

Unlocking Li_2CO_3 - Li_2SO_4 as Cathodes for Li-ion Batteries

Authors: Mingliang Yu¹, Bo Li², Jing Wang³, Yaobin Xu⁴, Nan Zhang⁵, Min Soo Jung¹,
 Jichen Xue⁶, Yukio Cho⁷, Min-Jae Kim⁸, Guangxia Feng⁹, Yufei Yang⁹, Alexis Scida¹, Yiming
¹, Zengqing Zhuo⁸, Mu-huai Lu¹, Ankit Kumar Yadav¹, Kyriakos C. Stylianou¹, Wanli Yang⁸,
 jijin Liu¹⁰, Chongmin Wang⁴, Thomas Osborn Popp¹, Chunsheng Wang^{5,*}, Tongchao Liu^{3,*},
 Xueli Zheng^{7,9,*}, De-en Jiang^{2,*}, Xiulei Ji^{1,*}

Affiliations:

10 ¹Department of Chemistry, Oregon State University; Corvallis, Oregon, 97331, United States.

11 ²Department of Chemical and Biomolecular Engineering, Vanderbilt University; Nashville,
12 Tennessee, 37235, United States.

¹³Chemical Sciences and Engineering Division, Argonne National Laboratory; Lemont, Illinois,
¹⁴60439, United States.

¹⁵ Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland,
¹⁶ Washington, 99354, United States.

¹⁷ ⁵Department of Chemical and Biomolecular Engineering, University of Maryland; College Park,
¹⁸ Maryland, 20742, United States.

¹⁹ "Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo
²⁰ Park, California, 94025, United States.

⁷Applied Energy Division, SLAC National Accelerator Laboratory; Menlo Park, California, 94025, United States.

²³ ⁸Advanced Light Source, Lawrence Berkeley National Laboratory; Berkeley, California, 94720,
²⁴ United States.

25 ⁹Materials Science and Engineering, Stanford University; Stanford, California, 94305, United
26 States.

²⁷ ¹⁰Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas,
²⁸ 78712, United States.

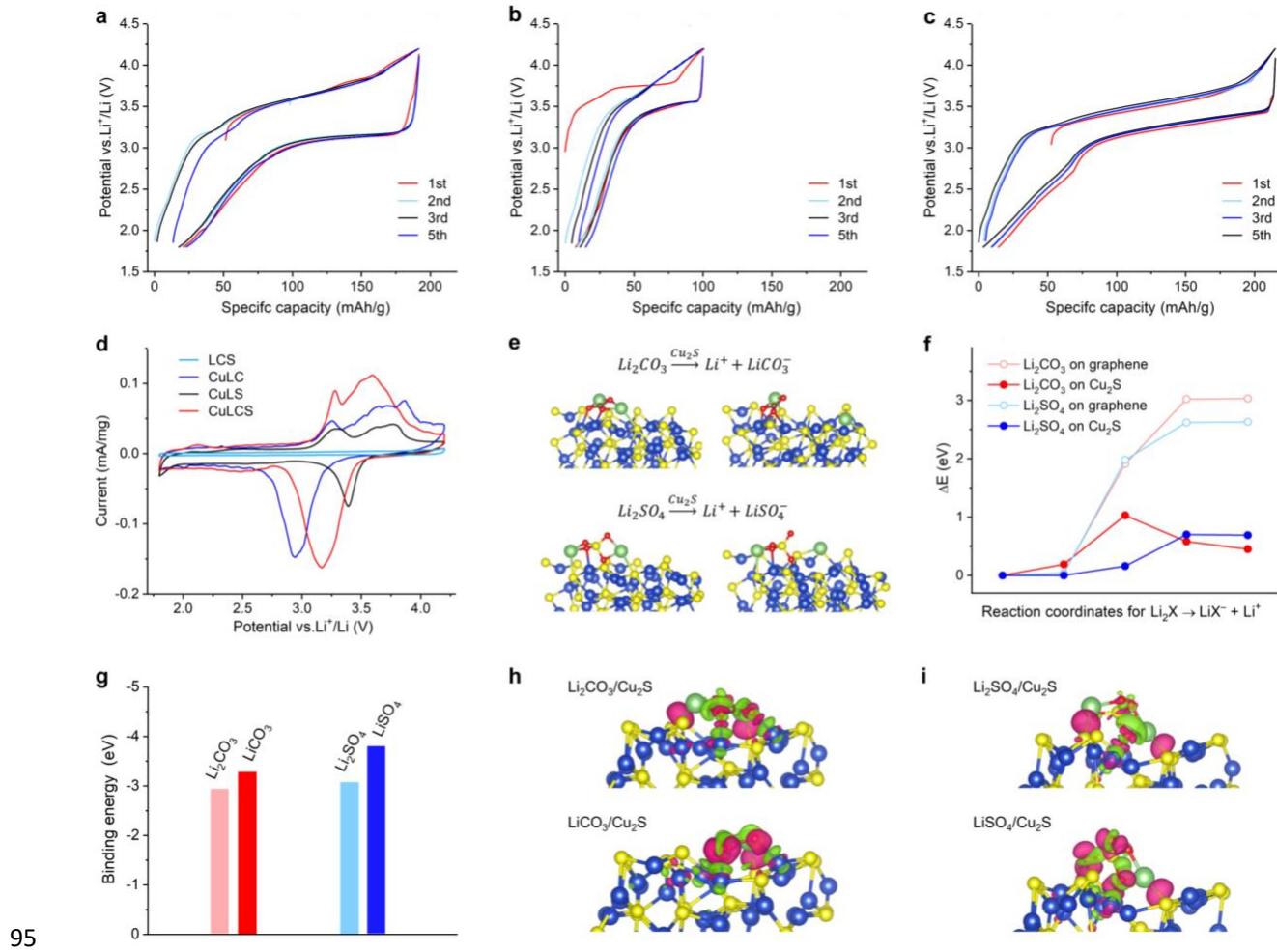
29 *Corresponding authors. Emails: david.ji@oregonstate.edu (X.J.), de-en.jiang@vanderbilt.edu
30 (D.J.), xuelizh8@stanford.edu (X.L.), liut@anl.gov (T.L.), cswang@umd.edu (C.W.)

31

32 **Amidst the rapid expansion of the electric vehicle industry, the need for alternative battery**
33 **technologies that balance economic viability with sustainability has never been more critical.**
34 **Here, we report that common lithium salts of Li₂CO₃ and Li₂SO₄ are transformed into**
35 **cathode active mass in Li-ion batteries by ball milling to form a composite with Cu₂S. The**
36 **optimal composite cathode comprising Li₂CO₃, Li₂SO₄, and Cu₂S, with a practical active**
37 **mass loading of 12.5-13.0 mg/cm², demonstrates a reversible capacity of 247 mAh/g based on**
38 **the total mass of Cu₂S and the lithium salts, a specific energy of 716 Wh/kg, and a stable cycle**
39 **life. This cathode chemistry rivals layered oxide cathodes of Li-ion batteries in energy density**
40 **but at substantially reduced cost and ecological footprint. Mechanistic investigations reveal**
41 **that in the composite both Li₂CO₃ and Li₂SO₄ serve as the active mass, Li₂SO₄ enhances**
42 **kinetic properties and reversibility, and Cu₂S stabilizes the resulting anionic radicals for**
43 **reversibility as a binding agent. Our findings pave the way for directly using lithium salts as**
44 **cathodes for Li-ion batteries to meet the ever-increasing market demands sustainably.**

45

46 Currently, the most energetic power batteries for electric vehicles (EVs) are Li-ion batteries (LIBs)
47 that utilize layered transition metal oxides as the cathodes. These cathodes rely on Ni and Co as
48 redox centers and structural anchors^{1,2}, where Ni and Co not only drive up the cost of LIBs—with
49 the cathode materials accounting for over 50% of the total cell cost—but face a looming supply
50 shortage that could halt the EV industry^{3,4}. In parallel with developments in lithium metal anode^{5,6,7}
51 and solid-state electrolytes^{8,9} for LIBs with much greater energy density, it is pivotal to explore


52 alternative cathode chemistries for sustainable electrified transportation. Although notable
53 advances have been made via the topotactic intercalation compounds free of Co and Ni, these
54 compounds have limitations: the olivine $\text{LiFe}_{1-x}\text{Mn}_x\text{PO}_4$ ^{10,11,12} do not offer competitive energy
55 density, and the Li-rich metal oxides are plagued by the rapid capacity fading and voltage
56 sagging^{13,14,15,16,17}. Meanwhile, non-metal elemental cathodes, including sulfur^{18,19,20,21,22},
57 oxygen^{23,24,25}, and halogens^{26,27,28}, while offering promising energy densities, still await
58 breakthroughs for practical applications.

