
Journal of Computer Languages 79 (2024) 101272

Available online 3 May 2024
2590-1184/© 2024 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Journal of Computer Languages

journal homepage: www.elsevier.com/locate/cola

Explanations for combinatorial optimization problemsI
Martin Erwig <, Prashant Kumar
School of EECS, Oregon State University, Corvallis, OR 97330, United States of America
Institute of Computer Science, Johannes Gutenberg Universität, Mainz, 55122, Germany

A R T I C L E I N F O

Keywords:
Contrastive explanation
Explanation simplification

A B S T R A C T

We introduce a representation for generating explanations for the outcomes of combinatorial optimization
algorithms. The two key ideas are (A) to maintain fine-grained representations of the values manipulated by
these algorithms and (B) to derive explanations from these representations through merge, filter, and aggrega-
tion operations. An explanation in our model presents essentially a high-level comparison of the solution to a
problem with a hypothesized alternative, illuminating why the solution is better than the alternative. Our value
representation results in explanations smaller than other dynamic program representations, such as traces.
Based on a measure for the conciseness of explanations we demonstrate through a number of experiments that
the explanations produced by our approach are small and scale well with problem size across a number of
different applications.

1. Introduction

In this paper we introduce a representation for explanations of the
results obtained by combinatorial optimization algorithms. Moreover,
we provide various visualizations for these explanations. The basis for
this explanation representation is the so-called joint value decomposition,
which is the underlying structure for all the explanations that are
generated. Our approach is based on retaining a granular representa-
tion of values that are otherwise aggregated during the computation
performed by the algorithm. The explanations that are created from
the granular representations can answer questions about why one
result was obtained instead of another and therefore can increase the
confidence in the correctness of program results.

Combinatorial optimization problems are discrete optimization
problems with a finite number of solutions [1]. They have roots
in combinatorics, operations research, and theoretical computer sci-
ence. Combinatorial optimization problems have numerous real-life
applications, and adding explanation techniques for them can have a
far-reaching impact on improving the understanding and acceptance of
computational systems.

For example, algorithms for finding the shortest paths [2] are used
by hundreds of millions of people worldwide in applications such as
Google Maps and vehicle navigation systems. Moreover, companies
like Amazon use algorithms for vehicle routing problems [3] to find
optimal routes for package deliveries. The importance of this problem
is highlighted by the Amazon Last Mile Routing Research Challenge [4], a

I This work is partially supported by the National Science Foundation, United States under the grant CCF-2114642.
< Corresponding author.
E-mail addresses: erwig@oregonstate.edu (M. Erwig), pkumar@uni-mainz.de (P. Kumar).

collaboration with MIT that offered a total award of 175,000 dollars to
improve the state of the art in the domain. Other common applications
of combinatorial optimization include project scheduling, cash-flow
management, message routing in communication systems, and traffic
flow optimization. The last example is an instance of the maximum-flow
problem [5], which is also used for determining the maximum steady-
state flow in pipelines or electrical networks. Applications of matching
problems [6] can be found in a range of scenarios, including matching
roommates to hostels, matching pilots to compatible airplanes, schedul-
ing airline crews for available flight legs, and assigning routes to bus
drivers.

Given the predominant role that optimization algorithms play in
our lives, we should be able to trust and understand the results they
produce. Automation systems can earn their users’ trust by explaining
results because explanations give users confidence in the correctness
and reliability of algorithm and computation processes [7]. Realizing
the increasing role of algorithms in the lives of citizens, governments
around the world are starting to enact laws providing citizens with a
right to explanation for the algorithmic results impacting them [8]. The
General Data Protection Regulation (GDPR) of the European Union [9]
and the Digital Republic Act of France [10] are examples of such
regulations. While explanation as a fundamental right is still in its
infancy, we can expect more such regulations and requirements as part
of the legal framework in the years to come.

When presented with a result by an algorithm, it is natural for
users to ask ‘‘Why is the result X and not Y ?’’. Such explanations

https://doi.org/10.1016/j.cola.2024.101272
Received 12 February 2023; Received in revised form 21 March 2024; Accepted 23 April 2024

https://www.elsevier.com/locate/cola
https://www.elsevier.com/locate/cola
mailto:erwig@oregonstate.edu
mailto:pkumar@uni-mainz.de
https://doi.org/10.1016/j.cola.2024.101272
https://doi.org/10.1016/j.cola.2024.101272
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2024.101272&domain=pdf

Journal of Computer Languages 79 (2024) 101272

2

M. Erwig and P. Kumar

are an instance of what the philosophy literature calls contrastive ex-
planations [11,12]. A contrastive explanation compares two specific
phenomena, the actual result (called fact or solution) and a hypothetical
alternative (called foil) and justifies ‘‘Why this [fact] rather than that
[foil]?’’ [13]. A nice property of contrastive explanations is that the
explanations generated may be tailored to different users who may be
wondering about different aspects of a solution. Different (parts of)
results may result in different foils and consequently in different and
more fitting explanations. Alternatives (that is, foils) against which de-
cisions are to be justified and explained are typically provided by users,
but sometimes they can be anticipated, which means that comparative
explanations can also be generated automatically.

While software has predominantly been judged according to cor-
rectness and efficiency, the understandability of the results delivered by
computations should be also considered an important criterion, since
programs may efficiently produce correct results that still leave users
wondering whether or why they are correct. In previous work we
have proposed the notion of explanation-oriented programming that has
the explicit goal of creating programs that not only produce correct
results but also explanations why the results are correct and thus can
be trusted. In this context, we have explored representations that can
add explanatory context to program results. These representations were
created for specific domains, such as probabilistic computations [14–
16], causality [17,18], regular expressions [19], spreadsheets [20],
decision making [21], and dynamic programming [22,23]. Notably, all
these approaches exploited in some way the structures of the specific
domains to obtain effective explanatory representations.

In this paper, we present and explore a representation that is not
tied to a specific domain and can work for a wide range of different
applications, which provides software developers a generic go-to rep-
resentation for creating more explanatory software. The work in the
area of programming languages that is concerned with representation
is often focused on either language constructs in the context of language
design or data structures for efficient computations. This paper is
focused on representations that can support the understandability of
software.

The main contributions of this paper are the following.

• A general representation for explaining the results of combinato-
rial optimization algorithms

• Tailored visualizations for explanations
• Experimental evidence of the efficacy of our representation
• A method for the automatic generation of foils for contrastive
explanations

In Section 2, we examine a representation for formalizing com-
binatorial optimization problems and build upon it in Section 3 to
incorporate explanations and their accompanying visualizations. The
compositional structure of explanations facilitates the definition of
operations for simplifying them. We introduce these operations in
Section 4 together with a measure of explanation complexity. In Sec-
tion 5, we show through experiments the scalability of our explanation
approach for the maximum weighted bipartite matching problem. We
then demonstrate in detail how our explanation representation can be
applied to various other optimization problems, such as shortest paths
(Section 6), transportation problems (Section 7), and maximum-flow
problems (Section 8). For each of these problems we also perform
experiments to measure the efficacy of the various explanation simpli-
fication techniques. In Section 9, we show that our techniques work
not only for the aforementioned computationally tractable problems
but also for computationally hard (NP-hard) problems. We demonstrate
with the traveling salesman problem. In Section 10, we survey the
existing literature on explanations and compare them to our work. We
provide conclusions in Section 11.

2. Combinatorial optimization problems

In the following, we adopt the definitions from the standard text
by Ausiello et al. [24] (adjusting the notation slightly for conve-
nience). Formally, a combinatorial optimization problem is defined as
a four-tuple (I , f ,m,�) where

• I is a set of problem instances,
• f : I ô 2S is a function that maps instances to sets of feasible
solutions from a set S,

• m : I ù S ô R is the measure function that assigns values to
instance/solution pairs, and

• � À {min,max} is the goal function.

The measure function is used to compare the various solutions for
a problem instance. The goal is to find for some problem instance
p À I the best feasible solution s À f (p), that is, we want to compute
�{m(p, s) › s À f (p)}.

As a concrete example, let us consider the maximum weighted
bipartite matching problem. A weighted bipartite graph G = (U ‰
V ,E,W) is a labeled graph whose vertices can be divided into two
disjoint sets U and V such that each edge (u, v) À E connects a vertex
u À U with a vertex v À V and has an associated weight W (u, v) À R
(that is, W : E ô R). A matching M of graph G is a subset of E
such that no two edges in M share a common vertex. The maximum
(minimum) weighted bipartite matching of G is a matching whose sum
of the weights of the edges is maximal (minimal).

Formally, the weighted maximum bipartite matching problem can
be defined as a combinatorial optimization problem as follows (we use
the notation E+

v = {w  (v,w) À E} to denote the set of successors of v
in E and E*

w = {v  (v,w) À E} for set of predecessors of w in E).

• I = {G = (U ‰ V ,E,W) › G is a weighted bipartite graph}
• f (G) = {M ” E › (≈(u, v) À M .M+

v = {w} · M*
w = {v}) · M =

min {U , V }}
• m(G,M) = ≥

(u,v)ÀM W (u, v)
• � = max

To illustrate the need for explanations and suggest a possible approach
for how to generate them, we use a concrete example in the following.

