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A B S T R A C T

Protein variant libraries produced by site-directed mutagenesis are a useful tool utilized by protein engineers
to explore variants with potentially improved properties, such as activity and stability. These libraries are
commonly built by selecting residue positions and alternative beneficial mutations for each position. All
possible combinations are then constructed and screened, by incorporating degenerate codons at mutation
sites. These degenerate codons often encode additional unwanted amino acids or even STOP codons. Our
study aims to take advantage of annealing based recombination of oligonucleotides during synthesis and utilize
multiple degenerate codons per mutation site to produce targeted protein libraries devoid of unwanted variants.
Toward this goal we created an algorithm to calculate the minimum number of degenerate codons necessary
to specify any given amino acid set, and a dynamic programming method that uses this algorithm to optimally
partition a DNA target sequence with degeneracies into overlapping oligonucleotides, such that the total cost
of synthesis of the target mutant protein library is minimized. Computational experiments show that, for a
modest increase in DNA synthesis costs, beneficial variant yields in produced mutant libraries are increased
by orders of magnitude, an effect particularly pronounced in large combinatorial libraries.

1. Introduction

Mutant libraries representing protein variants are increasingly used
to optimize protein function. Protein Engineering involves screening
mutant libraries for novel proteins that show enhanced expression lev-
els, solubility, stability, or enzymatic activity. To reach such objectives,
it is often advantageous to modify extant proteins and develop mutant
variants with potentially improved properties (Reetz and Carballeira,
2007; Parker et al., 2010). However, there exists a massive space of
potential mutations to consider.

Computational design of combinatorial libraries (Voigt et al., 2002;
Meyer et al., 2003; Pantazes et al., 2007; Treynor et al., 2007; Meinke
et al., 2021) provides a reasonable approach in the development of
improved variants. Library-design strategies seek to experimentally
evaluate a diverse but focused region of sequence space in order to
improve the likelihood of finding a beneficial variant. Such an approach
is based on the premise that prior knowledge can inform generalized
predictions of protein properties, but may not be sufficient to specify in-
dividual, optimal variants. Libraries are particularly appropriate when
the prior knowledge does not admit detailed, robust modeling of the
desired properties, but when experimental techniques are available to
rapidly assay a pool of variants.
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The design of mutant protein libraries typically involves a manual
process in which required sites for mutation are selected and ambigu-
ous degenerate codons (those containing mixtures of nucleotides) are
designed to introduce controlled variation in these positions. This is
particularly useful in cases where definitive decisions regarding specific
amino acid substitutions are non-obvious (Reetz and Carballeira, 2007).
The design of the protein variant library is complemented by use of
synthesized degenerate oligonucleotides which enable annealing based
recombination. Custom oligonucleotide overlaps enable the targeted
introduction of crossovers at only desired positions, in turn enabling
the desired level and type of diversity in a combinatorial library.

Traditional mutant protein library design methods involve the incor-
poration of a single degenerate codon (thereafter referred to as decodon)
at each position where amino acid substitutions are considered. De-
codons contain ambiguous (degenerate) bases, as shown in Table 1.
Degenerate bases are one letter codes are used to represent (i.e. code)
sets of DNA bases.

An online tool called CodonGenie (Swainston et al., 2017) was
created to aid the effort of designing decodons that code for any
provided set of amino acids. The CodonGenie tool ranks candidate
decodons by specificity, attempting to minimize coding of undesired
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Table 1
Degenerate bases and their codings.
Degenerate base Actual bases coded

N A or C or G or T
B C or G or T
D A or G or T
H A or C or T
V A or C or G
K G or T
M A or C
R A or G
S C or G
W A or T
Y C or T

amino acids and/or STOP codons. Even so, when using a single decodon
to code for a set of amino acids, it is often unavoidable to code for
additional unwanted amino acids. Using an example from Swainston
et al. (2017), when coding the non-polar residues A, F, G, I, L, M and
V, CodonGenie picks decodon DBK ([AGT][CGT][GT]) as its top choice,
which, in addition to the desired set, codes also for amino acids C, R, S,
T, and W. In total, the decodon DBK codes for 26 DNA variants, 18 of
which code for desired amino acids, and 8 DNA variants for undesired
ones.

