbers R or the complex numbers C. In the body
of the paper, we will consider transverse subgroups of connected semisimple real Lie groups of
non-compact type with finite center.

In this setting Patterson-Sullivan measures are probability measures on partial flag manifolds
defined using a natural cocycle (studied by Quint [40]) for the action of PSL(d,K) on the partial
flag manifold, which is an analogue of the Busemann cocycle in rank one. To define this cocycle
we need some preliminary definitions. Let

a := {diag(a1, . . . , ad) ∈ sl(d,K) : a1 + · · ·+ ad = 0}
denote the standard Cartan subspace of sl(d,K) and let κ : PSL(d,K) → a denote the Cartan
projection which is given by

κ(g) = diag(log σ1(g), · · · , log σd(g))

where σ1(g) ≥ · · · ≥ σd(g) are the singular values of some (equivalently, any) lift of g to SL(d,K).
Let ∆ := {α1, . . . , αd−1} ⊂ a∗ denote the standard system of simple restricted roots, i.e.

αj(diag(a1, . . . , ad)) = aj − aj+1

for all diag(a1, . . . , ad) ∈ a.
When θ = {αi1 , . . . , αik} ⊂ ∆ is symmetric (i.e. αk ∈ θ if and only if αd−k ∈ θ), we say that

a subgroup Γ of PSL(d,K) is Pθ-divergent if

+∞ = lim
n→∞

min
αk∈θ

αk(κ(γn)) = lim
n→∞

min
αk∈θ

log
σk(γn)

σk+1(γn)

whenever {γn} is a sequence of distinct elements of Γ. A Pθ-divergent group is discrete and has
a well-defined limit set Λθ(Γ) in the partial flag variety

Fθ :=
{

(F i1 , . . . , F ik) : dim
(
F j
)

= j for all αj ∈ θ, and F i1 ⊂ F i2 ⊂ · · · ⊂ F ik
}
.

A Pθ-divergent subgroup Γ ⊂ PSL(d,K) is called Pθ-transverse if whenever F,G ∈ Λθ(Γ) are
distinct, then F and G are transverse (i.e. for all αj ∈ θ the j-plane component F j of F is

transverse to the (d− j)-plane component Gd−j of G). We note that in the literature, divergent
groups are sometimes called regular and transverse groups are sometimes called antipodal groups
(e.g. [29]).
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Let
aθ := {diag(a1, . . . , ad) ∈ a : aj = aj+1 for all αj /∈ θ}

denote the partial Cartan subspace and let

a+
θ := {diag(a1, . . . , ad) ∈ aθ : a1 ≥ a2 ≥ · · · ≥ ad}

denote the partial positive Weyl Chamber. For α ∈ ∆, let ωα ∈ a∗ denote the fundamental
weight associated to α. One can check that {ωα|aθ}α∈θ is a basis of a∗θ. Then there is a well-
defined partial Cartan projection κθ : PSL(d,K)→ aθ with the defining property that

ωα(κ(g)) = ωα(κθ(g))

for all α ∈ θ and g ∈ PSL(d,K).
Quint [40] proved that there exists a cocycle Bθ : PSL(d,K) × Fθ → aθ, called the partial

Iwasawa cocycle, with the defining property that if g ∈ PSL(d,K), F ∈ Fθ and αj ∈ θ, then

ωαj (Bθ(g, F )) = log

∥∥∥(∧j g
)

(v)
∥∥∥

‖v‖

for any v ∈
∧j F j−{0}, where

∧j is the j-th exterior power, and ‖·‖ denotes both the standard

norm on Kd and the induced norm on
∧j Kd.

Using this cocycle we can define conformal measures and Patterson-Sullivan measures.

Definition 1.1. Given φ ∈ a∗θ and a Pθ-divergent group Γ ⊂ PSL(d,K), a probability measure
µ on Fθ is called a φ-conformal measure for Γ of dimension β if for any γ ∈ Γ, the measures
µ, γ∗µ are absolutely continuous and

dγ∗µ

dµ
= e−βφ(Bθ(γ−1,·))

almost everywhere. If, in addition, supp(µ) ⊂ Λθ(Γ), then we say that µ is a φ-Patterson-Sullivan
measure.

In our setting, we do not assume that Γ has any irreducibility properties and so there can exist
many non-interesting conformal densities, e.g. if Γ fixes a flag F ∈ Fθ, then a Dirac measure
centered at F will be a conformal measure of dimension zero. Hence to develop an interesting
theory in the setting of (non-irreducible) transverse groups, it is reasonable to restrict to the
setting where the measure is supported on the limit set.

Given a discrete subgroup Γ ⊂ PSL(d,K) and φ ∈ a∗θ, let δφ(Γ) be the (possibly infinite)
critical exponent of the Poincaré series

QφΓ(s) =
∑
γ∈Γ

e−sφ(κθ(γ)),

that is δφ(Γ) ∈ [0,+∞] is the unique non-negative number where QφΓ(s) converges when s >

δφ(Γ) and diverges when s < δφ(Γ). If Γ ⊂ PO(d, 1) ⊂ PSL(d+1,R) is a discrete group, then the
traditional Busemann cocycle is Bα1 , the traditional Poincaré series is simply Qα1

Γ and classical
Patterson-Sullivan measures are α1-Patterson-Sullivan measures in our language.

The standard proof, originating in work of Patterson [38], implies that if Γ ⊂ PSL(d,K) is
Pθ-divergent, φ ∈ a∗θ and δφ(Γ) < +∞, then there exists a φ-Patterson-Sullivan measure for

Γ of dimension δφ(Γ), see Proposition 3.2. Dey and Kapovich [22] previously established the
same result in the slightly more restrictive setting when φ is positive on the entire partial Weyl
chamber a+

θ . It is straightforward to show that if Γ is Pθ-divergent and φ is positive on the

θ-Benoist limit cone, then δφ(Γ) < +∞, see Proposition 2.7.
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One immediate consequence of the existence of Patterson-Sullivan measures is a criterion for
when there is strict inequality between the critical exponent associated to a transverse group
and a subgroup. The study of this “entropy gap” was initiated by Brooks [10] in the setting
of convex cocompact Kleinian groups. Coulon, Dal’bo and Sambusetti [18] showed that if Γ
admits a cocompact, properly discontinuous action on a CAT(−1)-space, then a subgroup of
Γ has strictly smaller critical exponent if and only if is is co-amenable. The most general
current results are due to Coulon, Dougall, Schapira and Tapie [19] who work in the setting of
strongly positively recurrent actions on Gromov hyperbolic spaces. Our criterion is obtained
using techniques due to Dal’bo, Otal and Peigné [21] .

Theorem 1.2 (see Theorem 4.1). Suppose Γ ⊂ PSL(d,K) is a non-elementary Pθ-transverse

subgroup, φ ∈ a∗θ and δφ(Γ) < +∞. If G is a subgroup of Γ such that QφG(δφ(G)) = +∞ and
Λθ(G) is a proper subset of Λθ(Γ), then

δφ(Γ) > δφ(G).

In the setting of Anosov groups, we see that there is always an entropy gap for infinite index,
quasiconvex subgroups.

Corollary 1.3 (see Corollary 4.2). Suppose Γ ⊂ PSL(d,K) is a non-elementary Pθ-Anosov sub-
group and G is an infinite index quasiconvex subgroup of Γ. If φ ∈ a∗θ and δφ(Γ) < +∞, then

δφ(Γ) > δφ(G).

For Fuchsian and Kleinian groups, there is a stark contrast in the dynamics of the action of the
group which depends on whether or not the Poincaré series diverges at its critical exponent. The
analysis of this contrast is known as the Hopf-Tsuji-Sullivan dichotomy and has many aspects.
We obtain a version of this dichotomy for transverse groups.

To state the dichotomy precisely we need a few more definitions. A Pθ-transverse subgroup
Γ ⊂ PSL(d,R) acts on its limit set Λθ(Γ) as a convergence group (see [29, Section 5.1] or [15,
Proposition 3.3]), and hence one can define the set of conical limit points Λcon

θ (Γ) ⊂ Λθ(Γ). In

the case when Γ is Pθ-Anosov, Λcon
θ (Γ) = Λθ(Γ). We also let Λθ(Γ)(2) ⊂ Λθ(Γ)2 denote the space

of pairs of transverse flags in the limit set.
Let ι : a→ a be the involution given by

ι
(
diag(a1, a2 . . . , ad)

)
= diag(−ad,−ad−1, . . . ,−a1).

Then given φ ∈ a∗θ, let φ̄ := φ ◦ ι ∈ a∗θ. More explicitly, if φ =
∑

αj∈θ bjωαj , then φ̄ =∑
αj∈θ bd−jωαj .

The following theorem is our version of the Hopf-Sullivan-Tsuji dichotomy for transverse
groups.

Theorem 1.4 (see Proposition 8.1, Proposition 9.1, Corollary 12.1 and Corollary 12.2). Suppose

Γ ⊂ PSL(d,K) is a non-elementary Pθ-transverse subgroup, φ ∈ a∗θ and δ := δφ(Γ) = δφ̄(Γ) < +∞.
Let µ be a φ-Patterson-Sullivan measure of dimension β for Γ and let µ̄ be a φ̄-Patterson-Sullivan
measure of dimension β for Γ. Then β ≥ δ and we have the following dichotomy:

• If QφΓ(β) = +∞, then β = δ, and µ and µ̄ are the unique Patterson-Sullivan measures
of dimension δ. Moreover:
(1) µ(Λcon

θ (Γ)) = µ̄(Λcon
θ (Γ)) = 1. In particular, µ and µ̄ have no atoms.

(2) The action of Γ on (Λθ(Γ)(2), µ̄⊗ µ) is conservative.

(3) The action of Γ on (Λθ(Γ)(2), µ̄⊗ µ) is ergodic.
(4) The action of Γ on (Λθ(Γ), µ) is ergodic.
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• If QφΓ(β) < +∞, then:
(I) µ(Λcon

θ (Γ)) = µ̄(Λcon
θ (Γ)) = 0.

(II) The action of Γ on (Λθ(Γ)(2), µ̄⊗ µ) is dissipative.

(III) The action of Γ on (Λθ(Γ)(2), µ̄⊗ µ) is non-ergodic.

Notice that if β = δ, then statements (1), (2) and (3) are all equivalent to QφΓ(δ) = +∞, and

statements (I), (II) and (III) are all equivalent to QφΓ(δ) < +∞.

The “divergent” case of Theorem 1.4 contains several important classes of groups. Sambarino
[44, Cor. 5.7.2] proved that for an Anosov group, the Poincaré series diverges whenever the
critical exponent is finite (this was previously established by Lee-Oh [34, Lem. 7.11] and Dey-
Kapovich [22, Thm. A] in certain cases). In the sequel to this paper we will prove the same
result for relatively Anosov groups.

As an application of Theorem 1.4, we show that if Γ is Pθ-transverse, then the critical exponent
is a concave function on the space of linear functionals which diverge at their finite critical
exponent. Moreover, we characterize exactly when it fails to be strictly concave in terms of the
associated length functions. More precisely, given φ ∈ a∗θ, the φ-length of g ∈ PSL(d,K) is

`φ(g) := lim
n→∞

1

n
φ(κθ(g

n)).

Theorem 1.5 (see Theorem 13.1). Suppose Γ ⊂ PSL(d,K) is a non-elementary Pθ-transverse
subgroup, φ1, φ2 ∈ a∗θ and δφ1(Γ) = δφ2(Γ) = 1. If φ = λφ1 + (1− λ)φ2 where λ ∈ (0, 1), then

δφ(Γ) ≤ 1.

Moreover, if δφ(Γ) = 1 and QφΓ diverges at its critical exponent, then `φ1(γ) = `φ2(γ) for all
γ ∈ Γ.

We will explain in Section 13 why one might regard this as a variant of Burger’s Manhattan
Curve Theorem. By applying a result of Benoist [2], we can conclude that strict concavity holds
whenever Γ is Zariski dense.

Corollary 1.6 (see Corollary 13.2). Suppose Γ ⊂ PSL(d,K) is Zariski dense and Pθ-transverse,

φ1, φ2 ∈ a∗θ, φ1 6= φ2 and δφ1(Γ) = δφ2(Γ) = 1. If φ = λφ1 + (1− λ)φ2 where λ ∈ (0, 1) and QφΓ
diverges at its critical exponent, then δφ(Γ) < 1.

1.1. The geometric framework for the proofs. The key idea in our proofs is to associate to
any Pθ-transverse group Γ a metric space that Γ acts on by isometries, where the boundary
action of Γ on Λθ(Γ) embeds into the action of Γ on a compactification of that metric space.
The metric space we construct has enough hyperbolic-like behavior that some of the classical
arguments in hyperbolic geometry can be adapted to work in our setting. This approach to
studying transverse groups builds upon on our earlier work in [15].

The metric spaces we consider in this construction are properly convex domains Ω ⊂ P(Rd0)
endowed with their Hilbert metrics. A discrete subgroup Γ0 ⊂ PSL(d0,R) which preserves a
properly convex domain Ω ⊂ P(Rd0) is called projectively visible when the limit set ΛΩ(Γ0) ⊂ ∂Ω
is C1-smooth and strictly convex (precise definitions are given in Sections 5 and 6).

The class of projectively visible groups contains the class of Kleinian groups, i.e. discrete
subgroups of the isometry group Isom(Hd

R) of real hyperbolic d-space. This follows from the

identification of PO(m, 1) = Isom(Hd
R) using the Klein-Beltrami model and the fact that PO(m, 1)

preserves the unit ball in an affine chart.
Given a projectively visible group Γ0 ⊂ PSL(d0,R), a representation ρ : Γ0 → PSL(d,K)

is called Pθ-transverse if its image Γ := ρ(Γ0) is a Pθ-transverse subgroup and there exists a
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ρ-equivariant boundary map ξ : ΛΩ(Γ0) → Fθ which is a homeomorphism onto Λθ(Γ) (again,
precise definitions are given in Sections 5 and 6).

To continue our analogy with hyperbolic geometry, we note that if Γ ⊂ Isom(Hd
R) = PO(m, 1)

is convex co-compact, then the class of Pθ-transverse representations of Γ coincides with the
class of Pθ-Anosov representations of Γ.

In [15], we proved that any Pθ-transverse subgroup of PSL(d,K) can be realized as the image
of a Pθ-transverse representation. In this paper we extend this result to the general semisimple
Lie group case, see Theorem 6.2. Using this perspective we will prove a version of the shadow
lemma, which is one of the foundational tools in our arguments.

Shadows in Hilbert geometries can be defined exactly as in hyperbolic geometry: Given a
properly convex domain Ω ⊂ P(Rd0), points b, p ∈ Ω, and r > 0, let Or(b, p) denote the set of
points x ∈ ∂Ω for which the projective line segment in Ω with endpoints b and x intersects the
open ball of radius r (with respect to the Hilbert metric on Ω) centered at p.

Proposition 1.7 (see Proposition 7.1). Suppose θ ⊂ ∆ is symmetric, Ω ⊂ P(Rd0) is a properly con-
vex domain, Γ0 ⊂ Aut(Ω) is a non-elementary projectively visible subgroup, ρ : Γ0 → PSL(d,K)
a Pθ-transverse representation with limit map ξ : ΛΩ(Γ0) → Fθ, Γ := ρ(Γ0), φ ∈ a∗θ and µ is a
φ-Patterson-Sullivan measure for Γ of dimension β. For any b0 ∈ Ω, there exists R0 such that:
if r > R0, then there exists C = C(b0, r) > 1 so that

C−1e−βφ(κθ(ρ(γ))) ≤ µ
(
ξ (Or(b0, γ(b0)) ∩ ΛΩ(Γ0))

)
≤ Ce−βφ(κθ(ρ(γ)))

for all γ ∈ Γ0.

The transverse representations perspective also allow us to construct a dynamical system
associated to a transverse group. In particular, given a transverse representation ρ : Γ0 →
PSL(d,K) of a projectively visible group Γ0 ⊂ Aut(Ω) we can consider the unit tangent bundle
T 1Ω of Ω (relative to the Hilbert metric) and the subspace U(Γ0) ⊂ T 1Ω of directions where the
associated projective geodesic lines has forward and backward endpoints in ΛΩ(Γ0), the limit set
of Γ0. The subspace U(Γ0) is invariant under the geodesic flow and, by the projectively visible

assumption, homeomorphic to Λ
(2)
Ω (Γ0) × R. We then use our Patterson-Sullivan measures to

construct a Bowen-Margulis-Sullivan measure on the quotient Γ0\U(Γ0).
This dynamical system is critical in our work. For instance to prove that the boundary actions

are ergodic in Theorem 1.4, we use a general version of the Hopf Lemma, due to Coudène [17],
to show that the geodesic flow is ergodic with respect to the Bowen-Margulis-Sullivan measure.

Historical remarks: In this section we briefly discuss some important prior works concerning
Patterson-Sullivan measures for discrete subgroups in higher rank semisimple Lie groups.

(1) Both Albuquerque [1] and Quint [40] study Patterson-Sullivan measures in the setting
of Zariski dense, discrete subgroups of a semisimple group with finite center. Quint’s
measures live on flag varieties, as ours do, while Albuquerque’s lie on the visual boundary
of the associated symmetric space. Link [36] showed if the ray limit set has positive
measure, then the action of the group on the ray limit set is ergodic with respect to the
measures constructed by Albuquerque.

(2) Dey and Kapovich [22] study Patterson-Sullivan measures in the setting of Pθ-Anosov
subgroups. They proved that when Γ is a Pθ-divergent subgroup and φ ∈ a∗θ is positive

on a+
θ , that there is a φ-Patterson-Sullivan measure. In addition, when Γ is Pθ-Anosov,

they also prove that the Patterson-Sullivan measure is unique, the conical limit set has
full measure and the action of Γ on Λθ(Γ) is ergodic. Their approach is based heavily on
studying the action of Γ on the associated symmetric space.
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(3) Sambarino [43, 44] used the thermodynamical formalism to provide an alternative proof
of Dey and Kapovich’s results for all φ ∈ a∗θ such that δφ(Γ) < ∞. Further, he shows
that the action of Γ on Λθ(Γ)2 is ergodic and characterizes linear functionals with critical
exponent as exactly those which are strictly positive on the Benoist limit cone. The
thermodynamical formalism requires the existence of an associated dynamical system
with a Markov coding and this is currently only known to exist for Anosov subgroups
and a few other specific groups.

(4) In the case when Γ is a Pθ-Anosov group which is isomorphic to the fundamental group
of a closed negatively curved manifold one can use the perspective in [33] to obtain nicely
behaved Patterson-Sullivan measures, for details of this approach see [42].

(5) Lee-Oh [35] prove that if Γ is Zariski dense and Anosov with respect to a minimal
parabolic subgroup, then any φ-conformal measure of dimension δφ(Γ) is supported
on the limit set and hence a Patterson-Sullivan measure. They also show that the φ-
Patterson-Sullivan measure is unique. They derive their result as a consequence of a
Hopf-Tsuji-Sullivan dichotomy for the maximal diagonal actions.

(6) Burger-Landesberg-Lee-Oh [12] establish a Hopf-Tsuji-Sullivan dichotomy for the actions
of discrete Zariski dense subgroups on directional limit sets with respect to a directional
Poincaré series. This version of the dichotomy is different than the one we consider,
for instance in Burger-Landesberg-Lee-Oh’s dichotomy Anosov groups always fall into
the convergent case when the rank of the semisimple Lie group is at least four. Using
different techniques, Sambarino [44] gave an extension of this dichotomy to more general
subsets of simple roots.

(7) Quint [40] proves the analogue of our shadow lemma for Zariski dense groups. His
proof makes crucial use of Zariski density in place of our transversality assumption. Our
shadow lemma, unlike Quint’s, can be applied to transverse subgroups whose Zariski
closures are not connected or not semisimple. Albuquerque [1] and Link [36] also establish
shadow lemmas in their setting. Unlike Quint [40], we only deal with real Lie groups as
opposed to Lie groups over local fields. This reality assumption is needed in order for us
to associate a flow space to a transverse subgroup, see Theorem 6.2 and Section 5.3.

(8) Bray [8], Blayac [5], Zhu [48] and Blayac-Zhu [7] study Patterson-Sullivan measures
for discrete subgroups Γ ⊂ PGL(d,R) which preserve a properly convex domain Ω. In
their work, the measures have Radon-Nikodym derivatives which involve the Busemann
functions obtained from the Hilbert metric, instead of partial Iwasawa cocycles used
in other works (including this one). When such discrete subgroups Γ are {α1, αd−1}-
transverse (for example, when every point in the orbital limit set ΛΩ(Γ) of Γ is a smooth
and strongly extremal point of ∂Ω), the Patterson-Sullivan measures they consider are
the pushforward via the natural projection p : F{α1,αd−1} → P(Rd) of some (ωα1 +ωαd−1

)-
Patterson-Sullivan measure for Γ.