59 What species can serve as redox centers of electrodes in LIBs? Traditionally, species like
60 transition metal ions and elemental substances, known for their well-defined oxidation states, have
61 been considered²⁹. However, inorganic polyanions, the building blocks of minerals, are typically
62 considered redox-inert. One exception is the carbonate ion of Li_2CO_3 , which anodically
63 decomposes into CO_2 and O_2 irreversibly, thus allowing Li_2CO_3 to serve as a lithium-replenishing
64 agent in cathodes of LIBs^{30,31}. This raises a critical question: Can the anodic oxidation of Li_2CO_3
65 be transformed reversible, thus enabling it to be a viable cathode material? Herein, we report that
66 the answer is yes and both Li_2CO_3 and Li_2SO_4 exhibit reversible electrochemical redox behaviors
67 when finely mixed with Cu_2S , which acts as a binding agent. The composite of Li_2CO_3 , Li_2SO_4 ,
68 and Cu_2S exhibits a specific energy and stable cycle life comparable to the expensive layered oxide
69 cathodes. Here, the common lithium salts^{32,33} that are usually consumed as precursors in the
70 manufacturing of other lithium compounds directly serve as the cathode active mass. This new
71 cathode chemistry not only reduces the carbon footprint associated with the cathode manufacturing
72 but opens new avenues for achieving higher energy densities.

73

74 **Cu₂S-lithium-salt composite cathodes**

75 Intuitively, Li_2CO_3 and Li_2SO_4 might seem unsuitable as battery electrode materials due to their
76 electronically and ionically insulating properties³⁴. Moreover, their anodic oxidation, if it occurs,
77 may produce unstable anionic radicals^{35,36}. Can an electronically conductive agent facilitate their
78 reversible anodic oxidation if this agent binds the resulting anionic radicals, e.g., CO_3^{x-} and SO_4^{x-}
79 ($0 < x < 2$)? To test this possibility, we selected Cu_2S as a binding agent, a naturally occurring
80 conducting mineral that requires minimal processing. To enable the interfacing between Cu_2S and
81 lithium salts, the Cu_2S phase is thoroughly mixed with the lithium salts using ball milling (see
82 Methods), resulting in composites containing Li_2CO_3 , Li_2SO_4 , and Cu_2S , at the molar ratios of
83 1:1:0, 2:0:1, 0:2:1, and 1:1:1, respectively. Each composite is supplemented with a carbon additive
84 (KetjenBlack, or KB) (5.9 wt.%) to further improve the conductivity, and is denoted as LCS, CuLC,
85 CuLS, and CuLCS, respectively. X-ray diffraction (XRD) patterns show that composites with a
86 single lithium salt—CuLC and CuLS—display diffraction peaks: broadened peaks for Li_2CO_3 in
87 CuLC and distinguishable peaks for Li_2SO_4 in CuLS (**Supplementary Figs. 1a,b**). In contrast,
88 both LCS and CuLCS show completely amorphous structures (**Supplementary Figs. 1c,d**).
89 Scanning electron microscopy (SEM) images show that the composites consist of micron-sized
90 particles (**Supplementary Figs. 2a, 3a and 4a**), maintaining a morphology similar to that of
91 precursors (**Supplementary Fig. 5**). The transmission electron microscopy (TEM) and
92 corresponding energy-dispersive X-ray spectroscopy (EDS) results reveal the uniform dispersion
93 of pertinent elements at the nanoscale, attesting the thorough mixing of amorphous phases
94 (**Supplementary Figs. 2–4**).

95 **Fig. 1 | Electrochemical performance of the composite cathodes and the simulation of the**
96 **interfaces of their constituents. a-c,** GCD potential profiles of (a) CuLC, (b) CuLS, and (c)
97 **CuLCS at 30 mA/g. d,** The CV curves of the LCS, CuLC, CuLS, and CuLCS electrodes at a scan
98 **rate of 0.1 mV/s. e,** DFT-optimized atomic structures of Li₂CO₃ and Li₂SO₄ cluster models on the
99 (111) facets of Cu₂S before and after first Li⁺ dissociation (Li, green; O, red; C, gray; S, yellow;
100 Cu, blue). **f,** Energy profiles for the first Li⁺ dissociation from Li₂CO₃ and Li₂SO₄ on the (111)
101 facets of Cu₂S and on the basal plane of graphene. **g,** Binding energies of Li₂CO₃/LiCO₃ and
102 Li₂SO₄/LiSO₄ on the (111) facets of Cu₂S. **h,i,** Differential charge density distributions of
103 Li₂CO₃/LiCO₃ and Li₂SO₄/LiSO₄ adsorbed on Cu₂S (red, electron accumulation; green, electron
104 depletion).