In our work we explore specifying a set of amino acids by using
potentially multiple decodons. The usage of annealing based recom-
bination of degenerate oligos containing such decodons can produce
libraries on the productive portion of the space by eliminating un-
wanted mutations, therefore improving the yield of beneficial variants
and the overall quality of the library. In turn, this method can signifi-
cantly reduce labor costs assaying the pool of variants, at the expense
of additional oligo synthesis, whose comparative cost is modest and
continuously dropping. We further use the design of minimum cardi-
nality decodon sets specifying any amino acid set (henceforth referred
to as AA-set) to create an algorithm that, given a target protein mutant
library, it designs oligos whose assembly generates the target library
without any unwanted variants, while minimizing the total cost of DNA
synthesis.

The remainder of the this paper is organized as follows. In Section 2
we provide definitions for describing our problem and proposed algo-
rithms to solve it. In Section 3 we explore an algorithm for provably
finding the minimum number of decodons necessary to specify any
given amino acid set. In Section 4 we present our main algorithm
that aids the design of necessary sets of oligos to assemble our tar-
geted protein variant library while minimizing the cost of synthesis.
Experimental results in applying our algorithms toward building model
variant libraries from the literature are discussed in Section 5. Finally,
in Section 6 we summarize our findings and discuss future directions
pursued in our lab.

2. Definitions

For our purposes, a protein, peptide, or amino acid chain will be rep-
resented by a string on the 20-letter alphabet ⌃

P
= {A,C ,D,E,F ,G,H ,

I ,K ,L,M ,N ,P ,Q,R,S, T ,V ,W , Y }. A DNA sequence will comprise
of bases derived from the alphabet ⌃

D
= {A,C ,G, T }. A degenerate

base is a representation of multiple possible alternative nucleotides at
a certain position. We will use the International Union of Pure and
Applied Chemistry (IUPAC) notation to represent degenerate bases or
multi-bases, DNA bases derived from a set of possible alternatives. For
example, the multi-base R will indicate a Purine, a DNA base that is
either an A or a G. As such, the character ‘R’ in a DNA sequence will
substitute for the regular expression (AG).

Each amino acid is encoded by one or more codons, triplets of
DNA bases. Degenerate codons (thereafter referred to as decodons) are
codons that can include multi-bases. For example, ARC is a decodon

representing both AAC or AGC. As such, ARC serves as a shorthand of
the regular expression A(AG)C, or the equivalent A[AG]C in common
programming language notation. A decodon can code for more than one
amino acid. For example, the decodon ARC codes for both Asparagine
(AAC) and Serine (AGC).

A DNA sequence can be synthesized in the lab by joining overlap-
ping DNA fragments called oligonucleotides or oligos. Given an amino
acid sequence a of length m = a, it can be encoded by a DNA sequence
d of length n = d = 3 ù m. Such a sequence can in principle be
assembled by k oligos of length l

i
each, 1 f i f k, with each consecutive

pair sharing an overlap of length o
j
, 1 f i f k * 1, such that n =≥k

i=1 li *
≥k*1

j=1 oj .
The input to our problem consists of an amino acid sequence of

length m and a list p of b positions p
i
, 1 f i f b. For each given position,

we are provided an amino acid set aa
i
, 1 f i f b of desired amino acid

substitutions. This input represents a protein variant library L with size
L = ±b

i=1 aai.
The desired output to our problem is a set of partially overlapping

oligos that, once assembled, generate all L mutant protein variants
in the target library, and only those. In addition, the total number of
DNA nucleotide bases in the produced oligos, necessary to assemble the
target library, is minimized.

3. Targeting protein libraries without undesired variants

Traditionally, protein variant libraries that vary amino acid residues
at certain mutation sites are constructed by utilizing a single decodon at
each variable position that can generate all targeted residues. Mutant
protein variants with undesired amino acids at mutation sites can be
avoided when synthesizing a targeted library. Instead of designing a
single decodon to specify a given AA-set, we could design several de-
codons to specify the same set. Each of these decodons would code for
a subset of the input AA-set, where the union of all these subsets would
equal the input set. Then, for the creation of the protein variant library,
we could synthesize multiple oligos, each incorporating a different
individual decodon at the target mutant site.