(9) Quint [40] defined φ-Patterson-Sullivan measures as the measures µ that satisfy the
(almost everywhere) equation

dγ∗µ

dµ
= e−φ(Bθ(γ−1,·))

instead of the equation given in Definition 1.1. Notice that µ is a φ-Patterson-Sullivan
measure for Γ of dimension β in the sense of Definition 1.1, if and only if µ is a βφ-
Patterson-Sullivan measure for Γ in the sense of Quint. Furthermore, if ψ := δφ(Γ)φ,
then δψ(Γ) = 1. Thus, every φ-Patterson-Sullivan measures for Γ of dimension δφ(Γ) in
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the sense of Definition 1.1 is a ψ-Patterson-Sullivan measures for Γ in the sense of Quint
for some ψ such that δψ(Γ) = 1.

Acknowledgements. We thank Hee Oh, Andrés Sambarino and Aleksander Skenderi for helpful
comments on an earlier version of this paper. We also thank the referee of the original version for
many helpful suggestions which improved the readability of the manuscript and for encouraging
us to give a more complete statement of Theorem 1.4.

2. Background and notation

In this section, we recall some required background from the theory of semisimple Lie groups,
as well as certain properties of discrete subgroups of semisimple Lie groups.

2.1. Semisimple Lie groups. First, we recall some basic terminology and facts from the theory
of semisimple Lie groups. For the rest of the paper, let G be a connected semisimple real Lie
group without compact factors and with finite center, let g denote the Lie algebra of G, and let
b be the Killing form on g.

Fix a Cartan involution τ of g, i.e. an involution for which the bilinear pairing 〈·, ·〉 on g given
by 〈X,Y 〉 := −b(X, τ(Y )) is an inner product. Let

g = k⊕ p

denote the associated Cartan decomposition, i.e. k and p are respectively the 1 and−1 eigenspaces
of τ . Note that the Killing form is negative definite on k and positive definite on p, so k is a
maximal compact Lie subalgebra of g. Let K ⊂ G denote the maximal compact Lie subgroup
whose Lie algebra is k.

Next, fix a maximal abelian subspace a ⊂ p, also called a Cartan subspace. Then let

g = g0 ⊕
⊕
α∈Σ

gα

be the restricted root space decomposition associated to a, i.e. for any α ∈ a∗

gα := {X ∈ g : [H,X] = α(H)X for all H ∈ a},

and

Σ := {α ∈ a∗ − {0} : gα 6= 0}

is the set of restricted roots. One can verify that τ(gα) = g−α, [30, Chap. VI, Prop. 6.52], so
Σ = −Σ.

Next fix an element H0 ∈ a−
⋃
α∈Σ kerα, and let

Σ+ := {α ∈ Σ : α(H0) > 0} and Σ− := −Σ+.

Note that Σ = Σ+ ∪ Σ−. Let ∆ ⊂ Σ+ be the associated system of simple restricted roots, i.e.
∆ consists of all the elements in Σ+ that cannot be written as a non-trivial linear combination
of elements in Σ+. Since Σ is an abstract root system on a∗, see [30, Chap. VI, Cor. 6.53], it
follows that ∆ is a basis of a∗ and every α ∈ Σ+ is a non-negative (integral) linear combination
of elements in ∆, see [26, Chap. III, Thm. 10.1].
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2.1.1. The Weyl group and the opposition involution. The Weyl group of a is

W := NK(a)/ZK(a),

where NK(a) ⊂ K is the normalizer of a in K and ZK(a) ⊂ K is the centralizer of a in K. Then W
is a finite group that is generated by the reflections of a (equipped with 〈·, ·〉) about the kernels
of the restricted roots in ∆, see [30, Chap. VI, Thm. 6.57]. As such, W acts transitively on the
set of Weyl chambers, that is the closure of the components of

a−
⋃
α∈Σ

kerα.

Of these, we refer to
a+ := {X ∈ a : α(X) ≥ 0 for all α ∈ ∆}

as the positive Weyl chamber.
In W , there exists a unique element w0, called the longest element, such that

w0(a+) = −a+.

We can then define an involution ι : a→ a by ι(H) = −w0 ·H. This is known as the opposition
involution, and has the following properties.

Observation 2.1.

(1) If k0 ∈ NK(a) is a representative of the longest element w0 ∈W , then

Ad(k0)gα = g−ι∗(α) (1)

for all α ∈ Σ.
(2) ι∗(∆) = ∆.

2.1.2. Parabolic subgroups and flag manifolds. Given a subset θ ⊂ ∆, the parabolic subgroup
associated to θ, denoted by Pθ = P+

θ ⊂ G, is the normalizer of

uθ = u+
θ :=

⊕
α∈Σ+

θ

gα

where Σ+
θ := Σ+ \ Span(∆ \ θ). The flag manifold associated to θ is

Fθ = F+
θ := G/Pθ.

Similarly, the standard parabolic subgroup opposite to Pθ, denoted by P−θ , is the normalizer of

u−θ :=
⊕
α∈Σ+

θ

g−ι∗(α),

and the standard flag manifold opposite to Fθ is

F−θ := G/P−θ .

Notice that if k0 ∈ NK(a) is a representative of the longest element w0 ∈ W , then Equation (1)
implies that

k0 P
±
θ k
−1
0 = k−1

0 P±θ k0 = P∓ι∗(θ) . (2)

We say that two flags F1 ∈ F+
θ and F2 ∈ F−θ are transverse if (F1, F2) is contained in the

G-orbit of (P+
θ ,P

−
θ ) in F+

θ ×F
−
θ . Then for any flag F ∈ F±θ , let ZF ⊂ F∓θ denote the set of flags

that are not transverse to F . One can verify that the set of transverse pairs in F+
θ ×F

−
θ is an

open and dense subset, so ZF is a closed subset with empty interior. Furthermore, ZF = ZF ′ if
and only if F = F ′.
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2.1.3. Cartan projection. Let κ : G→ a+ denote the Cartan projection, that is κ(g) ∈ a+ is the
unique element such that

g = meκ(g)`

for some m, ` ∈ K (in general m and ` are not uniquely determined by g). Such a decomposition

g = meκ(g)` is called a KAK-decomposition of g, see [27, Chap. IX, Thm. 1.1]. Since ι(−a+) =
a+, we have the following observation.

Observation 2.2. ι(κ(g)) = κ(g−1) for all g ∈ G.

In terms of the KAK-decomposition, the actions of G on F+
θ and F−θ have the following

behavior. See Appendix A for a proof.

Proposition 2.3. Suppose F± ∈ F±θ , {gn} is a sequence in G and gn = mne
κ(gn)`n is a KAK-

decomposition for each n ≥ 1. Then the following are equivalent:

(1) mn Pθ → F+, `−1
n P−θ → F− and limn→∞ α(κ(gn)) =∞ for every α ∈ θ,

(2) gn(F )→ F+ for all F ∈ F+
θ \ZF−, and this convergence is uniform on compact subsets

of Fθ \ZF−.
(3) g−1

n (F )→ F− for all F ∈ F−θ \ZF+, and this convergence is uniform on compact subsets

of F−θ \ZF+.

(4) There are open sets U± ⊂ F±θ such that gn(F )→ F+ for all F ∈ U+ and g−1
n (F )→ F−

for all F ∈ U−.

2.1.4. Weights and partial Cartan projections. For any α ∈ Σ, let Hα ∈ a satisfy the defining
property

〈Hα, X〉 = α(X)

for all X ∈ a. Then for any non-zero E ∈ gα, SpanR(E, τ(E), Hα) ⊂ g is a Lie sub-algebra
isomorphic to sl(2,R), and this isomorphism identifies

H ′α :=
2Hα

〈Hα, Hα〉
∈ SpanR(E, τ(E), Hα) with

(
1 0
0 −1

)
∈ sl(2,R),

see [30, Chap. VI, Prop. 6.52]. The element H ′α is called the coroot associated to α. If α ∈ ∆,
the fundamental weight associated to α is then the element ωα ∈ a∗ such that

ωα(H ′β) =

{
1 if α = β,
0 if α 6= β

for all β ∈ ∆.
Given a subset θ ⊂ ∆, the partial Cartan subspace associated to θ is

aθ := {H ∈ a : α(H) = 0 for all α ∈ ∆ \ θ}.
Since (∆ \ θ) ∪ {ωα : α ∈ θ} is a basis of a∗, there is a unique projection

pθ : a→ aθ

such that ωα(X) = ωα(pθ(X)) for all α ∈ θ and X ∈ a. Then the partial Cartan projection
associated to θ is

κθ := pθ ◦ κ : G→ aθ.

One can show that {ωα|aθ : α ∈ θ} is a basis of a∗θ and hence we will identify

a∗θ = Span{ωα : α ∈ θ} ⊂ a∗.

Note that ωα(κθ(g)) = ωα(κ(g)) for all α ∈ θ and g ∈ G. So

φ(κθ(g)) = φ(κ(g)) (3)
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for all φ ∈ a∗θ and g ∈ G.
Given φ ∈ a∗θ we define the φ-length of an element g ∈ G as

`φ(g) = lim
n→∞

1

n
φ(κθ(g

n))

(notice that this limit exists by Fekete’s Subadditive Lemma). Equivalently, one can define the
length using the Jordan projection.

2.1.5. The partial Iwasawa cocycle. Let U := exp(u∆). The Iwasawa decomposition states that
the map

(k, a, u) ∈ K× exp(a)× U 7→ kau ∈ G

is a diffeomorphism, see [30, Chap. VI, Prop. 6.46]. Using this, Quint [40] defined the Iwasawa
cocycle

B : G×F∆ → a

with the defining property that gk ∈ K · exp(B(g, F )) · U for all (g, F ) ∈ G × F∆, where k ∈ K
is an element such that F = k P∆. The map B is known as the Iwasawa cocycle.

For any θ ⊂ ∆, note that P∆ ⊂ Pθ, so the identity map on G induces a surjection Πθ : F∆ → Fθ.
The partial Iwasawa cocycle is the map

Bθ : G×Fθ → aθ

defined by Bθ(g, F ) = pθ(B(g, F ′)) for some (all) F ′ ∈ Π−1
θ (F ). By [40, Lem. 6.1 and 6.2], this

is a well-defined cocycle, that is

Bθ(gh, F ) = Bθ(g, hF ) +Bθ(h, F )

for all g, h ∈ G and F ∈ Fθ.
We will use two estimates from [40]. In the next two lemmas, let ‖·‖ denote the norm of the

inner product 〈·, ·〉 on a.

Lemma 2.4 (Quint [40, Lem. 6.5]). For any ε > 0 and distance dFθ on Fθ induced by a Riemann-
ian metric there exists C = C(ε, dFθ) > 0 such that: if g ∈ G, g = meH` is a KAK-decomposition,

F ∈ Fθ and dFθ

(
F,Z`−1 P−θ

)
> ε, then

‖Bθ(g, F )− κθ(g)‖ < C.

Lemma 2.5 (Quint [40, Lem. 6.6]). For any ε > 0 and g ∈ G there exists C = C(ε, g) > 0 such
that: if h ∈ G and minα∈θ α(κ(h)) > C, then

‖κθ(gh)− κθ(h)−Bθ(g, Uθ(h))‖ < ε.

2.2. When θ is symmetric. In this section, as in much of the paper, we will consider the case
when θ ⊂ ∆ is symmetric, that is ι∗(θ) = θ.

As before, let k0 ∈ NK(a) be a representative of the longest element w0 ∈W . Then k0 Pθ k
−1
0 =

k−1
0 Pθ k0 = P−θ , see Equation (2). So we can identify Fθ with F−θ via the map

g P−θ 7→ gk0 Pθ = gk−1
0 Pθ .

Using this identification, we can speak of two elements in Fθ being transverse. More explicitly,
the flags g1 Pθ and g2 Pθ in Fθ are transverse if and only if there exists g ∈ G such that gg1 ∈ Pθ
and gg2k0 ∈ P−θ . With some abuse of the notation, for a flag F ∈ Fθ, we now let ZF ⊂ Fθ
denote the set of flags that are not transverse to F .

Following the notation in [23], we define a map

Uθ : G→ Fθ
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by fixing a KAK-decomposition g = mge
κ(g)`g for each g ∈ G and then letting Uθ(g) := mg Pθ.

One can show that if α(κ(g)) > 0 for all α ∈ θ, then Uθ(g) is independent of the choice of
KAK-decomposition, see [27, Chap. IX, Thm. 1.1], and hence Uθ is continuous on the set

{g ∈ G : α(κ(g)) > 0 for all α ∈ θ} .

Observation 2.2 implies that Ad(k0)(−κ(g)) = κ(g−1) and so

g−1 =
(
`−1
g k−1

0

)
eκ(g−1)

(
k0m

−1
g

)
is a KAK-decomposition of g−1. So we may assume that mg−1 = `−1

g k−1
0 and `g−1 = k0m

−1
g for

all g ∈ G. Then

Uθ(g
−1) = `−1

g k−1
0 Pθ,

which under our identification F−θ = Fθ coincides with `−1
g P−θ .

Then, in the symmetric case, Proposition 2.3 can be restated as follows.

Proposition 2.6 (Proposition 2.3 in the symmetric case). Suppose θ ⊂ ∆ is symmetric, F± ∈ Fθ
and {gn} is a sequence in G. The following are equivalent:

(1) Uθ(gn)→ F+, Uθ(g
−1
n )→ F− and limn→∞ α(κ(gn)) =∞ for every α ∈ θ,

(2) gn(F ) → F+ for all F ∈ Fθ \ZF−, and this convergence is uniform on compact subsets
of Fθ \ZF−.

(3) g−1
n (F )→ F− for all F ∈ Fθ \ZF+, and this convergence is uniform on compact subsets

of Fθ \ZF+.
(4) There are open sets U± ⊂ Fθ such that gn(F )→ F+ for all F ∈ U+ and g−1

n (F )→ F−

for all F ∈ U−.

2.3. Discrete subgroups of semisimple Lie groups. Next, we discuss some terminology for dis-
crete subgroups of G and their basic properties.

2.3.1. Critical exponents. Let Γ ⊂ G be any discrete subgroup and let θ ⊂ ∆. For any φ ∈ a∗θ,

let QφΓ(s) denote the Poincaré series

QφΓ(s) =
∑
γ∈Γ

e−sφ(κθ(γ)).

Let δφ(Γ) be the critical exponent of QφΓ(s), i.e.

δφ(Γ) = inf{s > 0 : QφΓ(s) < +∞}.

Equivalently,

δφ(Γ) = lim sup
T→∞

1

T
log #{γ ∈ Γ : φ(κθ(γ)) < T}.

The θ-Benoist limit cone of Γ is the cone

Bθ(Γ) :=
{
H ∈ a+

θ : there exists {γn} ⊂ Γ and tn ↘ 0 such that tnκθ(γn)→ H
}
.

Set

Bθ(Γ)+ := {φ ∈ a∗θ : φ > 0 on Bθ(Γ)− {0}}.
We observe that for any φ ∈ Bθ(Γ)+, the critical exponent δφ(Γ) is finite.

Proposition 2.7. Suppose Γ ⊂ G is a discrete group and θ ⊂ ∆. If φ ∈ Bθ(Γ)+, then δφ(Γ) < +∞.
In particular, if φ is positive on a+

θ , then δφ(Γ) < +∞.
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Proof. Equation (3) implies that φ is positive on B∆(Γ)−{0}. Then, since B∆(Γ) is a cone and
φ is linear, there exists A > 0 such that

φ(H) ≥ A ‖H‖
for all H ∈ B∆(Γ).

We claim that there exists B ≥ 0 such that

φ(κ(γ)) ≥ A

2
‖κ(γ)‖ −B (4)

for all γ ∈ Γ. Suppose not. Then for each n ≥ 1 there exists γn ∈ Γ where

φ(κ(γn)) ≤ A

2
‖κ(γn)‖ − n.

This implies that ‖κ(γn)‖ → +∞. Passing to a subsequence we can suppose that 1
‖κ(γn)‖κ(γn)→

H ∈ B∆(Γ). Then

A = A ‖H‖ ≤ φ(H) = lim
n→∞

φ

(
1

‖κ(γn)‖
κ(γn)

)
≤ A

2
.

So we have a contradiction and hence such a B ≥ 0 exists.
Let X := G/K and x0 := K ∈ X. Then endow X with a G-invariant Riemannian symmetric

metric scaled so that
dX(x0, gx0) = ‖κ(g)‖

for all g ∈ G. Since φ(κθ(g)) = φ(κ(g)) for all g ∈ G, the inequality (4) implies that

{γ ∈ Γ : φ(κθ(γ)) < T} ⊂
{
γ ∈ Γ : dX(x0, γx0) <

2T

A
+

2B

A

}
.

Thus, δφ(Γ) ≤ 2
AδX(Γ), where

δX(Γ) := lim sup
T→∞

log # {γ ∈ Γ : dX(x0, γx0) < T}
T

.

Recall that the volume growth entropy of X is

h(X) := lim sup
T→∞

log VolX(BT (x0))

T

where VolX is the Riemannian volume on X and BT (x0) ⊂ X is the open ball of radius T > 0
centered at x0. Since X has bounded sectional curvature, volume comparison theorems imply
that h(X) < +∞.

Fix r0 > 0 and for T > 0 let ΓT := {γ ∈ Γ : dX(x0, γx0) < T}. Then

#ΓT =
1

VolX(Br0(x0))

∑
γ∈ΓT

VolX(Br0(γx0)) ≤ #Γ2r0

VolX(Br0(x0))
VolX(BT+r0(x0)).

Thus δX(Γ) ≤ h(X) < +∞. �

2.3.2. Pθ-divergent groups. A subgroup Γ ⊂ G is Pθ-divergent if α(κ(γn)) → ∞ for any α ∈ θ
and any sequence {γn} in Γ of pairwise distinct elements. Notice that by Observation 2.2, a
subgroup Γ ⊂ G is Pθ-divergent if and only if it is Pθ∪ι∗(θ)-divergent.

The θ-limit set Λθ(Γ) of Γ is the set of accumulation points in Fθ of {Uθ(γ) : γ ∈ Γ}. Using
Proposition 2.6, one can verify that Λθ(Γ) is a closed, Γ-invariant subset of Fθ. We will say that
Γ is non-elementary if Λθ(Γ) is infinite.

We note that in the literature, divergent groups are sometimes called regular groups (e.g.
[29]).
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2.3.3. Pθ-transverse groups. In this subsection we assume that θ ⊂ ∆ is symmetric, i.e ι∗(θ) = θ.
A Pθ-divergent subgroup Γ ⊂ G is Pθ-transverse if Λθ(Γ) is a transverse subset of Fθ, i.e. distinct
pairs of flags in Λθ(Γ) are transverse. We note that in the literature, transverse groups are
sometimes called antipodal groups (e.g. [29]). One crucial feature of Pθ-transverse groups is
that Γ acts on Λθ(Γ) as a convergence group.

We recall that the action, by homeomorphisms, of a group Γ0 on a compact metric space X
is said to be a (discrete) convergence group action if whenever {γn} is a sequence of distinct
elements in Γ0, then there are points x, y ∈ X and a subsequence, still called {γn}, so that γn(z)
converges to x for all z ∈ X \ {y} (uniformly on compact subsets of X \ {y}).

Proposition 2.8 ([29, Section 5.1], [15, Proposition 3.3]). If Γ is Pθ-transverse, then Γ acts on
Λθ(Γ) as a convergence group. In particular, if Γ is non-elementary, then Γ acts on Λθ(Γ)
minimally, and Λθ(Γ) is perfect.

If a group Γ0 acts on a metric space X as a convergence group, we say that a point x ∈ X
is a conical limit point for the convergence group action if there exist distinct a, b ∈ X and a
sequence {γn} in Γ0 so that γn(x) converges to a and γn(y) converges to b for all y ∈ X \ {x}.

When Γ ⊂ G is Pθ-transverse, the set of conical limit points for the action of Γ on Λθ(Γ) is
called the θ-conical limit set and is denoted Λcon

θ (Γ).

2.3.4. Anosov groups. Anosov groups were introduced by Labourie [32] in his work on Hitchin
representations and were further developed by Guichard-Wienhard [25] and others. They are a
natural generalization of the notion of a convex cocompact subgroup of a rank one Lie group
into the higher rank setting. There are now many different equivalent definitions, and we give a
definition which is well-adapted to our setting.

Following [29], a Pθ-transverse subgroup Γ ⊂ G is said to be Pθ-Anosov if Γ is Gromov
hyperbolic with Gromov boundary ∂Γ and there exists a Γ-equivariant homeomorphism ξ :
∂Γ→ Λθ(Γ).