Assume that the National Basketball Association (NBA) was trying
to add 4 new basketball franchises with teams for the cities of Las
Vegas (L), Montreal (M), Seattle (S), and Dayton (D). After initial
assessments 4 interested parties, Bayer AG (B), Glazer family (G), Qatar
Investment Authority (Q), and Red Bull (R), are shortlisted for the
bidding process. Each interested party can submit bids for multiple
teams but can only get ownership of one team. The owners are not
decided by the highest bid but rather the combination of bids that
generates the highest total revenue for the NBA. This is an instance
of the maximum weighted bipartite matching problem. The bipartite
graph showing the teams that each buyer is interested in owning is
shown in Fig. 1(a): The presence of an edge between two nodes u and
v suggests that the buyer u is interested in owning the team v for a price
equal to the edge weight of (u, v) (in tens of millions of dollars).

The optimal assignment of buyers to respective teams is shown in
Fig. 1(b) where the total bid for all the teams is 177 (that is, 1.77
billion dollars). This result is surprising because Bayer bid 80 for the
Las Vegas team, the highest bid for any team in the whole process,
and was still not allocated that team. Either Bayer or someone in NBA
might want to know why that is the case. In the next section we discuss
different strategies to generate explanations for questions such as this
and formalize the explanation process.

Next, we walk through a sequence of steps of a potential expla-
nation, which helps to point out some aspects of a general approach
to generating explanations. The overall strategy is to hypothesize an
alternative assignment, guided by the user question/concern, and then
show that it does not have a higher value. We can structure the
explanation process into the following four steps.

Journal of Computer Languages 79 (2024) 101272

3

M. Erwig and P. Kumar

Fig. 1. Optimal and alternative matching for a maximum bipartite matching problem.

Contrast Create a hypothesis about an alternative solution.
In our example, we assign the Las Vegas team to Bayer
for a value of 80, that is, we make sure the edge (B,L) is
contained in the alternative assignment.

Reconcile Since the previous step may have violated some constraint
within the problem domain, we have to adapt the example
data so that all constraints are again satisfied.
For our example, this means to remove the nodes B and
L together with their incident edges from G (since they
are already contained in the assignment), leaving a residual
graph, say G®.

Remeasure Recompute the measurement for the alternative.
In the example, we compute the weighted maximum bipar-
tite matching on G®, which turns out to have a maximum
value of 92, and add it to the value for the alternative
solution, that is, 80, to obtain a total of 172.

Reaffirm Compare the measurement for the alternative with that of
the solution to confirm the solution (and reject the alterna-
tive).
For our example, the highest possible revenue for the alter-
native assignment is 172, which is lower than the solution,
thus demonstrating that the hypothesis should be rejected.

Fig. 1(c) displays the optimal assignment after forcing the assign-
ment of the Las Vegas team to Bayer. Following [25], we call such an
alternative assignment a foil assignment. A foil assignment is created
based on a specific question by a user who expected an alternative
solution, especially one with a specific feature (here: a particular edge).
The notion of a foil has its roots in literature and is a powerful device
for illustration through contrast [26].

Based on the foil assignment and its value, we can explain why the
NBA did not assign the Las Vegas team to Bayer. The best alternative
team assignment would have only produced a total revenue of 172 for
the NBA, instead of the 177 it receives from the optimal assignment.
This explanation, although correct, may not fully convince a user. They
may want to know which specific assignments lead to the higher total
value of the optimal assignment, but the current explanation does not
address that. To provide a more fine-grained explanation, we can use
the weights of individual assignments instead of just considering the
total value. In the next section, we formalize this idea.

3. Explaining algorithm results

In this section, we extend the definition of combinatorial opti-
mization problems to construct a framework for explaining algorithm
results. To appreciate the scope and purpose of these explanations,
it is important to distinguish between two different target groups for
algorithm explanations.

3.1. Different explanations for different stakeholders

There are various stakeholders involved in the development, im-
plementation, and use of algorithms. While an algorithm designer is
primarily concerned with the theoretical properties of an algorithm,
such as correctness and time and space complexity, a programmer
focuses on an accurate and properly documented implementation of the
algorithm, resulting in code that is maintainable and thoroughly tested.
The algorithm designer and the programmer are both concerned with
how the algorithm/program works in general, for arbitrary input.

In contrast, an end user applies a program to specific input, repre-
senting a particular problem they want to solve, and they are typically
only concerned with the output that solves the specific problem at
hand.

Therefore, the notion of an explanation has different meanings to the
different stakeholders. We can at least distinguish two different forms
of explanations. First, a generic (or static) explanation describes how
the algorithm or program works in general. Such an explanation may
provide a general argument for how the algorithm works and why it
is correct for arbitrary inputs. It may also justify the control structures
that realize the algorithmic ideas and present general reasons for the
algorithm’s runtime complexity.

Second, a specific (or dynamic or value-based) explanation demon-
strates why a specific output is the correct solution to the problem
represented by the specific input. As the name suggests, concrete values
play an important role in value-based explanations, and the challenge
for an explanation approach is to select the ‘‘right’’ values that can
convince a user of the correctness of the output. The focus of our work
is on dynamic, value-based explanations.

3.2. Explainable optimization problems

To explain the result of combinatorial optimization algorithms with
value explanations, we introduce the notion of component-based combi-
natorial optimization problem.

Specifically, we add a set of components C to allow the measure
function to return a collection of values, indexed by the values of C,
which are then aggregated using an operation ‚ into the measurement
that is to be optimized by �. The operation ‚ must be a binary
operation of a group (R,‚, 0) where the set of real numbers R is the
underlying set and 0 is the identity element. We also assume that „ is
the inverse operation of ‚.

A component-based combinatorial optimization problem is given by a
six-tuple (I , f , ím,�,C ,‚) where:

• I is a set of problem instances
• f : I ô 2S is a function that maps instances to sets of feasible
solutions from a set S

• C is a set of components resulting from the optimization process

Journal of Computer Languages 79 (2024) 101272

4

M. Erwig and P. Kumar

• ím : I ù S ô (C ô R) is an itemizing measure function that
maps instance/solution pairs to mappings from components to
real numbers

• ‚ is used to aggregate the decomposed values produced by ím
• � À {min,max} is the goal function

We call the mappings produced by ím value decompositions, a concept
borrowed from [22]. We can recover a ‘‘plain’’ (non-itemizing) mea-
sure function from the itemizing one by aggregating the values of all
components into a single value. To this end we define for each value
decomposition � its aggregated value �‚ as follows.

�‚ = ‚vÀrng(�)v

We can then define the aggregated measure function based on the ag-
gregated values from the mappings of an itemizing measure function
ím.

Çm = {(p, s) ≠ �‚  (p, s) ≠ � À ím}

With this definition, (I , f , Çm,�) is a (plain) combinatorial optimization
problem.

The formalization of the maximum weighted bipartite matching
problem as a component-based problem keeps I , f , and � the same
as in the original version and just modifies the measure function as
follows. We use the set of edges corresponding to the assignments of
owners to the teams as components C and the weights associated with
edges as values for the components. Component values are aggregated
with addition.

• C = E
• ím(G,M) = {e ≠ W (e)  e À M}
• ‚ = +

The underlying group here is the group of real numbers with addition
and 0 as the unit element. Note that while all the examples in this
paper use this particular group, the current formalization allows for
any appropriate aggregation operation. For example, it can be used to
explain the outputs of the Viterbi algorithm [27] where the underlying
aggregation operation is multiplication, and the unit element is 1 (‚ =
ù, 0 = 1).

In our example, the optimal (O) and foil (F) assignments are given
by the following two subsets of edges (see also Figs. 1(b) and 1(c)). For
clarity, we will also write B-V for the edge (B,V), and íms for ím(p, s) if
the problem p is understood from context. (Similarly, we write Çms for
Çm(p, s).) This will make some examples easier to read.

O = {B-V ,G-L,Q-S,R-D}
F = {B-L,G-V ,Q-S,R-D}

Accordingly, the itemizing and aggregated measure functions yield the
following value decompositions and values for O and F , respectively.

ímO = {B-V ≠ 65,G-L ≠ 60,Q-S ≠ 50,R-D ≠ 2} ÇmO = 177
ímF = {B-L ≠ 80,G-V ≠ 40,Q-S ≠ 50,R-D ≠ 2} ÇmF = 172

We can notice that the difference between the two assignments O and
F occur in the components (that is, edges) B-V and G-L in O and
the alternatives B-L and G-V in F , which means that those edges
are relevant to explaining why O and not F is the best assignment.
Specifically, we can see that changing B-V to B-L in the foil assignment
results in a gain of 15, but it also leads to the change of G-L to G-V ,
which incurs a cost of 20. Thus, this change leads to a net loss of 5
compared to the optimal assignment, making O the better choice.

How can we automate this kind of reasoning and effectively create
a corresponding explanation? A simple approach is to compute the
component-wise difference between the value decompositions of the
solution and the foil, focusing on the components in which they differ.
To achieve this, we define the join of two value decompositions � and
�® as the union of three mappings: (i) the intersection of � and �®,

which gives the pair of values for the components that � and �® have
in common, (ii) the components that are only contained in �, and (iii)
the components that are only contained in �®. As auxiliary functions,
we define the intersection and difference of value decompositions as
follows.

� „ �® = {c ≠ (v, v®)  (c ≠ v À � · c ≠ v® À �®)}
� * �® = {c ≠ v À � · c Ã dom(�®)}

Note that the operation „ is not commutative, as the order of the values
(v, v®) in the pairs is important. We use the notation Ü� to denote a
value decomposition � as a foil. The values in the mapping inherit this
notation to track their origin in joint decompositions and to distinguish
between optimal and foil values. (In the visualizations of explanations,
the solution and foil values will be represented in green and red,
respectively.)

