Downloaded via YALE UNIV on May 30, 2024 at 19:16:53 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

‘ I ‘ Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Estimating Position-Dependent and Anisotropic Diffusivity Tensors
from Molecular Dynamics Trajectories: Existing Methods and Future
Outlook

Tiago S. Domingues, Ronald Coifman, and Amir Haji-Akbari*

Cite This: https://doi.org/10.1021/acs.jctc.4c00148 I: I Read Online

ACCESS | il Metrics & More | Article Recommendations

ABSTRACT: Confinement can substantially alter the physicochemical properties of
materials by breaking translational isotropy and rendering all physical properties position-
dependent. Molecular dynamics (MD) simulations have proven instrumental in
characterizing such spatial heterogeneities and probing the impact of confinement on

Ad hoc
extensions of

materials’ properties. For static properties, this is a straightforward task and can be Estimating
achieved via simple spatial binning. Such an approach, however, cannot be readily applied position-

to transport coefficients due to lack of natural extensions of autocorrelations used for dependent
their calculation in the bulk. The prime example of this challenge is diffusivity, which, in : diffusivity

the bulk, can be readily estimated from the particles” mobility statistics, which satisfy the
Fokker—Planck equation. Under confinement, however, such statistics will follow the
Smoluchowski equation, which lacks a closed-form analytical solution. This brief review
explores the rich history of estimating profiles of the diffusivity tensor from MD
simulations and discusses various approximate methods and algorithms developed for
this purpose. Besides discussing heuristic extensions of bulk methods, we overview more
rigorous algorithms, including kernel-based methods, Bayesian approaches, and operator discretization techniques. Additionally, we
outline methods based on applying biasing potentials or imposing constraints on tracer particles. Finally, we discuss approaches that
estimate diffusivity from mean first passage time or committor probability profiles, a conceptual framework originally developed in
the context of collective variable spaces describing rare events in computational chemistry and biology. In summary, this paper offers
a concise survey of diverse approaches for estimating diffusivity from MD trajectories, highlighting challenges and opportunities in
this area.

Operator
discretization
methods

1. INTRODUCTION impacted by confinement, transport properties stand out
prominently, as properties such as diffusivity,'” viscosity,'>'*'¢
and thermal'® and ionic'”*® conductivity experience sub-
stantial alterations under confinement.

Since their advent in the mid-20th century, molecular
simulations have emerged as indispensable tools for studying
confined states of matter,”> and computational studies
characterizing the position dependence of physical properties
within confined materials can be traced back to 1970s.”**" Tt
is fairly straightforward to determine spatial profiles of the
thermodynamic and structural properties that can be
unambiguously computed for a particular region within the
simulation box from a single snapshot. This is simply achieved
by partitioning the simulation box into suitable spatial bins and

Confinement refers to situations in which a material is
encapsulated by one or more physical interfaces, and can
trigger substantial changes to its physical properties. Such
changes arise due to the breaking of both translational and
rotational symmetry, which renders all physical properties
functions of position. Such position dependence becomes most
pronounced within an interfacial region that has a character-
istic thickness of a few diameters of the material’s building
blocks. Whenever the confinement length scale, ie., the
smallest separation between confining interfaces, is also
comparable to the interfacial length scale, i.e, the thickness
of the interfacial region, materials’ properties exhibit the most
pronounced deviations from the bulk." Depending on the size
of these building blocks and the range of their interactions with
the interface, such deviations can be observed at different
length scales. Confinement, therefore, is a potent means of
fine-tuning the thermodynamic,z_8 structural,””™'? and trans-
port' ™" properties of materials, while also influencing the
kinetics and mechanisms of rare events.”'”>’ Among the
spectrum of physical properties that can be substantially
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estimating the mean of the quantity of interest within each bin
via a combination of time- and ensemble-averaging. However,
applying this approach to transport properties is not feasible, as
those are typically computed using autocorrelations of
appropriate mechanical observables, and autocorrelations of
such nature cannot be unambiguously defined for open
systems. Therefore, generalizing the linear response formal-
isms, originally devised for translationally isotropic materials,
to confined materials is a nontrivial undertaking.