2.4. A helpful reduction. Since G is semisimple, we may decompose its Lie algebra g =
⊕m

j=1 gj
into a product of simple Lie algebras. For each 1 ≤ j ≤ m, let Gj ⊂ G denote the connected
subgroup with Lie algebra gj . The subgroups G1, . . . ,Gm are called the simple factors of G. One
can verify that each simple factor of G is a closed, normal subgroup and

G = G1 · · ·Gm
is an almost direct product, i.e. any distinct pair of simple factors of G commute, and the
intersection between Gj and G1 · · ·Gj−1Gj+1 · · ·Gm is finite for all j.

In this section we explain why one can often reduce to the case where G has trivial center and
the fixed parabolic subgroup contains no simple factors of G. The main construction needed for
this reduction is a well-behaved quotient of G.

Proposition 2.9. For any θ ⊂ ∆ symmetric, there is a semisimple Lie group G′ without compact
factors and with trivial center, and a quotient p : G→ G′ with the following properties:

(1) There exists a Cartan decomposition g′ = k′ ⊕ p′ of the Lie algebra g′ of G′, a Cartan
subspace a′ ⊂ p′, and a system of simple restricted roots ∆′ ⊂ (a′)∗, so that (dp)id : g→ g′

sends k, p and a to k′, p′ and a′ respectively, and (dp)∗id : (a′)∗ → a∗ identifies ∆′ with a
subset of ∆ that contains θ.

(2) The parabolic subgroup P′θ ⊂ G′ corresponding to θ ⊂ ∆′ satisfies p−1(P′θ) = Pθ, and
does not contain any simple factors of G′. Furthermore, if F ′θ := G′/P′θ, then the map
ξ : Fθ → F ′θ given by ξ : g Pθ 7→ p(g)P′θ is a p-equivariant diffeomorphism which
preserves transverality.
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(3) Let κθ : G → a+
θ and κ′θ : G′ → (a′θ)

+ be the partial Cartan projections, and let Bθ :
G×Fθ → aθ and B′θ : G′×F ′θ → a′θ be the partial Iwasawa cocycles. Then (dp)id : g→ g′

restricts to an isomorphism from aθ to a′θ, and satisfies

(dp)id(κθ(g)) = κ′θ(p(g)) and (dp)id(Bθ(g, F )) = B′θ(p(g), ξ(F ))

for all g ∈ G and F ∈ Fθ,

Once we have such a Lie group G′ and quotient map p : G→ G′ as in Proposition 2.9, then for
any Pθ-transverse subgroup Γ ⊂ G and any φ ∈ a∗θ, we may set Γ′ := p(Γ) and φ′ := φ◦(dp)id|−1

aθ
.

By Proposition 2.9, it follows that

(I) p|Γ has finite kernel, Γ′ is P′θ-transverse, ξ(Λθ(Γ)) = Λθ(Γ
′) and ξ(Λcon

θ (Γ)) = Λcon
θ (Γ′).

(II) φ(κθ(γ)) = φ′(κ′θ(p(γ))) for all γ ∈ Γ.
(III) φ(Bθ(γ, F )) = φ′(B′θ(p(γ), ξ(F ))) for all γ ∈ Γ and F ∈ Λθ(Γ).

Thus, any result for Γ ⊂ G and φ ∈ aθ that depends only on Λθ(Γ), Λcon
θ (Γ), φ ◦ κθ and φ ◦ Bθ

will hold if and only if they also hold for Γ′ ⊂ G′ and φ′ ∈ a′θ. In many situations, this allows
us to assume without loss of generality that G has trivial center and Pθ does not contain any
simple factors of G.

Proof of Proposition 2.9. Let pθ ⊂ g be the Lie subalgebra corresponding to Pθ. If we set

J := {j : gj ∩ pθ = 0} and Jc := {j : gj ⊂ pθ},
then J ∪ Jc = {1, . . . ,m}.

Let H := Z(G)
∏
j∈Jc Gj ⊂ G, G′ := G/H and p : G → G′ be the quotient map. Then observe

that via the map (dp)id, we may identify:

g′ =
⊕
j∈J

gj . (5)

In particular, G′ is semisimple without compact factors, and has trivial center.
First, we prove part (1). Observe that we may decompose

k =
m⊕
j=1

kj , p =
m⊕
j=1

pj , a =
m⊕
j=1

aj , Σ =
m⋃
j=1

Σj , ∆ =
m⋃
j=1

∆j and a+ =
m⊕
j=1

a+
j ,

where gj = kj ⊕ pj is a Cartan decomposition of gj , aj ⊂ pj is a Cartan subspace, Σj is the set
of restricted roots for aj and ∆j ⊂ Σj is a system of simple restricted roots and a+

j ⊂ aj is the
positive Weyl chamber relative to ∆j . Hence, if we set

k′ :=
⊕
j∈J

kj , p′ :=
⊕
j∈J

pj , a′ :=
⊕
j∈J

aj , Σ′ :=
⋃
j∈J

Σj , ∆′ :=
⋃
j∈J

∆j and (a′)+ =
⊕
j∈J

a+
j

then via the identification (5), g′ = k′ ⊕ p′ is a Cartan decomposition of g′, a′ ⊂ p′ is a Cartan
subspace, Σ′ is the set of restricted roots for a′, ∆′ ⊂ Σ′ is a system of simple restricted roots
and (a′)+ is the positive Weyl chamber relative to ∆′. Furthermore, from the definition of Pθ,
if Gj is a simple factor of G that lies in Pθ, then θ does not intersect ∆j . This proves part (1).

Next, we prove part (2). The fact that Pθ = p−1(P′θ) is a straightforward verification from
the definition of Pθ and P′θ. This fact, together with (5) imply that P′θ does not contain any
simple factors of G′. It is clear that ξ is a p-equivariant diffeomorphism. To see that ξ preserves
transversality, simply note that the proof that Pθ = p−1(P′θ) also verifies that P−θ = p−1((P′θ)

−).
Thus, part (2) holds.

Part (3) holds because with our choice of a′, p sends the Cartan and Iwasawa decompositions
of G to the Cartan and Iwasawa decompositions of G′ respectively. �
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3. Patterson-Sullivan measures for divergent groups

Patterson-Sullivan measures were first constructed by Patterson [38] for Fuchsian groups.
Subsequently they were constructed in many settings where there is a natural boundary at
infinity and some amount of Gromov hyperbolic behavior. Almost all these constructions mimic
Patterson’s original constructions with technical modifications appropriate to the setting.

Given θ ⊂ ∆ symmetric, we will now construct Patterson-Sullivan measures for Pθ-divergent
subgroups, using the θ-limit set of the group as the natural boundary. More precisely, given
φ ∈ a∗θ and a Pθ-divergent group Γ ⊂ G, a probability measure µ on Fθ is called a φ-conformal
measure for Γ of dimension β if for any γ ∈ Γ, the measures µ and γ∗µ are absolutely continuous
and

dγ∗µ

dµ
(F ) = e−βφ(Bθ(γ−1,F )).

If, in addition, supp(µ) ⊂ Λθ(Γ), then µ is a φ-Patterson-Sullivan measure.

Remark 3.1.

(1) Since the Radon-Nikodym derivative dγ∗µ
dµ is only defined almost everywhere, the above

equation should be understood to hold only almost everywhere. The same abuse of
notation will be used throughout the paper.

(2) Notice that in the definition of the partial Iwasawa cocycle Bθ, we implicitly made a
choice of a Cartan decomposition of g (equivalently, a choice of maximal compact K ⊂ G)
and a choice of a maximal abelian subspace a ⊂ g that is orthogonal (in the Killing form)
to the Lie subalgebra k ⊂ g of K. In this paper, we fix once and for all a choice of K, and
we only consider φ-conformal measures with respect to this fixed K. The choice of K is
equivalent to a choice of basepoint for Hn in the classical case.

Also, recall that δφ(Γ) is the critical exponent of the Poincaré series

QφΓ(s) =
∑
γ∈Γ

e−sφ(κθ(γ)).

Proposition 3.2. If θ ⊂ ∆ is symmetric, Γ ⊂ G is Pθ-divergent, φ ∈ a∗θ and δφ(Γ) < +∞, then

there is a φ-Patterson-Sullivan measure µ for Γ of dimension δφ(Γ).

In the case when Γ is a Pθ-Anosov subgroup, Proposition 3.2 is a consequence of the fol-
lowing theorem of Sambarino [44], who completely classified the linear functionals which admit
Patterson-Sullivan measures (see also Lee-Oh [34] for the case when Γ is Zariski dense and
Anosov with respect to a minimal parabolic subgroup and Kapovich-Dey [22] for the case when
φ is symmetric and positive on a+

θ ).

Theorem 3.3 (Sambarino [44]). If θ ⊂ ∆ is symmetric, Γ ⊂ G is Pθ-Anosov and φ ∈ a∗θ, then
the following are equivalent

(1) φ ∈ B+
θ (Γ),

(2) δφ(Γ) < +∞, and
(3) Γ admits a φ-Patterson-Sullivan measure of dimension δφ(Γ).

Moreover, if δφ(Γ) < +∞, then QφΓ diverges at its critical exponent.

The strategy to prove Proposition 3.2 is to first observe that one can regard Γ∪Λθ(Γ) as a well-
behaved compactification of Γ. Using this compactification one can simply repeat Patterson’s
construction verbatim.
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Lemma 3.4. Suppose θ ⊂ ∆ is symmetric. If Γ ⊂ G is Pθ-divergent, then the set Γ ∪ Λθ(Γ) has
a topology that makes it a compactification of Γ. More precisely:

(1) Γ ∪ Λθ(Γ) is a compact metrizable space.
(2) If Γ has the discrete topology, Γ ↪→ Γ ∪ Λθ(Γ) is an embedding.
(3) If Λθ(Γ) has the subspace topology from Fθ, then Λθ(Γ) ↪→ Γ ∪ Λθ(Γ) is an embedding.
(4) A sequence {γn} in Γ converges to F in Λθ(Γ) if and only if

min
α∈θ

α(κ(γn))→∞ and Uθ(γn)→ F.

(5) The natural left action of Γ on Γ ∪ Λθ(Γ) is by homeomorphisms.

Moreover, for any η ∈ Γ the function B̄θ(η, ·) : Γ ∪ Λθ(Γ)→ aθ defined by

B̄θ(η, x) =

{
κθ(ηx)− κθ(x) if x ∈ Γ,

Bθ(η, x) if x ∈ Λθ(Γ),

is continuous, where the map Bθ : G×Fθ → aθ is the partial Iwasawa cocycle.

Proof. We will construct an explicit metric on Γ∪Λθ(Γ). First let dΓ denote the discrete metric
on Γ, that is

dΓ(γ1, γ2) =

{
1 if γ1 6= γ2,

0 if γ1 = γ2.

Second, fix a metric dθ on Fθ which is induced by a Riemannian metric. By scaling we can
assume that in the metric dθ, the diameter of Fθ is 1. Finally, define mθ : Γ→ (0, 1] by

mθ(γ) = exp

(
−min

α∈θ
α(κ(γ))

)
.

We now define a metric d on Γ ∪ Λθ(Γ) as follows:

• If γ1, γ2 ∈ Γ, then

d(γ1, γ2) = max{mθ(γ1),mθ(γ2)}dΓ(γ1, γ2) + dθ(Uθ(γ1), Uθ(γ2)).

• If γ ∈ Γ and F ∈ Λθ(Γ), then

d(γ, F ) = mθ(γ) + dθ(Uθ(γ), F ).

• If F1, F2 ∈ Λθ(Γ), then

d(F1, F2) = dθ(F1, F2).

It is straightforward to check that d defines a metric. Also, from the definition of d, it is
clear that the restriction of d to Γ and Λθ(Γ) induce the discrete topology on Γ and the usual
topology on Λθ(Γ) respectively, so (2) and (3) holds. To see that (4) holds, note that γn → F
if and only if mθ(γn) → 0 and dθ(Uθ(γn), F ) → 0, which is in turn equivalent to requiring
minα∈θ α(κ(γn))→∞ and Uθ(γn)→ F .

Next we prove the compactness in (1) by taking a sequence {xn} in Γ ∪ Λθ(Γ) and showing
that it has a convergent subsequence. Observe that {xn} either has

(i) a subsequence that lies in Λθ(Γ),
(ii) a subsequence that lies in a finite subset of Γ, or

(iii) a subsequence that lies in Γ, but does not lie in any finite subset of Γ.

If (i) or (ii) holds, then the compactness of Λθ(Γ) and the compactness of finite subsets of Γ
respectively imply {xn} has a convergent subsequence. If (iii) holds, then by taking a further
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subsequence {γj} of {xn}, we may assume that Uθ(γj) → F for some F ∈ Fθ. Since the Pθ-
divergence of Γ implies that minα∈θ α(κ(γj)) → ∞, we may apply (4) to deduce that γj → F .
So {xn} has a convergent subsequence.

Since the left Γ action on Γ and the Γ action on Λθ(Γ) are both clearly continuous, to prove
part (5) it suffices to show: if η ∈ Γ and {γn} is a sequence in Γ converging to F+ ∈ Λθ(Γ),
then ηγn → η(F+). By compactness, it suffices to consider the case when ηγn → F ′ and show
that F ′ = η(F+). Notice that (4) implies that minα∈θ α(κ(γn))→∞ and Uθ(γn)→ F+. Then
using Proposition 2.3 and passing to a subsequence we can suppose that there exists F− ∈ F−θ
such that γn(F )→ F+ for all F ∈ Fθ \ZF− and this convergence is uniform on compact subsets
of Fθ \ZF− . Then ηγn(F ) → η(F+) for all F ∈ Fθ \ZF− and this convergence is uniform
on compact subsets of Fθ \ZF− . So Proposition 2.3 implies that minα∈θ α(κ(ηγn)) → ∞ and
Uθ(ηγn)→ η(F+). So part (4) implies that ηγn → η(F+). So part (5) is true.

Finally notice that Lemma 2.5 and part (4) of this proposition imply the “moreover” part. �

Proof of Proposition 3.2. Let δ := δφ(Γ). Endow Γ ∪ Λθ(Γ) with the topology from Lemma 3.4
and for x ∈ Γ ∪ Λθ(Γ) let Dx denote the Dirac measure centered at x. By [38, Lem. 3.1] there
exists a continuous non-decreasing function h : R+ → R+ such that:

(1) The series

Q̂(s) :=
∑
γ∈Γ

h
(
eφ(κθ(γ))

)
e−sφ(κθ(γ))

converges for s > δ and diverges for s ≤ δ.
(2) For any ε > 0 there exists λ0 > 0 such that: if s > 1 and λ > λ0, then h(λs) ≤ sεh(λ).

(In the case when QφΓ diverges at its critical exponent, we can choose h ≡ 1.) Then for s > δ
consider the probability measure

µs :=
1

Q̂(s)

∑
γ∈Γ

h
(
eφ(κθ(γ))

)
e−sφ(κθ(γ))Dγ

on Γ ∪ Λθ(Γ). By compactness, the family of measures {µs}s>δ admits a subsequential weak
limit as s↘ δ , i.e. there exists {sn} ⊂ (δ,∞) so that lim sn = δ and

µ := limµsn

exists. We will prove that µ is a Patterson-Sullivan measure of dimension δ.
Notice that if A ⊂ Γ is a finite set, then

µ(A) = lim
n→∞

1

Q̂(sn)

∑
γ∈A

h
(
eφ(κθ(γ))

)
e−snφ(κθ(γ)) = 0 ·

∑
γ∈A

h
(
eφ(κθ(γ))

)
e−δφ(κθ(γ)) = 0.

Hence supp(µ) ⊂ Λθ(Γ).
To verify the remaining property, fix η ∈ Γ, let

B̄θ(η
−1, ·) : Γ ∪ Λθ(Γ)→ R

be the continuous function defined in Lemma 3.4, and define the function gη : Γ∪Λθ(Γ)→ R by

gη(z) =


h
(
eφ(κθ(z))+φ(B̄θ(η−1,z))

)
h(eφ(κθ(z)))

if z ∈ Γ,

1 if z ∈ Λθ(Γ).

Notice that property (2) of h implies that gη is continuous.
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For any continuous function f : Γ ∪ Λθ(Γ)→ R and s > δ, we have∫
f(z)dη∗µs(z) =

1

Q̂(s)

∑
γ∈Γ

h
(
eφ(κθ(γ))

)
e−sφ(κθ(γ))f(ηγ)

=
1

Q̂(s)

∑
γ∈Γ

h
(
eφ(κθ(η−1γ))

)
e−sφ(κθ(η−1γ))f(γ)

=
1

Q̂(s)

∑
γ∈Γ

h
(
eφ(κθ(γ))

)
e−sφ(κθ(γ))e−sφ(B̄θ(η−1,γ))

h
(
eφ(κθ(γ))+φ(B̄θ(η−1,γ))

)
h
(
eφ(κθ(γ))

) f(γ)

=

∫
f(z)e−sφ(B̄θ(η−1,z))gη(z)dµs(z).

Then taking limits and recalling that µ is supported on Λθ(Γ), we obtain

dη∗µ

dµ
(F ) = e−δφ(Bθ(η−1,F )).

So µ is a Patterson-Sullivan measure of dimension δ. �

4. Entropy drop

It is natural to conjecture, in analogy with results of Coulon-Dal’bo-Sambusetti [18], that if
Γ0 is a subgroup of a Pθ-Anosov group Γ, φ ∈ a∗θ and δφ(Γ) < +∞, then δφ(Γ) = δφ(Γ0) if and
only if Γ0 is co-amenable in Γ. (Glorieux and Tapie [24] have studied this conjecture when Γ0 is
normal in Γ and Zariski dense.) We apply an argument of Dal’bo-Otal-Peigné [21] to obtain a
criterion guaranteeing entropy drop for subgroups of transverse groups. As a consequence, we
obtain generalization of a result of Brooks [10] from the setting of geometrically finite hyperbolic
3-manifolds into the setting of Anosov groups.

Theorem 4.1. Suppose θ ⊂ ∆ is symmetric, Γ ⊂ G is a non-elementary Pθ-transverse subgroup,

φ ∈ a∗θ and δφ(Γ) < +∞. If Γ0 is a subgroup of Γ such that QφΓ0
diverges at its critical exponent

and Λθ(Γ0) is a proper subset of Λθ(Γ), then

δφ(Γ) > δφ(Γ0).

Proof. Let µ be a φ-Patterson-Sullivan measure for Γ of dimension δφ(Γ).
Fix an open subset W ⊂ Λθ(Γ) such that W ∩ Λθ(Γ0) = ∅. We claim that

N := #{γ ∈ Γ0 : γW ∩W 6= ∅}

is finite. Otherwise there would exist an infinite distinct sequence {γn} ⊂ Γ0 with γnW ∩W 6=
∅. Then using Proposition 2.6 and passing to a subsequence we can suppose that there exist
F+, F− ∈ Λθ(Γ0) such that γn(F ) → F+ uniformly on compact subsets of Fθ \ZF− . Since
Λθ(Γ) is a transverse set, we see that W is a compact subset of Fθ \ZF− . Hence γnW ∩W = ∅
for n large. So we have a contradiction and hence N is finite.

Fix a distance dFθ on Fθ which is induced by a Riemannian metric. Since Λθ(Γ0) is the set
of accumulation points of {Uθ(γ) : γ ∈ Γ0}, there is a finite subset S ⊂ Γ0 and ε > 0 so that

dFθ
(
F,ZUθ(γ)

)
≥ ε

for all F ∈W and γ ∈ Γ0 \ S. Then Lemma 2.4 implies that there exists C > 0 such that

φ(Bθ(γ, F )) ≤ φ(κθ(γ)) + C (6)
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for all F ∈W and γ ∈ Γ0 \ S (recall that θ is symmetric and so we can identify Fθ and F−θ , see
Section 2.2).

Since Γ0 ⊂ Γ, it is immediate that δφ(Γ) ≥ δφ(Γ0). Suppose for contradiction that δ :=
δφ(Γ) = δφ(Γ0). Notice that

µ(γ(W )) = γ−1
∗ µ(W ) =

∫
W
e−δφ(Bθ(γ,F ))dµ(F ),

so (6) implies that

µ(γ(W )) ≥ e−δCe−δφ(κθ(γ))µ(W )

for all γ ∈ Γ0 \ S. Since QφΓ0
diverges at its critical exponent,

1 = µ(Λθ(Γ)) ≥ 1

N

∑
γ∈Γ0

µ(γ(W )) ≥ e−δCµ(W )

N

∑
γ∈Γ0\S

e−δφ(κθ(γ)) = +∞

which is a contradiction. �

One immediate consequence of our criterion is an entropy gap result for quasiconvex subgroups
of Anosov groups. We recall that a subgroup Γ0 of a hyperbolic group Γ is quasiconvex if there
exists K > 0 such that any geodesic joining two points in Γ0 in the Cayley graph of Γ (with
respect to some finite presentation of Γ) lies within distance K of the vertices associated to Γ0.

Corollary 4.2. Suppose θ ⊂ ∆ is symmetric, Γ ⊂ G is a non-elementary Pθ-Anosov subgroup
and Γ0 is an infinite index quasiconvex subgroup of Γ. If φ ∈ a∗θ and δφ(Γ) < +∞, then

δφ(Γ) > δφ(Γ0).