With these two operations we can define the join as a combination
of three components.

� 1 �® = (� „ Ü�®) ‰ (� * Ü�®) ‰ (Ü�® * �)

Please note that the join operation is not commutative. The foil is
considered as the second argument, and its values are subtracted from
the solution. In the case of our example, the join operation results in
the following joint value decomposition.

�OF = ímO 1 ímF

= {Q-S ≠ (50, Ü50),R-D ≠ (2, Ü2)} ‰ {B-V ≠ 65,G-L ≠ 60}
‰ {B-L ≠ Ü80,G-V ≠ Ü40}

= {Q-S ≠ (50, Ü50),R-D ≠ (2, Ü2),B-V ≠ 65,G-L ≠ 60,B-L ≠ Ü80,
G-V ≠ Ü40}

We can observe that the components of each value pair in the inter-
section are identical, indicating that any edge that is present in both
the optimal and foil solutions contributes the same value to the overall
result. In simpler terms, the edges in the intersection are not relevant
for explaining the difference between the solutions. This is a property of
the optimization problem at hand. We will encounter an example later
on where the values in the solution and foil result in different values
in the intersection.

The joint value decomposition allows us to produce several forms of
contrastive explanations. Specifically, we can produce traces that illus-
trate how the advantage of the solution over the foil arises. Any such
trace will contain the components of � * Ü�® and Ü�® * �, but components
of � „ Ü�® would be included only if the two value components differ. In
that case we compute the difference between the two values and mark
the result as counting toward the solution or the foil. This is done using
a ‘‘foil-arithmetic’’ difference operation Ü„, which is defined as follows.

x Ü„ Üy =
<

Üz if �(x, y) = y
z otherwise
where z = x „ y

Note that the semantics of Ü„ depends on the function � that is defined
as part of the component-based problem.

The focus on values that are relevant for explaining the difference
between the solution and foil is captured in the concept of a focused
value decomposition, which we denote by �˝ and which is defined as
follows.

�˝ = {c ≠ v˝  c ≠ v À � · v˝ ë 0} v˝ =
<
x Ü„ Üy if v = (x, Üy)
v otherwise

In our example we get the following focused value decomposition.

�˝OF = {B-V ≠ 65,G-L ≠ 60,B-L ≠ Ü80,G-V ≠ Ü40}

There are several possibilities for grouping and ordering the compo-
nents into an explanatory trace. One option is to show how the sum
of solution values cannot be matched by the sum of foil values, which

Journal of Computer Languages 79 (2024) 101272

5

M. Erwig and P. Kumar

Fig. 2. Explanations for the solution to the problem from Fig. 1 with respect to the
foil F .

can be arithmetically expressed as the difference 65 + 60 * (80 + 40) =
125 * 120 = 5. This expression shows that the combined values of the
Las Vegas and Vancouver teams in the optimal and foil assignment
result in a difference of 5 in favor of the optimal solution, making it a
better choice. Another option is to group components based on common
elements (in this case, nodes) to emphasize the specific alternative (and
its consequences) being questioned by the foil. For example, in our
scenario, this would mean grouping the components B-L and G-L and
the components B-V and G-V . This produces 60*80+65*40 = *20+25 =
5, which illustrates how the apparent gain of the foil in one area is more
than offset by a loss in another. This expression suggests that the NBA’s
loss of 20 from the Las Vegas team is more than compensated by the
profit of 25 from the Vancouver team.

A visual representation of the joint value decomposition, shown in
Fig. 2, can serve as a summary for the contrastive explanation. The
green edges and labels show the components and values of the solution.
Similarly, the red edges and labels show the components and values of
the foil. The black edges in Fig. 2(a) represent the common components
and values. We call this visualization a complete explanation. The black
edges in a complete explanation can help set the context and show
the extent of the changes required to consider when comparing the
foil against the solution. But since the black edges do not contribute
anything to the explanation of the value difference, users might prefer
to see a more focused representation shown in Fig. 2(b) that is based
on the focused value decomposition and shows only the differences in
components. We call this visualization a focused explanation.

4. Explanation simplification

We have already seen that the common components in a joint value
decomposition, which have the same values, do not contribute much to
an explanation, even though they can provide context. Since concise-
ness is an important feature of explanations to be effective [25,28,29],
we would like for explanations to contain as few details as possible,
but as many details as needed. Focused explanations (see Fig. 2(b)) are
one way to support this goal. The effect of focused explanations will,
of course, be noticeable only in sufficiently large problems. We will
provide some data in this regard in Section 5.

Explanations that already focus on relevant differences can often
be simplified further and deliver their explanatory contribution with
still fewer details. One method, described in [22], is to show a smallest
subset of the solution components whose sum exceeds the negative
values of the foil components. Such a subset is called minimal dominating
set orMDS. We can define an MDS value decomposition as a refinement
of a focused value decomposition as follows.1

1 As discussed in Section 10, we are using this method in a slightly different
way than described in [22].

First, we determine the negative (=foil) parts (�÷) in a decomposi-
tion � and then compute those positive subsets � (called dominating sets)
whose value (Ç�) exceeds the total of the negative components (Ç�÷).

�÷ = {c ≠ Üv À �} �� = {� ” (� * �÷)  Ç� > Ç�÷}

Any element of �� with the fewest number of elements is a minimal
dominating set.

�mds = � À �� such that ≈�® À ��.� f �®
Since we compute MDSs from focused decompositions, they will always
be a subset of those. However, only in some cases are MDSs proper
subsets and thus smaller than focused decompositions. Despite its sim-
plicity, focused decompositions are still a valuable form of explanation
that can be used effectively.

In our small matching example, the MDS with regard to the foil
F turns out to be the same as the focused value decomposition and
cannot further simplify the explanation (which is already quite small).
But we can illustrate the effect of MDSs with the alternative foil F ®

that is shown in Fig. 1(d): The value 50 of component Q-S in the
solution results (together with the values 65 for component B-V and
60 for the component G-L) in a value of 175, which exceeds the total
value of the alternative assignment, which is 172. The reduced joint
decomposition with respect to this slightly smaller minimal dominating
set is as follows.
�mdsOF ® = {B-V ≠ 65,G-L ≠ 60,Q-S ≠ 50,B-L ≠ Ü80,G-V ≠ Ü40,

Q-D ≠ Ü4,R-S ≠ Ü48}

This means it is sufficient to show just the edge Q-S to convincingly
demonstrate that the solution is better than the foil F ®. The edge R-D
is not needed, and omitting it leads to a (ever so slightly) simplified
explanation, shown in Fig. 3(b).

Yet another approach to simplifying the presentation of explanation
information is to factor common parts of structured components. Specif-
ically, if components are tuples, we can view C as C = C1 ù C2. Given
an equivalence relation í ” C1ùC1, we can group sets of C components
by their common C1 part, that is, for each equivalence class [c] À C1
we form the pair of [c] and [c]’s successors in C. And with í ” C2 ùC2,
we can define the grouping of common C2 parts by pairing [c] with its
predecessors.

CÎ1í = {([c],C+
c)  [c] À C1_ í}

CÎ2í = {(C*
c , [c])  [c] À C2_ í}

We can now extend the component grouping to value decompositions
by aggregating the values of all successors or predecessors for an
equivalence class.

For defining the aggregation we need a definition of an operation Ü‚,
similar to that of Ü„, that sums solution and foil values, compares them,
and returns an aggregated value together with an indication whether
it is advantageous for the solution or the foil. (Recall that X÷ extracts
all the foil elements from a mapping, and that ÇX computes the sum of
values in the range of X using ‚.)

Ü‚S = ÇS↵ Ü„ ÇS÷ where S↵= S * S÷

With Ü‚ we can define the following two versions of aggregated value
decompositions for a given value decomposition � whose component
type can be deconstructed into two parts C = C1 ù C2.

�Î1í = {(c,S) ≠ Ü‚{(c, c®) ≠ v À �  c® À S}  (c,S) À CÎ1í}
�Î2í = {(S, c) ≠ Ü‚{(c®, c) ≠ v À �  c® À S}  (S, c) À CÎ2í}
We can illustrate the idea of aggregated value decomposition with
our example. Applying the definition of aggregated value decomposi-
tion (based on the equality of edges’ target nodes) to the joint value
decomposition �OF ® yields the following.

�OF ® Î2= = {BG-L ≠ Ü20,BG-V ≠ 25,QR-S ≠ 2,QR-D ≠ Ü2}

Journal of Computer Languages 79 (2024) 101272

6

M. Erwig and P. Kumar

Fig. 3. Complete, MDS, and aggregated explanations for the problem from Fig. 1 with respect to the foil F ®.

The aggregated explanation for F ® says that the profits from the sale of
the Vancouver and Seattle teams exceed the losses incurred from the
sale of Las Vegas and the Dayton teams. The decomposition �OF ® Î2= is
visualized as an explanation in Fig. 3(c).

Since the MDS concept is generally applicable to any value decom-
position, we can apply the idea also to aggregated value decomposi-
tions, and for F ® this leads to a slightly smaller value decomposition
and thus simplified explanation.

�mdsOF ® Î2= = {BG-L ≠ Ü20,BG-V ≠ 25,QR-D ≠ Ü2}

The aggregated MDS explanation for F ® says that the profit from the
sale of the Vancouver team alone is enough to cover the entire loss.
The decomposition �mdsOF ® Î2= is visualized as an explanation in Fig. 3(d).