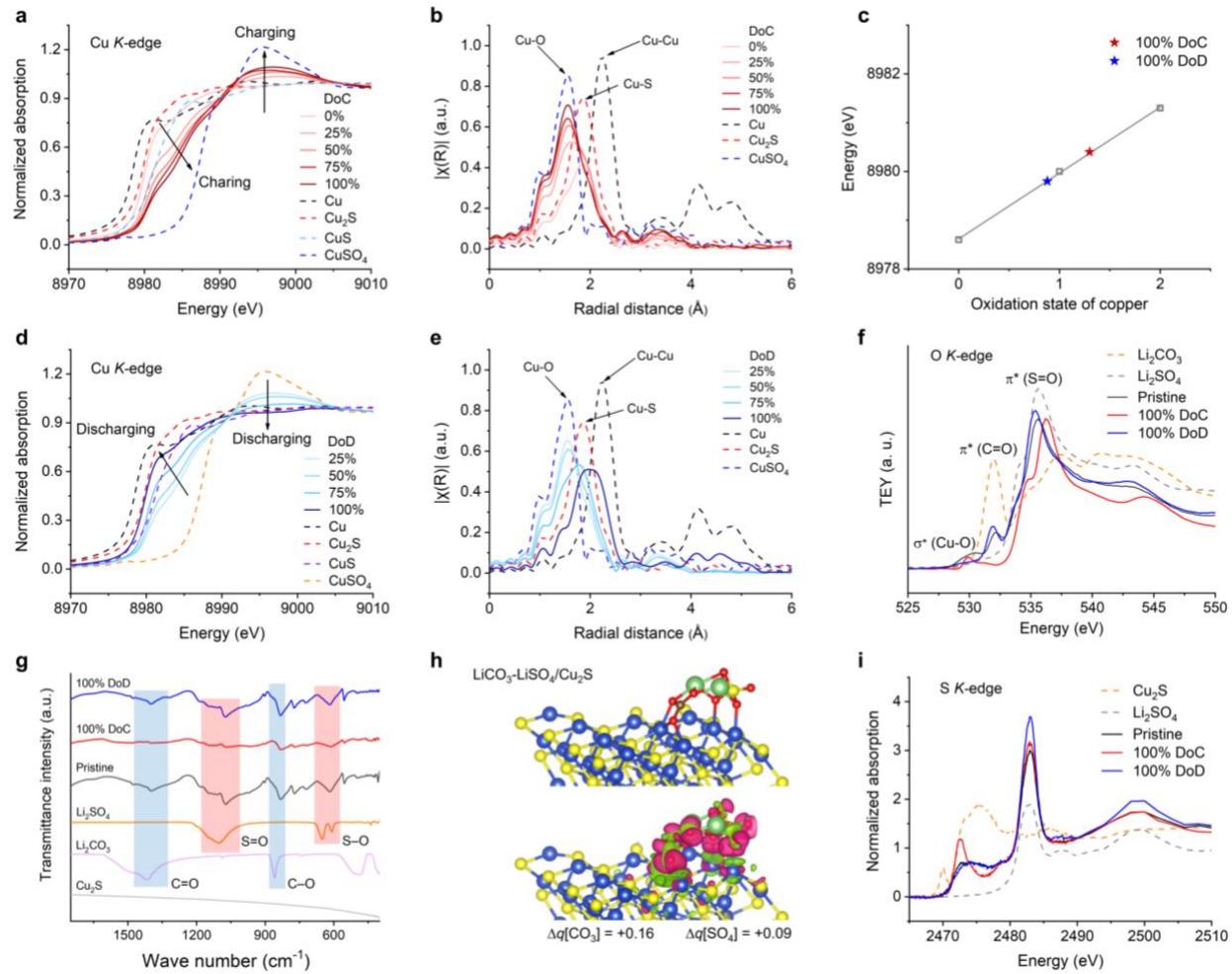
106

107 The electrochemical performance of composites was evaluated by the galvanostatic charge-

108 discharge (GCD) cycling in coin cells, using a conventional electrolyte composed of 1 M LiPF₆
109 plus 0.1 M lithium difluoro(oxalate)borate (LiDFOB)³⁷, solvated in ethylene carbonate/diethyl
110 carbonate (EC/DEC). All composite electrodes were charged first. LCS exhibits a minimal
111 charging capacity of 10 mAh/g, which primarily originates from the capacitive ion storage of its
112 carbon additive, KB (**Supplementary Fig. 6**). This indicates that Li₂CO₃ and Li₂SO₄ are redox
113 inert by the upper cutoff potential of 4.2 V (vs. Li⁺/Li, and hereafter) even when they are well
114 mixed with a conductive carbon. However, all composites containing Cu₂S—specifically CuLC,
115 CuLS, and CuLCS—exhibited appreciable initial charge capacities and reversible discharge
116 capacities (**Figs. 1a-c** and **Supplementary Figs. 7-9**). Notably, Cu₂S alone, when ball-milled with
117 KB, yielded an initial charging capacity of only 10 mAh/g by an upper cutoff potential of 3.7 V.
118 Above this potential, a cell short-circuit was observed, likely due to severe Cu²⁺ dissolution to the
119 electrolyte and the subsequent formation of copper dendrites on the surface of the lithium counter
120 electrode³⁸ (**Supplementary Fig. 10**). In the following discharge, the Cu₂S/KB electrode provides
121 a capacity of 60 mAh/g, characterized by a plateau below 2 V, which is indicative of Li⁺ insertion
122 into the Cu₂S structure³⁹.

123 CuLC exhibits a long plateau in its initial charging potential profile with a capacity of 140
124 mAh/g, equivalent to extracting 0.80 Li⁺ per formula unit of Li₂CO₃, as shown in **Fig. 1a**. The
125 following discharge capacity of 171 mAh/g at an average potential of 2.9 V shows that all the first
126 charging capacity is reversible, given that Cu₂S contributes an estimated capacity of 31 mAh/g
127 based on its 52% mass ratio. In addition, CuLC delivers relatively stable cycling, retaining 84%
128 of its initial capacity after 50 cycles at 30 mA/g (**Supplementary Fig. 7**). Surprisingly, CuLS also
129 demonstrates a good capacity of 101 mAh/g in its first charging process, and a following discharge
130 capacity of 93 mAh/g (**Fig. 1b**). Similarly, CuLS exhibits relatively stable cycling, a smaller

131 capacity but at a markedly higher average discharge potential of 3.2 V, as shown in
132 **Supplementary Fig. 8.**