Proof. Since Γ ⊂ G is a non-elementary Pθ-Anosov subgroup and Γ0 is a quasiconvex subgroup
of Γ, Canary, Lee, Sambarino and Stover observed (see [14, Lem. 2.3]) that Γ0 ⊂ G is also a
Pθ-Anosov subgroup. Furthermore, since Γ0 ⊂ Γ is infinite index we see that ∂Γ0 is a proper
subset of ∂Γ, so it follows that Λθ(Γ0) is a proper subset of Λθ(Γ). Theorem 3.3 implies that

QφΓ0
diverges at its critical exponent, so the corollary now follows from Theorem 4.1. �

Remark 4.3.

(1) In Corollary 4.2 it is not enough to assume that Γ0 is infinite index and finitely generated,
since the results fails when Γ ⊂ PO(3, 1) uniformizes a closed hyperbolic 3-manifold which
fibers over the circle and Γ0 is the fiber subgroup. In this case, if we set θ := {α1, α3},
then Γ ⊂ PGL(4,R) is Pθ-Anosov and Γ0 ⊂ Γ is an infinite index, finitely generated
subgroup. However, in this case, δα1(Γ) = δα1(Γ0), see [13, Cor. 4.2].

(2) Theorem 4.1 also gives a new proof of [15, Prop. 11.5].

5. Projectively visible groups and their geodesic flows

In this mostly expository section, we recall the definition of projectively visible groups from [28]
and state some of their basic properties. Projectively visible groups are a class of transverse
groups and we will see in the next section that every transverse group can be identified with a
projectively visible group in a useful manner



PATTERSON-SULLIVAN MEASURES FOR TRANSVERSE SUBGROUPS 21

5.1. Properly convex domains. We briefly recall some properties of properly convex domains,
the Hilbert metric, and the automorphism group of a properly convex domain. For a more
detailed discussion we refer the reader to the survey article of Marquis [37].

Suppose Ω ⊂ P(Rd) is a properly convex domain, that is an open set which is convex and
bounded in some affine chart of P(Rd). Then a supporting hyperplane to Ω at a point x ∈ ∂Ω
is a projective hyperplane H ⊂ P(Rd) (i.e. the projectivization of a codimension one linear
subspace) that contains x but does not intersect Ω. By convexity, every boundary point of ∂Ω
is contained in at least one supporting hyperplane and a boundary point which is contained in
a unique supporting hyperplane is called a C1-smooth point of ∂Ω. In the case when x is a
C1-smooth point of ∂Ω, we let Tx∂Ω denote the unique supporting hyperplane at x.

For any pair of points x, y ∈ Ω, let [x, y]Ω denote the closed projective line segment in Ω
with x and y as its endpoints. Similarly, (x, y)Ω := [x, y]Ω − {x, y}, [x, y)Ω := [x, y]Ω − {y} and
(x, y]Ω := [x, y]Ω − {x}.

A properly convex domain Ω admits a natural Finsler metric dΩ, called the Hilbert metric.
Given a pair of points p, q ∈ Ω, let x, y ∈ ∂Ω be the points such that that x, p, q, y lie along
[x, y]Ω in that order. Then

dΩ(p, q) := log
|x− q||y − p|
|x− p||y − q|

,

where |·| denotes some (any) norm on some (any) affine chart containing x, p, q, y. Observe that
all projective line segments in Ω are geodesics of the Hilbert metric.

Although the Hilbert metric is rarely CAT(0), the distance function has the following well
known and useful convexity property, for a proof see for instance [28, Prop. 5.3].

Proposition 5.1. Suppose Ω ⊂ P(Rd) is a properly convex domain, x ∈ Ω and q1, q2 ∈ Ω. If
p ∈ [q1, x)Ω, then

dΩ(p, [q2, x)Ω) ≤ dΩ(q1, q2).

Given a properly convex domain Ω ⊂ P(Rd), we denote by Aut(Ω) ⊂ PGL(d,R) the subgroup
that leaves Ω invariant. The group Aut(Ω) preserves the Hilbert metric and acts properly on Ω.

The full orbital limit set of a discrete infinite subgroup Γ ⊂ Aut(Ω) is

ΛΩ(Γ) :=
{
x ∈ ∂Ω : x = lim

n→∞
γn(p) for some p ∈ Ω and some {γn} ⊂ Γ

}
.

We also let Λcon
Ω (Γ) ⊂ ΛΩ(Γ) denote the set of limit points x ∈ ΛΩ(Γ) where there exist b0 ∈ Ω,

a sequence {γn} in Γ and some r > 0 such that γn(b0) → x and dΩ(γn(b0), [b0, x)Ω) < r for all
n.

5.2. Properties of projectively visible groups. If Ω is a properly convex domain, we say that a
discrete subgroup Γ ⊂ Aut(Ω) is projectively visible if

(1) (x, y)Ω ⊂ Ω for any two points x, y ∈ ΛΩ(Γ) and
(2) every point in ΛΩ(Γ) is a C1-smooth point of ∂Ω.

The following proposition collects elementary properties of projectively visible groups and
shows, in particular, that they are examples of transverse subgroups.

Proposition 5.2. If Ω ⊂ P(Rd) is a properly convex domain and Γ ⊂ Aut(Ω) is a projectively
visible subgroup, then the following hold:

(1) If b0 ∈ Ω, then ΛΩ(Γ) = Γ(b0) ∩ ∂Ω.
(2) If θ = {α1, αd−1}, then Γ ⊂ PGL(d,R) is a Pθ-transverse subgroup, with

Λθ(Γ) = {(x, Tx∂Ω) : x ∈ ΛΩ(Γ)} .
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In particular, Γ acts as a convergence group on ΛΩ(Γ).
(3) If {γn} is a sequence in Γ and there exists b0 ∈ Ω such that γn(b0) → x ∈ ΛΩ(Γ) and

γn → T ∈ P(End(Rd)), then T is the projectivization of a rank 1 linear map whose image
is x. Furthermore, if γ−1

n (b0)→ y, then ker(T ) = Ty∂Ω.
(4) x ∈ ΛΩ(Γ) is a conical limit point (in the convergence group sense) if and only if x ∈

Λcon
Ω (Γ).

Proof. (1): By definition Γ(b0)∩∂Ω ⊂ ΛΩ(Γ). To show the other inclusion, fix x ∈ ΛΩ(Γ). Then
there is a sequence {γn} in Γ and b′0 ∈ Ω such that γn(b′0) → x. Passing to a subsequence we
can suppose that γn(b0)→ x′. Since

lim
n→∞

dΩ(γn(b′0), γn(b0)) = dΩ(b′0, b0),

the definition of the Hilbert metric implies that [x, x′]Ω ⊂ ∂Ω. Then, since Γ is visible, we must

have x = x′ ∈ Γ(b0) ∩ ∂Ω.
(2): This was established as [15, Prop. 3.5].
(3): First, ker(T )∩Ω = ∅ by [28, Prop. 5.6]. Next, note that T (Ω) ⊂ ΛΩ(Γ); indeed, if b ∈ Ω,

then b /∈ ker(T ) and hence

T (b) = lim
n→∞

γn(b) ∈ ΛΩ(Γ).

Thus, if b ∈ Ω, then

[T (b), x]Ω = [T (b), T (b0)]Ω = T ([b, b0]Ω) ⊂ ΛΩ(Γ),

so T (b) = x because T (b), x ∈ ΛΩ(Γ) and Γ ⊂ Aut(Ω) is projectively visible. Since Ω ⊂ P(Rd)
is open and T (Ω) = {x}, it follows that T is the projectivization of a rank 1 map whose image
is x. By [28, Prop. 5.6], if γ−1

n (b0)→ y, then y lies in the kernel of T . Since ker(T )∩Ω = ∅ and
y is a C1-smooth point, we have ker(T ) = Ty∂Ω.

(4): This was established as [15, Lem. 3.6]. �

5.3. The geodesic flow. Following earlier work of Benoist [3], Bray [8] and Blayac [5, 6], we now
develop the theory of the geodesic flow of a projectively visible group.

First given a properly convex domain Ω ⊂ P(Rd), let T 1Ω ⊂ TΩ denote the unit tangent
bundle with respect to the infinitesimal Hilbert metric. Given v ∈ T 1Ω, let γv : R → Ω denote
the unique geodesic line with γ′v(0) = v and whose image is a projective line segment. Also, let

v± := lim
t→±∞

γv(t) ∈ ∂Ω.

The subspace T 1Ω has a natural flow, called the geodesic flow, which is defined by ϕt(v) = γ′v(t).
Using this flow, we may define a metric dT 1Ω on T 1Ω by

dT 1Ω(v, w) := max
t∈[0,1]

dΩ

(
π(ϕt(v)), π(ϕt(w))

)
where π : T 1Ω → Ω takes a vector to its basepoint. It is well-known (see [3, Lem. 3.4] for
a proof) that two geodesic rays that end at the same C1-smooth point in the boundary are
asymptotic.

Lemma 5.3. Suppose Ω ⊂ P(Rd) is a properly convex domain, v, w ∈ T 1Ω and v+ = w+. If
v+ = w+ is a C1-smooth point of ∂Ω, then there exists T ∈ R such that

lim
t→∞

dT 1Ω

(
ϕt+T (v), ϕt(w)

)
= 0.
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Next, given a projectively visible subgroup Γ ⊂ Aut(Ω), let U(Γ) ⊂ T 1Ω denote the space of
all unit tangent vectors v where v+, v− ∈ ΛΩ(Γ). Note that U(Γ) is ϕt-invariant and Γ-invariant,
further the Γ-action on U(Γ) is properly discontinuous, and the ϕt-action on U(Γ) commutes
with the Γ-action. As such, ϕt descends to a flow, still denoted ϕt, on the quotient

Û(Γ) := Γ\U(Γ).

Since the Hilbert metric on Ω is a length metric, we can define a metric dΓ\Ω on Γ\Ω by

dΓ\Ω(a, b) = inf{dΩ(ã, b̃) : p(ã) = a and p(b̃) = b}

where p : Ω→ Γ\Ω is the natural projection. Then we may define a metric on Γ\T 1Ω by

dΓ\T 1Ω(v, w) := max
t∈[0,1]

dΓ\Ω
(
π(ϕt(v)), π(ϕt(w))

)
where π : Γ\T 1Ω→ Γ\Ω takes a vector to its basepoint. Notice that if p : T 1Ω→ Γ\T 1Ω is the
natural projection, then

dΓ\T 1Ω(p(v), p(w)) ≤ dT 1Ω(v, w) (7)

for all v, w ∈ T 1Ω.
Let ΛΩ(Γ)(2) denote the set of distinct pairs in ΛΩ(Γ)2. Since Γ is a projectively visible group,

U(Γ) is homeomorphic to ΛΩ(Γ)(2)×R. Using horofunctions, this homeomorphism can be made
explicit. Bray [8, Lem. 3.2] showed that if y is a C1-smooth point of ∂Ω, there is a well-defined
horofunction at y

hy : Ω× Ω→ R

given by

hy(a, b) := lim
x→y

dΩ(x, a)− dΩ(x, b),

where the limit is taken over all sequences of points x in Ω that converge to y. Since Γ ⊂ Aut(Ω)
is projectively visible, every point in ΛΩ(Γ) is a C1-smooth point of ∂Ω, so hy is well-defined for
all y ∈ ΛΩ(Γ).

For every b0 ∈ Ω, the Hopf parameterization of U(Γ) determined by b0 is the identification

U(Γ) ∼= ΛΩ(Γ)(2) × R,

where v ∈ U(Γ) is identified with (v−, v+, hv+(b0, π(v))). In this parameterization, the flow ϕt
on U(Γ) is given by

ϕt(x, y, s) = (x, y, s+ t),

and the Γ action on U(Γ) is given by

γ(x, y, s) = (γ(x), γ(y), s+ hy(γ
−1(b0), b0)).

6. Transverse representations and Bowen-Margulis-Sullivan measures

By results from [15] and Appendix B, we deduce that any Pθ-transverse subgroup Γ ⊂ G
is the image of a well-behaved representation of a projectively visible subgroup Γ0 ⊂ Aut(Ω).
Then, given φ ∈ a∗θ with δφ(Γ) < +∞, we produce a geodesic flow-invariant measure mφ on the
unit tangent bundle of Ω, which we call the Bowen-Margulis-Sullivan measure. Later, we will
use this measure in our proof of the ergodicity properties of the Patterson-Sullivan measure.
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6.1. Transverse representations. If θ ⊂ ∆ is symmetric, Ω ⊂ P(Rd) is a properly convex domain
and Γ0 ⊂ Aut(Ω) is a projectively visible subgroup, a representation ρ : Γ0 → G is said to be
Pθ-transverse if there exists a continuous ρ-equivariant embedding

ξ : ΛΩ(Γ0)→ Fθ
with the following properties:

(1) ξ(ΛΩ(Γ0)) is a transverse subset of Fθ,
(2) if {γn} is a sequence in Γ0 so that γn(b0) → x ∈ ΛΩ(Γ0) and γ−1

n (b0) → y ∈ ΛΩ(Γ0) for
some (any) b0 ∈ Ω, then ρ(γn)(F )→ ξ(x) for all F ∈ Fθ \Zξ(y).

We refer to ξ as the limit map of ρ.
The following observation is a consequence of Proposition 2.3.

Observation 6.1. If ρ : Γ0 → G is a Pθ-transverse representation, then Γ := ρ(Γ0) is a Pθ-
transverse subgroup and the limit map ξ induces a homeomorphism ΛΩ(Γ0)→ Λθ(Γ). Moreover,

(1) ξ(Λcon
Ω (Γ0)) = Λcon

θ (Γ).
(2) If {γn} is a sequence in Γ0 so that γn(b0) → x ∈ ΛΩ(Γ0) for some b0 ∈ Ω, then

Uθ(ρ(γn))→ ξ(x) and α(κ(ρ(γn)))→∞ for all α ∈ θ.
Proof. We begin by proving (2). Fix a sequence {γn} in Γ0 so that γn(b0) → x ∈ ΛΩ(Γ0) for
some b0 ∈ Ω. By compactness it suffices to consider the case where F+ := limn→∞ Uθ(ρ(γn))
and

L := lim
n→∞

min
α∈θ

α(κ(ρ(γn))) ∈ R≥0 ∪{+∞}

both exist, then show that ξ(x) = F+ and L = +∞. Passing to a subsequence we can suppose
that γ−1

n (b0) → y. Then by definition ρ(γn)(F ) → ξ(x) for all F ∈ Fθ \Zξ(y) and ρ(γ−1
n )(F ) →

ξ(y) for all F ∈ Fθ \Zξ(x). Since Fθ \Zξ(y) and Fθ \Zξ(x) are both open, Proposition 2.6 implies

that ξ(x) = F+ and L = +∞. Thus (2) is true.
Then Γ := ρ(Γ0) is a Pθ-divergent subgroup and ξ induces a homeomorphism ΛΩ(Γ0)→ Λθ(Γ).

Further, by definition, Λθ(Γ) = ξ(ΛΩ(Γ0)) is a transverse subset and hence Γ is Pθ-transverse.
Finally, Proposition 5.2(4) implies that ξ(Λcon

Ω (Γ0)) = Λcon
θ (Γ0). �

The next two results were established in [15] in the special case when G = PSL(d,R). In
Appendix B we explain how to reduce the general case to this special case.

The first result states that under mild conditions on G and θ, see Section 2.4, every transverse
group is the image of a transverse representation.

Theorem 6.2. Suppose Z(G) is trivial, θ ⊂ ∆ is symmetric and Pθ contains no simple factors of
G. If Γ ⊂ G is Pθ-transverse, then there exist d ∈ N, a properly convex domain Ω ⊂ P(Rd), a
projectively visible subgroup Γ0 ⊂ Aut(Ω) and a faithful Pθ-transverse representation ρ : Γ0 → G
with limit map ξ : ΛΩ(Γ0)→ Fθ such that ρ(Γ0) = Γ and ξ(ΛΩ(Γ0)) = Λθ(Γ).

It will be useful throughout the paper, to understand how the Cartan projection behaves under
multiplication of group elements. The next lemma assures that when two elements translate a
basepoint b0 ∈ Ω in roughly the same direction, then the Cartan projection is coarsely additive.

Proposition 6.3. Suppose θ ⊂ ∆ is symmetric, Ω ⊂ P(Rd) is a properly convex domain, Γ0 ⊂
Aut(Ω) is a projectively visible subgroup and ρ : Γ0 → G a Pθ-transverse representation. For
any b0 ∈ Ω and r > 0, there exist C > 0 such that if γ, η ∈ Γ0 and

dΩ (γ(b0), [b0, η(b0)]Ω) ≤ r,
then ∥∥κθ(ρ(η))− κθ(ρ(γ))− κθ(ρ(γ−1η))

∥∥ ≤ C.
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6.2. The Bowen-Margulis-Sullivan measure. Suppose θ ⊂ ∆ is symmetric, Ω ⊂ P(Rd) is a
properly convex domain, Γ0 ⊂ Aut(Ω) is a non-elementary projectively visible subgroup and
ρ : Γ0 → G is a Pθ-transverse representation with limit map ξ : ΛΩ(Γ0)→ Fθ. Let Γ := ρ(Γ0).

As in Section 2, let ι : a → a denote the opposite involution. Then fix φ ∈ a∗θ with δ :=

δφ(Γ) < +∞ and let

φ̄ := φ ◦ ι ∈ a∗θ.

Notice that φ̄(κθ(g)) = φ(κθ(g
−1)) for all g ∈ G, and so δφ̄(Γ) = δφ(Γ) < +∞. Finally, suppose

µ is a φ-Patterson-Sullivan measure for Γ and µ̄ is a φ̄-Patterson-Sullivan measure for Γ, both
with dimension β.

The goal of this section is to construct, using ρ, µ and µ̄, a measure m on Û(Γ0) that is
ϕt-invariant. We will call this measure the Bowen-Margulis measure associated to ρ, µ and µ̄.

Let F (2)
θ denote the space of pairs of transverse flags in Fθ. Then there exists a continuous

function

[·, ·]θ : F (2)
θ → aθ,

called the Gromov product such that

[g(F ), g(G)]θ − [F,G]θ = −ι ◦Bθ(g, F )−Bθ(g,G) (8)

for all g ∈ G and (F,G) ∈ F (2)
θ , see [43, Lem. 4.12].

Identify U(Γ0) = ΛΩ(Γ0)(2) × R via the Hopf parametrization based at a point b0 ∈ Ω. Then
define a measure m̃ on U(Γ0) by

dm̃(x, y, s) = e−βφ([ξ(x),ξ(y)]θ)dµ̄(ξ(x))⊗ dµ(ξ(y))⊗ dt(s)

where dt is the Lebesgue measure on R. This measure is clearly ϕt-invariant. Furthermore,
Equation (8) and the quasi-invariance property of µ and µ̄, imply that m̃ is Γ0-invariant. There-

fore, m̃ descends to a measure m on Û(Γ0) that is ϕt-invariant.

7. A shadow lemma for transverse representations

Sullivan’s shadow lemma, originally proven in the setting of convex cocompact Kleinian groups
[45], is a central tool in the analysis of Patterson-Sullivan measures in many settings. It gives
estimates from above and below on the measure of a shadow in the sphere at infinity of a ball
about an orbit point from a light based at the basepoint.

In the setting of properly convex domains, shadows can be defined as follows: If Ω is a properly
convex domain, b, p ∈ Ω and r > 0, one defines the shadow

Or(b, p) := {x ∈ ∂Ω : dΩ(p, [b, x)Ω) < r}.

Our version of Sullivan’s shadow then has the following form.

Proposition 7.1. Suppose θ ⊂ ∆ is symmetric, Ω ⊂ P(Rd) is a properly convex domain, Γ0 ⊂
Aut(Ω) is a non-elementary projectively visible subgroup, ρ : Γ0 → G a Pθ-transverse represen-
tation with limit map ξ : ΛΩ(Γ0) → Fθ, Γ := ρ(Γ0), φ ∈ a∗θ and µ is a φ-Patterson-Sullivan
measure for Γ of dimension β. For any b0 ∈ Ω, there exists R0 such that: if r > R0, then there
exists C = C(b0, r) > 1 so that

C−1e−βφ(κθ(ρ(γ))) ≤ µ
(
ξ
(
Or(b0, γ(b0)) ∩ ΛΩ(Γ0)

))
≤ Ce−βφ(κθ(ρ(γ)))

for all γ ∈ Γ0.
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Proof. For notational convenience, we let ν be the measure on ∂Ω defined by

ν(A) = µ
(
ξ(A ∩ ΛΩ(Γ0))

)
.

By Proposition 2.8, the action of Γ on Λθ(Γ) is minimal, so the support of µ is Λθ(Γ). Also,
since Λθ(Γ) = ξ(ΛΩ(Γ0)), it follows that ΛΩ(Γ0) is the support of ν. This observation, together
with a compactness argument, yields a lower bound on the measure of (large enough) shadows
of b0 based at any point in Γ(b0).

