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ABSTRACT: Heterogeneous crystal nucleation is the dominant mechanism of crystallization
in most systems, yet its underlying physics remains an enigma. While emergent interfacial
crystalline order precedes heterogeneous nucleation, its importance in the nucleation
mechanism is unclear. Here, we use path sampling simulations of two model systems to
demonstrate that crystalline order in its traditional sense is not predictive of the outcome of the
heterogeneous nucleation of close-packed crystals. Consequently, structure-based collective
variables (CVs) that reliably describe homogeneous nucleation can be poor descriptors of
heterogeneous nucleation. This divergence between structure and nucleation outcome is
accompanied by an intriguing dynamical anomaly, wherein low-coordinated crystalline
particles outpace their liquid-like counterparts. We use committor analysis, high-throughput
screening, and machine learning to devise CV optimization strategies and present suitable
structural heuristics within the metastable fluid for CV prescreening. Employing such
optimized CVs is pivotal for properly characterizing the mechanism of heterogeneous
nucleation in metallic and colloidal systems.

Crystallization is pivotal to many natural and industrial
processes, ranging from microtubule assembly1 and cloud

microphysics,2 to the production of semiconductors,3 solar
cells,4 and pharmaceuticals.5 Nonetheless, our understanding of
its microscopic mechanism remains limited.6 As a first-order
transition, crystallization typically proceeds through nucleation
and growth, with nucleation being the rate-limiting step under
many scientifically and technologically important circum-
stances.7 Unfortunately, most experimental techniques lack
the spatiotemporal resolution necessary for probing the
nucleation mechanism. Consequently, molecular simulations
augmented with advanced sampling techniques have proven
invaluable in probing nucleation in various single-compo-
nent8−14 and multicomponent15−19 systems. Nucleation can
occur either homogeneously or heterogeneously. Homogeneous
nucleation is dominant at large thermodynamic driving forces as
it involves crossing larger nucleation barriers but is mechanis-
tically simpler, driven by intrinsic structural fluctuations in the
fluid. In contrast, heterogeneous nucleation occurs in the
presence of extrinsic impurities that facilitate freezing by
decreasing the nucleation barriers. Its mechanism, however, is
more complex, dominated by the interfacial properties of the
metastable fluid. Developing a comprehensive framework to
elucidate how such interfacial features impact the kinetics and
mechanism of heterogeneous nucleation remains an ambitious
pursuit.
The most vivid illustrations of this challenge are the Lennard-

Jones (LJ) and hard sphere (HS) fluids, classic models for
studying simple liquids. Both systems spontaneously assemble
face-centered cubic (FCC) and hexagonally close-packed

(HCP) crystals. While various aspects of both systems, including
their homogeneous crystal nucleation,20−26 have been exten-
sively explored computationally, their heterogeneous nucleation
remains surprisingly understudied, considered in only a few
publications.27−29 Here, we employ molecular dynamics (MD)
simulations, jumpy forward flux sampling (jFFS),30 andmachine
learning to unveil the complexities of heterogeneous crystal
nucleation in these systems and to demonstrate that structure-
based collective variables (CVs) that serve as reliable reaction
coordinates (RCs) for homogeneous nucleation are inadequate
for describing the progress of heterogeneous nucleation, even on
simple surfaces. These transferability issues are exacerbated on
more potent substrates and are accompanied by an intriguing
dynamical anomaly, indicating a divergence between conven-
tional structural order and dynamics and nucleation outcome.
We use machine learning to systematically evaluate physics-
based CVs and to tailor them specifically for the heterogeneous
nucleation of close-packed crystals.
Within single-component systems, crystal nucleation is