For example, suppose that at a mutant site of a given peptide we
want to vary the residue from one of {A, F, G, I, L, M, V}, as shown
in Fig. 1. The CodonGenie tool indicates in Swainston et al. (2017)
that the single decodon DBK (regular expression (AGT )(CGT )(GT ))
can code for the given set, while minimizing the additional undesired
amino acids coded, in this case the set {C, R, S, T, W}. If we wanted
to eliminate these undesired amino acids, two decodons are necessary.
One such decodon set is {DTS, GSC} (or {(AGT )T (CG),G(CG)C}, as
shown in Fig. 2. Note that, even though we are using two decodons
in two separate degenerate oligos instead of one, the number of actual
oligos that will be incorporated in the target mutant library, 8 in the
latter case, is smaller than in the library using the single decodon at
the mutation site of interest, which are 18 in total.

Our aim is to minimize the amount of DNA we synthesize, which
is directly proportional to the total cost of synthesis, while generating
a targeted variant library with no undesired variants. Thus we seek to
minimize the number of decodons at each variable amino acid position.
The question becomes, what is the minimum number of decodons
necessary to code any given amino acid set? Calculating the answer
is the subject of the following subsection.

For the sake of simplicity, we will assume that the cost of each
synthesized nucleotide base in our library is uniform, independent
of whether that base is degenerate or not. In reality, DNA synthesis
companies charge a slightly higher price for degenerate compared to
regular bases. That additional cost can be amortized among all DNA
bases ordered and included in the conservative price estimates that we
use in our experimental results section.
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Fig. 1. Single decodon use for encoding a variable amino acid position.

Fig. 2. Double decodon use for encoding a variable amino acid position.

3.1. Optimal coding of amino acid subsets using degenerate codons

We have designed and implemented an algorithm that, given any set
of amino acids, produces the minimum number of decodons necessary
to code for exactly this set, i.e. without coding for extraneous amino
acids or STOP codons. Decodons are triplets of the 15 nucleotide codes
shown in Table 1. As such there are 153 = 3, 375 decodons that can be
assembled from this 15-letter alphabet of ambiguous codes.

The target input for our problem is an AA-set, a subset of all 20
possible amino acids. Since each amino acid may be included in the
subset or not, the number of possible subsets is 220*1 (the empty set is
excluded as an invalid input), i.e., there are 1,048,575 possible subsets
of the 20 amino acids. Each of these sets can be represented by a 20-
digit binary number, where a one at position n indicates that amino
acid n is included in the set, and a zero indicates that it is absent.

We initially calculated the minimum number of decodons needed
to specify any AA-set by exhaustively considering all decodon com-
binations. We would start by figuring all AA-sets coded by a single
decodon, then two decodons, etc. Unfortunately this method is practi-
cally intractable, even though our input size is constant, as the number
of decodon combinations explored increases exponentially by a factor
of 3375 for each additional decodon considered. Similarly intractable
is the direction of examining AA-sets and considering all their subset
partitions.

A careful examination of our problem indicates that, once we know
the answer for a given set a, we can potentially utilize this result to
compute an answer for a proper superset b of a, b – a, by combining
the decodons specifying a and those of any superset of b ‰ a. Owing
to the associativity and commutativity of set union, any order that set
unions are performed, as well as any way they are grouped, is not going
to affect the resulting union when joining decodon sets, each specifying
an individual amino acid subset.

Based on these observations, we designed the following algorithm:
We start by computing all possible AA-sets that can be specified by a
single decodon, which we will call 1-decodon AA-sets. Then we perform
set unions of these AA-sets with themselves, to uncover all AA-sets
specified by a minimum of 2 degenerate codons, 2-decodon AA-sets.
We then continue computing set unions between 1-decodon AA-sets
and k-decodon AA-sets, with 2 f k f 19, or until all 220 * 1 sets are
encountered.