Lemma 7.2. For any b0 ∈ Ω, there exist ε0, R0 > 0 such that

ν(OR0(z, b0)) ≥ ε0
for all z ∈ Γ0(b0).

Proof. Suppose not. Then for every n ≥ 1 there exists zn ∈ Γ0(b0) such that

ν(On(zn, b0)) ≤ 2−n.

Passing to a subsequence we can suppose that zn → z ∈ Γ0(b0) ∪ ΛΩ(Γ0). If z ∈ Γ0(b0), then

∞⋃
n=N

On(zn, b0) = ∂Ω

for every N ≥ 1. On the other hand, if z ∈ ΛΩ(Γ0), then by assumption, (z, y)Ω ⊂ Ω for every
y ∈ ΛΩ(Γ0) \ {z}. This implies that dΩ(b0, (z, y)Ω) < +∞, so

∞⋃
n=N

On(zn, b0) ⊃ ΛΩ(Γ0)− {z}

for every N ≥ 1. Thus, in either case

ν(ΛΩ(Γ0)− {z}) ≤ lim
N→∞

∑
n≥N

ν(On(zn, b0)) = 0.

Since ΛΩ(Γ0)− {z} is open in ΛΩ(Γ0), which is the support of ν, this is impossible. �

Next we use Proposition 6.3 to show that if x ∈ ΛΩ(Γ0) lies in the shadow Or(b0, γ(b0)) for
some γ ∈ Γ0, then Bθ(ρ(γ)−1, ξ(x)) can be approximated by κθ(ρ(γ)).

Lemma 7.3. For any r > 0, there exists C1 > 0 such that∣∣φ(Bθ(ρ(γ)−1, ξ(x)) + κθ(ρ(γ))
)∣∣ ≤ C1

for all γ ∈ Γ0 and x ∈ Or(b0, γ(b0)) ∩ ΛΩ(Γ0).

Proof. Since x ∈ ΛΩ(Γ0), by Proposition 5.2(1), there exists a sequence {ηn} in Γ0 such that
ηn(b0)→ x. Since x ∈ Or(b0, γ(b0)), we have

dΩ(γ(b0), [b0, x)Ω) < r

and hence

dΩ (γ(b0), [b0, ηn(b0)]Ω) < r

for sufficiently large n. So, by Proposition 6.3, there exists C1 > 0 which depends on r and φ,
so that ∣∣φ(κθ(ρ(γ)) + κθ(ρ(γ−1ηn))− κθ(ρ(ηn))

)∣∣ ≤ C1
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for sufficiently large n. Further, Observation 6.1 implies that Uθ(ρ(ηn)) → ξ(x). So, by the
“moreover” part of Lemma 3.4,∣∣φ(Bθ(ρ(γ)−1, ξ(x)) + κθ(ρ(γ))

)∣∣ = lim
n→∞

∣∣φ(Bθ(ρ(γ)−1, Uθ(ρ(ηn))) + κθ(ρ(γ))
)∣∣

= lim
n→∞

∣∣φ(κθ(ρ(γ−1ηn))− κθ(ρ(ηn)) + κθ(ρ(γ))
)∣∣ ≤ C1. �

Now we can complete the proof of Proposition 7.1.
Let ε0, R0 > 0 be the constants given by Lemma 7.2 (which depend on b0). For any r ≥ R0

and γ ∈ Γ0,

ν
(
Or(γ−1(b0), b0)

)
= γ∗ν

(
Or(b0, γ(b0))

)
=

∫
Or(b0,γ(b0))

e−βφ(Bθ(ρ(γ)−1,ξ(x)))dν(x).

So Lemma 7.3 implies that there is some C1 > 0 (which depends on r) such that

eβφ(κθ(ρ(γ))))−βC1 ≤
ν
(
Or(γ−1(b0), b0)

)
ν
(
Or(b0, γ(b0))

) ≤ eβφ(κθ(ρ(γ))))+βC1 .

Since r ≥ R0, Lemma 7.2 implies that ε0 ≤ ν
(
Or(γ−1(b0), b0)

)
≤ 1, so

ε0e
−βC1e−βφ(κθ(ρ(γ))) ≤ ν

(
Or(b0, γ(b0))

)
≤ eβC1e−βφ(κθ(ρ(γ))).

Hence the lemma holds with C := eβC1ε−1
0 . �

8. Consequences of the shadow lemma

In this section, we collect several standard consequences of the shadow lemma. Most impor-
tantly, we see that conical limit points cannot be atoms for any Patterson-Sullivan measure and
that if the φ-Poincaré series converges in the dimension of the measure, then the conical limit set
has measure zero. Later, we will see that if the φ-Poincaré series diverges at its critical exponent,
then the conical limit set has full measure in the φ-Patterson-Sullivan measure associated to the
critical exponent.

Proposition 8.1. Suppose θ ⊂ ∆ is symmetric, Γ ⊂ G is a non-elementary Pθ-transverse sub-
group, φ ∈ a∗θ and µ is a φ-Patterson-Sullivan measure with dimension β.

(1) β ≥ δφ(Γ).
(2) If y ∈ Λcon

θ (Γ), then µ({y}) = 0.

(3) If QφΓ(β) < +∞, then µ(Λcon
θ (Γ)) = 0.

(4) If {Γn} is a sequence of increasing subgroups with Γ = ∪Γn, then

lim
n→∞

δφ(Γn) = δφ(Γ).

The rest of the section is devoted to the proof of the proposition. Fix a non-elementary,
Pθ-transverse group Γ ⊂ G, φ ∈ a∗θ and a φ-Patterson-Sullivan measure µ with dimension β.

Using the discussion in Section 2.4 we may assume that G has trivial center and that Pθ
does not contain any simple factors of G. By Theorem 6.2, there is a properly convex domain
Ω ⊂ P(Rd), a projectively visible subgroup Γ0 ⊂ Aut(Ω) and a faithful Pθ-transverse represen-
tation ρ : Γ0 → G with limit map ξ : ΛΩ(Γ0) → Fθ so that ρ(Γ0) = Γ and ξ(ΛΩ(Γ0)) = Λθ(Γ).
Further, ξ(Λcon

Ω (Γ0)) = Λcon
θ (Γ), see Observation 6.1. Define a probability measure ν on ∂Ω by

ν(A) := µ
(
ξ(A ∩ ΛΩ(Γ0))

)
.
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Fix b0 ∈ Ω. By the Shadow Lemma (Proposition 7.1) there is some R0 > 0 such that for
every r ≥ R0 there exists a constant C1 = C1(r) ≥ 1 where

C−1
1 e−βφ(κθ(ρ(γ))) ≤ ν

(
Or(b0, γ(b0))

)
≤ C1e

−βφ(κθ(ρ(γ))) (9)

for all γ ∈ Γ.

Proof of part (1). We will make use of a subdivision of the group into sets of the form

An := {γ ∈ Γ0 : n < φ(κθ(ρ(γ))) ≤ n+ 1}.
We observe that if elements in a single An have overlapping shadows, then they are nearby.

Lemma 8.2. For any r > 0, there exists C2 = C2(r) > 0 such that: if γ1, γ2 ∈ An and
Or(b0, γ1(b0)) ∩ Or(b0, γ2(b0)) 6= ∅, then

dΩ(γ1(b0), γ2(b0)) ≤ C2.

Proof. Fix x ∈ Or(b0, γ1(b0)) ∩ Or(b0, γ2(b0)) 6= ∅. Then for j = 1, 2, there exists pj ∈ [b0, x)
such that dΩ(pj , γj(b0)) < r. After possibly relabelling we may assume that p1 ∈ [b0, p2]. By
Proposition 5.1,

dΩ(γ1(b0), [b0, γ2(b0)]) ≤ dΩ(γ1(b0), p1) + dΩ(p1, [b0, γ2(b0)]) ≤ r + dΩ(p2, γ2(b0)) ≤ 2r.

Then by Proposition 6.3 there exists a constant C > 0 (which depends on r) such that∣∣∣φ(κθ(ρ(γ1)) + κθ(ρ(γ−1
1 γ2))− κθ(ρ(γ2))

)∣∣∣ ≤ C.
Since γ1, γ2 ∈ An, it follows that

φ(κθ(ρ(γ−1
1 γ2))) ≤ C + 1.

Thus, if we choose

C2 := max{dΩ(b0, γ(b0)) : γ ∈ Γ0 and φ(κθ(ρ(γ))) ≤ C + 1},
then

dΩ(γ1(b0), γ2(b0)) = dΩ(b0, γ
−1
1 γ2(b0)) ≤ C2. �

Fix r ≥ R0, and let C2 > 0 be the constant given by Lemma 8.2 for r. For each n, let A′n ⊂ An
be a maximal collection of elements such that

dΩ(γ1(b0), γ2(b0)) > C2

for all distinct γ1, γ2 ∈ A′n. Observe that if

N := #{γ ∈ Γ0 : dΩ(γ(b0), b0) ≤ C2},

then #A′n ≥ 1
N#An.

By Lemma 8.2,

Or(b0, γ1(b0)) ∩ Or(b0, γ2(b0)) = ∅
for all γ1, γ2 ∈ A′n. Thus, by (9),

1 = ν
(
ΛΩ(Γ0)

)
≥
∑
γ∈A′n

ν
(
Or(b0, γ(b0))

)
≥ 1

C1

∑
γ∈A′n

e−βφ(κθ(ρ(γ))) ≥ 1

C1
#A′n e−β(n+1).

This implies that #An ≤ N#A′n ≤ C1Ne
β(n+1). Then

δφ(Γ) = lim sup
n→∞

1

n
log #An ≤ β. �
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Proof of part (2). We first observe that β is positive. If this were not the case, then part (1)
implies that β = 0, or equivalently, that µ is a Γ-invariant measure on Λθ(Γ). However, this is
impossible because Γ acts as a non-elementary convergence group on Λθ(Γ).

Let y ∈ Λcon
θ (Γ). By Observation 6.1(1), x := ξ−1(y) ∈ Λcon

Ω (Γ0). Then, by definition, there
is some r > 0 and a sequence {γn} in Γ0 such that γn(b0)→ x and dΩ(γn(b0), [b0, x)) < r for all
n. We may assume that r ≥ R0.

By part (1), δφ(Γ) ≤ β < +∞, so QφΓ(s) converges for s sufficiently large. This implies that

lim
n→∞

φ(κθ(ρ(γn))) = +∞.

Since x ∈ Or(b0, γn(b0)) for all n and β > 0, it follows from (9) that

µ({y}) ≤ lim inf
n→∞

ν
(
Or(b0, γn(b0))

)
≤ C1 lim inf

n→∞
e−βφ(κθ(ρ(γn))) = 0. �

Proof of part (3). For r > 0 let ΛΩ,b0,r(Γ0) ⊂ ΛΩ(Γ0) denote the set of limit points x where
there is a sequence {γn} in Γ0 such that γn(b0)→ x and dΩ(γn(b0), [b0, x)) < r for all n. Notice
that Λcon

Ω (Γ0) =
⋃
n∈N ΛΩ,b0,n(Γ0). Therefore, it suffices to show that µ(ξ(ΛΩ,b0,r(Γ0))) = 0 for

all r ≥ R0.
Fix r ≥ R0, fix an enumeration Γ = {γ1, γ2, . . . } and let Fn := {γ1, . . . , γn}. Then for any n,

ΛΩ,b0,r(Γ0) ⊂
⋃

γ∈Γ−Fn

Or(b0, γ(b0)),

so by (9),

ν
(
ΛΩ,b0,r(Γ0)

)
≤

∑
γ∈Γ−Fn

ν
(
Or(b0, γ(b0))

)
≤ C1

∑
γ∈Γ−Fn

e−βφ(κθ(ρ(γ))).

However, since QφΓ(β) < +∞,

lim
n→∞

∑
γ∈Γ−Fn

e−βφ(κθ(ρ(γ))) = 0.

Therefore, ν
(
ΛΩ,b0,r(Γ0)

)
= 0 for r ≥ R0. �

Proof of part (4). Since {Γn} is a sequence of increasing subgroups, δφ(Γ1) ≤ δφ(Γ2) ≤ . . . and
hence δ := limn→∞ δ

φ(Γn) ∈ R∪{+∞} exists. Further, δ ≤ δφ(Γ). If δ = +∞, then

δφ(Γ) = +∞ = lim
n→∞

δφ(Γn).

If δ < +∞, then for each n there exists a φ-Patterson-Sullivan measure µn for Γn with dimension
δφ(Γn). If µ is a weak-∗ limit point of {µn}, then µ is a φ-Patterson-Sullivan measure for Γ with
dimension δ. Hence by part (1) we have δ ≥ δφ(Γ). �

9. The conical limit set has full measure in the divergent case

In this section we show that the Patterson-Sullivan measure is supported on the conical limit
set in case when the associated Poincaré series diverges at its critical exponent. The proof is
similar to Roblin’s [41] argument for the analogous result in CAT(−1) spaces – in that we use
a variant of the Borel-Cantelli Lemma. However, we use a different variant of the lemma and
apply it to a different collection of sets. This seems to simplify the argument and this approach
was developed during discussions between the authors and Pierre-Louis Blayac.
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Proposition 9.1. Suppose θ ⊂ ∆ is symmetric, Γ ⊂ G is a non-elementary Pθ-transverse sub-
group, φ ∈ a∗θ, δ

φ(Γ) < +∞ and µ is a φ-Patterson-Sullivan measure for Γ with dimension

δ := δφ(Γ). If QφΓ(δ) = +∞, then µ(Λcon
θ (Γ)) = 1. In particular, µ has no atoms.

We will use the following variant of the Borel-Cantelli Lemma, sometimes called the Kochen-
Stone Lemma.

Lemma 9.2 (Kochen-Stone Lemma [31]). Let (X,µ) be a finite measure space. If {An} is a
sequence of measurable sets where

∑∞
n=1 µ(An) = +∞ and

lim inf
N→∞

∑
1≤m,n≤N µ(An ∩Am)(∑N

n=1 µ(An)
)2 < +∞,

then the set {x ∈ X : x is in infinitely many of A1, A2, . . . } has positive µ measure.

For the rest of the section fix Γ, φ and µ as in the statement of Proposition 9.1. Using the
discussion in Section 2.4 we may assume that G has trivial center and that Pθ does not contain
any simple factors of G. Then by Theorem 6.2, there is a properly convex domain Ω ⊂ P(Rd), a
projectively visible subgroup Γ0 ⊂ Aut(Ω) and a faithful Pθ-transverse representation ρ : Γ0 → G
with limit map ξ : ΛΩ(Γ0) → Fθ so that ρ(Γ0) = Γ and ξ(ΛΩ(Γ0)) = Λθ(Γ). Define a measure
ν on ∂Ω by

ν(A) = µ
(
ξ(A ∩ ΛΩ(Γ0))

)
.

Fix b0 ∈ Ω. Then using Proposition 7.1 we may fix C, r > 0 such that

1

C
e−δφ(κθ(ρ(γ))) ≤ ν (Or(b0, γ(b0))) ≤ Ce−δφ(κθ(ρ(γ))) (10)

for all γ ∈ Γ0. Fix an enumeration Γ0 = {γ1, γ2, . . . } and let Tn := dΩ(b0, γn(b0)). By reordering
we may assume that

T1 ≤ T2 ≤ T3 ≤ · · · .
Then let An := Or(b0, γn(b0)). We will verify that the sets {An} satisfy the hypotheses of
Lemma 9.2.

The first hypothesis in Lemma 9.2 is easy to check. Directly from Equation (10) we obtain
∞∑
n=1

ν(An) ≥ 1

C

∞∑
n=1

e−δφ(κθ(ρ(γn))) =
1

C
QφΓ(δ) = +∞.

Verifying the second hypothesis in Lemma 9.2 is slightly more involved. We require the
following technical result, which informally says that the “boundaries” of sums of the form∑N

n=1 e
−δφ(κθ(ρ(γn))) are controlled by their “interiors.”

For N ∈ N, set
N ′ := max{n ∈ N : Tn ≤ TN + 2r}.

Lemma 9.3. There exists C1 > 1 such that: if N ≥ 1, then

N ′∑
n=1

e−δφ(κθ(ρ(γn))) ≤ C1

N∑
n=1

e−δφ(κθ(ρ(γn))).

Proof. Note that if Tn, Tm ∈ [TN , TN + 2r] and Or(b0, γn(b0)) ∩ Or(b0, γm(b0)) 6= ∅, then

dΩ(b0, γ
−1
n γm(b0)) = dΩ(γn(b0), γm(b0)) ≤ 6r.

Thus, if we set
M := #{γ ∈ Γ0 : dΩ(b0, γ(b0)) ≤ 6r},
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then every point in ∂Ω lies in at most M different sets of the form Or(b0, γn(b0)) such that
Tn ∈ [TN , TN + 2r]. This implies that

N ′∑
n=N+1

ν (An) =
N ′∑

n=N+1

ν (Or(b0, γn(b0))) ≤Mν(∂Ω) = M.

Then by Equation (10),

N ′∑
n=1

e−δφ(κθ(ρ(γn))) =
N∑
n=1

e−δφ(κθ(ρ(γn))) +
N ′∑

n=N+1

e−δφ(κθ(ρ(γn))) ≤
N∑
n=1

e−δφ(κθ(ρ(γn))) + CM

≤
(

1 +
CM

e−δφ(κθ(ρ(γ1)))

) N∑
n=1

e−δφ(κθ(ρ(γn)))

for all N ≥ 1. The lemma now holds with C1 := 1 + CM
e−δφ(κθ(ρ(γ1))) . �

The next lemma verifies that the sequence {An} satisfy the second hypothesis of Lemma 9.2.

Lemma 9.4. There exists C2 > 0 such that: if N ≥ 1, then

∑
1≤n,m≤N

ν(An ∩Am) ≤ C2

(
N∑
n=1

ν(An)

)2

.

Proof. Let

∆N := {(m,n) : 1 ≤ n ≤ m ≤ N and Am ∩An 6= ∅}.
One can show (see the proof of Lemma 8.2) that if (m,n) ∈ ∆N , then

dΩ(γn(b0), [b0, γm(b0)]Ω) ≤ 2r.

Then Proposition 6.3 implies

sup
(m,n)∈∆N

∥∥κθ(ρ(γn)) + κθ(ρ(γ−1
n γm))− κθ(ρ(γm))

∥∥ < +∞, (11)

and so by Equation (10), there exists a constant C ′ > 0 such that

ν(An ∩Am) ≤ ν(Or(b0, γm(b0))) ≤ C ′e−δφ(κθ(ρ(γn)))e−δφ(κθ(ρ(γ−1
n γm)))

for all (m,n) ∈ ∆N . Also,

dΩ(b0, γ
−1
n γm(b0)) = dΩ(γn(b0), γm(b0)) ≤ dΩ(γn(b0), [b0, γm(b0)]Ω) + dΩ(b0, γm(b0))

≤ 2r + Tm ≤ 2r + TN

for all (m,n) ∈ ∆N . In particular, if (m,n) ∈ ∆N , then γ−1
n γm = γk for some k ≤ N ′.

These observations, Lemma 9.3 and Equation (10) imply that if N ≥ 1, then∑
1≤n,m≤N

ν(An ∩Am) ≤ 2
∑

(m,n)∈∆N

ν(An ∩Am) ≤ 2C ′
∑

(m,n)∈∆N

e−δφ(κθ(ρ(γn)))e−δφ(κθ(ρ(γ−1
n γm)))

≤ 2C ′
N ′∑
k=1

N∑
n=1

e−δφ(κθ(ρ(γn)))e−δφ(κθ(ρ(γk))) ≤ 2C ′C1

(
N∑
n=1

e−δφ(κθ(ρ(γn)))

)2

≤ 2C ′C1C
2

(
N∑
n=1

ν(An)

)2

. �
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We may now apply Lemma 9.2 to the finite measure space (∂Ω, ν) and the sequence {An} to
finish the proof of Proposition 9.1.

Proof of Proposition 9.1. We first show that µ(Λcon
θ (Γ)) > 0. By Lemma 9.2, if we set

Y := {x ∈ ∂Ω : x is in infinitely many of A1, A2, . . . },
then ν(Y ) > 0. Notice that if x ∈ Y , then there is a sequence {γn} in Γ0 such that γn(b0)→ x
and

dΩ(γn(b0), [b0, x)) < r

for all n ≥ 1. Thus Y ⊂ Λcon
Ω (Γ0). By Observation 6.1(1), ξ(Y ) ⊂ Λcon

θ (Γ), so

µ(Λcon
θ (Γ)) ≥ µ(ξ(Y )) = ν(Y ) > 0.