generally a single-step process, with the size of the largest
crystalline nucleus often serving as the preferred RC. First,
particles with local solid-like environments are identified on the
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basis of scalar invariants derived from Steinhardt’s bond order
parameters31 (BOPs) (see section S1.3 of the Supporting
Information). Within LJ and HS systems, the local q̅6 invariant
effectively distinguishes the fluid from plausible crystalline
phases (Figure S1). Subsequently, neighboring solid-like
particles are clustered to form crystalline nuclei. The
effectiveness of this approach, which involves multiple cutoffs
and decision points, is typically assessed using the committor
probability, pc(x), which is the probability that a trajectory
initiated from configuration x reaches the crystalline phase (see
section S1.5). A reliable CV is characterized12,24,26 by its
capacity to accurately predict pc, where pc values of configura-
tions on its level sets must be narrowly distributed.
We first evaluate the effectiveness of a CV constructed

according to these guidelines for homogeneous nucleation in the
LJ system by computing the homogeneous nucleation rate at T*
= 0.5 and p* = 032 and analyzing configurations gathered at a
milestone with 50% survival probability (see eq S3). As
illustrated in Figure 1A, the pc distribution is narrow and
unimodal, indicating the CV’s adequacy for homogeneous
nucleation. Subsequently, we assess the performance of the same
CV for heterogeneous nucleation on a simple model surface, the
001 plane of a weakly attractive flexible FCC lattice at a reduced
number density (ρn* = 1.13). Analyzing the configurations
obtained at a milestone with 50% survival probability, we
observe a significantly broader pc distribution (Figure 1B),

spanning values from 0% to 100%. This demonstrates the
inadequacy of the original CV in describing the progress of
heterogeneous nucleation.
Upon visual inspection of low-pc configurations (Figure

1D,E), we note the prevalence of fragmented crystalline nuclei
consisting of smaller islands connected by narrow bridges
composed of “low-coordinated” crystalline particles, i.e., solid-
like particles with few other crystalline neighbors. In contrast,
high-pc configurations (Figure 1F,G) lack such islands and
bridges. The inefficacy of the employed CV therefore appears to
stem from its failure to exclude such small islands by including
low-coordinate bridges within the crystalline nuclei. Upon visual
inspection of such low-coordinated particles, we find them to be
structurally crystalline (Figure S2). However, by examining
particles’ mobilities over intermediate time scales within the
caging regime (where particles move by a fraction of σ), we
observe low-coordinated solid-like particles within the first two
liquid layers to move as rapidly as, or even faster than, their
liquid-like counterparts (Figure 1M,N and Table S1). This
subtle, yet statistically significant, anomaly is absent in the bulk
(Figure S3A,B and Table S1), where crystalline particles
consistently move more slowly than their liquid-like counter-
parts, irrespective of coordination number. Essentially, a
divergence emerges between structure and dynamics. Interfacial
particles with crystalline structures exhibit behavior akin to that
of a disordered liquid. Notably, this divergence is not an artifact

Figure 1. Committor probability distributions for (A) homogeneous and (B and C) heterogeneous nucleation in the LJ system using the (B) original
and an (C) optimized CV (later shown to be optimal). The curves plotted in panels A−C are Gaussians, each with the same mean and standard
deviation as the underlying histogram. Representative crystalline nuclei, showcasing (D and E) low and (F and G) high committor probabilities. The
particles within the clusters are color-coded on the basis of the number of their solid-like neighbors. (H) Liquid density as a function of distance from
the substrate. q̅6 profile of (I) the liquid across the bulk and the first few interfacial layers, as well as different crystallographic planes of (J) FCC and (K)
HCP in the immediate vicinity of the substrate. Note that the secondary prismatic plane of HCP is not stable and undergoes partial melting. (L)
Relative lateral mobility of solid-like particles (compared to their liquid-like counterparts) within the second liquid layer over various temporal
windows. (M andO)Absolute and (N and P) relativemobilities of solid-like particles for the original (M andN) and optimal (O and P)CVs within the
first five liquid layers over a temporal window m4 / . (Q) Polymorph composition along the nucleation pathway estimated by using the original and
optimal CV.
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of the observation window and persists over extended time
scales (Figure 1L).
To enhance the effectiveness of CV, we pursue three