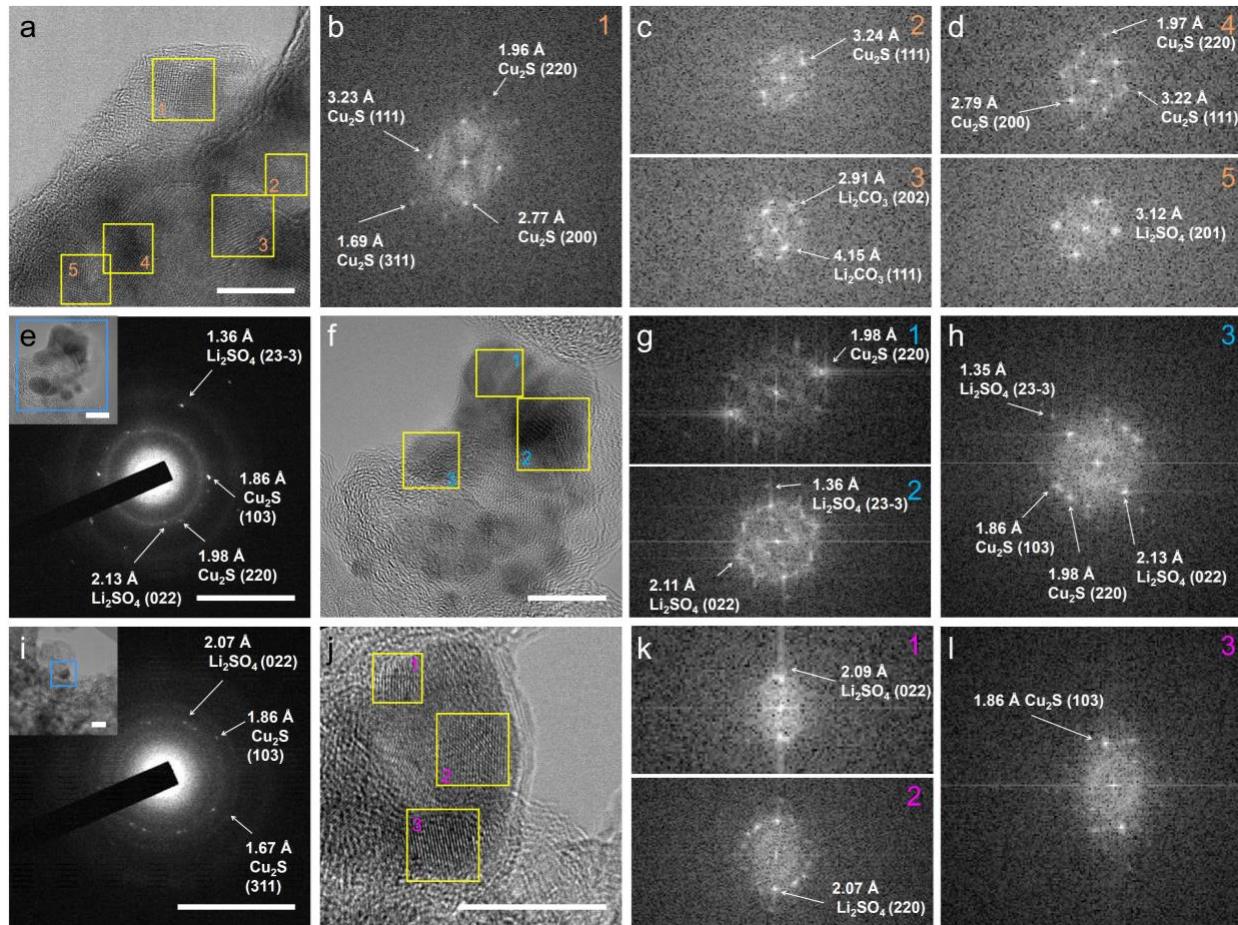

133 The next step is to assess whether the larger capacity of CuLC can be effectively integrated
134 with the higher potential of CuLS in a single composite of $\text{Cu}_2\text{S}+\text{Li}_2\text{CO}_3+\text{Li}_2\text{SO}_4$ with a molar
135 ratio of 1:1:1, featuring well-blended carbonate and sulfate anions in an amorphous phase. CuLCS
136 shows a higher first charging capacity of 163 mAh/g from a single plateau, corresponding to 0.99
137 Li^+ extracted per formula unit of $\text{Li}_2(\text{CO}_3)_{1/2}(\text{SO}_4)_{1/2}$, and it delivers a capacity of 201 mAh/g at
138 3.0 V in the following discharge (**Fig. 1c**). In addition to exhibiting a higher capacity than CuLC
139 and CuLS, CuLCS demonstrates a greater Coulombic efficiency for its cycling and a notably
140 narrower potential gap of ca. 0.3 V between charge and discharge profiles, compared to that of
141 CuLC. Importantly, all composite electrodes have a practical active mass loading of 12.5-13.0
142 mg/cm². The results suggest that CuLCS, indeed, integrates the attributes of CuLC and CuLS and
143 exhibits a synergistic effect. The uniform plateau behavior of the charge/discharge processes of
144 CuLCS indicates that its redox behavior stems from a homogeneous solid solution of Li_2CO_3 and
145 Li_2SO_4 , rather than their physical mixture^{40, 41}. During GCD cycling, the subsequent
146 charge/discharge profiles of CuLCS consistently overlap with those of the initial cycle, indicating
147 the exceptional reversibility and an absence of a conditioning process usually observed for
148 conversion electrodes⁴². Of note, CuLCS should not be considered as a conversion electrode
149 because phase transformation cannot occur for an already-amorphous structure. Furthermore,
150 CuLCS retains 83.7% of its initial capacity after 50 cycles at a current rate of 30 mA g⁻¹ with an
151 average Coulombic efficiency of 99.2% (**Supplementary Fig. 9**).

152 The cyclic voltammetry (CV) results corroborate that the anions are redox active in the
153 presence of Cu_2S in contrast to LCS that shows no redox peaks (**Fig. 1d**). In the anodic scans, all

154 composites containing Cu₂S show a minor peak around 3.25 V, corresponding to the oxidation of
155 Cu₂S, and a broad peak from 3.5 to 3.9 V, attributed to the oxidation of anions. Of note, this broad
156 peak of CuLS reinforces the notion that Li₂SO₄ is anodically active and delithiated when coupled
157 with Cu₂S, albeit at the lowest specific current among the composites. Interestingly, all composites
158 exhibit a single cathodic peak, indicative of the reversible lithiation to reform Li₂CO₃ and Li₂SO₄
159 in the composites. Moreover, the single cathodic peak of CuLCS at 3.2 V underscores the redox
160 behavior of a salt solid solution—Li₂(CO₃)_{1/2}(SO₄)_{1/2}. Results on the kinetic properties of the
161 composite electrodes are detailed in **Supplementary Figs. 11-13**, demonstrating the benefits of
162 anion solid solution.

163 **The mechanism of reversible anionic oxidation in CuLCS**

164 The superior electrochemical properties of CuLCS compared to CuLC and CuLS prompted us to
165 elucidate the synergy between Li₂CO₃ and Li₂SO₄ in the interactions with Cu₂S. To shed light on
166 the mechanism whereby Cu₂S facilitates the reversible redox activity of Li₂CO₃ and Li₂SO₄, we
167 have performed density functional theory (DFT) calculations using a cluster model for the Li salts
168 to investigate the energetics of dissociation of one Li⁺. One can see that both LiCO₃⁻ and LiSO₄⁻
169 “molecules” can be well stabilized on the Cu₂S surface (**Fig. 1e**) with relatively low energy barriers
170 for Li-ion dissociation, in contrast with the highly unfavorable energetics for the same process on
171 graphene (**Fig. 1f**). After the oxidation process, the enhanced DFT-computed binding energies on
172 the Cu₂S surface from Li₂CO₃ to LiCO₃ and from Li₂SO₄ to LiSO₄, as shown in **Fig. 1g**, is a result
173 of the more charge transfer between the oxidized moieties and the Cu₂S surface: surface electrons
174 of Cu₂S transfer to O atoms of the LiCO₃ and LiSO₄ moieties (**Fig. 1h,i**). The high binding energies
175 stabilize the charged products—anionic radicals, thereby preventing the gas evolution of CO₂ and
176 SO₂ and rendering the redox reactions of these anions reversible.

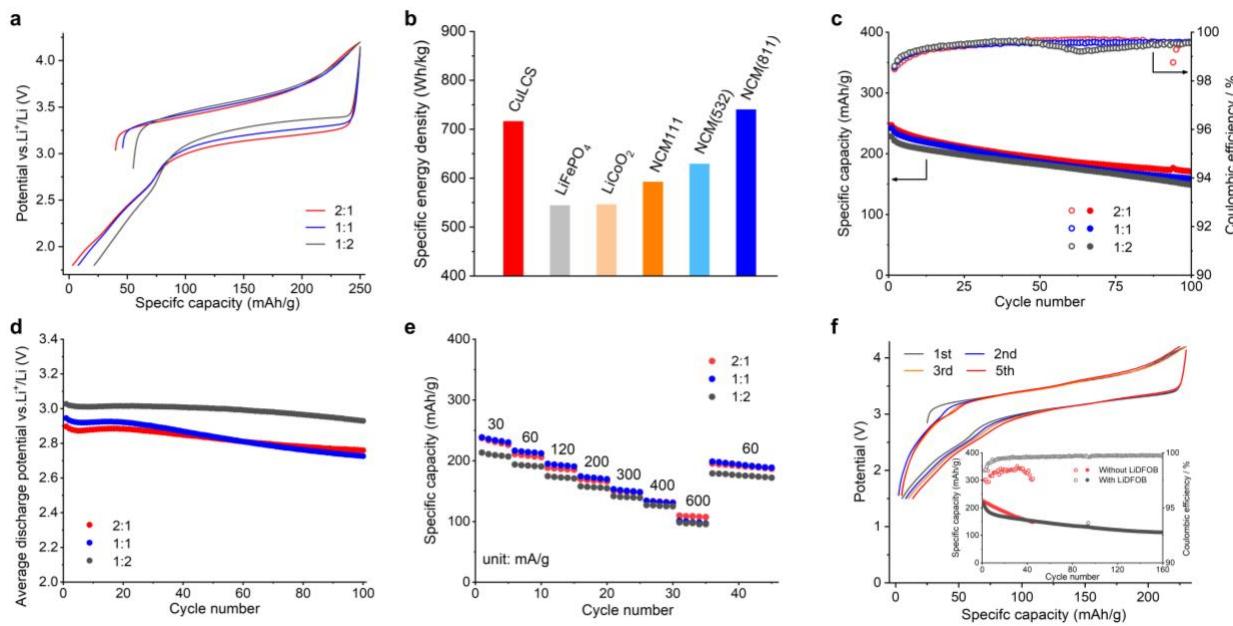

Fig. 2 | Operation mechanism of the CuLCS cathode. **a**, *Ex situ* Cu K-edge XANES spectra of CuLCS composite during the first charging process with varied depth of charge (DoC), and **b**, the corresponding EXAFS spectra. **c**, XANES analysis to determine the valence state of Cu in the 100% DoC and 100% DoD of CuLCS by linear fitting calibration of the Cu foil, Cu₂S, and CuS references. **d**, *Ex situ* Cu K-edge XANES spectra of CuLCS during the first discharge process with varied DoD, and **e**, the corresponding EXAFS spectra. **f**, *Ex situ* O K-edge XANES spectra, **g**, *Ex situ* FTIR spectra of the pristine, 100% DoC, and 100% DoD of CuLCS during the first cycle., **h**, Differential charge density distributions of LiCO₃-LiSO₄ “molecules” co-adsorbed on Cu₂S. **i**, *Ex situ* S K-edge XANES spectra of the pristine, 100% DoC, and 100% DoD of CuLCS during the first cycle.