Now suppose for contradiction that µ(Λcon
θ (Γ)) < 1. If we set S := Λθ(Γ) − Λcon

θ (Γ), then
µ(S) > 0, so we may define a probability measure µS on Λθ(Γ) by

µS(A) :=
1

µ(S)
µ(A ∩ S).

By definition, µS(Λθ(Γ)) = 0. On the other hand, since S is Γ-invariant, µS is a φ-Patterson-
Sullivan measure for Γ of dimension δ, so the above argument implies that µS(Λcon

θ (Γ)) > 0,
which is a contradiction. Therefore, µ(Λcon

θ (Γ)) = 1.
By Proposition 8.1, µ has no atoms in Λcon

θ (Γ). Since µ(Λcon
θ (Γ)) = 1, we conclude that µ has

no atoms. �

10. Non-ergodicity of the flow in the convergent case

In this section, we prove that the geodesic flow of a transverse representation is dissipative
and non-ergodic if its image is in the convergent case of our Hopf-Sullivan-Tsuji dichotomy.

Proposition 10.1. Let Ω ⊂ P(Rd) be a properly convex domain, let Γ0 ⊂ Aut(Ω) be a non-
elementary projectively visible subgroup and let ρ : Γ0 → G be a Pθ-transverse representation
for some symmetric θ ⊂ ∆. Suppose φ ∈ a∗θ satisfies δ := δφ(ρ(Γ0)) < +∞. Let µ and µ̄
respectively be φ and φ̄-Patterson-Sullivan measures for ρ(Γ0) of dimension β, and let m be the

Bowen-Margulis measure on Û(Γ0) associated to ρ, µ and µ̄. If QφΓ(δ) < +∞, then

(1) the Γ0 × R-action on (U(Γ0), m̃) is dissipative,

(2) the action of the geodesic flow on
(
Û(Γ0),m

)
is dissipative, and

(3) the action of the geodesic flow on
(
Û(Γ0),m

)
is non-ergodic.

Before proving Proposition 10.1, we briefly discuss the notions of dissipative and conservative
dynamical systems. Suppose that X is a standard Borel space, H is a locally compact, second
countable, unimodular group that acts measurably on X, dh is a Haar measure on H, and m a
H-quasi-invariant, σ-finite measure on X. If A ⊂ X has positive m-measure, we say that A ⊂ X
is wandering if for m-almost every x ∈ A,

∫
h∈H 1A(h(x))dh < +∞. Then let D ⊂ Ω be the

union of all wandering sets, and let C := Ω−D. We say that H-action on (X,m) is conservative
(resp. dissipative) if m(D) = 0 (resp. m(C) = 0).

Given a m-integrable, positive function f : X → (0,∞), we may decompose X into

Cf :=

{
x ∈ X :

∫
H
f(h(x))dh = +∞

}
and Df :=

{
x ∈ X :

∫
H
f(h(x))dh < +∞

}
.

In the case when the measure m is H-invariant, it is known (see for instance [5, Fact 2.27]) that
Cf = C and Df = D up to measure zero sets.
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Proof of Proposition 10.1. Proof of (1). Suppose for contradiction that the Γ0 × R-action on
(U(Γ0), m̃) is not dissipative. Then there is a m̃-integrable, positive function f : U(Γ0)→ (0,∞)
and a compact set

K ⊂ Cf :=

v ∈ U(Γ0) :
∑
γ∈Γ0

∫
R
f(γ · ϕt(v))dt = +∞


such that m̃(K) > 0. For any R > 0, let

KR :=

v ∈ K :
∑
γ∈Γ0

∫
R

1K(γ · ϕt(v))dt ≤ R

 .

Since KR ⊂ Cf , the integral∫
U(Γ0)

∑
γ∈Γ0

∫
R
f(γ · ϕt(v))1KR(v)dt dm̃(v) =

∫
KR

∑
γ∈Γ0

∫
R
f(γ · ϕt(v))dt dm̃(v).

is infinite if m̃(KR) > 0. On the other hand, since m̃ is Γ0 × R-invariant,∫
U(Γ0)

∑
γ∈Γ0

∫
R
f(γ · ϕt(v))1KR(v)dt dm̃(v) =

∫
U(Γ0)

f(v)
∑
γ∈Γ0

∫
R

1KR(γ · ϕt(v))dt dm̃(v)

≤ R
∫
U(Γ0)

f(v)dm̃(v) < +∞.

It follows that m̃(KR) = 0 for all R > 0, or equivalently, that∑
γ∈Γ0

∫
R

1K(γ · ϕt(v))dt = +∞

for m̃-almost every v ∈ K. This in turn implies that for almost every v ∈ K, there are diverging
sequences {tn} in R and {γn} in Γ0 such that γnϕtn(v) ∈ K, and so at least one of the forward
endpoint v+ or backward endpoint v− of v is in Λcon

Ω (Γ0). Thus,

µ(ξ(Λcon
Ω (Γ0))) > 0,

since m̃(K) > 0. However, by Proposition 8.1, µ(ξ(Λcon
Ω (Γ0))) = 0, which is a contradiction.

Proof of (2). Let f : U(Γ0) → (0,∞) be a m̃-integrable, positive function. By part (1), we

may define an m-integrable, positive function F : Û(Γ0) → (0,∞) by F ([v]) :=
∑

γ∈Γ0
f(γ · v).

Furthermore, for m-almost every [v] ∈ Û(Γ0),∫
R
F (ϕt([v]))dt =

∑
γ∈Γ0

∫
R
f(γ · ϕt(v))dt < +∞.

Proof of (3). Pick a compact set K ⊂ Û(Γ0) with non-empty interor. Let f : Û(Γ0)→ (0,∞)
be a m-integrable, positive function that takes the value 1 on the compact set ϕ[0,1](K). Part

(2) implies that for m-almost every v ∈ Û(Γ0), we have∫
R
f(ϕt(v))dt < +∞,

so there is some Tv > 0 such that ϕt(v) /∈ K for all t /∈ [−Tv, Tv].
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Suppose for contradiction that the action of the geodesic flow on
(
Û(Γ0),m

)
is ergodic. Then

for m-almost every v ∈ Û(Γ0), the flow line of v is dense in Û(Γ0). Thus, there is some v0 ∈ Û(Γ0)

and some T := Tv0 > 0 such that Û(Γ0) = ϕR(v0) and

ϕ(−∞,−T )(v0) ∪ ϕ(T,∞)(v0) ⊂ Û(Γ0)−K.

It follows that the interior K0 of K lies in ϕ[−T,T ](v0). However, it is easy to see that no open

set in Û(Γ0) is homeomorphic to a subset of the interior of a line segment. �

11. Ergodicity of the flow in the divergent case

In this section, we prove that the geodesic flow of a transverse representation is conservative
and ergodic if its image is in the divergent case of our Hopf-Sullivan-Tsuji dichotomy.

Theorem 11.1. Let Ω ⊂ P(Rd) be a properly convex domain, let Γ0 ⊂ Aut(Ω) be a non-elementary
projectively visible subgroup and let ρ : Γ0 → G be a Pθ-transverse representation for some
symmetric θ ⊂ ∆. Let φ ∈ a∗θ, let µ and µ̄ respectively be φ and φ̄-Patterson-Sullivan measures

for ρ(Γ0) of dimension δ := δφ(ρ(Γ0)), let m be the Bowen-Margulis measure on Û(Γ0) associated

to ρ, µ and µ̄, and let m̃ be the lift of m to U(Γ0). If Qφρ(Γ0)(δ) = +∞, then

(1) the action of the geodesic flow on
(
Û(Γ0),m

)
is conservative, and

(2) the action of the geodesic flow on
(
Û(Γ0),m

)
is ergodic.

Before starting the proof of Theorem 11.1, we recall a result of Coudène. Suppose {ϕt} is
a continuous flow on a metric space X which preserves a Borel measure m. The strong stable
manifold of x ∈ X is

W ss(x) :=
{
y ∈ X : lim

t→∞
d(ϕt(x), ϕt(y)) = 0

}
and the strong unstable manifold of x ∈ X is

W su(x) :=

{
y ∈ X : lim

t→−∞
d(ϕt(x), ϕt(y)) = 0

}
.

A measurable function f : X → R is W ss-invariant if there exists a full measure set X ′ ⊂ X
where f(x) = f(y) whenever x, y ∈ X ′ and y ∈ W ss(x). Similarly, a measurable function
f : X → R is W su-invariant if there exists a full measure set X ′ ⊂ X where f(x) = f(y)
whenever x, y ∈ X ′ and y ∈W su(x).

Theorem 11.2 (Coudène [17]). Let X be a metric space, {ϕt} a continuous flow on X and m a
{ϕt}-invariant Borel measure on X such that (X,m, {ϕt}) is conservative. Suppose that there is
a full measure subset of X that is covered by a countable family of open sets with finite m-measure.
Then every flow-invariant, m-measurable function on X is W ss-invariant and W su-invariant.

Proof of Theorem 11.1. Proof of (1). Fix a m-integrable, positive, continuous function f :

Û(Γ0)→ (0,∞). Then let

f̃ := f ◦ p : U(Γ0)→ R,
where p : U(Γ0) → Û(Γ0) is the quotient map. To show that the action of the geodesic flow on(
Û(Γ0),m

)
is conservative, it suffices to show that∫

R
f̃(ϕt(v))dt =

∫
R
f(ϕt(p(v)))dt
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is infinite for m̃-almost every v ∈ U(Γ0).
By Proposition 9.1 and Observation 6.1(1), the set

R :=
{
v ∈ U(Γ0) : v+ ∈ Λcon

Ω (Γ0)
}

has full m̃-measure.
Fix v ∈ R. Then there is some r > 0 and a sequence {γn} in Γ0 such that γn(π(v))→ v+ and

dΩ

(
γn(π(v)), [π(v), v+)Ω

)
< r

for all n, where π : T 1Ω→ Ω is the projection map. In particular, there exists a compact subset
K ⊂ U(Γ0), which depends on r > 0, such that

{t ∈ R : ϕt(v) ∈ Γ0 ·K}

has infinite Lebesgue measure. Since f̃ is Γ0-invariant and continuous,

inf
w∈Γ0·K

f(w) = min
w∈K

f(w) > 0.

Hence ∫
R
f̃(ϕt(v))dt = +∞.

Since v ∈ R was arbitrary and R has full m̃-measure,∫
R
f̃(ϕt(v))dt = +∞

for m̃-almost every v ∈ U(Γ0).
Proof of (2). Notice that Equation (7) implies that

p(W ss(v)) ⊂W ss(p(v)) and p(W su(v)) ⊂W su(p(v))

for all v ∈ U(Γ0), so the lift of a W ss-invariant (respectively W su-invariant) function on Û(Γ0) is

a W ss-invariant (respectively W su-invariant) function on U(Γ0). By definition, Û(Γ0) is covered
by a countable family of open sets of with finite m-measure, so by Theorem 11.2, it suffices to
show that if f : U(Γ0) → R is a m̃-measurable, Γ-invariant, {ϕt}-invariant, W ss-invariant and
W su-invariant function, then f is constant on a set of full m̃-measure.

Since f is W ss-invariant and W su-invariant, by definition there exists a full m̃-measure set
Y0 ⊂ U(Γ0) such that f(v) = f(w) whenever v, w ∈ Y0 and v ∈ W ss(w) ∪W su(w). Since f is
{ϕt}-invariant, we can assume that Y0 is also {ϕt}-invariant. Let ν and ν̄ be measures on ∂Ω
given by

ν(A) = µ (ξ(A ∩ ΛΩ(Γ0))) and ν̄(A) = µ̄ (ξ(A ∩ ΛΩ(Γ0))) ,

where ξ is the limit map of ρ. By the definition of m̃, we see that Y0 = Y ′0 × R for some set

Y ′0 ⊂ ΛΩ(Γ0)(2) of full ν̄ ⊗ ν-measure. Set

X+ := {y ∈ ΛΩ(Γ0) : (x, y) ∈ Y ′0 for ν̄-almost every x ∈ ΛΩ(Γ0)},

and note that ν(X+) = 1 by Fubini’s theorem. Hence, if we fix (v−0 , v
+
0 ) ∈ (ΛΩ(Γ0)×X+)∩ Y ′0 ,

then the set
Y ′ :=

{
(x, y) ∈ Y ′0 : (x, v+

0 ) ∈ Y ′0
}

has full ν̄ ⊗ ν-measure, so Y := Y ′ × R ⊂ U(Γ0) has full m̃-measure.
Let (x, y, t) ∈ Y . By Lemma 5.3, there is some s ∈ R such that (x, y, t) ∈ W su(x, v+

0 , s), and
there is some r ∈ R such that (x, v+

0 , s) ∈ W ss(v−0 , v
+
0 , r). By definition, (x, y, t), (x, v+

0 , s), and
(v−0 , v

+
0 , r) lie in Y0, so

f(x, y, t) = f(x, v+
0 , s) = f(v−0 , v

+
0 , r) = f(v−0 , v

+
0 , 0).
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This proves that f is constant on Y . �

12. Consequences of ergodicity

In this section we record some consequences of Theorem 11.1. The first two corollaries com-
plete the proof of our Hopf-Sullivan-Tsuji dichotomy. We also show, in the divergent case,
that there is some R so that the uniformly R-conical limit set has full measure for the unique
Patterson-Sullivan measure of critical dimension and establish a rigidity result for pairs of trans-
verse representations with mutually non-singular BMS measures.

Corollary 12.1. Suppose Γ ⊂ G is a non-elementary Pθ-transverse subgroup for some symmetric
θ ⊂ ∆, φ ∈ a∗θ and δ := δφ(Γ) < +∞. Let µ and µ̄ respectively be φ and φ̄-Patterson-Sullivan
measures for Γ of dimension β.

(1) If QφΓ(δ) = +∞ and β = δ, then the Γ-action on (Λθ(Γ)(2), µ̄ ⊗ µ) is conservative, and

the Γ actions on (Λθ(Γ)(2), µ̄⊗ µ) and on (Λθ(Γ), µ) are ergodic.

(2) If QφΓ(δ) < +∞, then the Γ action on (Λθ(Γ)(2), µ̄⊗ µ) is dissipative and non-ergodic.

Proof. Using the discussion in Section 2.4 we may assume that G has trivial center and that Pθ
does not contain any simple factors of G. Then by Theorem 6.2, there is a properly convex domain
Ω ⊂ P(Rd), a projectively visible subgroup Γ0 ⊂ Aut(Ω) and a Pθ-transverse representation
ρ : Γ0 → G such that ρ(Γ0) = Γ. Let ξ : ΛΩ(Γ0) → Λθ(Γ) be the ρ-equivariant boundary map

and let m be the Bowen-Margulis measure on Û(Γ0) associated to ρ, µ and µ̄.

Proof of (1). Theorem 11.1 part (3) implies that the geodesic flow on (Û(Γ0),m) is ergodic.

Any Γ-invariant subset of either (Λθ(Γ)(2), µ̄ ⊗ µ) or (Λθ(Γ), µ) that has positive but not full

measure, gives rise to a flow-invariant subset of (Û(Γ0),m) that has positive but not full measure.

Therefore, the actions of Γ on (Λθ(Γ)(2), µ̄⊗ µ) and (Λθ(Γ), µ) are both ergodic.

Next, suppose for the purpose of contradiction that the action of Γ on (Λθ(Γ)(2), µ̄⊗µ) is not

conservative. Since the measure e−δφ([·,·]θ)µ̄ ⊗ µ on Λθ(Γ)(2) is Γ-invariant, there is a positive,

continuous function f : Λθ(Γ)(2) → (0,∞) such that

Df :=

(x, y) ∈ Λθ(Γ)(2) :
∑
γ∈Γ

f(γ · (x, y)) < +∞


has positive µ̄ ⊗ µ-measure. Since Γ acts minimally on Λθ(Γ), each open set in Λθ(Γ)(2) has

positive µ̄ ⊗ µ-measure. This, together with the fact that the action of Γ on (Λθ(Γ)(2), µ̄ ⊗ µ)
is ergodic, implies that almost every orbit is dense. Thus, there exists (x0, y0) ∈ Df with

Λθ(Γ)(2) = Γ · (x0, y0), but this is a contradiction since f is positive and∑
γ∈Γ

f(γ · (x0, y0)) < +∞.

Proof of (2). Let f : U(Γ0)→ (0,∞) be a m̃-integrable, positive function. By Proposition 10.1
part (1), we may define the µ̄⊗ µ-integrable, positive function

F : Λθ(Γ)(2) → R by F (ξ(v−), ξ(v+)) :=

∫
R
f(ϕt(v)).

Furthermore, for µ̄⊗ µ-almost every (ξ(v−), ξ(v+)) ∈ Λθ(Γ)(2), we have∑
ρ(γ)∈Γ

F (ρ(γ)ξ(v−), ρ(γ)ξ(v+)) =
∑
γ∈Γ0

∫
R
f(γ(ϕt(v)))dt < +∞.
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It follows that the Γ action on (Λθ(Γ)(2), µ̄⊗ µ) is dissipative.
Proposition 10.1 part (3) implies that there is some subset of U(Γ0) that is invariant under

the Γ0 × R-action, with positive but not full m̃-measure. This defines a subset of Λθ(Γ)(2) that
is invariant under the Γ-action, with positive but not full µ̄⊗ µ-measure. Thus, the Γ action on
(Λθ(Γ)(2), µ̄⊗ µ) is non-ergodic. �

It follows, from a standard argument (see for instance [45, pg. 181]), that the Patterson-
Sullivan measure in the critical dimension is unique in the divergent case.

Corollary 12.2. Suppose Γ ⊂ G is a non-elementary Pθ-transverse subgroup for some symmetric

θ ⊂ ∆, φ ∈ a∗θ and δ := δφ(Γ) < +∞. If QφΓ(δ) = +∞, then there is a unique φ-Patterson-
Sullivan measure µφ for Γ of dimension δ.

For the next two results let Ω ⊂ P(Rd) be a properly convex domain, let Γ0 ⊂ Aut(Ω) be a
projectively visible subgroup and let b0 ∈ Ω. For any R > 0, we denote by Λcon

Ω,b0,R
(Γ0) the set

of points x ∈ Λcon
Ω (Γ0) for which there exists a sequence {γn} in Γ0 such that γn(b0)→ x and

dΩ(γn(b0), [b0, x)Ω) < R

for all n. The next corollary proves that if the image of a transverse representation is in the
divergent case, then there is an R > 0 such that the set of R-conical limit points have full
measure.

Corollary 12.3. Suppose ρ : Γ0 → G is a Pθ-transverse representation for some symmetric θ ⊂ ∆,
φ ∈ a∗θ, δ := δφ(ρ(Γ0)) < +∞ and µ is the φ-Patterson-Sullivan measure for ρ(Γ0) of dimension

δ. If Qφρ(Γ0)(δ) = +∞, then for any b0 ∈ Ω, there exists R > 0 such that

µ
(
ξ(Λcon

Ω,b0,R(Γ0))
)

= 1.

Proof. The following argument is standard, see for instance [45, pg. 190]. Define a measure ν
on ∂Ω by

ν(A) = µ
(
ξ(A ∩ ΛΩ(Γ0))

)
.

Since Qφρ(Γ0)(δ) = +∞, by Proposition 9.1,

1 = ν (Λcon
Ω (Γ0)) = lim

n→∞
ν
(
Λcon

Ω,b0,n(Γ0)
)
.

Hence there exists R0 > 0 such that ν
(

Λcon
Ω,b0,R0

(Γ0)
)
> 0.

Let L be the set of points x ∈ ΛΩ(Γ0) for which there exist b ∈ Γ0(b0) and a sequence {γn}
in Γ0 such that γn(b)→ x and

dΩ(γn(b), [b, x)Ω) ≤ R0

for all n. Observe that L is Γ0-invariant, and ν(L) > 0 because Λcon
Ω,b0,R0

(Γ0) ⊂ L. Hence by

Corollary 12.1, ν(L) = 1.
It now suffices to show that L ⊂ Λcon

Ω,b0,R0+1(Γ0). Fix x ∈ L. Then there exist b ∈ Γ0(b0), a

sequence {γn} in Γ0, and a sequence {bn} in [b, x)Ω where γn(b)→ x and

dΩ(γn(b), bn) ≤ R0

for all n. By Lemma 5.3, there exists a sequence {b′n} in [b0, x)Ω such that

lim
n→∞

dΩ(bn, b
′
n) = 0.

Since b ∈ Γ0(b0), we can write b = γ(b0) for some γ ∈ Γ0. Then

dΩ(γnγ(b0), [b0, x)Ω) ≤ R0 + 1
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for all n sufficiently large. So x ∈ Λcon
Ω,b0,R0+1(Γ0). �

Finally, we prove the following rigidity result for length functions which have non-singular
Bowen-Margulis-Sullivan measures.