strategies. The primary approach involves adjusting the original
BOP cutoffs, primarily the q̅6 cutoff, motivated by our
observation that low-coordinated particles within inter-island
bridges also possess lower q̅6 values (Figure 2A). However,
identifying an alternative q̅6 cutoff systematically is challenging
due to considerable overlap between the q̅6 profiles of different
crystallographic planes of FCC (Figure 1J) and HCP (Figure
1K) and that of the first liquid layer. Consequently, we adopt two
other strategies in tandem. The second strategy, termed pruning
(Figure 2B), involves excluding any solid-like particle possessing
fewer than Np,c solid-like neighbors within a distance rp,c of the
wall. The third strategy aims to cut crystalline appendages
composed of low-coordinated solid-like particles uniformly
across the simulation box by excluding any solid-like particle
with fewer than Ni crystalline neighbors, unless one of those
possesses a minimum of Ni,m > Ni solid-like neighbors (Figure
2C). This strategy is motivated by our observation32 of
fragmented crystalline nuclei in homogeneous nucleation within
the LJ liquid. A similar strategy has been employed in ice
nucleation studies.33 All of these strategies alter only the
clustering criterion while maintaining the largest nucleus size as
the chosen CV.
Implementing these strategies requires the specificity of values

of seven distinct features. We use our physical intuition to assign
reasonable values to every feature (listed in Table 1). Using the
modified CV, a repeat rate calculation is performed. The
resulting pc distribution (Figure 1C) is notably narrower,
suggesting improved efficacy of the modified CV. Moreover, no

divergence between structure and dynamics is observed for the
solid-like particles identified using the new CV, which move
more slowly than their liquid-like counterparts regardless of
their coordination number (Figure 1O,P).
Using the optimized CV yields a modest, but statistically

inconclusive, increase in the computed nucleation rate (Table
S3). This aligns with the known robustness of FFS to suboptimal
CVs.34 However, employing the optimized CV reveals distinct
mechanistic insight. Examining configurations obtained at FFS
milestones using the (less effective) original CV leads to an
overestimation of FCC content and an underestimation of HCP
and body-centered cubic (BCC) contents (Figure 1Q). This
discrepancy arises because the islands excluded by the optimized
CV predominantly exhibit a high FCC content. Essentially,
relying on inadequate CVs may yield a flawed understanding of
the nucleation mechanism, including the size, shape, and
polymorphic composition of the critical nucleus.
The success of our three-pronged strategy raises three

important questions. First, can an even more effective CV be

Figure 2.Three-pronged strategy for constructing good RCs for heterogeneous nucleation based on (A) adjustment of BOP cutoffs, such as rc and q̅6,c,
(B) pruning of bridges within the interfacial region, and (C) removal of low-coordinated and isolated crystalline extensions. Snapshots in panels A−C
depict different renderings of the same crystalline nucleus using (A) the local q̅6 and (B and C) the number of solid-like neighbors. Highlighted
transparent ovals identify regions targeted for removal by each strategy. (D) Beeswarm plots and (E) absolute mean SHAP values for the seven features
pertinent to the implementation of strategies from panels A−C. Heat maps portraying (F) mean R2 and (G) the change in R2 ensuing from aggressive
pruning as functions of (rc, q̅6,c). Original and optimized CVs employed for panels B and C of Figure 1 are denoted by blue and red stars, respectively.
(H) SHAP value plotted vs the pruning distance cutoff. Points are colored according to their R2 value, with a color scale depicted in panel F and shared
across panels. (I) Correlation between in-sample and out-sample R2 values computed across all analyzed CVs.

Table 1. Employed Cutoff Values for the Optimized CVUsed
for Rate Calculations in the LJ and Hard Sphere Systems

cutoff LJ hard sphere

distance cutoff (rc) 1.40σ 1.47σ
q̅6 cutoff 0.330 0.375
clustering distance cutoff (rc,c) 1.30σ 1.28σ
pruning distance cutoff (rp,c) 2.00σ 2.35σ
pruning neighbor threshold (Np,c) 8 9
isolated neighbor threshold (Ni) 2 4
connection minimum threshold (Ni,m) 8 7
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constructed through an alternative combination of feature
values? Second, which of these seven features exerts a
statistically significant positive impact on CV efficacy? Lastly,
do these transferability issues pertain solely to the LJ system, or
do they extend to heterogeneous nucleation of close-packed
crystals in other systems?
To tackle the first two questions, we systematically assess the

influence of the seven features on CV performance by analyzing
a collection of configurations with diverse pc values (spanning
from 0% to 100%). More than 250 000 distinct CVs, each
representing a unique combination of cutoffs, are assessed using
the R2 values of the least-squares problem in eq S4, which
quantifies the ability of an error functional committor model to
predict individual pc values.