Using our algorithm we calculated minimum cardinality decodon
sets for all 1, 048, 575 possible amino acid subsets. Our results indicate
that 6 decodons are always sufficient to code for any amino acid subset,
where at most 4 decodons are sufficient to encode more than 90% of
all amino acid subsets. Our algorithm also produces an example of a
decodon set of minimum cardinality for each AA-set computed.

The following is the pseudocode of our MinDecodon algorithm. AA-
set list L

i
keeps track of all AA-sets specified by a minimum of i

decodons, and array h tracks all AA-sets that have been encountered
so far. AA-sets are represented as binary numbers, and set unions
are performed as binary disjunctions. The function Decodon_to_AA_set
returns the AA-set specified by a given input decodon.

Algorithm 1 The MinDecodon Algorithm.
1: Initialize AA-set lists L

i
, 1 f i f 20

2: for 1 f i f 220 do
3: h[i] },, 0
4: end for
5: for each decodon d do
6: aa_set },, Decodon_to_AA_set(d)
7: if h[d] = 0 then
8: h[aa_set] },, 1
9: add aa_set to L1
10: end if
11: end for

12: for 1 f rank f 19 do
13: for each aa_set1 in L1 do
14: for each aa_set2 in L

rank
do

15: combined_aa_set },, aa_set1 ‰ aa_set2
16: if h[combined_aa_set] ë 0 then
17: h[combined_aa_set] },, rank + 1
18: add combined_aa_set to L

rank+1
19: end if
20: end for
21: end for
22: end for

The following theorem establishes that the MinDecodon algorithm
always computes the minimum number of decodons necessary to spec-
ify any AA-set.
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Fig. 3. Calculating the minimum number of decodons necessary to encode the AA-set
{A, F, G, I, L, M, V} using the Decodon Calculator web-tool.

Theorem 1. The MinDecodon algorithm can correctly identify all AA-sets
that require a minimum of n decodons to exactly code for them.

Proof. We will prove the statement by induction.
Base case: For n = 1, we need to show that the MinDecodon

algorithm correctly identifies all AA-sets that can be specified by a
single decodon. That is true, since the first step of the algorithm
exhaustively processes all individual decodons and records the AA-sets
that they specify.

Inductive hypothesis: We assume that the MinDecodon algorithm
can correctly identify all AA-sets requiring at least k or fewer decodons
to specify them (strong hypothesis), where k is an arbitrary fixed
integer with 1 f k f 20.

Inductive step: We will prove that the statement is true for n = k+1.
We do not have to argue about AA-sets that can be specified by k or
fewer decodons, since the inductive hypothesis assures the truth of the
statement in these cases. Let us select an arbitrary AA-set A

any
that can

be specified by k+1 decodons. We can list these decodons in any order
as d1, d2,… , d

k+1. Let A1 be the AA-set specified by decodon d1, A2 the
set specified by d2, etc. Let B = A2‰A3‰5‰A

k+1. A1 is an AA-set that is
specified by a single decodon, where B is a set specified by k decodons.
By the inductive hypothesis, both sets have been correctly identified
by the MinDecodon algorithm. At the kth iteration, the MinDecodon
algorithm considers the union of all sets specified by a single decodon
and those specified by k decodons. Therefore, AA-set A

any
will be

constructed as the union of A1 and B, thus being identified as a set
that can be specified by k + 1 decodons. ∏

We also built a web tool called Decodon Calculator that allows
researchers to view the minimum number of decodons needed to code
for any input amino acid subset. Once a set of amino acids is selected
and the Submit button is pressed, results are displayed at the bottom
of the screen, as shown in Fig. 3. In that particular example, we
can observe that the non-polar residues A, F, G, I, L, M and V can

Fig. 4. Examples of sequence to oligo partitioning and its effect on oligo synthesis
cost.

be specified by the two decodons DTB and GBA, which code for 12
desirable DNA variants, in contrast to the 26 variants of the single best
decodon generated by CodonGenie, 8 of which are undesired.

The Decodon Calculator can be accessed at http://algo.tcnj.edu/
decodoncalc/.