Finally, we point out the relationship between component-based
and plain combinatorial optimization problems. The goal of using item-
izing measure functions is to retain details about the results that can
be exploited for explanations. Thus, a component-based optimization
problem should refine a plain optimization problem but otherwise have
the same overall results. This requirement is captured in the following
definition. We say that a component-based problem (I , f , ím,�,C ,‚)
refines a problem (I , f ,m®,�) if Çm = m®. In what follows, we only
consider component-based problems that refine the corresponding plain
combinatorial optimization problems.

In addition to being correct and providing relevant information,
an explanation should also be small enough so that it can be helpful
and not overwhelm its client. A simple measure for the conciseness of
an explanation is the proportion of its size compared to the size of a
complete explanation, which is given by the number of components
of the corresponding joint value decomposition. For value decompo-
sitions, we count pairs of different values as 2 and pairs of identical
values as 1. Therefore, we define the conciseness of an explanation �X
(for X À {˝, mds, Îní}) as follows.

C(�X) = 1 * �X
� � =

…
c≠vÀ�

v v =
<
2 if v = (x, y) · x ë y
1 otherwise

With this definition, higher values correspond to higher conciseness,
and a perfectly concise explanation of 100% remains an ideal that can
never be reached.

In our example, the size of the complete explanation is �OF  = 6.
Thus, the focused explanation with size �˝OF  = 4 has a conciseness of
1 * 4_6 = 33%, which is not great, but is still an improvement over
the complete explanation, which is with 0% not concise at all. For the
alternative foil F ®, we get the conciseness values of C(�mdsOF ®) = C(�˝OF ®) =
1 * 7_8 = 12.5%, C(�OF ® Î2=) = 1 * 4_8 = 50%, and C(�mdsOF ® Î2=) = 1 * 3_8 =
62.5%. The conciseness varies quite significantly in this example, but
this can be due to the small graph size. To get a better sense of the
explanation conciseness in larger, more realistic examples, we describe
a corresponding analysis in the next section.

5. Explanation conciseness for weighted bipartite matching

To measure the effectiveness of the various explanation techniques
for the maximum weighted bipartite matching problem, we perform a
series of experiments. Due to a lack of test benchmarks, we generate
bipartite graphs with varying number of nodes and edges and with dif-
ferent distributions of edge labels. We make the following assumptions
in generating data for the experiments:

• We assume that the number of left nodes in the bipartite graph is
the same as the number of right nodes. (We consider the size of
the graph the total number of its nodes.)

• We perform our experiments on both dense and sparse graphs.
In the dense case each of the left nodes is connected to each of
the right nodes. For the sparse case we use graphs with average
degree of 6 for each node.

• The edge weights are randomly generated numbers in the range
30–2000. The rationale for this range is as follows. A small
and narrow range reduces the variability in the optimal and
foil assignment, which could artificially inflate the efficacy of
explanations. A range of 3.5 times the number of edges from a
node provides enough variability in edge labels, while a larger
range would not add anything.

In addition to generating the input graphs, we must also generate the
foils for comparison with the solution. A general strategy for creating
foils is to generate k-optimal solutions for the problem at hand and pick
the foils from that set (k = 2 will probably often suffice). The reason
for considering only foils that are close to the optimal is that only such
foils will be considered as serious alternatives and as such require an
explanation or be good (that is, non-straw man) examples in support of
the solution. We are using the k-optimal solution approach for the foil
generation for the weighted bipartite matching (using the Lawler-Murty
Procedure [30,31], which runs in O(kn4) time) and for the shortest path
problems (using Yen’s algorithm [32], which runs in O(kn3) time).

Unfortunately, for some problems, algorithms to generate k-optimal
solutions are unknown or ineffective in producing reasonable counter
examples. In those cases, we employ an alternative approach that sys-
tematically varies parts of the solution to produce non-optimal solution
candidates. A variation is adopted as a foil as long as it is close to the
optimal solution. In this paper, we only consider an alternative as a foil
if it deviates by less than 2% from the optimal solution.

To evaluate the conciseness of explanations for bipartite matching,
we considered graphs with sizes ranging from 20 to 620 nodes (gen-
erated in increments of 40 nodes). For each graph size, we generated
900 pairs of optimal and close foil assignments, and calculated the size
of complete explanations and the conciseness of each explanation. The
overall value of these metrics for a graph size is the average of the 900
values computed for that size.

Journal of Computer Languages 79 (2024) 101272

7

M. Erwig and P. Kumar

Fig. 4. Effectiveness of various explanation techniques for maximum weighted bipartite matching problems. Explanation method: Focused, Aggregated/MDS (solid lines:
density 1.0, dash–dot lines: average degree 6).

Fig. 4(a) displays the number of explanation edges on the Y axis
and the size of the bipartite graph on the X axis. First, we note that in
sparse graphs we need fewer explanation edges than in dense graphs.
This is probably due to the fact that sparse graphs, having fewer edges,
offer less variability between optimal and the foil matchings, which
leads to an increase in the number of common edges and consequently
a decrease in the number of edges required for an explanation. Next, we
observe that the size of explanations grows almost linearly with the size
of the graph for all explanation techniques. But it does so rather slowly.
For example, even for a large bipartite graphs of size 620 nodes, we
need on average only 30 edges for dense graphs and 14 edges for sparse
graphs to explain a decision with a focused explanation. Aggregated
explanations required on average just half the number of edges of
focused explanations. This is expected because aggregated explanations
have the effect on fusing multiple incident edges (from optimal and foil
assignments). Since the number of incident edges on a node in focused
explanation is 2, the reduction in the number of explanation edges by
half is expected. The fact that we need on average just 14 edges for
dense graphs and 5 edges for sparse graphs of size 620 nodes attests to
their effectiveness. Aggregated MDS shows a small but inconsequential
improvement over aggregated explanations.

The effort saved in explaining the results is illustrated in Fig. 4(b),
which show how the conciseness of explanation steadily increases
with the size of graphs. We observe that for a given graph size, the
explanations for sparse graphs are more concise than that of dense
graphs. The conciseness of all explanations increases in the shape of
a hyperbola with the size of the bipartite graph.

It may seem unexpected that the conciseness of explanations in-
creases with the size of the graph. Based solely on the formula for
explanation conciseness, we might expect it to decrease. However, even
though �X increases with the size of the graph, the ratio �X

� still

decreases due to a relatively greater increase in the total number of
edges, leading to a more concise explanation.

The fact that conciseness increases with problem size means that
our explanation mechanisms scales effectively for weighted bipartite
matching problems.

6. Explaining shortest paths

A shortest path between two points in a labeled graph is a path
for which the sum of edge labels is minimal. Suppose G = (V ,E,W)
is a labeled graph where V , E, and W are sets of nodes, edges, and
edge labels, respectively. We assume that edge labels are positive. With
⇧v,w

G denoting the set of paths between nodes v and w in graph G,
the formalization of the shortest path problem as a component-based
problem is as follows.

• I = {(G, v,w)  G = (V ,E,W) is a labeled graph and {v,w} ” V }

• f (G, v,w) = ⇧v,w
G

• C = E
• ím(G,P) = {e ≠ W (e)  e À P }
• ‚ = +
• � = min

Note that components and the decomposed measure function have
the same structure as in the matching example, namely sets of edges
mapped to values that are summed. Based on this formalization, we
can explain solutions to the shortest path problems with contrastive
explanations using value decompositions. As an example, consider the
graph shown in Fig. 5(a),2 and assume that we want to find the shortest
path between the nodes D andH , which can be computed, for example,
with Bellman–Ford’s [2] or Dijkstra’s [33] algorithm. The resulting
shortest path is O = D-A-B-E-H with a length of 29, as shown in
Fig. 5(b). However, a user may recognize the alternative path F =
D-A-B-H , shown in Fig. 5(c), as a more direct path and may wonder
whether it may not be shorter. This situation can occur in real life,
especially when a route with fewer distinct streets may falsely give the
impression of being shorter than the optimal path.

To generate an explanation, we first compute the join of the two
value decompositions for the two paths O and F .

�OF = {D-A ≠ (8, Ü8),A-B ≠ (5, Ü5),B-E ≠ 9,E-H ≠ 7,B-H ≠ Ü18}

This joint decomposition is the basis for the complete explanation
shown in Fig. 5(d). As before, the edges that are common to solution
and foil are shown in black, edges that are only in the shortest path are
shown in green, and edges that are only in the foil path are shown in
red.

We can obtain a focused explanation by omitting the edges that are
common to both solution and foil. To this end we compute the focused
value decomposition.

�˝OF = �mdsOF = {B-E ≠ 9,E-H ≠ 7,B-H ≠ Ü18}

The corresponding focused explanation is shown in Fig. 5(e). This
concisely shows that the green (optimal) edges in the visualization have
a total length of 9+7 = 16, which is less than the length of the red (foil)
edge of the foil, thereby making the optimal path shorter. In this (rather
small) example, the MDS explanation produces the same result as the
focused explanation.

In our example the size of the complete explanation is �OF  = 5,
which means the focused explanation with size �˝OF  = 3 has a concise-
ness of C(�˝OF) = 1 * 3_5 = 40%, which is good, but not a phenomenal

2 We use the node name H instead of F to avoid confusion with F , which
is used as a name for foils. (Moreover, we do not use G, since it denotes the
graph.).

Journal of Computer Languages 79 (2024) 101272

8

M. Erwig and P. Kumar

Fig. 5. Explanations of shortest path results.

gain. However, as the evaluation shows, the effect of focusing can lead
to significant increases in conciseness for larger graphs and paths.