35 Employing a machine learning
approach,36 a random forest model is trained on 80% of the data
set, extracting Shapley (SHAP) scores for each feature across the
remaining 20%. Feature significances are then assessed on the
basis of the dispersion of SHAP score distributions illustrated in
Figure 2D. Notably, distance, q̅6, and pruning cutoffs dominate
CV performance, affirmed by their larger mean absolute SHAP
scores (Figure 2E). Specifically, rc and q̅6,c explain 30% and 61%
of the R2 variability, respectively, consistent with their pivotal
role in detecting crystallinity. The pruning distance cutoff, rp,c,
emerges as the third crucial feature, contributing 6% to data
variability, whereas other features collectively explain 3% of the
variability. Intriguingly, the associated pruning feature, Np,c,
lacks significance, indicating that removing particles with very
low coordination numbers is sufficient for improving CV
performance, while increasing the coordination threshold offers
no improvement. This aligns with our observation that only
solid-like particles with fewer than two crystalline neighbors
exhibit heightened mobility (Figure 1M,N and Table S1).
Contrary to our expectations, features linked to appendage
removal (Figure 2C) exhibit no notable importance, and neither
does using a clustering cutoff smaller than rc. These findings
underscore the vital role of feature selection in machine learning
to evaluate intuition-driven strategies for enhancing CV
performance.
If the important features are uncorrelated, examining SHAP

score distributions at different values for each significant feature
could help identify optimal cutoffs for that feature. Noticeable
correlations among rc, q̅6,c, and rp,c are, however, evident in
Figure S4, hindering the identification of independent optimal
cutoffs for each. Specifically, Rmean

2(rc, q̅6,c) (Figure 2F)
highlights strong correlations between q̅6,c and rc, indicating
the presence of a tilted and curved optimality band.
The relatively low absolute mean SHAP value for rp,c might

suggest minimal improvement from pruning, yet analyzing
SHAP values against rp,c reveals an intriguing bifurcation (Figure
2H). Pruning with rp,c ≲ 1.4σ yields consistently negative SHAP
values regardless of CV effectiveness. This cutoff aligns with the
first valley of the number density profile (Figure 1H), indicating
that pruning will enhance CV efficacy only if the first liquid layer
entirely falls within the pruning domain. This aligns with the
considerable rightward shift of the q̅6 profile of the first liquid
layer compared to the bulk (Figure 1I), necessitating its
inclusion in the pruning domain. We therefore denote pruning
with rp,c ≥ 1.45σ as aggressive. Strong correlations between rp,c
and q̅6,c, however, lead to the nonuniform efficacy of aggressive
pruning (Figure 2G), which works best in the lower-left sector of
the optimality band in Figure 2F. In other words, pruning wields
the greatest impact when the unpruned CV lacks adequate

selectivity, reinforcing CV robustness in scenarios where optimal
rc and q̅6,c values are unknown.
An inherent risk in machine learning is to conduct screening

and feature selection on nonrepresentative data sets. To
preclude this possibility, we conduct a second screening in
which each CV’s R2 is recalculated using a new set of 1000
configurations. The new R2 values exhibit a perfect linear
correlation with the older ones (Figure 2I), confirming that the
efficacies of the assessed CVs remain unaffected by the screening
data set.
Our systematic analysis confirms that the modified CV,

initially constructed on the basis of physical intuition, falls within
the optimality band in Figure 2F and within a zone where
aggressive pruning is slightly effective (Figure 2G). Hence,
enhancing its efficacy considerably with an alternative set of
feature values appears to be improbable.
Next, we explored the applicability of these findings across