4. Optimal oligo design for synthesis cost minimization

In creating libraries of targeted protein variants, we enable substitu-
tions of residues at pre-specified positions with alternatives drawn from
AA-sets of beneficial variants, each corresponding to a mutation site. In
this section we aim to optimize the combinatorial assembly of all such
protein variants without any undesired residues at any position, while
minimizing the total cost of synthesis. To achieve this goal, we limit the
use of decodons at each mutation site to the exact minimal set that can
code exactly for the corresponding AA-set, as calculated in the previous
section by the algorithm MinDecodon.

Each protein in a mutant variant library is translated and tran-
scribed from synthetic DNA, which is in turn assembled by joining
multiple DNA oligos. It is this process that allows us to distribute degen-
eracies among different oligos and combinatorially combine the oligos
to create libraries with large numbers of variants without synthesizing
separate protein coding DNA sequences for each. Assembly methods
such as the Gibson isothermal assembly (Gibson et al., 2010) provide
certain freedom for varying the length of the oligos and their overlaps,
the latter usually ranging in length between 20–40 bases. By carefully
selecting the breakpoints where the sequence is partitioned into oligos,
we can reduce the total amount of DNA sequence that is required for
the synthesis any given target mutant library.

As an example, let us consider three scenarios in breaking a target
DNA sequence into two oligos. We assume that a target DNA sequence
codes for a library of peptide variants where two sites are mutated,
as depicted in Fig. 4. Each of the positions 1 and 2 are mutation sites
that code for two provided AA-sets, s1 and s2. Let us assume that three
decodons, a1, a2, and a3, are necessary to code for AA-set s1, where
two decodons b1 and b2 are needed for set s2.

http://algo.tcnj.edu/decodoncalc/
http://algo.tcnj.edu/decodoncalc/
http://algo.tcnj.edu/decodoncalc/
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In Fig. 4(a) we depict a scenario where both mutation sites are
placed in a single oligo set, i.e. a set of alternative oligos having the
same start and end positions in the sequence. In this case, a total of 6
oligos will need to be synthesized for the first oligo set, one for each
combination of the 3 decodons in position 1 and the 2 decodons in
position 2. With the addition of a single oligo without degeneracies
representing the second oligo set, this design requires the synthesis of
a total of 7 oligos. In Fig. 4(b) we demonstrate what happens when
a mutation site is placed inside an overlap. In such a case, decodons
b1 and b2 need to be incorporated in both oligo sets, increasing the
required number of total oligos to 8. A best case scenario is shown in
Fig. 4(c), where the mutation sites are placed in separate oligo sets. The
first set now requires the synthesis of 3 oligos, one for each decodon
at position 1, where the second set requires 2 oligos, for a total of 5
synthesized oligos.

Based on these observations, we aim to design an algorithm that,
given as input

• an amino acid sequence of length m = n_3,
• a list of locations of mutation sites and number of decodons for
each site,

• and length ranges for oligos (l
min

, l
max

) and overlaps (o
min

, o
max

),
with 0 < o

min
f o

max
< l

min
f l

max
,

seeks to output a set of oligo set breakpoints, defined as pairs of start
and end positions for each oligo set, such that, when the defined
oligo sets are combinatorially assembled, they generate the targeted
mutagenesis library at minimum synthesis cost.

Our algorithm uses dynamic programming to exhaustively consider
all possible solutions to our problem, while storing partial optimal
solutions for prefixes of the protein coding DNA sequence in a single-
dimensional array of size n. The sufficiency of a linear partial solution
space is based on the observation that, to compute the optimal cost of
a final oligo of length l

final
sharing an overlap of length o

final
with a

prefix of the DNA sequence ending at position x = n*l
final

+o
final

, only
the cost of synthesis of that prefix is required as prior knowledge.

There are certain prefixes of any input sequence for which solutions
cannot be computed. These include ending positions between 1 and
l
min
, between l

max
and 2 ù l

min
* o

max
, etc. We do not need to treat

these cases specially, since all positions in the partial solution array
are initialized to ÿ and the first position to 0, with the dynamic
programming process determining all unreachable positions during the
algorithm execution.