Corollary 12.4. For j = 1, 2, suppose ρj : Γ0 → Gj is a Pθj -transverse representation for some

symmetric θj ⊂ ∆j, φj ∈ a∗θj and δj := δφj (ρj(Γ0)) < +∞. For ψ ∈ {φj , φ̄j}, let µψ be the

ψ-Patterson-Sullivan measure for ρj(Γ0) of dimension δj and let mj denote the Bowen-Margulis-

Sullivan measure associated to ρj, µφj and µφ̄j . If Q
φj
ρj(Γ0)(δj) = +∞ for j = 1, 2 and m1 is

non-singular with respect to m2, then:

(1) m1 = cm2 for some c > 0.

(2) supγ∈Γ0
|δ1φ1(κθ1(ρ1(γ)))− δ2φ2(κθ2(ρ2(γ)))| < +∞.

(3) δ1`
φ1(ρ1(γ)) = δ2`

φ2(ρ2(γ)) for all γ ∈ Γ0.

If, in addition, Gj is simple, Z(Gj) is trivial and ρj has Zariski-dense image for j = 1, 2, then
there is an isomorphism Ψ : G1 → G2 such that ρ2 = Ψ ◦ ρ1.

The proof of Corollary 12.4 requires the following lemma.

Lemma 12.5. Suppose Ω ⊂ P(Rd) is a properly convex domain and Γ ⊂ Aut(Ω) is a projectively
visible subgroup. Let dP be a distance on P(Rd) induced by a Riemannian metric. If r > 0,
b0 ∈ Ω and {γn} is a sequence of distinct elements in Γ, then

lim
n→∞

diam (Or(b0, γn(b0))) = 0,

where the diameter is computed using dP.

Proof. Fix a subsequence {γnj} such that

lim sup
n→∞

diam (Or(b0, γn(b0))) = lim
j→∞

diam
(
Or(b0, γnj (b0))

)
.

Passing to a further subsequence we can suppose that γnj (b0) → x ∈ ΛΩ(Γ) and γnj → T ∈
P(End(Rd)). To show that diam

(
Or(b0, γnj (b0))

)
converges to 0, it suffices to fix a sequence

{yj} where yj ∈ Or(b0, γnj (b0)) for all j ≥ 1 and show that yj → x. By definition, for each j ≥ 1

there exists y′j ∈ [b0, yj) such that dΩ(y′j , γnj (b0)) < r. Then the sequence {γ−1
nj (y′j)} is relatively

compact in Ω. So by Proposition 5.2(3)

x = T

(
lim
j→∞

γ−1
nj (y′j)

)
= lim

j→∞
γnjγ

−1
nj (y′j) = lim

j→∞
y′j .

Since y′j ∈ [b0, yj) for all j ≥ 1, this implies that yj → x. �

Proof of Corollary 12.4. By the ergodicity of the flow {ϕt} (see Theorem 11.1) and the assump-
tion that m1 is non-singular with respect to m2, there exists c > 0 such that m1 = cm2.

Note that for j = 1, 2 and γ ∈ Γ0,

`φj (ρj(γ)) = lim
n→∞

1

n
φj(κθj (ρj(γ

n))).

Thus, to prove part (3), it suffices to prove part (2).
For all ψ ∈

{
φ1, φ2, φ̄1, φ̄2

}
, let νψ be the measure on ∂Ω given by

νψ(A) = µψ
(
ξ(A ∩ ΛΩ(Γ0))

)
.
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Fix r > 0 sufficiently large so that the Shadow lemma (Proposition 7.1) holds for the probability
measures νφ1 and νφ2 . Then there is some C > 0 such that

1

C

eδ2φ2(κθ2 (ρ2(γ)))

eδ1φ1(κθ1 (ρ1(γ)))
≤
νφ1(Or(b0, γ(b0)))

νφ2(Or(b0, γ(b0)))
≤ C e

δ2φ2(κθ2 (ρ2(γ)))

eδ1φ1(κθ1 (ρ1(γ)))
(12)

for all γ ∈ Γ0.
Fix a distance dP on P(Rd) induced by a Riemannian metric, fix x1, x2 ∈ ΛΩ(Γ0) distinct and

let ε := 1
6dP(x1, x2). Lemma 12.5 implies that there exists a finite set S ⊂ Γ0 such that

diam (Or(b0, γ(b0))) ≤ ε

for all γ ∈ Γ0 − S. Hence, for each γ ∈ Γ0 − S, there is some i ∈ {1, 2} so that

Bi ×Or(b0, γ(b0)) ⊂
{

(x, y) ∈ ΛΩ(Γ0)2 : dP(x, y) ≥ ε
}

=: K,

where Bi := {y ∈ ΛΩ(Γ0) : dP(y, xi) ≤ ε}. From the definitions of dm1 and dm2, and the fact
that m1 = cm2, we see that if we set

C0 := c max
(x,y)∈K

eφ1([ξ1(x),ξ1(y)]θ1 )

eφ2([ξ2(x),ξ2(y)]θ2 )
,

then

1

C0
(νφ̄2
⊗ νφ2)(A) ≤ (νφ̄1

⊗ νφ1)(A) ≤ C0(νφ̄2
⊗ νφ2)(A)

for all Borel measurable sets A ⊂ K. Hence, if we set

C1 := C0 max

{
νφ̄2

(B1)

νφ̄1
(B1)

,
νφ̄2

(B2)

νφ̄1
(B2)

}
,

then

1

C1
≤
νφ1(Or(b0, γ(b0)))

νφ2(Or(b0, γ(b0)))
≤ C1 (13)

for all γ ∈ Γ0 − S.
Since S is finite, (12) and (13) imply that

sup
γ∈Γ0

|δ1φ1(κθ1(ρ1(γ)))− δ2φ2(κθ2(ρ2(γ)))| < +∞.

To prove the last claim of the corollary, we use the following argument of Dal’bo and Kim [20].
Consider the product representation ρ1 × ρ2 : Γ→ G1 ×G2, let ∆ denote the set of simple roots
of G1 ×G2, and let a denote the Cartan subspace of G1 ×G2. Corollary 12.4(3) implies that the
∆-Benoist limit cone B(ρ1× ρ2) lies in a hyperplane in a. A theorem of Benoist [2] then implies
that the Zariski closure Z of (ρ1 × ρ2)(Γ) is properly contained in G1 × G2.

Let πj : G1 × G2 → Gj be the projection map. Then the kernel π3−j |Z is a normal subgroup
of Gj , which is not all of Gj . Since Gj is simple and Z(Gj) is trivial, we conclude that π3−j |Z is

injective. Since ρj has Zariski dense image, π3−j |Z is also surjective. Hence, Ψ := π2|Z ◦ π1|−1
Z

is an isomorphism such that ρ2 = Ψ ◦ ρ1. �
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13. A Manhattan curve theorem

Sambarino [44] showed that when Γ is Anosov, the entropy functional is concave and charac-
terizes when it is not strictly concave (see also Potrie-Sambarino [39]). One may view this as
an analogue of Burger’s Manhattan Curve Theorem [11], since in this setting both are conse-
quences of the convexity of the pressure function and rigidity results for equilibrium measures.
However, in our setting we do not have access to thermodynamic formalism, so we must adapt
other methods.

Theorem 13.1. Suppose θ ⊂ ∆ is symmetric, Γ is a non-elementary Pθ-transverse subgroup of
G and φ1, φ2 ∈ a∗θ satisfy δφ1(Γ) = δφ2(Γ) = 1. If φ = λφ1 + (1− λ)φ2 for some λ ∈ (0, 1), then

δ := δφ(Γ) ≤ 1.

Moreover, if δφ(Γ) = 1 and QφΓ diverges at its critical exponent, then `φ1(γ) = `φ2(γ) for all
γ ∈ Γ.

As a consequence of Theorem 13.1, we use a result of Benoist [2] to show that equality never
occurs when Γ is Zariski dense.

Corollary 13.2. Suppose θ ⊂ ∆ is symmetric, Γ is a Zariski dense Pθ-transverse subgroup of G,
and φ1, φ2 ∈ a∗θ are distinct and satisfy δφ1(Γ) = δφ2(Γ) = 1. If φ = λφ1 + (1 − λ)φ2 for some

λ ∈ (0, 1) and QφΓ diverges at its critical exponent, then δφ(Γ) < 1.

Proof of Corollary 13.2. For g ∈ G define

ν(g) := lim
n→∞

1

n
κ(gn) ∈ a+ and νθ(g) := lim

n→∞

1

n
κθ(g

n) ∈ a+
θ

(these limit exists by Fekete’s Subadditive Lemma). Note that via the identification of a∗θ as a
subspace of a∗ described in Section 2, we have

`φj (γ) = φj(νθ(γ)) = φj(ν(γ))

for both j = 1, 2 and all γ ∈ Γ.
Suppose for a contradiction that δφ(Γ) = 1. By Theorem 13.1, φ1(ν(γ)) = φ2(ν(γ)) for all

γ ∈ Γ, which implies that φ1 = φ2 on

C := ∪γ∈Γ R>0 ν(γ)

Since Γ is Zariski dense, a result of Benoist [2] implies that C is a convex subset of a with
non-empty interior, so φ1 = φ2, and we obtain a contradiction. �

Proof of Theorem 13.1. The general strategy of our proof is inspired by the proof of Theorem
1(a) in [11].

The first part follows immediately from the definition and Hölder’s inequality which gives
that, for all s,

QφΓ(s) ≤ Qφ1

Γ (s)λQφ2

Γ (s)1−λ.

So our main work is to establish the “moreover” part of the theorem.

Suppose that δφ(Γ) = 1 and QφΓ(1) = +∞. For ψ ∈
{
φ1, φ2, φ, φ̄1, φ̄2, φ̄

}
, let µψ denote a

ψ-Patterson-Sullivan measure for Γ of dimension 1.
Using the discussion in Section 2.4 we may assume that G has trivial center and that Pθ

does not contain any simple factors of G. Then by Theorem 6.2, there is a properly convex
domain Ω ⊂ P(Rd), a projectively visible subgroup Γ0 ⊂ Aut(Ω) and a faithful Pθ-transverse
representation ρ : Γ0 → G with limit map ξ : ΛΩ(Γ0)→ Fθ so that ρ(Γ0) = Γ and ξ(ΛΩ(Γ0)) =
Λθ(Γ).
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For ψ ∈
{
φ1, φ2, φ, φ̄1, φ̄2, φ̄

}
, define a measure νψ on ∂Ω by

νψ(A) = µψ (ξ(A ∩ ΛΩ(Γ0))) .

Fix b0 ∈ Ω. Recall, from Section 12, that Λcon
Ω,b0,R

(Γ0) ⊂ ΛΩ(Γ0) denotes the set of limit points
which are R-conical. By Corollary 12.3 we can fix R > 0 sufficiently large so that

νφ
(
Λcon

Ω,b0,R(Γ0)
)

= 1 and νφ̄
(
Λcon

Ω,b0,R(Γ0)
)

= 1.

Using the Shadow Lemma (Proposition 7.1) and possibly increasing R, we can also assume that
for every r ≥ R there exists a constant Cr ≥ 1 such that

C−1
r e−ψ(κθ(ρ(γ))) ≤ νψ

(
Or(b0, γ(b0))

)
≤ Cre−ψ(κθ(ρ(γ))) (14)

for all γ ∈ Γ and ψ ∈
{
φ1, φ2, φ, φ̄1, φ̄2, φ̄

}
.

For all α, β ∈ Γ0 and r > 0, let

Rr(α, β) := Or(b0, α(b0))×Or(b0, β(b0)).

The following lemma is the crucial place where we use the fact that δφ(Γ) = δφ1(Γ) = δφ2(Γ).

Lemma 13.3. If r ≥ R and α, β ∈ Γ0, then

(νφ̄ ⊗ νφ)
(
Rr(α, β)

)
≤ C4

r

(
νφ̄1
⊗ νφ1 + νφ̄2

⊗ νφ2

) (
Rr(α, β)

)
. (15)

Proof. By repeated applications of the Shadow Lemma (14), we see that if α, β ∈ Γ0, then

(νφ̄ ⊗ νφ)
(
Rr(α, β)

)
≤ C2

r e
−φ̄(κθ(ρ(α)))e−φ(κθ(ρ(β)))

= C2
r e
−
(
λφ̄1(κθ(ρ(α)))+(1−λ)φ̄2(κθ(ρ(α)))+λφ1(κθ(ρ(β)))+(1−λ)φ2(κθ(ρ(β)))

)
≤ C4

r νφ̄1
(Or(b0, α(b0)))λ νφ̄2

(Or(b0, α(b0)))1−λ νφ1 (Or(b0, β(b0)))λ νφ2 (Or(b0, β(b0)))1−λ

= C4
r (νφ̄1

⊗ νφ1)
(
Rr(α, β)

)λ
(νφ̄2
⊗ νφ2)

(
Rr(α, β)

)1−λ
.

We may then apply the weighted Arithmetic Mean-Geometric Mean Inequality to see that

(νφ̄ ⊗ νφ)
(
Rr(α, β)

)
≤ C4

r

(
νφ̄1
⊗ νφ1 + νφ̄2

⊗ νφ2

) (
Rr(α, β)

)
for all α, β ∈ Γ0. �

Our goal is to upgrade the inequality in Equation (15) to all Borel measurable sets in ΛΩ(Γ0)2.
We first show that shadows form a neighborhood basis of every point in ΛΩ,b0,R(Γ0).

Lemma 13.4. If x ∈ ΛΩ,b0,R(Γ0) and U is a neighborhood of x in ∂Ω, then there exists γ ∈ Γ
such that

x ∈ OR(b0, γ(b0)) ⊂ U.

Proof. Fix a sequence {γn} in Γ such that γn(b0) → x and distΩ(γn(b0), [b0, x)) < R for all
n ≥ 1. Then x ∈ OR(b0, γn(b0)) for all n ≥ 1 and Lemma 12.5 implies that OR(b0, γn(b0)) ⊂ U
when n is sufficiently large. �

Next, by the argument in [41, pg. 23], we observe that the shadows satisfy a version of the
Vitali covering lemma.

Lemma 13.5. If I ⊂ Γ0 and r > 0, then there exists J ⊂ I such that the sets {Or(b0, γ(b0)) : γ ∈ J}
are pairwise disjoint and ⋃

γ∈I
Or(b0, γ(b0)) ⊂

⋃
γ∈J
O5r(b0, γ(b0)).
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We now leverage our covering lemma to upgrade Equation (15) to all measurable subsets of
Λ(Γ0)2.

Lemma 13.6. There exists C > 0 such that: if A ⊂ ΛΩ(Γ0)2 is a Borel measurable set, then

(νφ̄ ⊗ νφ)(A) ≤ C
(
νφ̄1
⊗ νφ1 + νφ̄2

⊗ νφ2

)
(A).

Proof. It suffices to prove the lemma in the case when A = A1 ×A2 for some A1, A2 ⊂ ΛΩ(Γ0).
Fix ε > 0. By the outer regularity of the measures, for both j = 1, 2, there exists an open set
Uj ⊃ Aj with(

νφ̄1
⊗ νφ1 + νφ̄2

⊗ νφ2

) (
U1 × U2

)
≤
(
νφ̄1
⊗ νφ1 + νφ̄2

⊗ νφ2

) (
A1 ×A2

)
+ ε.

If we let Ij := {α ∈ Γ0 : OR(b0, α(b0)) ⊂ Uj}, then by Lemma 13.4

(A1 ×A2) ∩ Λcon
Ω,b0,R(Γ0)2 ⊂

⋃
(α,β)∈I1×I2

RR(α, β) ⊂ U1 × U2.

By Lemma 13.5, we can find a subset Jj ⊂ Ij such that the sets {OR(b0, α(b0)) : α ∈ Jj} are
pairwise disjoint and ⋃

α∈Ij

OR(b0, α(b0)) ⊂
⋃
α∈Jj

O5R(b0, α(b0)).

Since we chose R > 0 such that νφ
(
Λcon

Ω,b0,R
(Γ0)

)
= νφ̄

(
Λcon

Ω,b0,R
(Γ0)

)
= 1, it follows that

(νφ̄ ⊗ νφ)(A1 ×A2) = (νφ̄ ⊗ νφ)
(
(A1 ×A2) ∩ ΛΩ,b0,R(Γ0)2

)
≤

∑
(α,β)∈J1×J2

(νφ̄ ⊗ νφ) (R5R(α, β)) .

Then by repeated applications of Equations (14) and (15),∑
(α,β)∈J1×J2

(νφ̄ ⊗ νφ)
(
R5R(α, β)

)
≤ C4

RC
4
5R

∑
(α,β)∈J1×J2

(νφ̄ ⊗ νφ)
(
RR(α, β)

)
≤ C8

RC
4
5R

∑
(α,β)∈J1×J2

(
νφ̄1
⊗ νφ1 + νφ̄2

⊗ νφ2

) (
RR(α, β)

)
≤ C8

RC
4
5R

(
νφ̄1
⊗ νφ1 + νφ̄2

⊗ νφ2

) (
U1 × U2

)
≤ C8

RC
4
5R

(
νφ̄1
⊗ νφ1 + νφ̄2

⊗ νφ2

) (
A1 ×A2

)
+ C6

RC
2
5Rε.

Since ε > 0 was arbitrary, it follows that(
νφ̄ ⊗ νφ

)
(A1 ×A2) ≤ C6

RC
2
5R

(
νφ̄1
⊗ νφ1 + νφ̄2

⊗ νφ2

)
(A1 ×A2). �

Lemma 13.6 implies that νφ̄⊗νφ is absolutely continuous with respect to νφ̄1
⊗νφ1 +νφ̄2

⊗νφ2 .
Therefore, after possibly relabelling, we can assume that νφ̄⊗ νφ is non-singular with respect to
νφ̄1
⊗ νφ1 .

We claim that Qφ1

Γ (1) = +∞. Otherwise, Proposition 8.1 would imply that

νφ1(Λcon
Ω (Γ0)) = νφ̄1

(Λcon
Ω (Γ0)) = 0,

which is impossible since
νφ(Λcon

Ω (Γ0)) = νφ̄(Λcon
Ω (Γ0)) = 1

by Proposition 9.1.
Since νφ̄⊗νφ is non-singular with respect to νφ̄1

⊗νφ1 , the associated Bowen-Margulis measures

are non-singular. Hence by Corollary 12.4 we have `φ(γ) = `φ1(γ) for all γ ∈ Γ. Thus `φ1(γ) =
`φ2(γ) for all γ ∈ Γ. �
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Notice that the Hölder inequality similarly proves a statement which is of the same form as
Burger’s Manhattan Curve Theorem. However, we are not able to give an analogous character-
ization of when equality occurs.

Theorem 13.7. Suppose θ ⊂ ∆ is symmetric, Γ1,Γ2 ⊂ G are Pθ-transverse subgroups and there
exists an isomorphism ρ : Γ1 → Γ2. If φ ∈ a∗θ and δφ(Γ1) = δφ(Γ2) = 1, then for any λ ∈ (0, 1)
the weighted Poincaré series ∑

γ∈Γ1

e−s
(
λφ(κθ(γ))+(1−λ)φ(κθ(ρ(γ)))

)
has critical exponent δ ≤ 1.

Appendix A. Proof of Proposition 2.3

In this section we prove Proposition 2.3 which we restate here.

Proposition A.1. Suppose F± ∈ F±θ , {gn} is a sequence in G and gn = mne
κ(gn)`n is a KAK-

decomposition for each n ≥ 1. The following are equivalent:

(1) mn Pθ → F+, `−1
n P−θ → F− and α(κ(gn))→ +∞ for every α ∈ θ,

(2) gn(F )→ F+ for all F ∈ F+
θ \ZF−, and this convergence is uniform on compact subsets

of F+
θ \ZF−.

(3) g−1
n (F )→ F− for all F ∈ F−θ \ZF+, and this convergence is uniform on compact subsets

of F−θ \ZF+.

(4) There are open sets U± ⊂ F±θ such that gn(F )→ F+ for all F ∈ U+ and g−1
n (F )→ F−

for all F ∈ U−.

It is well-known that

exp : u−θ → U−θ := exp(u−θ )

is a diffeomorphism. Furthermore, the Langlands decomposition (see for instance [47, Thm.
1.2.4.8]) of parabolic subgroups states that the map

(u, `) ∈ U−θ × Lθ 7→ u` ∈ P−θ

is a diffeomorphism, where Lθ := Pθ ∩P−θ . It follows that U−θ acts simply transitively on Fθ \ZP−θ
.

Thus, the map

T : u−θ → Fθ \ZP−θ

given by T (X) = eXPθ is a diffeomorphism.
Note that if H ∈ a and X ∈ u−θ , then

eHT (X) = eHeXPθ = eHeXe−HPθ = eAd(eH)(X)Pθ = T
(
Ad(eH)(X)

)
. (16)

Furthermore, if we decompose

X =
∑
α∈Σ+

θ

X−α ∈ u−θ ,

where X−α ∈ g−α for all α ∈ Σ+
θ , then

Ad(eH)(X) =
∑
α∈Σ+

θ

Ad(eH)(X−α) =
∑
α∈Σ+

θ

e−α(H)X−α. (17)

Together, Equations (16) and (17) imply the following observation.
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Lemma A.2. Let {Hn} be a sequence in a+. If α(Hn)→ +∞ for all α ∈ θ, then eHnF → Pθ for
all F ∈ Fθ \ZP−θ

, and this convergence is uniform on compact subsets of Fθ \ZP−θ
.