various surfaces and systems. Initially, we examine heteroge-
neous crystal nucleation within the LJ liquid on a checkerboard
surface with alternating attractive and repulsive patches (Figure
S5A). Our SHAP analysis reveals similar important features,
namely, q̅6,c, rc, and rp,c (Figure S5D). Additionally, the
optimality band of the (rc, q̅6,c) space (Figure S5B) resembles
that in Figure 2F. Furthermore, aggressive pruning enhances CV
performance in the lower-left corner of the optimality band,
aligning with our prior observations (Figure S5C). These
findings validate the robustness and transferability of our
insights across diverse nucleating surfaces, including those with
significant chemical heterogeneity.
To confirm the broad applicability of these insights, we extend

our analysis to the hard sphere system, which forms close-packed
crystals identical to those of the LJ system but through a purely
entropy-driven process. Using a CV similar to the LJ system but
with a slightly different q̅6,c (Figure S1B), we compute the
homogeneous nucleation rate at a fluid packing fraction of 52%
(βP* = 14.74). By analyzing configurations with 50% survival
probability, we observe a narrow and unimodal pc distribution,
confirming CV’s efficacy for homogeneous nucleation (Figure
3A). We then consider heterogeneous nucleation on the 001
plane of an FCC lattice of hard spheres at ρn* = 1.3,
corresponding to a 2.7% lattice mismatch. Analyzing fluid
configurations using the same CV yields large crystalline nuclei
percolating across the periodic boundary (Figure 3D and Movie
S1), indicating CV’s probable inadequacy. This is confirmed by
subsequent rate calculations and committor analysis, wherein an
almost flat pc distribution is obtained for configurations with
50% survival probability (Figure 3B). Similar to the LJ system,
visually inspecting detected nuclei confirms CV’s ability to
identify genuine crystalline order (Figure 3D and Figure S6).We
also observe a similar dynamical anomaly in which low-
coordinated solid-like particles move as fast as or faster than
those detected as disordered within the second and third fluid
layers (Figure S7A,B and Table S4). Unlike the LJ system,
however, pruning alone does not prevent the detection of
percolating nuclei (Figure 3E), likely due to considerable
ordering in the first two fluid layers, which is evident from the
pronounced rightward shift of their q̅6 profiles (Figure 3G).
Considering these observations, identifying an optimal CV

solely on the basis of physical intuition seems infeasible. Thus,
we first conduct a systematic feature space analysis, screening
more than 250 000 CVs and applying machine learning to
evaluate their importance. Similar to the LJ system, q̅6,c, rc, and
rp,c are identified as pivotal features, explaining 72%, 21%, and
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5% of the R2 variability, respectively (Figure 3H,I). Strong
correlations exist among these features. Notably, the (rc, q̅6,c)
optimality band is narrower and more inclined (Figure 3J).
Significant improvements due to aggressive pruning primarily
occur in the band’s bottom-left region (Figure 3K). Using the
optimized CV eradicates the observed dynamical anomaly for
low-coordinated solid-like particles (Figure S7C,D). These
parallels with the LJ system suggest the potential universality of
these transferability issues to heterogeneous nucleation of a
close-packed crystal.
We use the top-performing CV from our analysis (given in

Table 1) for a repeat rate calculation, yielding a statistically
indistinguishable rate (Table S3). However, the pc distribution
narrows considerably for configurations with 50% survival
probability (Figure 3C), albeit not by as much as the LJ system.
This likely stems from pronounced interfacial ordering in theHS
system, which can be addressed solely through layer-specific q̅6
cutoffs. Interestingly, polymorph compositions of crystalline
nuclei exhibit stronger sensitivity to CV in the HS system. As
depicted in Figure 3L, employing the original CV leads to a 3-
fold overestimation of the FCC content (60% vs 19%) and a 2-
fold underestimation of HCP content (36% vs 74%). Akin to the
LJ system, using suboptimal CVs could misrepresent the
nucleation mechanism, erroneously indicating the formation
of FCC-rich nuclei.
These findings paint a consistent, qualitative picture. Using