Fortunately, for evaluating the shortest path and other traffic net-
work problems real-world data sets are available. We use the road
network data for the cities of Rome, Italy (with about 3300 nodes and
4800 edges), New York City (264,000 nodes and 365,000 edges), the
San Francisco Bay Area (321,000 nodes and 397,000 edges), and the
state of Colorado (432,0000 nodes and 517,000 edges) where the nodes
are important points in the road network and the edge lengths are the
distances between points. These graphs are a part of the evaluation
data set provided by the 9th DIMACS Implementation Challenge [34],
held in 2005–2006, aimed at creating a reproducible picture of the
state-of-the art in the area of shortest path algorithms.

For the evaluation of explanation conciseness, we randomly sample
two nodes from the graph, a start node s and a target node t, with a total
of approximately 225,000 samples in each case. To keep the evaluation
realistic, we make some additional assumptions. For example, we only
consider paths with at least 20 edges to ensure that we consider
sufficiently complex paths that might prompt requests for explanations
from users. We also limit the upper number of edges in considered paths
to 80, since those are less frequently computed. In addition, we assume
that the foil is the second-shortest path between the nodes s and t.

The table in Fig. 6(a) summarizes the graph data, displaying the
average number of edges in optimal and foil paths for different limits
on the path length. It also shows the number of edges shared between
the solution and foil, as well as the number of unique edges. We can
observe that the solution and foil paths often share a significant number
of edges (around 80%–90%), which should result in a high level of
explanation conciseness.

Fig. 6(b) shows how the size of focused explanations seems to grow
asymptotically to a small constant that depends on the size of the graph.
Interestingly, while both graph size and average path length are larger
for the Colorado than for the Bay Area graph, the size of explanations
tend to be actually smaller. This may be due to the irregular shape
of the Bay Area graph. As the size of MDS explanations for shortest
paths is always around 85%–90% of the size of focused explanations,
the corresponding plots have been omitted to avoid overcrowding of
figures.

Fig. 6(c) shows how the conciseness of focused explanations grows
steadily in each graph from 55%–60% to 75%–80%, a trend to be
expected from the explanation and graph sizes.

An important insight gained from this experiment is that focused
explanations seem to scale quite well with the problem size, although
not as dramatically as in the case for graph matching. Moreover, the
fact that we can achieve good explanation conciseness for various large

real-world graphs suggests that our explanation approach is effective in
practice.

7. Transportation problems

Consider the bipartite graph in Fig. 7(a). The set of nodes on the
left side represent locations of factories for a certain product (here:
Toronto (T), Boston (B), and Philadelphia (P)). These nodes are called
source nodes. The positive number associated with a node label rep-
resents the capacity of the factories in that city. The nodes on the
right side represent warehouses to which the products of the factories
can be delivered. These nodes are called demand nodes. The numbers
associated with demand nodes represents their product capacities. The
edge labels represent the cost of transporting goods from a source to a
demand node. (There is no limit on the capacity of an edge to transport
products.) The transportation problem is to compute the amount of
products to be transported from cities to warehouses along the various
edges such that the overall cost of transportation is minimal.

Formally the transportation problem is represented by a weighted
bipartite graph G = (U ‰ V ,E,W ,C) where the first three components
of the tuple have the same meaning as they had in the weighted
bipartite matching problem from Section 2. In addition, the function
C : U ‰ V ô N assigns to each node a supply or a demand capacity.
A flow assignment is a mapping � : E ô N that respects the capacity
of nodes and describes how much product to ship across each edge.
The capacity constraint can be expressed with the help of the following
function for computing the sum of the flow values of all edges incident
to a particular node.

��(x) =
…

{n(v,w) ≠ n À � · (x = v ‚ x = w)}

The formalization of the transportation problem as a component-
based problem is now as follows.

• I = {G = (U ‰ V ,E,W ,C)  (U ‰ V ,E,W) is a labeled graph and
C : U ‰ V ô N}

• f (G) = { �  � : E ô N· ≈(u, v) À E.��(u) = C(u)· ��(v) = C(v)}
• C = E
• ím(G,�) = {e ≠ n �W (e)  e ≠ n À �}
• ‚ = +
• � = min

Note that in the decomposed measure function, each value is obtained
by multiplying the assigned flow with the cost of transportation across
that edge.

The transportation problem is similar to the weighted bipartite
matching problem in problem structure as well as the structure of

Journal of Computer Languages 79 (2024) 101272

9

M. Erwig and P. Kumar

Fig. 6. Conciseness of different explanation approaches for shortest paths of different maximum lengths. Network: Rome, New York City, SF Bay Area, Colorado.

Fig. 7. Transportation problem example with solution and foil assignment.

the explanations which are generated. A key difference is that in
the matching problem edges are either selected or not whereas in
the transportation problem edges are weighted. Since we can express
binary selection decisions with weights of 0 and 1, we can actually view
and represent matching problems as special instances of transportation
problems. (We also have to set the capacity of all nodes to 1.)

An optimal flow assignment for our example transportation problem
is shown in Fig. 7(b). The cost along each edge can be obtained by
multiplying the edge labels from the assignment with the edge labels
of the original graph. The total cost is the sum of all these values, which
is in this case 2 � 3 + 3 � 1 + 5 � 4 + 0 � 2 + 2 � 4 + 0 � 3 + 3 � 3 = 46.

In the solution, we can observe that warehouse X with a demand
of 7 is receiving 5 units of products from B through the high-cost edge
B-X. This may raise the question, Would it be cheaper to move more
products to X from T ?. The foil F generated by this consideration is
shown in Fig. 7(c). Surprisingly, F has a higher total cost of 52.

To generate an explanation as to why the solution is better than the
foil, we first compute the joint value decompositions for the assign-
ments O and F .

�OF = {T -X ≠ (6, Ü15), T -Y ≠ (3, Ü0),
B-X ≠ (20, Ü8),B-Y ≠ (0, Ü0),B-Z ≠ (8, Ü20),

Journal of Computer Languages 79 (2024) 101272

10

M. Erwig and P. Kumar

P -Y ≠ (0, Ü9),P -Z ≠ (9, Ü0)}

Note that the values in the value decompositions represent the total cost
of transportation along an edge and not the quantity to be transported
across an edge. This means that a user may want to look at an explana-
tion together with the solution. In an implemented system one could
have features to select between different edge labels (assignments,
computations, computed values) in order to customize an explanation
to the specific needs of a user.

The complete explanation is shown in Fig. 8(a) where the green
and red labels represent the optimal and foil costs, respectively. The
focused explanation computes the difference between solution and foil
values for common components and otherwise omits edges with the
same values in both solution and foil, which in this case is the edge
B-Y . And again, in this small example, an MDS explanation does not
yield a smaller explanation than the focused one.

�˝OF = �mdsOF = {T -X ≠ 9, T -Y ≠ Ü3,B-X ≠ Ü12,B-Z ≠ 12,
P -Y ≠ 9,P -Z ≠ Ü9}

The focused explanation is shown in Fig. 8(b). Green labels are used for
edges that favor the solution, while red labels are used for edges that
favor the foil.

The explanation can be interpreted in the following way: The foil
can achieve indeed significant savings (of 12) along the B-X edge.
However, this gain is completely lost by the advantage that the solution
has over the foil along edge B-Z. Similarly, the foil’s advantage for
edge P -Z is compensated by the solution’s advantage for edge P -Y .
This leaves to compare edges T -X and T -Y , which shows the overall
advantage of the solution.

The above strategy of ‘‘balancing’’ or ‘‘canceling’’ advantages can
actually be simulated by an aggregated explanation. Specifically, we
can group edges by their source nodes to obtain aggregated costs for
all the connected warehouses. The aggregated value decomposition
reflects the canceling by having a total of 0 for both B and P .

�˝OF Î1= = {T -XY ≠ 6,B-XZ ≠ 0,P -Y Z ≠ 0}

The corresponding aggregated explanation is shown in Fig. 8(c). For
this aggregated representation, minimal dominating sets can effectively
shrink the value decomposition as follows.

�mdsOF Î1= = {T -XY ≠ 6}

The corresponding aggregated MDS explanation is shown in Fig. 8(d),
which tells us that a benefit of 6 from T , which is a result of aggregating
the gain of 9 along T -X and a loss of 3 along T -Y , is the reason why
the optimal solution is the better than the foil.

In our example the size of the complete explanation is �OF  = 13
and that of both focused and MDS explanation is �˝OF  = �mdsOF  = 6,
which means a conciseness of C(�˝OF) = C(�mdsOF) = 1 * 6_13 = 54%. The
size of aggregated and aggregated MDS explanations are �˝OF Î1= = 3
and �mdsOF Î1= = 1, respectively, giving us a explanation conciseness ofC(�˝OF Î1=) = 1 * 3_13 = 77% and C(�mdsOF Î1=) = 1 * 1_13 = 92%.

Next we examine the efficacy of our explanation techniques for the
transportation problem through various experiments. To keep the data
similar to our matching example and allow for a better comparison,
we assume that supply and demand as well as the transportation
costs are numbers between 30 and 2000. Also, like in the weighted
bipartite matching example, we assume that the number of left nodes
and right nodes in the graph is the same. We have evaluated the size
of explanations for graphs of size 20 to 620 (generated in increments
of 40 nodes). Like with the other evaluations in this paper, to keep the
simulation realistic, we consider a foil only when the foil cost is within
2% of the solution. For each graph size we have generated 5000 pairs
of optimal and close foil assignments, and we have computed the size of
complete explanations and explanation conciseness for each pair. The
overall value of these metrics for a graph size is the average of the 5000
values computed for that size.