190 Cu K-edge X-ray Absorption Near Edge Structure (XANES) results reveal that, after charging,
191 Cu(I) in Cu₂S undergoes partial oxidation to Cu(II), reaching an average valence state of +1.3, as
192 shown in **Fig. 2a,c** and **Supplementary Fig. 14a**. The oxidation of Cu(I) is charge-compensated
193 by adsorption of anions⁴³, evidenced by the gradually intensified Cu-O correlation at 1.56 Å
194 between Cu(II) and CO₃^{x-}/SO₄^{y-} (0 < x, y ≤ 2), as observed in the Cu K-edge Extended X-ray
195 Absorption Fine Structure (EXAFS) spectra (**Fig. 2b**). Particularly, the persistence Cu-S
196 correlation after charging suggests that the Cu₂S local structure withstands the adsorption of anions.
197 Upon full discharge, the oxidation state of Cu gradually returns to Cu(I), averaging at +0.9,
198 showing only the characteristic Cu-S bond length by the 75% of the depth of discharge (DoD),
199 (**Figs. 2c,d** and **Supplementary Fig. 14b**), suggestive of the anion desorption from the Cu₂S
200 domains. By 100% DoD, the bond length lies between Cu-S and Cu-Cu, affirming that discharging
201 below 2.5 V causes lithiation of Cu₂S. (**Fig. 2e**).

202 Do the spectroscopic results suggest the anionic redox properties of carbonate and sulfate? O
203 K-edge X-ray absorption spectroscopy (XAS) results reveal notable changes in the O valence
204 states of CuLCS post-charging (**Fig. 2f**). Specifically, the peak at 233 eV, associated with the C=O
205 π* orbital of carbonate, vanishes after full charging, suggesting the anodic oxidation of carbonate,
206 and a minor peak at 230 eV emerges, indicative of the Cu-O σ* bond. Concurrently, there is a blue
207 shift in the binding energies of the S=O π* orbital, suggesting the weakened S=O bonds and thus
208 the loss of electron density after charging. These spectral changes in the O K-edge XAS are
209 reversible upon Li⁺ insertion in the following discharge. The Fourier transform infrared (FTIR)
210 spectra of the CuLCS electrodes attest the redox behaviors of carbonate and sulfate. The results
211 show the reversible disappearance and restoration of the C=O asymmetric stretches around
212 1402 cm⁻¹, along with the vastly weakened and restored S=O asymmetric stretches at 1071 cm⁻¹

213 after charge and discharge processes, respectively (**Fig. 2g**). Indeed, the spectral results strongly
214 support that both carbonate and sulfate ions are oxidized after charging and the fact that their
215 oxidized states can be probed suggests that their radicals are stabilized by Cu₂S.

216 It appears that carbonate ions experience more substantial spectral changes, which suggests
217 that they undergo a greater extent of oxidation than sulfate during charging, providing a larger
218 contribution to the capacity of CuLCS. To elucidate this postulation, we simulated the delithiation
219 process of CuLCS with a cluster model. As shown in **Fig. 2h**, when Li₂CO₃ and Li₂SO₄ clusters
220 co-adsorbed on the surface of Cu₂S are delithiated to LiCO₃-LiSO₄, [CO₃] is more oxidized than
221 [SO₄] as evidenced by the more positive charge transfer in the former. This finding is consistent
222 with the sulfur K-edge XANES spectrum after charging (**Fig. 2i**), which, together with the O K-
223 edge XAS results, implies that the oxidation of sulfate primarily withdraws electrons from the
224 oxygen atoms, where the peak at 2483 eV assigned to sulfur (6+) of sulfate does not shift between
225 100% DoC and 100% DoD. In addition, after charging, the peak between 2470 to 2475 eV
226 undergoes a red-shift and intensifies, as shown in **Fig. 2i**. The shift suggests a bonding between
227 sulfide atoms with other nonmetal species, where such a bonding may come from the interactions
228 between sulfide on the Cu₂S surface and the bound anions⁴⁴. Upon discharge, this peak becomes
229 broad and returns to its original binding energy.


230 **Fig. 3. The phase evolution of the CuLCS cathode after charge and discharge in the first**
 231 **cycle. a**, HRTEM image of the pristine CuLCS. Scale bar, 10 nm. **b-d**, The corresponding fast
 232 Fourier-transform images of the marked regions in Fig. 3a. **e**, SAED of the marked area of the
 233 inset image of charged CuLCS. Scale bars, 10 1/nm and 10 nm (Inset). **f**, HRTEM image of the
 234 charged CuLCS. Scale bar, 10 nm. **g,h**, The corresponding fast Fourier-transform images of the
 235 marked regions in Fig. 3f. **i**, SAED of the marked area of the inset image of discharged CuLCS.
 236 Scale bars, 10 1/nm and 20 nm (Inset). **j**, HRTEM image of the discharged CuLCS. Scale bar, 10
 237 nm. **k,l**, The corresponding fast Fourier-transform images of the marked regions in Fig. 3j.

239
 240 High-resolution transmission electron microscopy (HRTEM) was used to investigate the
 241 phase evolution of the CuLCS cathode after charge and discharge. **Fig. 3a-d** reveals that Cu₂S
 242 nanodomains sized around 5 nm are embedded in the matrix of a largely amorphous matrix, in

243 which fringes of nanodomains of Li_2CO_3 and Li_2SO_4 exist sparingly. After charging, the Cu_2S and
 244 Li_2SO_4 nano-crystallites remain discernable in the composite although the d-spacings of Li_2SO_4
 245 slightly vary in a narrow range (**Fig. 3e-h**). After discharge, fringes of Li_2SO_4 can be found besides
 246 those of Cu_2S (**Fig. 3i-l**). The microscopy results reveal that Cu_2S nanodomains intimately
 247 interface with carbonate and sulfate, and the Cu_2S lattice remains intact throughout cycling, despite
 248 the partial oxidation of Cu(I) suggested by the XANES results. Such oxidation should take place
 249 on the surface of Cu_2S domains, which does not comprise the structural integrity of these domains.
 250 Furthermore, the absence of Li_2CO_3 after full charge and discharge indicates that Li_2CO_3
 251 experiences a deeper extent of delithiation than Li_2SO_4 .

252

253 **Electrochemical properties of CuLCS with Less Cu_2S**

254

255 **Fig. 4 | Electrochemical performances of the CuLCS cathodes with 30 wt.% Cu_2S and**
 256 **different molar ratios between Li_2CO_3 and Li_2SO_4 .** **a**, The GCD potential profiles of the first
 257 cycle at 30 mA/g. **b**, Specific energy of the CuLCS electrode (molar ratio 2:1, $\text{Li}_2\text{CO}_3/\text{Li}_2\text{SO}_4$),

258 compared with commercial LIB cathode materials. **c**, Cycling performance at 30 mA/g. **d**, Average
259 discharge potentials of CuLCS electrodes during 100 cycles at 30 mA/g. **e**, Rate capability of
260 CuLCS electrodes. **f**, The GCD profiles of the CuLCS (molar ratio 2:1, Li₂CO₃/Li₂SO₄) || graphite
261 full cell at 30 mA/g with the N/P ratio of 1:1.2 and 1 M LiPF₆ in EC/DEC (1:1, v/v) as the
262 electrolyte. Inset: cycling of the full cells in the electrolyte of 1 M LiPF₆ in EC/DEC (1:1, v/v)
263 with and without 0.1 M LiDFOB.