CVs optimized for homogeneous nucleation to describe
heterogeneous nucleation on surfaces inducing interfacial
ordering similar to that of the target crystal appears to be futile.
Instead, it is necessary to enhance CV’s selectivity, e.g., by

adjusting BOP thresholds or pruning. Such modifications
increase the threshold for local structural coherence, countering
the premature order detection. An intriguing alternative for
achieving similar efficacy involves generalizing neighbor
averaging37 of eq S2 by defining a collection of BOPs as
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where ql(1) = q̅l. This process can be viewed as coarse graining, as
it progressively incorporates structural information from an
additional shell of nearest neighbors with each iteration.
Panels A and B of Figure S8 demonstrate that the fundamental

character of the CV family endures after coarse graining. The [rc,
q6,c(2)] domain maintains a curved, tilted optimality band (Figure
S8A), while pruning retains potency in the band’s lower-left
corner (Figure S8B). What coarse graining does, however, is to
diminish the R2’s dependence on auxiliary features as depicted in
panels A and B of Figure 4. The coarse-grained CV (Figure 4B)
exhibits reduced R2 variability compared to the standard CV
(Figure 4A), effectively reducing the significance of auxiliary
features or, equivalently, the dimensionality of the important
feature space. Indeed, our SHAP analysis reveals that q6,c(2) and rc
explain 52% and 46% of R2 variability, respectively, while rp,c’s
importance dwindles to a mere 1%. This underscores that
pruning is not the sole means of inducing structural coherence.
Despite the promise of coarse graining, however, pruning retains
a unique advantage by enhancing CV resilience against
suboptimal choices of BOP thresholds via harnessing variability.

Figure 3. Committor probability distributions for (A) homogeneous and (B and C) heterogeneous nucleation in the HS system using (B) initial and
(C) optimized CVs. The curves plotted in panels A−C are Gaussians, each with the same mean and standard deviation as the underlying histogram.
Different representations of the same fluid configuration using the original CV (D) without and (E) with aggressive pruning. (F) Number density
profile as a function of the distance from the substrate. (G) q̅6 profiles of different fluid layers. (H) Beeswarm plots and (I) absolute mean SHAP values
for the seven features considered in this work. Heat maps illustrating (J) mean R2 and (K) change in Rmean

2 after aggressive pruning across the (rc, q̅6,c)
space. (L) Polymorph composition along the nucleation pathway estimated using the original and the optimal CV.
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These examples highlight the challenging nature of studying
heterogeneous crystal nucleation, requiring customization and
optimization of structure-based CVs through resource-intensive
committor analysis and high-throughput screening. While
feasible for simple model systems, this workflow might become
prohibitively costly for complex systems. Therefore, identifying
relevant mechanical observables within the metastable fluid for
prescreening viable CVs could be extremely invaluable.
One such potential candidate is the solid fraction, represent-

ing the portion of interfacial particles labeled as solid-like by the
CV.Heterogeneous nucleation occurs due to localized structural
fluctuations at the interface, therefore necessitating non-zero
solid fractions. However, an excessive solid fraction can hinder
CV effectiveness, causing the detection of percolating nuclei
similar to those depicted in panels D and E of Figure 3. Panels
C−E of Figure 5 illustrate that each system and fluid layer
features an optimal solid fraction for the most efficient CVs.
However, this optimum varies by several orders of magnitude,
depending on the system specifics, the distance from the
interface, and the extent of coarse graining. This variation
underscores that the solid fraction, while seemingly intuitive,
cannot be used for robust prescreening.
Motivated by the localized nature of nucleation, alternative

observables can be devised from solid−solid correlation
function gss(r), the probability that a particle at a lateral distance
r from a solid-like particle is also solid-like. Panels A and B of
Figure 5 depict representative gss(r) profiles for the first three
interfacial layers of the hard sphere fluid, computed for a poor
(Figure 5A) and effective (Figure 5B) coarse-grained CV.
Notably, as r → ∞, gss(r) converges toward the solid fraction
within the corresponding layer. To capture relevant local
correlations, we compute gss,σ, the average peak magnitude at r≈
σ, mirroring the first in-layer nearest neighbor shell. gss,σ ≈ 1 will
imply that nearly every first nearest neighbor of a solid-like
particle will also be solid-like, while gss,σ ≈ 0 will indicate
complete isolation of solid-like particles. Both limiting scenarios

are inconsistent with the spatially localized nature of nucleation.
Therefore, a nonmonotonic relationship exists between Rmean