The pseudocode of the OligoBreak algorithm is presented below.
We now proceed with proving the correctness of the OligoBreak

algorithm using the following theorem:

Theorem 2. We will prove that the OligoPartition algorithm can optimally
design oligos that assemble to form DNA sequences of length n, coding for
a given targeted protein variant library, while minimizing the total number
of DNA nucleotides synthesized.

Proof. We will prove Theorem 2 by induction.
Base case: The base case consists of all sequence lengths k that can

be represented by a single oligo, i.e. l
min

f k f l
max

. The optimality
of their design follows by the principles of construction that were
discussed in the previous section, where the number of decodons which
specify any given AA-set is minimized.

Inductive hypothesis: We assume that the theorem statement holds
true ≈n : 0 f n f k, where k is a fixed arbitrary integer.

Inductive step: We will prove that the statement is true for n = k+1.
The main functionality of the algorithm depends on three nested loops,
the outer loop iterating over the length of the sequence, the middle
loop that iterates over the length range of an oligo, and the inner loop
which iterates over the length range of an overlap. As such, during the
k + 1 iteration of the outer loop, the middle loop examines oligo sets
of all possible lengths that end at the k + 1 position, where the inner

Algorithm 2 The OligoBreak Algorithm
1: n },, sequence length in DNA bases
2: l

min
},, minimum oligo length

3: l
max

},, maximum oligo length
4: o

min
},, minimum overlap length

5: o
max

},, maximum overlap length
6: Initialize all positions of cost array c to ÿ
7: c[0] },, 0
8: for l

min
f i < n do

9: for l
min

f j f l
max

do
10: for o

min
f k f o

max
do

11: start },, i * j

12: if (start g 0) · (c[start + k] ë ÿ) then
13: o_cost },, calculate_cost(start, i)
14: current_cost },, cost[start + k] + o_cost
15: if current_cost < cost[i] then
16: cost[i] },, current_cost
17: end if
18: end if
19: end for
20: end for
21: end for

loop examines all possible overlap lengths. The cost of each of these
possible oligo sets ending at position k+1 is calculated optimally, then
added to the value of the cost array position based on the overlap being
considered.

For the sake of contradiction, let us assume that the algorithm fails
to compute the minimum number of DNA bases needed to synthesize
the designed oligos ending at position k + 1. Then there exists another
sequence of oligo sets with a better total cost. This sequence will end
with a final set that has a legal length l

f
and overlap o

f
. Since the

algorithm examines all possible oligo and overlap lengths for the final
set and, for each case, determines the optimal oligo set based on the
principles of the decodon design of Theorem 1, this final oligo set has
been considered by the algorithm. Therefore, the total cost of the oligo
sets ending at position k + 1 * l

f
+ o

f
must be suboptimal (and by

construction it has to be l
f

> o
f
). But that contradicts our inductive

hypothesis, that the cost array stores optimal costs for all sequences of
lengths f k. ∏

5. Experimental results

In this section we present comparative results from computational
experiments that involve the creation of protein and protein segment
variant libraries of interest using our oligo multiplexing method against
ordering a single synthetic construct with degeneracies. The latter
is designed using the CodonGenie tool to determine single decodons
that specify given sets of amino acids at specific mutation sites. The
computational experiments we performed are presented in order of
increasing complexity and size of the protein variant library.

All computational experiments were performed utilizing parameter
values as described in Gibson et al. (2010, 2008, 2009). Individual
oligonucleotides are permitted to vary in length between 40 and 90
base pairs, while permissible overlaps between oligos ranged from 20
to 40 base pairs. It should be noted that these values are used only
for reference and our algorithm can accept any reasonable value range
for these parameters. For all cost calculations we will assume a cost of
synthesis of $0.38 per nucleotide, making the simplifying assumption
that this cost includes possible degeneracies.

5.1. Bacterial type IV pili

Our first computational experiment involves a pilin-based 20-mer
peptide, which self-assembles into ordered nanofibres, as described
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in Guterman et al. (2016). This 20-mer is a core peptide building
block that is derived from the parent bacterial type IV pilus protein,
a class of polymeric nanofibres that emerge from the surface of Gram-
negative and Gram-positive bacteria and archaea, and are involved in
diverse biological processes. The 20-mer sequence is ‘‘FTLIELLIPQF-
SUYRVKUYN’’.