Fig. 9(a) displays the number of explanation edges on the Y axis
and the size of the bipartite graph on the X axis. For focused and
aggregated explanations, the number of explanation edges increases
linearly with the number of nodes such that the number of edges is
almost half the size of the graph. The size of focused explanations is
about 1_4th and that of aggregated explanations is about 1_8th of the
number of nodes in the graph. MDS explanations result in a slight but
insignificant improvement over focused explanations and hence are not
shown in evaluations.

Fig. 9(b) shows that the conciseness increases in the shape of a
hyperbola with the size of graphs for the various explanations. Focused
and aggregated MDS explanations start with a very high conciseness
of 93% and 97%, respectively, which flattens out at around 99.5%.
The low number of explanation edges and the correspondingly high
explanation conciseness suggest the efficacy and scalability of our
approach.

8. Explaining maximum flows

In maximum-flow problems, the edge labels of a directed graph
represent the capacity of an edge, that is, the maximum amount of flow
possible along that edge. Given a source node s and target node t, a valid
flow between s and t is defined as the sum of the flow of the outgoing
edges of s (or equivalently, the sum of the flow of t’s incoming edges)
such that the following two conditions are satisfied.

• Capacity Constraint : The flow along any edge is no more than its
capacity.

• Flow Conservation: Except for the source and the target nodes, the
amount of flow entering a node must be equal to the amount of
flow exiting the node.

The maximum-flow problem is to compute the maximum valid flow
between s and t. For example, for the graph in Fig. 10(a), the maximum
flow between S and T is 3. The flow along various edges leading to the
maximum flow is shown in Fig. 10(b).

Formally, the maximum-flow problem is represented by a directed
labeled graph G = (V ,E,C) where V and E are sets of vertices and
edges, respectively, and the function C : E ô N assigns a flow
capacity to each edge. As in transportation problems, a flow assignment
is a mapping � : E ô N that respects the capacity and the flow
conservation constraints, and for each node v À V , �*�(v) and �+�(v)
represent the total inflow and outflow of node v, respectively.

The formalization of the maximum-flow problem as a component-
based problem is now as follows.

• I = {(G, s, t)  G = (V ,E,C) is a labeled graph, {s, t} ” V , and C :
E ô N}

• f (G, s, t) = {�  � : E ô N · ≈(u, v) À E.(v ë t ⌃ �*�(v) =
�+�(v)) · (�(u, v) f C(u, v))}

• C = E
• ím(G,�) = {e ≠ n  e ≠ n À �}
• ‚ = +
• � = max

A surprising aspect of the optimal flow shown in Fig. 10(b) is that the
flow along the edge A-B is only 1, even though its capacity is 3. A user
may wonder whether the overall maximum flow could be increased by
increasing the flow along A-B. A corresponding foil flow is shown in
Fig. 10(c). Note that the flow value for A-B cannot be 3, because the
total capacity for the outgoing flow for B is only 2. Thus, the flow along
AB can be at most 2. However, if the flow along AB is increased to 2,
the total maximum flow in the network decreases from 3 to 2, which
is surprising.

Journal of Computer Languages 79 (2024) 101272

11

M. Erwig and P. Kumar

Fig. 8. Explanations for the transportation problem.

Fig. 9. Explanation size and conciseness for the transportation problem. Techniques: Focused, Aggregated and Aggregated MDS.

Fig. 10. Maximum-flow problem with solution and foil assignments.

As with the previous examples, to explain the solution, we start by
computing the join of the two value decompositions for the assignments
O and F .

�OF = {S-A ≠ (2, Ü2),A-B ≠ (1, Ü2),A-T ≠ (1, Ü0),S-B ≠ (1, Ü0),
B-T ≠ (2, Ü2)}

The corresponding complete explanation is shown in Fig. 11(a) with
green numbers representing the flow in the solution and red numbers
the flow in the foil. The focused value decomposition omits edges that
have the same flow for solution and foil.

�˝OF = �mdsOF = {A-B ≠ Ü1,A-T ≠ 1,S-B ≠ 1}

The corresponding focused explanation is shown in Fig. 11(b), which
again is equal to the MDS explanation. The focused explanation shows
that increasing the flow for edge A-B leads indeed to an advantage of
1 for that edge for the foil, but it is superseded by the advantages for
the edges S-B and A-T in the solution.

In our example the size of the complete explanation is �OF  = 8 and
that of both focused and MDS explanation is �˝OF  = �mdsOF  = 3, which
means a conciseness of C(�˝OF) = C(�mdsOF) = 1 * 3_8 = 62.5%.

In the experiments to investigate the efficacy of our explanation
approaches for maximum-flow problems we have categorized flow net-
works low and high density (or connectivity). Examples of low-density
networks are physical networks, such as road and train networks,
electricity networks, sewer and water pipelines, and irrigation sys-
tems [35–37]. Networks with high density include telecommunication
and wifi networks. The density sometimes depends on attributes such
as performance and safety [38]. To ensure that our results are valid
for networks of both types, we have performed experiments for sparse
graphs in which nodes have an average (in + out) degree of 4, 6, and
8, and for dense graphs with densities 0.3, 0.5 and 0.7.

To keep the simulation realistic, we only consider a foil flow if its
value is no less than 98% of the maximum flow. The flow capacities of
various edges are assigned random numbers between 30 and 2000. Like
in the other experiments in the paper, we have selected this range to

Journal of Computer Languages 79 (2024) 101272

12

M. Erwig and P. Kumar

Fig. 11. Explanations of the maximum-flow solution.

prevent artificially inflating the conciseness. We have evaluated the size
of explanations for graphs of size 50 to 300 (generated in increments
of 50 nodes). For each graph size, we have generated 10,000 pairs of
optimal and close foil assignments and computed the size of focused
explanations and explanation conciseness for each pair. The overall
value of these metrics for a graph size is the average of the 10,000
values computed for that size.

The graphs in Fig. 12(a) show the number of explanation edges and
explanation conciseness on the Y axis for the size of the flow graphs
on the X axis. For each graph size (in terms of number of nodes)
we generate flow graphs for the different degrees and densities. As
Fig. 12(a) reveals, explanation size increases almost linearly with the
number of nodes. Although density does affect the size of explanations,
it does so only by a constant factor.

Fig. 12(b) illustrates the explanation conciseness. Two trends can be
observed. Firstly, conciseness increases hyperbolically with the num-
ber of nodes (regardless of graph density), and reaches stabilization
between 97.5% and 99.5% for dense graphs. On the other hand, for
sparse graphs, conciseness remains mostly in the 80%–90% range.
Secondly, we also observe that conciseness increases with the density
of the graph. This may seem counter-intuitive at first. However, as
the density of the graph increases, the fraction of edges with common
flows also increases, leading to an increase in the conciseness measure.
Altogether, the evaluation indicates that our explanation approach
scales for maximum-flow problems.

9. Explanations for NP-hard combinatorial optimization problems

In the preceding sections we saw the application of our explanation
techniques for optimization problems that are efficiently solvable. A
natural question then arises: Would our approach work for NP-hard
problems as well? In this section, we demonstrate, using the Traveling
Salesman Problem (TSP) [39], that our explanation mechanism indeed
works effectively for such problems.

Consider the graph in Fig. 13. The traveling salesman problem
is to find an optimal round trip, that is, given a starting point, for
instance, node A, we visit all the other nodes of the graph exactly
once and return to A, seeking to minimize the total trip distance.
Problems like this often arise in logistics and route planning. Since
the TSP is an NP-hard problem and therefore finding exact, optimal
solutions is often impossible, approximation algorithms that find ‘‘good
enough’’ solutions are commonly employed. This adds a small twist
to our explanation methods, but does not change the overall picture.
Here we will use for simplicity a simple greedy algorithm, known as
the nearest-neighbor algorithm [40], but the discussion applies similarly
to other, more sophisticated algorithms discussed in [41].

The nearest-neighbor algorithm begins by choosing a start node and
then repeatedly selects the neighbor connected by the shortest edge. In
our example, we choose node D as the nearest neighbor of A. Then, we
find the nearest neighbor of D from the remaining nodes, and so on,

until we have visited all nodes, as shown in the trip Fig. 13(b). Since
we are computing a round trip, we return to node A from node B. The
total cost of this trip is 39 units. The outcome of the nearest-neighbor
algorithm generally depends on the initial node that is selected. That is,
selecting a different starting node might result in a different trip with
a different cost. Fig. 13(c) shows the trip computed with node E as the
starting node, which has a cost of 41 units.

A user might ask why the second trip is costlier than the first.
We can use our explanation strategy to address this query. The first
trip, for the purpose of generating explanation, acts as the optimal
output, and the second, costlier trip, is the foil. The complete and
focused explanations are shown in Figs. 13(d) and 13(e), respectively.
We observe that the sum of foil only edges (7 + 12 = 19) AE and BC is
larger than the optimal only edges AB and EC (8+9 = 17). This makes
the foil path more expensive.

Since an approximation algorithm does not guarantee the compu-
tation of an optimal solution, a foil contemplated by a user might
actually result in a better solution. In that case, the same reasoning
and presentation applies, just that in this case the foil takes on the
role as the optimal solution and the previously thought best solution
is now the foil; everything else stays the same. For non-approximation
algorithm this twist cannot occur, but as discussed, the reasoning about
differences of closely related solutions is not affected anyhow.