2

and gss,σ (Figure 5F−H) akin to the solid fraction, yet the
optimal gss,σ values exhibit less variability within layers and across
systems and CV variations, hovering within the range [0.1−0.5],
making it a better heuristic for CV prescreening. Further studies
are needed to validate their broad applicability.
The findings herein prompt a profound paradox:Why do CVs

capable of detecting crystalline order fail in predicting
heterogeneous nucleation outcomes? A plausible avenue for
reconciling this conundrum involves acknowledging that
substrates that induce crystalline motifs within the interfacial
fluid stabilize them solely within a finite-thickness region near
the interface, even if such domains structurally resemble the
crystalline phases assembled in the bulk. For nucleation to reach
fruition, these ordered motifs must extend beyond their regions
of stability and into the bulk via further structural fluctuations.
Consequently, while nucleation is facilitated by their presence,
its success relies on “orthogonal“ structural fluctuations
initiating at such pre-ordered islands.
This framework provides a coherent rationale for the CV

refinement strategies employed here. Enhancing the coherence
of the underlying BOP, via adjusting cutoffs or coarse graining,
ensures the inclusion of only the pre-ordered domains
surrounded by a corona of extending ordered patterns. This is
quantitatively confirmed by observing a direct relationship
between ⟨q̅6⟩ and the number of solid-like neighbors (Figure
S9). Similarly, pruning excludes bridges (or narrow islands) with
a limited potential for fostering successful structural fluctuations.
In light of this conceptual picture, a more intricate procedure

can be formulated for constructing refined CVs, starting with
mapping a substrate’s structural imprints within the fluid.
Subsequently, regions exhibiting a consistent crystalline order
could be permanently excluded from clustering. This approach

Figure 4.Heatmaps ofRmax
2 −Rmin

2 across the (A) (rc, q̅6,c) and (B) [rc,
q6,c(2)] spaces for regular and coarse-grained CVs, respectively.

Figure 5. gss(r), the solid−solid correlation function, computed for the
first three interfacial layers of the hard sphere fluid using (A) a poor and
(B) an effective coarse-grained CV. (C−E) Solid fractions and (F−H)
mean magnitudes of the 1σ peak in the (C and F) LJ and (D, E, G, and
H) hard sphere systems. For the hard sphere system, panels D and G
depict the regular CV and panels E andH depict the coarse-grained CV.
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would require a more extensive sampling of the metastable fluid.
Furthermore, its rigorous implementation is possible only if the
substrate induces permanent or fully wetting crystalline domains
and becomes challenging when pre-ordered motifs are wide-
spread but not all-encompassing, as seen for the surfaces
considered here.
The observed pre-ordering in our study should not be

misconstrued as surface freezing,38 a phenomenon in which a
finite-thickness crystalline film stabilizes at the interface above
the melting temperature. This phenomenon typically leads to
nearly barrier-free heterogeneous nucleation, which is not
observed here. Furthermore, although interfacial solid fractions
here are relatively large, they never approach unity, which is what
would be expected in surface freezing.
Recently, machine learning methods have attracted attention

for constructing CVs for rare events,39,40 including nucleation.41

The success of our physics-based approach in deriving effective
CVs suggests limited potential improvements from the use of
such strategies. However, one cannot dismiss their utility for
surfaces with complex geometries and chemistries.
Amethodwidely used for computing nucleation rates recently