Based on personal communication with Dr. Baker, a computational
chemist at The College of New Jersey, we compiled a list of desirable
amino acid substitutions that would generate an interesting peptide
library of 256 variants for possible property enhancement of the 20-mer
peptide. This involved substitutions as follows:

• E5 ô A5 or D5 or K5 or R5
• P9 ô A9 or G9
• R15 ô A15 or K15 or E15 or D15

The original amino acids at these positions were also included in the
library variants. Each of these three sets of amino acids, {E,A,D,K ,R},
{P ,A,G}, and {R,A,K ,E,D}, can be minimally encoded by 2 decodons
each. The optimal library would only utilize one 60-base oligo for each
variant; the resulting variant library would need the synthesis of a total
of 480 bases and generate only the 108 desired variants. At $0.38 per
base, this library would cost $182.40. The same library, when utilizing
a single decodon for each AA-set, as suggested by CodonGenie, would
require the synthesis of a single 60-base long oligo at a cost of 22.80,
but create an additional 468 undesired variants.

5.2. Green Fluorescent Protein (GFP)

In their work ‘‘Optimization of Combinatorial Mutagenesis’’ (Parker
et al., 2011), Parker et al. developed an algorithm that selects optimal
positions and sets of mutations to create a combinatorial mutagenesis
library. Their algorithm has the ability to create libraries that either
utilize degenerate oligos or point mutagenesis. They tested their algo-
rithm on the wild type 238-residue GFP from Aequorea victoria with
the mutation S65T.

Figure 2 in Parker et al. (2011) displays examples of sets of mu-
tations for different possible libraries, and ranks these libraries based
on quality and novelty. As our target library we selected one with a
significant number of variants. For example, we used our algorithm
on the first library listed under degenerate oligos, which varies amino
acids at eight positions, 10[EG], 53[LV ], 73[AR], 124[EK], 161[IV ],
162[KR], 228[GS]. Our algorithm generates a variant library which
requires the synthesis of a total of 969 nucleotides, coding for the 256
variants. The oligos required for such a library would cost $368.22
to order. Instead, if we used a single decodon per position as recom-
mended by CodonGenie, the library would require 903 bases, for a total
DNA synthesis cost of $343.14. However, the use of a single decodon
per position results in coding 2 unwanted amino acids at position 73.
Thus this latter library contains 512 total variants, with 256 desired
and 256 undesired variants. For an additional cost of only $25, all of
these undesired variants can be avoided.

5.3. Antiapoptotic B-cell lymphoma-extra large (Bcl-xL)

Our third experiment was performed on structure based re-design
of the binding specificity of anti-apoptotic protein Bcl-xL (Chen et al.,
2013); a particularly interesting dataset due to the moderate number
of varied positions but comparatively large sets of amino acid variants
at each position. The resulting target variant libraries have sizes in the
order of 106 to 107.

B-cell lymphoma-extra large (Bcl-xL) is a member of the B-cell
lymphoma protein family (Bcl-2). The Bcl-2 family is anti-apoptotic,
meaning it prevents cells from naturally dying. Researching the Bcl-2
family helps us understand cell death, which has potential applications
to cancer therapeutics. Bcl-2 proteins interact with many partners, such
as BH3 motifs. The peptides used to bond to these BH3 motifs are called

Table 2
Bcl-xL anti-apoptotic protein target variants from Chen et al..
Position Amino acid set Position Amino acid set

F97 AFGILMV E96 ADEFGHIKLMNQRSTVY
Y101 AFGILMTVY Y101 HY
A104 AFGILMSTVY A104 AFMW
L108 AFGILMV L108 LRTV
L112 AFGILMV Q111 ADEFGHIKLMNQRSTVY
V126 AFGILMV S122 ADEFGHIKLMNQRSTVY
E129 AEITV Q125 ADEFGHIKLMNQRSTVY
L130 AFGILMV V126 AV
A142 AGSTV E129 ETV

L130 LI
F146 AFGILMV
Y195 FY

Table 3
Summary of experimental results.