264 The spectral results suggest the redox behaviors of Cu(I) of Cu₂S, raising questions about
265 the exact role of Cu₂S: Does it serve as a primary active mass besides being a binding agent? To
266 test this, we postulate that if Cu₂S is not a primary active mass, reducing its percentage should
267 enhance the capacity of the CuLCS electrode when the necessary interfacing between Cu₂S and
268 lithium salts is not compromised. Thus, we decreased the mass percentage of Cu₂S from 46% to
269 30%. As **Fig. 4a** shows, the composite with 30% Cu₂S exhibits a higher first charge/discharge
270 capacities of 204/242 mAh/g at 30 mA/g with an average discharge potential of 2.95 V
271 (**Supplementary Fig. 15a**). The improved capacities with less Cu₂S content unequivocally support
272 the notion that Cu₂S serves mainly as a binding agent, albeit its capacity contribution may not be
273 negligible, and the anions are the predominant active mass. However, when the percentage of Cu₂S
274 is further reduced to 20%, the first charge/discharge capacities decrease to 173/187 mAh/g
275 (**Supplementary Fig. 16**), which suggest the critical role of Cu₂S in the composites to provide the
276 binding interface to induce the redox reactivity of lithium salts.

277 Further exploring the impact of anion ratios on performance, we varied the Li₂CO₃/Li₂SO₄
278 molar ratios from 1:1 to 2:1 and 1:2, resulting in the first charge/discharge capacities of 210/247
279 mAh/g and 195/229 mAh/g, respectively, accompanied by average discharge potentials of 2.90
280 and 3.03 V (**Supplementary Figs. 15b,c**). The results indicate a trade-off between specific

281 capacity and average discharge potential, influenced by the varying ratios of Li_2CO_3 and Li_2SO_4 .
282 Higher Li_2CO_3 content promotes the specific capacity, while more Li_2SO_4 improves the average
283 discharge potential and reduces the extent of polarization. Nevertheless, the fact that the sulfate-
284 rich composite can delithiate 1.02 Li^+ per unit formula of $\text{Li}_2(\text{CO}_3)_{1/3}(\text{SO}_4)_{2/3}$, corresponding to the
285 first charging capacity of 195 mAh/g, further corroborates the anodic redox reactivity of sulfate in
286 the presence of Cu_2S .

287 Notably, the electrode with the $\text{Li}_2\text{CO}_3/\text{Li}_2\text{SO}_4$ molar ratio of 2:1 achieves a specific energy
288 of 716 Wh/kg, comparable to that of the Ni/Co-based layered oxide cathodes (**Fig. 4b**)². Moreover,
289 CuLCS composites with different $\text{Li}_2\text{CO}_3/\text{Li}_2\text{SO}_4$ ratios exhibited similar respective capacity
290 retentions of 69.2%, 65.7%, and 65.1% after 100 cycles at 30 mA/g (**Fig. 4c**). Of note, their average
291 discharge potentials maintain 95.3%, 92.5%, and 96.8% of the initial values after 100 cycles,
292 suggestive of the reversible nature of the anionic reactions and an absence of gas evolution (**Fig.**
293 **4d**). Furthermore, the CuLCS electrodes exhibit promising rate capability across the different
294 molar ratios (**Fig. 4e**).

295 In the extension to the full cell studies, we evaluated the performance of CuLCS (30 wt.%
296 Cu_2S , $\text{Li}_2\text{CO}_3/\text{Li}_2\text{SO}_4$ molar ratio of 2:1), paired with a graphite anode (**Supplementary Fig. 17**),
297 with an anode/cathode capacity (N/P) ratio of 1/1.2. The graphite anode has been pre-discharged
298 to 20% DoD. The full cell delivers an initial discharge capacity of 217 mAh/g at an average
299 potential of 2.89 V at 30 mA/g and relative stable cycling performance (**Fig. 4f**). The results show
300 that the 0.1 M LiDFOB additive in the electrolyte of 1 M LiPF_6 EC/DEC (1:1, v/v) helps retain
301 the high Coulombic efficiency. Notably, the full-cell performance was obtained with an active
302 mass loading of $\sim 10 \text{ mg/cm}^2$ for the composite electrodes, underscoring its considerable promise
303 for practical applications.

304

305 **Conclusions**

306 In this study, we demonstrate that common lithium salts, specifically Li_2CO_3 and Li_2SO_4 , can serve
307 effectively as cathode materials in Li-ion batteries with practical active mass loading, when finely
308 mixed Cu_2S as a binding agent. This configuration enables both Li_2CO_3 and Li_2SO_4 to undergo
309 reversible delithiation, where Cu_2S plays a crucial role in inducing their reactivity and stabilizing
310 the oxidized anionic radicals formed from carbonate and sulfate. Our results highlight that the solid
311 solution of the two anions significantly enhances the battery's performance by increasing the
312 overall capacity, reducing polarization, and improving Coulombic efficiency, delivering the
313 performance comparable to commercial nickel/cobalt-based oxide cathodes. Our findings provide
314 opportunities for utilizing abundant lithium salts as sustainable cathode materials in Li-ion
315 batteries, offering a promising avenue for advancing energy storage technologies.

316 **Methods**

317 **Materials preparation**

318 The CuLC, CuLS, CuLCS, and LCS composites were prepared with Li_2CO_3 (Fluka), Li_2SO_4
319 (ACROS ORGANICS), Cu_2S (Sigma-Aldrich), and KetjenBlack carbon (EC600JD, MSE
320 Supplies) without any prior purification. Li_2CO_3 and Cu_2S , Li_2SO_4 and Cu_2S , Li_2CO_3 , Li_2SO_4 , and
321 Cu_2S , or Li_2CO_3 and Li_2SO_4 in the molar ratios of 2:1, 2:1, 1:1:1, and 1:1, respectively, were added
322 to a planetary ball mill (Pulverisette® 6; Fritsch International, Pittsboro, NC) along with additional
323 5.9 wt.% KetjenBlack carbon. The mixtures were sealed in an Ar-filled glovebox with H_2O and
324 O_2 concentrations below 0.1 ppm. The mixtures in the bowl were subjected to ball milling at
325 400 r.p.m. for 50 hours, with a 5-minute break every 30 minutes. For comparison, pure Cu_2S was
326 also mixed with KetjenBlack carbon in the same mass ratio as the above composites, then the
327 mixture was sealed in an Ar-filled glovebox and ball-milled under same conditions. The CuLCS
328 with the lower mass ratio of Cu_2S (30 wt.% and 20 wt.%) were prepared in the same way as the
329 aforementioned CuLCS, and the mass ratios between Cu_2S and the lithium salts are 3:7 and 1:4.

330 Graphite anode was purchased from MTI Corporation, which comprises graphite, conductive
331 carbon (Super P) and binder (SBR+CMC, 2.5% SBR, 1.8% CMC) in a weight ratio of 93.2:4.3:2.5
332 with copper foil (9 micron) as the current collector.

333

334 **Electrochemical measurements**

335 The working electrode is composed of 85 wt.% active materials (CuLC, CuLS, CuLCS, LCS, or
336 Cu₂S), 10 wt.% KetjenBlack carbon, and 5 wt.% polytetrafluoroethylene (PTFE, Sigma-Aldrich)
337 binder. These materials are extruded to form a free-standing film, which is then punched into discs,
338 12 mm in diameter. Li foil is used as the counter and reference electrode. For CuLC, CuLS, and
339 Cu₂S electrodes, glass microfiber filter membranes (Whatman, Grade GF/F) are used as separators,
340 while Celgard 2500 is used for CuLCS and LCS electrodes. The mass loading of all electrodes for
341 half cells is approximately 12.5-13.0 mg/cm², and the specific capacity is calculated based on the
342 total mass of Cu₂S plus lithium salts. An electrolyte of 1 M LiPF₆ plus 0.1 M LiDFOB in EC/DEC
343 (1:1 by volume) is used for all half cells. For full cells with graphite as the anode, 1 M LiPF₆ in
344 EC/DEC (1:1 by volume) with and without 0.1 M LiDFOB are employed as electrolytes. The cells
345 are assembled in an Ar-filled glovebox with H₂O and O₂ concentrations below 0.1 ppm. We tested
346 the electrochemical performance of the cathodes on a Landt CT3002A battery testing system at
347 various current rates and a temperature of 30 °C. The cutoff potential window was set to 1.8-4.2
348 V vs. Li⁺/Li for half cells. For CuLCS || graphite full cells, the voltage was set to 1.5-4.2 V. Cyclic
349 voltammetry (CV) was tested on a VMP-3 multichannel workstation at a scan rate of 0.1-0.5 mV/s.
350 To prepare the full cells, we set the N/P ratio to 1.2. The specific capacity of the cathodes was
351 based on the initial charging specific capacity. The mass loading of CuLCS for full cells is ca. 10
352 mg/cm². We prelithiated the graphite anode to 20% DoD to compensate for the extra lithium
353 required for discharging to 1.5 V. The graphite anodes were run for 10 cycles before assembling
354 the full cells to stabilize the interface.