is seeding,15,42,43 in which crystalline nuclei of varying sizes are
introduced into the simulation box to determine the critical
nucleus size based on their growth or shrinkage during MD
simulations. Nucleation rates are then estimated by applying the
classical nucleation theory (CNT). Seeding has been success-
fully applied across various systems15,44,45 and has recently been
extended to address heterogeneous nucleation.46 Its success,
however, relies both on CNT’s validity and the availability of a
suitable measure of nucleus size. Our findings caution against
employing seeding for heterogeneous nucleation of close-
packed crystals using traditional CVs, which might massively
overestimate critical nucleus sizes and hence underestimate
nucleation rates by orders of magnitude. Similar concerns apply
to techniques such as umbrella sampling47 and metadynamics48

that are also highly sensitive to CV quality.
Traditional CVs can also fail in accurately describing

homogeneous crystal nucleation from supersaturated solutions,
as it is widely reported that the largest nucleus size is not always a
suitable CV in that context.19,49 This serves as another instance
of divergence between traditional structural order and the
nucleation outcome. In multicomponent systems, noticeable
pre-ordering can arise, where solute aggregates with varying
degrees of order will act as nucleation precursors. (Similar pre-
ordering has also been reported in homogeneous nucleation
within some metallic12 systems.) This resembles the interfacial
pre-ordering observed here, with the distinction that the latter is
confined to the interface and does not typically require any
barrier crossing. Therefore, refining the nucleus size definition,
e.g., via a stricter crystallinity criterion, could yield robust CVs
for both homogeneous and heterogeneous nucleation within
mixtures and solutions.
Heterogeneous nucleation of tetrahedral crystals, such as ice,

appears not to be affected by the transferability issues discovered
here. CVs developed for homogeneous ice nucleation can be
generally used in heterogeneous nucleation studies.50,51 Because
of directional interactions such as hydrogen bonding, tetrahedral
liquids are less prone to excessive interfacial ordering, and the
emerging domains are less likely to resemble bulk crystals. CV
refinement is therefore unnecessary, except in extreme cases of
interfacial ordering.52 Further studies are needed to assess the
true prevalence of CV breakdown in such systems.

In summary, our study highlights the limitations of traditional
CVs for studying heterogeneous nucleation of close-packed
crystals, especially with surfaces that induce significant pre-
ordering in the fluid. We reveal an intriguing dynamical anomaly
wherein the mobility of low-coordinated solid-like particles
exhibit is higher than that of their disordered counterparts over
intermediate time scales. To address this limitation, we
customized conventional CVs, employing committor analysis
and machine learning to systematically evaluate the associated
feature space. Additionally, we introduce physics-based
interfacial heuristics for CV pre-screening. These insights are
critical for accurately simulating heterogeneous nucleation
across different systems.

■ METHODS
All MD simulations are conducted using LAMMPS53 within the
isothermal−isobaric ensemble, with temperature and pressure
controlled using the Nose−́Hoover thermostat54 and the
Parrinello−Rahman barostat.55 In the LJ system, interactions
between liquid and wall particles are specified by the LJ and
Week−Chandlers−Andersen56 (WCA) potentials. Hard
spheres are represented using the pseudohard sphere
potential.57 To compute nucleation rates, we employ jFFS,30

utilizing the size of the largest crystalline nucleus as the order
parameter. To mitigate finite size effects in heterogeneous
nucleation,58 we choose system sizes conservatively, conducting
simulations involving tens of thousands of liquid particles. CVs
are assessed via a weighted mean squared error (MSE)
approach35 utilizing an error functional committor model
inspired by earlier studies.59,60 We explain our preference to
use MSE, instead of alternatives such as likelihood max-
imization12,24,26,60−62 in detail in section S2. Feature selection
analysis is conducted employing random forest regression63

followed by the estimation of Shapley scores.36 For
comprehensive information concerning system setup, MD
simulations, rate calculations, CV screening, and feature
selection, see the Supporting Information.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpclett.3c03561.

Pre-ordering of the metastable hard sphere fluid prior to
nucleation (Movie S1) (MOV)
Additional methodological details, including MD simu-
lations and system setup, bond order parameters and rate
calculations, CV screening and feature selection, mobility
analysis, and polymorph characterization; a discussion of
maximum likelihood estimators; Figures S1−S12; and
Tables S1−S4 (PDF)
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