Target Gene/Peptide

Type IV GFP Bcl-xL (1) Bcl-xL (2)
Pilus

Library size 108 256 3.1 ù 106 2.3 ù 109

Single- Base Pairs 60 903 801 801
Decodon Cost $22.80 $343.14 $304.38 $304.38
Design Yield 0.188 0.500 0.044 0.015

Multi- Base Pairs 480 969 2952 2604
Decodon Cost $182.40 $368.22 $1121.76 $989.52
Design Yield 1 1 1 1

BH3 peptides. Bim and Bad are BH3 peptides. The aim of this study was
to redesign the anti-apoptotic protein Bcl-xL to prevent it from strongly
interacting with Bim BH3, yet still keeping a tight binding to a BH3
peptide derived from Bad.

In their study, Chen et al. initially selected 9 sites of Bcl-xL at which
to vary the amino acid residues, as depicted in Table 1 in their paper.
We created our first dataset by encoding all of the underlined non-
disruptive amino acids from the ‘‘amino acids modeled’’ column of
that table, which are shown in the first two columns of Table 2. For
our target protein we used the 211-residue chain A of PDB Bcl-xL. On
this dataset, our algorithm generates oligos whose synthesis requires
ordering a total of 2952 nucleotide bases, which, at $0.38 a base, would
cost $1,121.76 to synthesize. Using CodonGenie, the total synthesis
requirement goes down to 801 bases, at a cost of $304.38. This latter
library encodes a total of 7.1 ù 107 variants, where only 3.1 ù 106 of
those variants are targeted. Only 1 out of 23 variants in that library is
desired. We also experimented with a second targeted variant library
from the same study, specified in Table 2 of their paper. Once again, the
dataset targets the underlined non-disruptive amino acids in the ‘‘amino
acids modeled’’ column. These variant positions and corresponding AA-
sets are shown in column 3 and 4 of Table 2. Our algorithm generates
a library requiring oligos totaling 2604 nucleotides, with a projected
cost of $989.52. Using CodonGenie a total of 801 nucleotides need to
be synthesized, costing $304.38. However, the latter library contains a
total of 1.5ù 1011 variants, where only 2.3ù 109 are desired, or 1 out of
every 65 variants.

5.4. Summary

The following table summarizes the experimental results presented
in the previous subsections. The ‘Yield’ row displays the ratio of desired
over all variants produced by the designed library (see Table 3).

Source code for this project can be downloaded at: https://github.
com/TomerAberbach/oligoratio.

6. Conclusion

In this study we examined the problem of designing oligos for syn-
thesis of targeted protein variant libraries without unwanted mutations.

https://github.com/TomerAberbach/oligoratio
https://github.com/TomerAberbach/oligoratio
https://github.com/TomerAberbach/oligoratio
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Toward that goal, we also implemented an algorithm to determine the
minimum number of decodons necessary to specify any given amino
acid set. Using that result, we built an optimal dynamic programming
algorithm to generate a set of oligos that, when assembled, create
targeted protein variants and only those, while minimizing the cost of
DNA synthesis. Compared to the traditional ‘one decodon per mutated
site’ approach, our oligo sets incur additional synthesis costs, but
often increase the yield of useful variants in our libraries by orders of
magnitude.

There are several future directions to be explored. Many DNA
assembly techniques require melting temperatures among complemen-
tary overlapping oligo regions to fall within a certain range to maintain
assembly efficiency. We are currently working on our next generation
of oligo design algorithms that provide the option to utilize temper-
ature ranges instead of overlap lengths when figuring optimal oligo
breakpoints.

DNA synthesis companies often place a limit on the number of
degenerate bases that are introduced on each oligo ordered. This re-
striction, combined with the exponential growth of the number of
required oligos when numerous mutation sites are located in close prox-
imity, create a need for balancing the amount of degeneracy allowed
with the quality of the produced library. We plan for next iterations of
our algorithms and tools to incorporate constraints on the number of
degenerate bases per oligo and the total cost of the library. The latter
may be satisfied by reducing the number of decodons at certain sites
that contribute less toward variant diversity, thus limiting the impact
on reduced library quality.
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