The efficacy of our explanation techniques for NP-hard problems
is not really surprising, since our explanation techniques work on the
representation of the output and are not directly concerned with the
complexity of the algorithms generating it.

10. Related work

The topic of explanations has been explored in a number of different
areas. While the origins of research into the nature of explanations
can be traced back to philosophy [42–44], the need for explaining
computation has recently received a lot of attention, specifically in the
area of AI [25,45].

Explanations for individual program executions have been investi-
gated, especially in the area of debugging where an explanation is based
on some representation of the program execution that is built alongside
the computation, program traces being the most popular example.

10.1. Explanations from traces

Since traces can grow very large quickly, even for small examples,
one has to find some means to reduce the amount of information
presented to users for traces to be of use. [46] as well as [47]
describe how the use of dynamic slicing for traces can help to generate
explanations for the executions of functional programs. Their approach
is based on eliminating those parts from a trace that do not contribute
to user-selected parts of outputs. Specifically, their technique takes
a section of the computation result that is selected by the user and
uses backward slicing [48] to generate a path to the input focusing on
the computations that were responsible for that section. Although the
approach is effective, the resulting traces can still be quite large and in-
clude many details that, while technically relevant for the computation,
do not contribute to the explanation.

Similar to traces, value decompositions gather details about pro-
gram executions, but they are generally much smaller and contain
fewer details. Moreover, since value decompositions are directly linked
to the information on which the decisions of the optimization are
based, they are more likely to contain information that is relevant for
explanations. Another difference is that explanations in our approach
are based on joint value decompositions, which require at least two
program executions to obtain a foil in addition to the solution. A
limitation of value decomposition is that they only work for a specific
class of programs whereas generic program traces are a universally
applicable structure.

Journal of Computer Languages 79 (2024) 101272

13

M. Erwig and P. Kumar

Fig. 12. Explanation conciseness for the maximum-flow problem. Sparse graphs, average (in + out) degree: 4, 6, and 8; Dense graph densities: 0.3, 0.5, 0.7.

Fig. 13. Explanations of traveling salesman problem results.

In this regard, value decompositions are similar to provenance
traces, which are a representation explicitly created for the purpose
of explanation [49]. A provenance trace consists of meta-information
about the origin, history, or derivation of an object which is used
in establishing trust and providing security in computer systems, par-
ticularly on the web. Like value decompositions, provenance traces
are a domain-specific explanation structure that works only in certain
situations. This approach is very similar to backward slicing presented
by [46] and consequently suffers similar limitations. Another domain-
specific approach to keep traces small has been explored in the realm of
concurrent programs where a heuristic algorithm is used to simplifying
traces with the goal of identifying concurrency bugs [50].

A different approach to manage trace complexity was pursued
in [51] by defining a query language for the systematic transformation
of (tree-based) program traces. The query language offers operations
for hiding and propagating information plus a rich set of selectors to
specify the set of nodes operations should be applied to. The query

language has been used to define a rich set of filters that users can
apply selectively to their program traces to focus on interesting and
relevant parts.

A mechanism to stepwise explain how to solve constraint satis-
faction problems is described in [52]. While our approach uses two
outputs, optimal and foil, to generate the explanation, the constraint
satisfaction work explains just the output of the constraint problem.
Additionally, we have completed, focused, MDS, and aggregated ex-
planations which represent explanations at different levels of detail.
The constraint satisfaction work has the notion of nested explanations
that allow users to focus on a step of the problem that they find hard
to understand. In this respect, their explanation is more fine-grained
than ours. There is also a notion of minimalism in the components
that are selected for the explanation in both the works. Given that
we have a numeric domain, for example, we have values associated
with explanation components like edge value in the shortest path
problem, we directly use this value in selecting the components for

Journal of Computer Languages 79 (2024) 101272

14

M. Erwig and P. Kumar

the explanation. Since the constraint satisfaction domain is generally
non-numeric, they develop a cost function to remove unnecessary com-
ponents from their explanation. Perhaps the most important difference
between the two approaches is that while our approach is algorithm
agnostic and just makes use of the representation of the output, the
constraint satisfaction work makes use of the trace of the algorithm for
explanation.

10.2. Domain-specific structures for explanations

We already mentioned the approaches of [49,50] that exploited
domain-specific information to generate smaller program traces. Our
concept of deriving explanations from joint value decompositions is
more general and applies to any program that implements a combi-
natorial optimization problems.

The notion of a value decomposition was introduced in [22] as a
structure for explaining the results of dynamic programs and is thus
also a domain-specific structure, which relies on the fact that dynamic
programming algorithms can be viewed as instances of a mathematical
semiring structure. That approach also generates contrastive expla-
nations and thus also requires two program results. In addition to
the different application domains, another important difference to our
approach is that their technique requires an ‘‘explanation designer’’
to specifically decompose the values being used in the algorithm and
associate a semantics to the decomposed values. In contrast, our ex-
planation mechanism does not require any additional annotation and
works with the original specification of the problem making it easier
to adapt.

Finally, we have adopted the concepts of value decompositions and
minimal dominating sets (MDSs) from [22], but we apply them in
a subtly different way. Specifically, in our representation the set of
components is constructed individually for each solution to a specific
problem, whereas the set of categories in [22] has to be fixed before
any computation takes place. This difference can be characterized as
dynamic vs. static value decompositions.

11. Conclusions

Algorithms for solving combinatorial optimization problems are
widely used, but techniques to explain their outputs are scarce. This
lack of explainability presents a significant challenge, as explanations
are crucial for building users’ trust and acceptance. This is especially
true as the ‘‘right to explanation’’ is increasingly recognized as a
fundamental right by countries around the world.

We have introduced a representation that facilitates the automatic
generation of explanations for any algorithm solving combinatorial op-
timization problems, requiring only the identification of an appropriate
component structure, which is typically provided as part of the problem
description. At the core of our representation is a simple structure, the
joint value decomposition, which allows the generation of complete,
focused, MDS, and aggregated versions of explanations that can answer
questions on different levels of granularity about why a particular
solution is better than putative alternatives. Our experiments show that
the explanations produced by our approach are highly concise and scale
well across a range of different applications.

Ultimately, the understandability of computational results and their
explanations depends on individual users, their backgrounds, and their
expectations. Thus, to assess which explanations are helpful for which
users, user studies are required. Such studies require a lot of effort and
are beyond the scope of the current paper, which is concerned with
establishing the formal foundation of generic, wide-ranging explanation
structures. In future work, we plan to conduct those studies when
we have the opportunity to test specific applications of optimization
problems. A related aspect is the idea of adapting explanations to
the specific needs of different users, for example, by interactively
constructing explanations based on user input. We have explored this
question previously in the context of generating user-specific program
traces [51,53,54]. In future work, we will explore specifically how to
construct most relevant foils through user interaction.

CRediT authorship contribution statement

Martin Erwig: Conceptualization, Formal analysis, Funding acqui-
sition, Supervision, Writing – review & editing, Project administra-
tion, Writing – original draft. Prashant Kumar: Conceptualization,
Data curation, Investigation, Methodology, Software, Writing – original
draft.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Martin Erwig reports financial support was provided by National Sci-
ence Foundation. Martin Erwig reports a relationship with National
Science Foundation that includes: funding grants. If there are other
authors, they declare that they have no known competing financial in-
terests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] C.H. Papadimitriou, K. Steiglitz, Combinatorial optimization: Algorithms and
complexity, 1981.

[2] R. Bellman, On a routing problem, Quart. Appl. Math. 16 (1) (1958) 87–90.
[3] P. Toth, D. Vigo (Eds.), The Vehicle Routing Problem, Society for Industrial and

Applied Mathematics (SIAM), 2002.
[4] Amazon, MIT, Amazon last mile routing research challenge, 2021, https://

routingchallenge.mit.edu/.
[5] L.R. Ford, D.R. Fulkerson, Maximal flow through a network, Canad. J. Math. 8

(1956) 399–404.
[6] L. Trevisan, Combinatorial optimization: Exact and approximate algorithms,

Standford University, 2011.
[7] A.K. Faulhaber, I. Ni, L. Schmidt, The effect of explanations on trust in an

assistance system for public transport users and the role of the propensity to
trust, in: Mensch Und Computer 2021, MuC ’21, ACM, New York, NY, USA,
2021, pp. 303–310.

[8] A.D. Selbst, J. Powles, Meaningful information and the right to explanation, Int.
Data Privacy Law 7 (2017) 233–242.

[9] B. Goodman, S. Flaxman, European union regulations on algorithmic
decision-making and a ‘‘right to explanation’’, AI Mag. 38 (2017) 50–57.

[10] The French Government, Digital Republic act of France, 2016, https://www.
republique-numerique.fr/pages/digital-republic-bill-rationale.

[11] P. Lipton, Inference to the Best Explanation, Routledge, New York, NY, USA,
2004.

[12] P. Lipton, Contrastive explanation, R. Inst. Philos. Suppl. 27 (1990) 247–266.
[13] P. Garfinkel, Forms of Explanation, Yale University Press, New Haven, CT, USA,

1981.
[14] M. Erwig, E. Walkingshaw, A visual language for explaining probabilistic

reasoning, J. Vis. Lang. Comput. 24 (2) (2013) 88–109.
[15] M. Erwig, E. Walkingshaw, Visual explanations of probabilistic reasoning, in:

IEEE Int. Symp. on Visual Languages and Human-Centric Computing, 2009, pp.
23–27.