Using Equations (16) and (17), we can also prove the following lemma.

Lemma A.3. Let gn = mne
κ(gn)`n be as in the statement of Proposition A.1.

(1) If there is an open set U ⊂ F+
θ such that gn(F )→ F+ for all F ∈ U , then mn Pθ → F+

and α(κ(gn))→ +∞ for every α ∈ θ.
(2) If there is an open set U ⊂ F−θ such that g−1

n (F )→ F− for all F ∈ U , then `−1
n P−θ → F−

and α(κ(gn))→ +∞ for every α ∈ θ.

Proof. By compactness, it suffices to consider the case where mn → m ∈ K and `n → ` ∈ K.
(1): We first prove that α(κ(gn))→ +∞ for all α ∈ θ. If this is not the case, then by taking

a subsequence, we may assume that there is some α0 ∈ θ such that α0(κ(gn)) → c ∈ [0,∞).
Choose F, F ′ ∈ U such that `(F ), `(F ′) ∈ Fθ \ZP−θ

, and if we decompose

T−1(`(F )) =
∑
α∈Σ+

θ

X−α and T−1(`(F ′)) =
∑
α∈Σ+

θ

X ′−α,

where X−α, X
′
−α ∈ g−α for all α ∈ Σ+

θ , then X−α0 6= X ′−α0
. Then by (16) and (17),

lim
n→∞

T−1(eκ(gn)`n(F )) = lim
n→∞

Ad(eκ(gn))T−1(`n(F )) = e−cX−α0+ lim
n→∞

∑
α∈Σ+

θ −{α0}

e−α(κ(gn))X−α.

Similarly,

lim
n→∞

T−1(eκ(gn)`n(F ′)) = e−cX ′−α0
+ lim
n→∞

∑
α∈Σ+

θ −{α0}

e−α(κ(gn))X ′−α,

so limn→∞me
κ(gn)`n(F ) 6= limn→∞me

κ(gn)`n(F ′), which implies that

lim
n→∞

gn(F ) 6= lim
n→∞

gn(F ′).

This is a contradiction because F, F ′ ∈ U .
Next, we prove that mn Pθ → F+, or equivalently, mPθ = F+. Let F ∈ Fθ such that F is

transverse to F− and `(F ) is transverse to P−θ . Then there is some compact subset K ⊂ Fθ \ZP−θ
such that `n(F ) ∈ K for all sufficiently large n. Since α(κ(gn))→ +∞ for all α ∈ θ, Lemma A.2
implies that

eκ(gn)`n(F )→ Pθ,

which implies that

gn(F ) = mne
κ(gn)`n(F )→ mPθ.

It follows that mPθ = F+.
(2): As in Section 2, let k0 ∈ NK(a) be a representative of the longest element w0 ∈ W .

Observation 2.2 implies that Ad(k0)(−κ(g)) = κ(g−1) for all g ∈ G, and so

g−1
n =

(
`−1
n k−1

0

)
eκ(g−1

n )
(
k0m

−1
n

)
is a KAK-decomposition of g−1

n .
Further, Pι∗(θ) = k0 P

−
θ k
−1
0 , see Equation (2), so we can define a G-equivariant diffeomorphism

Φθ : F−θ → F ι∗(θ)
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by Φθ(g P
−
θ ) = gk0 Pι∗(θ). Then g−1

n (F ) → Φθ(F
−) for all F ∈ Φθ(U). So by part (1), we

see that `−1
n k−1

0 Pι∗(θ) → Φθ(F
−) and α(κ(g−1

n )) → +∞ for all α ∈ ι∗(θ). Since Φθ(`
−1
n P−θ ) =

`−1
n k−1

0 Pι∗(θ) this implies that `−1
n P−θ → F−. Further, by Observation 2.2,

α(κ(g)) = ι∗(α)(κ(g−1))

for all g ∈ G and all α ∈ θ. So we see that α(κ(gn))→ +∞ for all α ∈ θ. �

Proof of Proposition A.1. It follows immediately from Lemma A.3 that (4) implies (1), and it
is obvious that (2) and (3) together imply (4). It thus suffices to show that (2) and (3) are
both individually equivalent to (1). By compactness, it suffices to consider the case where
mn → m ∈ K and `n → ` ∈ K.

We first prove that (1) implies (2). Since α(κ(gn))→ +∞ for all α ∈ θ, Lemma A.2 implies

lim
n→∞

eκ(gn)F = Pθ

for all F ∈ Fθ \ZP−θ
, and this convergence is uniform on compact subsets of Fθ \ZP−θ

. Since,

mPθ = F+ and `−1 P−θ = F−, it follows that

lim
n→∞

gn(F ) = F+

for all F ∈ Fθ \ZF− , and this convergence is uniform on compact subsets of Fθ \ZF− .
Next, we prove (2) implies (1). By Lemma A.3, mn Pθ → F+ and α(κ(gn))→ +∞ for every

α ∈ θ, so it suffices to show that `−1
n P−θ → F−, or equivalently, that `F− = P−θ . If this were not

the case, then there exists some F ∈ ZP−θ
\ Z`F− . Then there is a compact set K ⊂ Fθ \ZF−

such that `−1
n (F ) ∈ K for all sufficiently large n. Then by assumption,

m lim
n→∞

eκ(gn)F = lim
n→∞

gn`
−1
n F = F+ = mPθ,

so eκ(gn)F → Pθ. However, {eκ(gn)} ⊂ P−θ , so each eκ(gn) preserves the closed set ZP−θ
, which

implies that

Pθ = lim
n→∞

eκ(gn)F ∈ ZP−θ
.

Since Pθ and P−θ are transverse, we have a contradiction.
Finally, we prove that (1) and (3) are equivalent. Let k0 ∈ NK(a) be a representative of the

longest element w0 ∈W , and let

Φθ : F−θ → F ι∗(θ)
be the G-equivariant homeomorphism given by Φθ(g P

−
θ ) = gk0 Pι∗(θ). Observe that

Φθ(F−θ \ZF+) = F ι∗(θ) \ZΦ−1
ι∗(θ)(F

+),

so (3) can be rewritten as:

(3’) g−1
n (F ) → Φθ(F

−) for all F ∈ F ι∗(θ) \ZΦ−1
ι∗(θ)(F

+), and this convergence is uniform on

compact subsets of F ι∗(θ) \ZΦ−1
ι∗(θ)(F

+).

By Observation 2.2, α(κ(gn)) = ι∗(α)(κ(g−1
n )) for all n ∈ N and all α ∈ ∆. Thus, (1) can be

rewritten as:

(1’) mnk
−1
0 P−ι∗(θ) → Φ−1

ι∗(θ)(F
+), `−1

n k−1
0 Pι∗(θ) → Φθ(F

−) and α(κ(g−1
n )) → +∞ for every

α ∈ ι∗(θ).
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We also saw in the proof of Lemma A.3(2) that if gn = mne
κ(gn)`n is a KAK-decomposition of

g ∈ G, then

g−1
n = (`−1

n k−1
0 )eκ(g−1

n )(k0m
−1
n )

is a KAK-decomposition of g−1
n . Thus, the equivalence between (1) and (2) implies the equiva-

lence between (1’) and (3’). �

Appendix B. Proofs of Theorem 6.2 and Proposition 6.3

In this appendix we prove Theorem 6.2 and Proposition 6.3.
When G = PSL(d,K), where K is either the real numbers R or the complex numbers C, recall

from the introduction that ∆ := {α1, . . . , αd−1} ⊂ a∗ denotes the standard system of simple
restricted roots, i.e.

αj(diag(a1, . . . , ad)) = aj − aj+1

for all diag(a1, . . . , ad) ∈ a. To simplify notation, we replace subscripts of the form {αi1 , . . . , αik}
with i1, . . . , ik. For instance,

F1,d−1 = F{α1,αd−1} and U1,d−1(g) = U{α1,αd−1}(g).

As mentioned before, in the case when G = PSL(d,K), Theorem 6.2 and Proposition 6.3 were
proven in [15]. We will use results from [23] to prove the following proposition, which allows us
to generalize these results in [15] to general G.

Proposition B.1. For any symmetric θ ⊂ ∆ and χ ∈
∑

α∈θ N ·ωα there exist d ∈ N, an irreducible
linear representation Φ : G→ SL(d,R) and a Φ-equivariant smooth embedding

ξ : Fθ → F1,d−1(Rd)

such that:

(1) F1, F2 ∈ Fθ are transverse if and only if ξ(F1) and ξ(F2) are transverse.
(2) There exists N ∈ N such that

log σ1(Φ(g)) = Nχ(κ(g))

for all g ∈ G.
(3) α1(κΦ(g))) = minα∈θ α(κ(g)) for all g ∈ G.
(4) If minα∈θ α(κ(g)) > 0, then

ξ(Uθ(g)) = U1,d−1(Φ(g)).

(5) Γ ⊂ G is Pθ-divergent (respectively Pθ-transverse) if and only if Φ(Γ) is P1,d−1-divergent
(respectively P1,d−1-transverse). Moreover, in this case

ξ(Λθ(Γ)) = Λ1,d−1(Φ(Γ)).

(6) If ρ : Γ0 → G is a Pθ-transverse representation with boundary map ξρ : ΛΩ(Γ0) → Fθ,
then Φ ◦ ρ is a P1,d−1-transverse representation with boundary map ξ ◦ ξρ.

Delaying the proof of Proposition B.1 for a moment, we prove Theorem 6.2 and Proposi-
tion 6.3.
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B.1. Proof of Theorem 6.2. Let Φ : G → PSL(d,R) and ξΦ : Fθ → F1,d−1(Rd) satisfy Proposi-
tion B.1 for some χ ∈

∑
α∈θ N ·ωα.

Then Φ(Γ) is P1,d−1-transverse and so by [15, Thm. 4.2] there exist d0 ∈ N, a properly

convex domain Ω ⊂ P(Rd0), a projectively visible subgroup Γ0 ⊂ Aut(Ω) and a faithful P1,d−1-

transverse representation ρ0 : Γ0 → PSL(d,R) with limit map ξ0 : ΛΩ(Γ0)→ F1,d−1(Rd) so that
ρ0(Γ0) = Φ(Γ) and

ξ0(ΛΩ(Γ0)) = Λ1,d−1(Φ(Γ)) = ξΦ(Λθ(Γ)).

We claim that Φ is injective. Since G is semisimple, ker Φ is either discrete or contains a
simple factor of G. Since ξ : Fθ → F1,d−1(Rd) is a Φ-equivariant embedding, ker Φ must act
trivially on Fθ. So ker Φ ⊂ Pθ. By assumption Pθ contains no simple factors of G, so ker Φ is
discrete. However then, since ker Φ is also normal, we see that ker Φ is contained in the center
of G which by assumption is trivial. Hence Φ is injective.

Then ρ := Φ−1 ◦ ρ0 and ξ := ξ−1
Φ ◦ ξ0 are well defined and have the desired properties.

B.2. Proof of Proposition 6.3. We start by recalling a result in [15] about transverse represen-
tations into PSL(d,K). Let dP(Rd0 ) be a distance on P(Rd0) induced by a Riemannian metric.

Given a properly convex domain Ω ⊂ P(Rd0) and b0 ∈ Ω let

ιb0 : Ω \ {b0} → ∂Ω

denote the radial projection map obtained by letting ιb0(z) ∈ ∂Ω be the unique point so that
z ∈ (b0, ιb0(z))Ω. The following lemma was proven as Lemma 6.2 and Observation 6.3 in [15].

Lemma B.2. Suppose θ ⊂ {α1, . . . , αd−1} is symmetric. Let ρ : Γ0 → PSL(d,K) be a Pθ-
transverse representation, where Γ0 is a projectively visible subgroup of Aut(Ω) for some properly
convex domain Ω ⊂ P(Rd0). For any b0 ∈ Ω and ε > 0, there exist C > 0 such that if γ, η ∈ Γ0

and

dP(Rd0 )

(
ιb0(γ−1(b0)), ιb0(η(b0))

)
≥ ε,

then ∣∣∣ωαk(κ(ρ(γη))− κ(ρ(γ))− κ(ρ(η))
)∣∣∣ ≤ C

for all αk ∈ θ.

Lemma B.2 can be restated as follows.

Lemma B.3. Suppose θ ⊂ {α1, . . . , αd−1} is symmetric. Let ρ : Γ0 → PSL(d,K) be a Pθ-
transverse representation where Γ0 is a projectively visible subgroup of Aut(Ω) for some properly
convex domain Ω ⊂ P(Rd0). For any b0 ∈ Ω and r > 0, there exist C > 0 such that if γ, η ∈ Γ0

and

dΩ (γ(b0), [b0, η(b0)]Ω) ≤ r,
then ∣∣∣ωαk(κ(ρ(η))− κ(ρ(γ))− κ(ρ(γ−1η))

)∣∣∣ ≤ C
for all αk ∈ θ.

Proof. Suppose not. Then there exist αk ∈ θ and sequences {γn}, {ηn} in Γ such that

dΩ (γn(b0), [b0, ηn(b0)]Ω) ≤ r but
∣∣∣ωαk(κ(ρ(ηn))− κ(ρ(γn))− κ(ρ(γ−1

n ηn))
)∣∣∣ ≥ n.

Since ∥∥κ(ρ(ηn))− κ(ρ(γ−1
n ηn))

∥∥ ≤ √dmax
{

log σ1(ρ(γ−1
n )), log σ1(ρ(γn))

}
,
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{γn} is a diverging sequence. A similar argument also shows that {γ−1
n ηn} is diverging.

Since both {γn} and {γ−1
n ηn} are diverging and

dΩ

(
b0, [γ

−1
n (b0), γ−1

n ηn(b0)]Ω
)

= dΩ (γn(b0), [b0, ηn(b0)]Ω) ≤ r,

it follows that there is some ε > 0 so that

dP(Rd0 )

(
ιb0(γ−1

n (b0)), ιb0(γ−1
n ηn(b0))

)
≥ ε

for all n. Thus, Lemma B.2 implies that
∣∣∣ωαk(κ(ρ(ηn))− κ(ρ(γn))− κ(ρ(γ−1

n ηn))
)∣∣∣ has a uni-

form upper bound, which is a contradiction. �

Proof of Proposition 6.3. Since {ωα|aθ}α∈θ is a basis for a∗θ, it suffices to fix β ∈ θ and find C > 0
such that: if γ, η ∈ Γ0 and

dΩ (γ(b0), [b0, η(b0)]Ω) ≤ r,

then

|ωβ (κθ(ρ(γη))− κθ(ρ(γ))− κθ(ρ(η)))| ≤ C.

Let χ1 :=
∑

α∈θ ωα and χ2 := ωβ +
∑

α∈θ ωα. For j = 1, 2, let Φj : G → PSL(dj ,R) satisfy
Proposition B.1 for χj , and let ρj := Φj ◦ ρ. Then ρj is a P1,dj−1-transverse representation and
there exists Nj ∈ N such that

|χj (κθ(ρ(γη))− κθ(ρ(γ))− κθ(ρ(η)))| = 1

Nj
|ωα1 (κ(ρj(γη))− κ(ρj(γ))− κ(ρj(η)))|

for all γ, η ∈ Γ. Applying Lemma B.3 to ρj , there exists Cj > 0 such that: if γ, η ∈ Γ0 and

dΩ (γ(b0), [b0, η(b0)]Ω) ≤ r,

then

|ωα1 (κ(ρj(γη))− κ(ρj(γ))− κ(ρj(η)))| ≤ Cj .

Since χ2 − χ1 = ωβ , we then have: if γ, η ∈ Γ0 and

dΩ (γ(b0), [b0, η(b0)]Ω) ≤ r,

then

|ωβ (κθ(ρ(γη))− κθ(ρ(γ))− κθ(ρ(η)))| ≤ C1

N1
+
C2

N2
. �

B.3. The proof of Proposition B.1. Fix a symmetric set θ ⊂ ∆ and χ ∈
∑

α∈θ Nωα. By [23, Lem.
3.2, Prop. 3.3, Rem. 3.6 and Lem. 3.7] there exist N, d ∈ N, an irreducible linear representation
Φ : G→ SL(d,R) and a Φ-equivariant smooth embedding

ξ : Fθ → F1,d−1 := F1,d−1(Rd)

such that:

(a) Φ is proximal and has highest weight Nχ, that is: if H ∈ int(a+), then Φ(eH) is proximal

and the eigenvalue with largest modulus is eNχ(H).
(b) Φ(K) ⊂ SO(d,R) and Φ(ea) is a subgroup of the diagonal matrices in SL(d,R).
(c) α1(κ(Φ(g))) = minα∈θ α(κ(g)) for all g ∈ G.
(d) F1, F2 ∈ Fθ are transverse if and only if ξ(F1), ξ(F2) ∈ F1,d−1 are transverse.
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In the statement of Proposition B.1, parts (1) and (3) are restatements of properties (d) and
(c) of Φ respectively, while part (2) is a consequence of properties (a) and (b) of Φ. Part (5)
follows immediately from parts (1), (3), and (4), while part (6) follows immediately from part
(5) and Proposition 2.5. Thus, it suffices to prove part (4).

Let e1, . . . , ed be the standard basis of Rd. Using properties (a) and (b), we can conjugate Φ
by a permutation matrix and assume that

Φ(eH)e1 = eNχ(H)e1 and Φ(eH)ed = eNχ̄(H)ed (18)

when H ∈ a (where as usual χ̄ = χ ◦ ι). We first observe that the value of ξ(Pθ) is determined.

Lemma B.4. ξ(Pθ) =
(
〈e1〉 , 〈e1, . . . , ed−1〉

)
.

Proof. Let F̂+
0 :=

(
〈e1〉 , 〈e1, . . . , ed−1〉

)
and F̂−0 :=

(
〈ed〉 , 〈e2, . . . , ed〉

)
. Fix H ∈ int(a+). Then

by property (b) and Equation (18), Φ(eH) = diag(a1, . . . , ad) is a diagonal matrix with

|a1| > max{|aj | : 2 ≤ j ≤ d} and |ad| < min{|aj | : 1 ≤ j ≤ d− 1}.
So

Φ(enH)F̂ → F̂+
0

for all F̂ ∈ F1,d−1 transverse to F̂−0 . Since Φ is irreducible, there exists some F ∈ Fθ such

that ξ(F ) is transverse to F̂−0 . Using Lemma A.2 and perturbing F we may also assume that
enH(F )→ Pθ. Then

ξ(Pθ) = lim
n→∞

ξ(enHF ) = lim
n→∞

Φ(enH)ξ(F ) = F̂+
0 . �

Now we prove (4).

Lemma B.5. If minα∈θ α(κ(g)) > 0, then ξ(Uθ(g)) = U1,d−1(Φ(g)).

Proof. Fix a KAK-decomposition g = meH`. By properties (a) and (b), there exists a permuta-
tion matrix k ∈ O(d) such that

Φ(g) =
(
Φ(m)k−1

)(
kΦ(eH)k−1

)(
kΦ(`)

)
is a singular value decomposition of Φ(g). By Equation (18), k(e1) = e1 and k(ed) = ed. Further,
by property (c), we have

αj(Φ(g)) > 0 for j = 1, d− 1,

so by Lemma B.4,

U1,d−1(Φ(g)) =
(
Φ(m)k−1

)(
〈e1〉 , 〈e1, . . . , ed−1〉

)
= Φ(m)

(
〈e1〉 , 〈e1, . . . , ed−1〉

)
= Φ(m)ξ(Pθ) = ξ(mPθ) = ξ(Uθ(g)). �
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[23] F. Guéritaud, O. Guichard, F. Kassel and A. Wienhard, “Anosov representations and proper actions,” Geom. Top.
21(2017), 485–584.

[24] O. Glorieux and S. Tapie, “Critical exponents of normal subgroups in higher rank,” preprint, arXiv:2006.05730.
[25] O. Guichard and A. Wienhard, “Anosov representations: Domains of discontinuity and applications,” Invent. Math.

190(2012), 357–438.

[26] J.W. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Springer-
Verlag New York Inc. (1972).

[27] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Crm Proceedings & Lecture Notes, American

Mathematical Soc. (2001).
[28] M. Islam and A. Zimmer, “A flat torus theorem for convex co-compact actions of projective linear groups,” Jour.

L.M.S. 103(2021), 470–489.

[29] M. Kapovich, B. Leeb and J. Porti, “Anosov subgroups: Dynamical and geometric characterizations,” Eur. Math. J.
3(2017), 808–898.

[30] A.W. Knapp, Lie Groups Beyond an Introduction, Progress in Mathematics, Birkhäuser Boston Inc. (1996).
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