355 We conducted the galvano electrochemical impedance spectroscopy (GEIS) test using a
356 VMP-3 electrochemical workstation (BioLogic). The coin cells were precycled once at 30°C (1.8
357 to 4.2 V, 30 mA/g) before performing the GEIS test at 30°C. After resting for 3 hours, galvanostatic
358 charge-discharge (GCD) cycling was carried out at 30 mA/g with direct current (DC) inputs.
359 During the GCD process, EIS measurements were conducted by adding alternating current (AC)

360 signals of ± 10 mA/g amplitude to the DC signal. To minimize the impact of AC signals on cell
361 cycling, we included 15-minute intervals between each EIS measurement. The frequency range
362 was set from 200 kHz to 2 Hz, with each measurement taking approximately 27 seconds. We
363 performed DRT analysis on each EIS dataset using MATLAB-based DRT tools developed by Wan
364 et al., applying the default parameters to calculate $\gamma(\ln \tau)$ versus τ .

365

366 **Physical characterization**

367 XAS for the Cu K edge was performed at 7-BM beamline of National Synchrotron Light Source
368 II (NSLS-II) in Brookhaven National Laboratory. All the samples were sealed in Kapton tape
369 before testing. The data analysis is conducted by Athena software package. Sulfur K-edge XANES
370 spectra of CuLCS samples and reference materials were collected at beamline 14-3 at the Stanford
371 Synchrotron Radiation Light source (SSRL) in a He atmosphere. A 7-element vortex detector was
372 used to monitor the fluorescence signal. The calibration of the monochromator was obtained by
373 adjusting the maximum energy of the pre-edge feature of sodium thiosulfate to 2472.02 eV. O K
374 edge Soft XAS measurements were conducted at the elliptically polarizing undulator (EPU)
375 beamline 13-3 at SSRL. The electrodes were extracted from coin cells containing liquid electrolyte
376 and subsequently dried to enable soft X-ray measurements in an ultra-high vacuum environment.
377 The incident beam was monochromatized using a 600-lines/mm spherical grating monochromator,
378 with its angle set at 30 degrees relative to the sample surface.

379 X-ray diffraction (XRD) patterns were collected on a Rigaku Ultima IV diffractometer with
380 the Cu K α radiation ($\lambda = 1.5406$ Å). The microstructure and morphology were evaluated by using
381 FEI NOVA 230 field-emission scanning electron microscopy (FESEM). Transmission electron
382 microscopy (TEM) images and its corresponding energy-dispersive X-ray spectroscopy (EDS) of
383 the composite were collected on a FEI Titan 80-300 high-resolution transmission electron
384 microscopy with four embedded Bruker SDD detectors. TEM (JEOL-JEM 2100F) equipped with
385 energy-dispersive spectroscopy (EDS, Bruker X-Flash 6/60 series) was used for the
386 HRTEM/SAED. To prepare the samples, the electrodes recovered from the cycled cells were
387 washed and ultrasonically dispersed in cyclohexane for 1 hour. The dispersion was dropped onto
388 a Ni mesh to avoid any influence from Cu. All the samples were vacuum dried before
389 characterization. FTIR spectra were recorded using a PerkinElmer Spectrum Two attenuated total
390 reflection analyzer.

391

392 **Computational methods**

393 Density functional theory calculations were performed using the Vienna ab initio simulation
394 package (VASP)^{45,46} with periodic boundary conditions. The interaction between the electrons and
395 the nucleus was described by the projector augmented wave (PAW) method^{47,48} with an energy
396 cutoff of 500 eV. The Perdew-Burke-Ernzerhof (PBE) functional of the generalized gradient
397 approximation (GGA) was used for electron exchange-correlation⁴⁹. Monkhorst-Pack *k*-point
398 sampling with the *k*-point spacing <0.03 Å⁻¹ was used. The dispersion forces were included with
399 the DFT-D3 method⁵⁰. Spin polarization was enabled in all the calculations.

400 Cu₂S slab models were built from the tetragonal copper sulfide⁵¹ with 4 atomic layers for the
401 (111) surface, which has the lowest energy⁵². A vacuum region of 20 Å along the *z*-direction was
402 applied in each slab model. The top two layers of the slab models and the adsorbates were allowed
403 to relax until the forces on each atom is less than 0.02 eV/Å, while the bottom two layers were
404 fixed during geometry optimization. The climbing-image nudged elastic band (CI-NEB) method⁵³
405 was used to determine the transition states for the dissociation of Li₂CO₃ and Li₂SO₄ on Cu₂S
406 surface. Bader charge analysis was employed to obtain the partial atomic charges in the slab
407 models⁵⁴.

408 **Acknowledgements**

409 X.J., D.J., and C.W. thank for the financial support from U.S. Department of Energy (DOE), Basic
410 Energy Science Program, Award No. DE-SC0023408. X.J. is grateful for the financial support
411 from the U.S. National Science Foundation, Award Number: CBET-2215645. This research
412 employed the Advanced Light Source, a DOE Office of Science User Facility under a contract No.
413 DE-AC02-05CH11231. This work acknowledges support from the U. S. DOE, Office of Energy
414 Efficiency and Renewable Energy, Vehicle Technologies Office. Argonne National Laboratory is
415 operated for DOE Office of Science by UChicago Argonne, LLC, under contract number DE-
416 AC02-06CH11357. Use of the National Synchrotron Light Source II (7-BM) is supported by the
417 U.S. DOE, an Office of Science user Facility operated by Brookhaven National Laboratory under

418 contract number DE-SC0012704. Use of the Stanford Synchrotron Radiation Light source, SLAC
419 National Accelerator Laboratory, is supported by the U.S. DOE, Office of Science, Office of Basic
420 Energy Sciences under Contract No. DE-AC02-76SF00515.

421 **Author contributions**

422 X.J. conceived the project. X.J. and M.J. designed the research. X.J., D.J., X.Z., T.L., and C.W.
423 supervised the research. M.Y. led electrochemical experiments and analysis. B.L. and D.J.
424 conducted computation; J.W., Z.X., Y.C., M.K., G.F., Y.Y., A.S., Z.Z. A.K.Y. K.S., W.Y., Y.L.,
425 T.O.P. T.L., and X.Z. contributed to spectral characterization. M.S.J., Y.S., and M.L. conducted
426 experiments. Y.X., N.Z., C.W., and C.W. contributed to microscopy studies. All authors discussed
427 the results and contributed to data interpretation and paper revisions.

428 **Competing interests**

429 X.J. and M.Y. are inventors for a US patent application no. 18/510,483 (pending), filed by Oregon
430 State University on November 15th 2023. The authors do not declare other competing interests.

431 **Data availability**

432 Data supporting the findings of this study are included in the paper and the Supplementary
433 Information. Raw data are available from corresponding authors upon request.