[16] M. Erwig, E. Walkingshaw, A DSL for explaining probabilistic reasoning, in: IFIP
Working Conference on Domain-Specific Languages, in: LNCS 5658, 2009, pp.
335–359.

[17] M. Erwig, E. Walkingshaw, Causal reasoning with neuron diagrams, in: IEEE Int.
Symp. on Visual Languages and Human-Centric Computing, 2010, pp. 101–108.

[18] E. Walkingshaw, M. Erwig, A DSEL for studying and explaining causation, in:
IFIP Working Conference on Domain-Specific Languages, 2011, pp. 143–167.

[19] M. Erwig, R. Gopinath, Explanations for regular expressions, in: Int. Conf. on
Fundamental Approaches To Software Engineering, in: LNCS 7212, 2012, pp.
394–408.

[20] J. Cunha, M. Dan, M. Erwig, D. Fedorin, A. Grejuc, Explaining spreadsheets with
spreadsheets, in: ACM SIGPLAN Conf. on Generative Programming: Concepts &
Experiences, 2018, pp. 161–167, http://dx.doi.org/10.1145/3278122.3278136.

[21] M. Erwig, P. Kumar, MADMAX: A DSL for explanatory decision making, in: ACM
SIGPLAN Conf. on Generative Programming: Concepts & Experiences, 2021, pp.
144–155.

[22] M. Erwig, P. Kumar, Explainable dynamic programming, J. Funct. Program. 31
(e10) (2021).

http://refhub.elsevier.com/S2590-1184(24)00015-7/sb1
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb1
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb1
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb2
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb3
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb3
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb3
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb5
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb5
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb5
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb6
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb6
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb6
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb7
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb7
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb7
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb7
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb7
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb7
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb7
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb8
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb8
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb8
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb9
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb9
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb9
https://www.republique-numerique.fr/pages/digital-republic-bill-rationale
https://www.republique-numerique.fr/pages/digital-republic-bill-rationale
https://www.republique-numerique.fr/pages/digital-republic-bill-rationale
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb11
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb11
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb11
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb12
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb13
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb13
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb13
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb14
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb14
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb14
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb15
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb15
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb15
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb15
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb15
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb16
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb16
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb16
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb16
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb16
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb17
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb17
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb17
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb18
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb18
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb18
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb19
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb19
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb19
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb19
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb19
http://dx.doi.org/10.1145/3278122.3278136
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb21
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb21
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb21
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb21
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb21
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb22
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb22
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb22

Journal of Computer Languages 79 (2024) 101272

15

M. Erwig and P. Kumar

[23] M. Erwig, P. Kumar, A. Fern, Explanations for dynamic programming, in: Int.
Symp. on Practical Aspects of Declarative Languages, in: LNCS 12007, 2020, pp.
179–195.

[24] G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi, V.
Kann, Complexity and Approximation: Combinatorial Optimization Problems and
Their Approximability Properties, first ed., Springer-Verlag, Berlin, Heidelberg,
1999.

[25] T. Miller, Explanation in artificial intelligence: Insights from the social sciences,
Artificial Intelligence 267 (2019) 1–38.

[26] P. Augen, The Anthem Dictionary of Literary Terms and Theory, Anthem Press,
2010.

[27] G.D. Forney, The viterbi algorithm, Proc. IEEE 61 (3) (1973) 268–278.
[28] P. Thagard, Explanatory coherence, Behav. Brain Sci. 12 (3) (1989) 435–467.
[29] S.J. Read, A. Marcus-Newhall, Explanatory coherence in social explanations :

a parallel distributed processing account, J. Personal. Soc. Psychol. 65 (1993)
429–447.

[30] E.L. Lawler, A procedure for computing the k best solutions to discrete optimiza-
tion problems and its application to the shortest path problem, Manage. Sci. 18
(7) (1972) 401–405.

[31] K.G. Murty, Letter to the editor - An algorithm for ranking all the assignments
in order of increasing cost, Oper. Res. 16 (1968) 682–687.

[32] J.Y. Yen, Finding the K shortest loopless paths in a network, Manage. Sci. 17
(11) (1971) 712–716.

[33] E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math.
1 (1) (1959) 269–271.

[34] DIMACS, 9Th DIMACS implementation challenge - Shortest paths, 2006, http:
//www.diag.uniroma1.it//challenge9/download.shtml.

[35] A. Schrijver, On the history of the transportation and maximum flow problems,
Math. Program. 91 (2002) 437–445.

[36] F. Wegner, Network Flow Models for Power Grids, Karlsruhe Institute of
Technology, 2014.

[37] P. Hadaj, D. Strza™ka, Modelling selected parameters of power grid network in
the south-eastern part of Poland: The case study, Energies 13 (1) (2020).

[38] J. Teng, W. Gu, D. Xuan, Chapter 10 - Defending against physical attacks in
wireless sensor networks, in: S.K. Das, K. Kant, N. Zhang (Eds.), Handbook on
Securing Cyber-Physical Critical Infrastructure, Morgan Kaufmann, Boston, 2012,
pp. 251–279.

[39] E. Lawler, J. Lenstra, A. Rinnooy Kan, D. Shmoys, The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization, Wiley, 1985.

[40] M. Bellmore, G.L. Nemhauser, The traveling salesman problem: A survey, Oper.
Res. 16 (3) (1968) 538–558.

[41] D. Rosenkrantz, R. Stearns, P. Lewis, An analysis of several heuristics for the
traveling salesman problem, SIAM J. Comput. 6 (3) (1977) 563–581.

[42] C. Hempel, Aspects of Scientific Explanation and Other Essays in the Philosophy
of Science, Free Press, New York, NY, 1965.

[43] P. Achinstein, The Nature of Explanation, Oxford University Press, New York,
NY, 1983.

[44] D.H. Ruben, Explaining Explanation, Routledge, London, UK, 1990.
[45] A. Adadi, M. Berrada, Peeking inside the black-box: A survey on explainable

artificial intelligence (XAI), IEEE Access 6 (2018) 52138–52160.
[46] R. Perera, U.A. Acar, J. Cheney, P.B. Levy, Functional programs that explain

their work, in: ACM Int. Conf. on Functional Programming, 2012, pp. 365–376.
[47] W. Ricciotti, J. Stolarek, R. Perera, J. Cheney, Imperative functional programs

that explain their work, Proc. ACM Program. Lang. 1 (ICFP) (2017).
[48] M. Weiser, Program slicing, IEEE Trans. Softw. Eng. (4) (1984) 352–357.
[49] U.A. Acar, A. Ahmed, J. Cheney, R. Perera, A core calculus for provenance, in:

Int. Conf. on Principles of Security and Trust, 2012, pp. 410–429.
[50] N. Jalbert, K. Sen, A trace simplification technique for effective debugging

of concurrent programs, in: ACM Int. Symposium on Foundations of Software
Engineering, 2010, pp. 57–66.

[51] D. Bajaj, M. Erwig, D. Fedorin, K. Gay, Adaptable traces for program explana-
tions, in: Asian Symp. on Programming Languages and Systems, in: LNCS 13008,
2021, pp. 202–221.

[52] B. Bogaerts, E. Gamba, T. Guns, A framework for step-wise explaining how to
solve constraint satisfaction problems, Artificial Intelligence (ISSN: 0004-3702)
300 (2021) 103550.

[53] D. Bajaj, M. Erwig, D. Fedorin, K. Gay, A visual notation for succinct program
traces, J. Comput. Lang. 75 (2023).

[54] D. Bajaj, M. Erwig, D. Fedorin, K. Gay, A visual notation for succinct program
traces, in: IEEE Int. Symp. on Visual Languages and Human-Centric Computing,
2021, pp. 1–9.

http://refhub.elsevier.com/S2590-1184(24)00015-7/sb23
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb23
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb23
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb23
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb23
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb24
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb24
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb24
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb24
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb24
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb24
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb24
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb25
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb25
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb25
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb26
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb26
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb26
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb27
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb28
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb29
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb29
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb29
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb29
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb29
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb30
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb30
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb30
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb30
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb30
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb31
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb31
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb31
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb32
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb32
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb32
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb33
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb33
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb33
http://www.diag.uniroma1.it//challenge9/download.shtml
http://www.diag.uniroma1.it//challenge9/download.shtml
http://www.diag.uniroma1.it//challenge9/download.shtml
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb35
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb35
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb35
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb36
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb36
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb36
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb37
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb37
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb37
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb38
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb38
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb38
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb38
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb38
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb38
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb38
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb39
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb39
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb39
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb40
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb40
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb40
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb41
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb41
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb41
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb42
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb42
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb42
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb43
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb43
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb43
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb44
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb45
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb45
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb45
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb46
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb46
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb46
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb47
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb47
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb47
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb48
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb49
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb49
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb49
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb50
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb50
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb50
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb50
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb50
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb51
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb51
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb51
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb51
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb51
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb52
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb52
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb52
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb52
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb52
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb53
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb53
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb53
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb54
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb54
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb54
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb54
http://refhub.elsevier.com/S2590-1184(24)00015-7/sb54

	Explanations for combinatorial optimization problems
	Introduction
	Combinatorial Optimization Problems
	Explaining Algorithm Results
	Different Explanations for Different Stakeholders
	Explainable Optimization Problems

	Explanation Simplification
	Explanation Conciseness for Weighted Bipartite Matching
	Explaining Shortest Paths
	Transportation Problems
	Explaining Maximum Flows
	Explanations for NP-Hard Combinatorial Optimization Problems
	Related Work
	Explanations from Traces
	Domain-Specific Structures for Explanations

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