434 **References**

- 1 Li, H. *et al.* Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries? *J. Electrochem. Soc.* **166**, A429-A439 (2019).
- 2 Zeng, X. *et al.* Commercialization of lithium battery technologies for electric vehicles. *Adv. Energy Mater.* **27**, 1900161 (2019).
- 3 Baars, J., Domenech, T., Bleischwitz, R., Melin, H. E. & Heidrich, O. Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. *Nat. Sustain.* **4**, 71–79 (2021).
- 4 Turcheniuk, K., Bondarev, D., Amatucci, G. G. & Yushin, G. Battery materials for low-cost

electric transportation. *Mater. Today* **42**, 57-72 (2021).

5 Liu, D. *et al.* Controlled large-area lithium deposition to reduce swelling of high-energy lithium metal pouch cells in liquid electrolytes. *Nat. Energy* **9**, 559–569 (2024).

6 Yuan, X., Liu, B., Mecklenburg, M. & Li, Y. Ultrafast deposition of faceted lithium polyhedra by outpacing SEI formation. *Nature* **620**, 86-91 (2023).

7 Li, Y. *et al.* Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. *Science* **358**, 506-510 (2017).

8 Chen, Y. *et al.* Unlocking Li superionic conductivity in face-centred cubic oxides via face-sharing configurations. *Nat. Mater.* **23**, 535-542 (2024).

9 Wu, F., Fitzhugh, W., Ye, L., Ning, J. & Li, X. Advanced sulfide solid electrolyte by core-shell structural design. *Nat. Commun.* **9**, 4037 (2018).

10 Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. *J. Electrochem. Soc.* **144**, 1188-1194 (1997).

11 Huang, H., Yin, S. C. & Nazar, L. F. Approaching theoretical capacity of LiFePO₄ at room temperature at high rates. *Electrochem. Solid-State Lett.* **4**, A170–172 (2001).

12 Masquelier, C. & Croguennec, L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. *Chem. Rev.* **113**, 6552-6591 (2013).

13 Gent, W. E. *et al.* Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. *Nat. Commun.* **8**, 2091 (2017).

14 Xu, J. *et al.* Elucidating anionic oxygen activity in lithium-rich layered oxides. *Nat. Commun.* **9**, 947 (2018).

15 Liu, T. *et al.* Origin of structural degradation in Li-rich layered oxide cathode. *Nature* **606**, 305-312 (2022).

16 Lee, J. *et al.* Reversible Mn²⁺/Mn⁴⁺ double redox in lithium-excess cathode materials. *Nature* **556**, 185–190 (2018).

17 Eum, D. *et al.* Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. *Nat. Mater.* **19**, 419-427 (2020).

18 Zhou, G., Paek, E., Hwang, G. S. & Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. *Nat. Commun.* **6**, 7760 (2015).

19 Pang, Q. *et al.* Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. *Nat. Energy* **3**, 783-791 (2018).

20 Zhou, G. *et al.* Supercooled liquid sulfur maintained in three-dimensional current collector for high-performance Li–S batteries. *Sci. Adv.* **6**, eaay5098 (2020).

21 Zhou, J. *et al.* Healable and conductive sulfur iodide for solid-state Li–S batteries. *Nature* **627**, 301-305 (2024).

22 Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. *Nat. Commun.* **4**, 1481 (2013).

23 Ahn, S. *et al.* Why charging Li–air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation. *Nat. Chem.* **15**, 1022-1029 (2023).

24 Qiao, Y., Jiang, K., Deng, H. & Zhou, H. A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion. *Nat. Catal.* **2**, 1035-1044 (2019).

25 Zhu, Z. *et al.* Anion-redox nanolithia cathodes for Li-ion batteries. *Nat. Energy* **1**, 16111 (2016).

26 Xie, C. *et al.* Reversible multielectron transfer I⁻/IO₃⁻ cathode enabled by a hetero-halogen electrolyte for high-energy-density aqueous batteries. *Nat. Energy* <https://doi.org/10.1038/s41560-024-01515-9> (2024).

27 Yang, C. *et al.* Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. *Nature* **569**, 245-250 (2019).

28 Zhu, G. *et al.* Rechargeable Na/Cl₂ and Li/Cl₂ batteries. *Nature* **596**, 525-530 (2021).

29 Cao, W., Zhang, J. & Li, H. Batteries with high theoretical energy densities. *Energy Storage Mater.* **26**, 46-55 (2020).

30 Li, C. *et al.* Li₂CO₃ nanocomposites as cathode lithium replenishment material for high-energy-density Li-ion batteries. *ACS Appl. Mater. Interfaces* **15**, 44921-44931 (2023).

31 Zhu, Y. *et al.* Lattice engineering on Li₂CO₃-based sacrificial cathode prelithiation agent for improving the energy density of Li-ion battery full-cell. *Adv. Mater.* **36**, 2312159 (2023).

32 Schmuck, R., Wagner, R., Höppl, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. *Nat. Energy* **3**, 267–278 (2018).

33 Zhao, S. *et al.* Mechanism and modelling of reactive crystallization process of lithium carbonate. *Processes* **7**, 248 (2019).

34 Dissanayake, M. A. K. L. & Mellander, B. E. Phase diagram and electrical conductivity of the Li₂SO₄-Li₂CO₃ system. *Solid State Ionics* **21**, 279-285 (1986).

35 Shin, Y.-U. *et al.* Electrochemical oxidation of organics in sulfate solutions on boron-doped diamond electrode: Multiple pathways for sulfate radical generation. *Appl. Catal. B: Environ.* **254**, 156-165 (2019).

36 Mu, X., Pan, H., He, P. & Zhou, H. Li-CO₂ and Na-CO₂ batteries: Toward greener and sustainable electrical energy storage. *Adv. Mater.* **32**, 1903790 (2020).

37 Xu, K. Interfaces and interphases in batteries. *J. Power Sources* **559**, 232652 (2023).

38 Yu, M. *et al.* Reversible copper cathode for nonaqueous dual-ion batteries. *Angew. Chem. Int. Ed.* **61**, e202212191 (2022).

39 Jiang, K., Chen, Z. & Meng, X. CuS and Cu₂S as cathode materials for lithium batteries: A review. *ChemElectroChem* **6**, 2825-2840 (2019).

40 Lu, J., Nishimura, S.-i. & Yamada, A. Polyanionic solid-solution cathodes for rechargeable batteries. *Chem. Mater.* **29**, 3597-3602 (2017).

41 Kim, H. *et al.* New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. *J. Am. Chem. Soc.* **134**, 10369-10372 (2012).

42 Wang, L. *et al.* Li-free cathode materials for high energy density lithium batteries. *Joule* **3**, 2086-2102 (2019).

43 Yu, M. *et al.* Unlocking iron metal as a cathode for sustainable Li-ion batteries by an anion solid-solution. *Sci. Adv.* **10**, eadn4441 (2024).

44 Kumar, P., Nagarajan, R. & Sarangi, R. Quantitative X-ray absorption and emission spectroscopies: electronic structure elucidation of Cu₂S and CuS. *J. Mater. Chem. C* **1**, 2448-2454 (2013).

45 Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.* **6**, 15-50 (1996).

46 Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* **54**, 11169-11186 (1996).

47 Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B* **59**, 1758-1775 (1999).

48 Blöchl, P. E. Projector augmented-wave method. *Phys. Rev. B* **50**, 17953-17979 (1994).

49 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **77**, 3865-3868 (1996).

50 Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **132**, (2010).

51 Zimmer, D. *et al.* Phase transition of tetragonal copper sulfide Cu₂S at low temperatures. *Phys. Rev. B* **96**, 054108 (2017).

52 Kim, M.-C. *et al.* Hydrogen bonding-mediated enhancement of bioinspired electrochemical nitrogen reduction on Cu_{2-x}S catalysts. *ACS Catal.* **10**, 10577-10584 (2020).

53 Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. *J. Chem. Phys.* **113**, 9901-9904 (2000).

54 Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. *Comput. Mater. Sci.* **36**, 354-360 (2006).