This review is primarily dedicated to exploring method-
ologies for computing spatial profiles of transport properties
from molecular simulations of confined materials, with a
particular emphasis on diffusivity—arguably the most widely
computed transport property in molecular simulations. Indeed,
reports of self-diffusivity calculations can be traced back to the
early days of molecular simulations, such as Rahman’s
pioneering work in 1964.”> We first describe the fundamental
framework employed for computing transport properties in the
bulk, and discuss the challenges of generalizing such frame-
works to confined geometries. We then overview different
classes of strategies aimed at effectively estimating position-
dependent anisotropic diffusivity profiles.

This paper is organized as follows. In Section 2, we provide
phenomenological definitions of transport coefficients, over-
view the computational methodologies employed for their
estimation from MD, and discuss the specific challenges
associated with estimating them in confined geometries.
Section 3 describes ad hoc extensions of classical methods,
with brief discussions of their plausible theoretical foundations.
The subsequent sections navigate more rigorous approaches,
including kernel-based methods (Section 4), Bayesian
techniques (Section $), and operation discretization ap-
proaches (Section 6). A comprehensive overview of methods
based on applying biasing potentials to tracer particles is
presented in Section 7. In Section 8, we shift focus to using
mean first passage time and committor probability profiles to
estimate diffusivity, methodologies developed in the context of
the mathematically associated problem of characterizing
diffusive behavior along collective variables employed for
describing rare events. Finally, Section 9 is dedicated to
providing a broader perspective and outlining potential
avenues for future exploration.

2. ESTIMATING TRANSPORT PROPERTIES FROM
MOLECULAR DYNAMICS TRAJECTORIES

2.1. Estimators in the Bulk. Transport coefficients are
phenomenological constants that establish a connection
between macroscopic fluxes of physical properties, and external
fields or thermodynamic driving forces. More precisely,
suppose a system simultaneously exposed to a sequence of
sufficiently small gradients, VX, VX, -, VX,. Generally, there
is always a natural (conjugate) flux associated with each such
gradient. For instance, a temperature gradient will result in a
heat flux if no other gradient is present. However, in the
presence of multiple gradients, the flux associated with the k-th
property, Ji, will, in principle, be linked to all other gradients
through the following relationship:

r
), = -2 Ly VX,
j=1 )

Here, L;;’s, which are tensors of appropriate ranks, are referred
to as transport coefficients. Note that for every j and k, L = Ly

according to Onsager’s reciprocity principle.”” At a micro-
scopic level, these coefficients can be viewed as rates at which a
system responds to microscopic fluctuations.

While transport coeflicients can, in principle, be defined for
any pair of fluxes and driving forces, certain transport
coeflicients hold particular significance for physicists and
materials scientists, and are widely reported in both
experimental and computational studies of materials. One
such transport coeflicient is diffusivity, which is historically
defined for multicomponent systems. More precisely, D, the
diffusivity of component i, establishes a connection between its
diffusive flux, J;, and its concentration gradient:

)= -D;-V¢,

In general, D; is a second-rank symmetric positive-definite
tensor, but in the case of bulk simple liquids, it often exhibits
isotropic behavior. Similarly, the self-diffusivity of a pure
material can be defined as the proportionality factor relating
the flux and the gradient of the conditional probability of
particle displacements. Serving as a proxy for the rate of
structural relaxation in materials, self-diffusivity is well-defined
but is difficult to measure experimentally. Nevertheless, it
stands as one of the most widely computed transport
coeflicients in molecular simulation studies.

Analogous constitutive relationships govern the relationships
between heat flux, q, and temperature gradient, VT, as well as
electric current, i, and electrostatic potential gradient, V¢:

q=-kVT
i=-06-Vo

Here, k and o, both second-rank symmetric positive-definite
tensors, denote the heat conductivity and electrical conductivity,
respectively. Finally, a linear relationship can also be postulated
between the stress tensor, 7, and the symmetric part of the
shear rate tensor, Vv + Vv':

6vk 01),
Ox;  Ox

T = M

The proportionality constant is referred to as viscosity and is
naturally a fourth-rank tensor."'

In principle, all transport coefficients can be estimated from
nonequilibrium MD simulations** in which an external
driving force, such as temperature gradient, shear deformation,
or electric field, is applied to the system. The resulting
macroscopic fluxes can then be readily computed, providing a
means for estimating the relevant proportionality con-
stants."*~* Conversely, a constant-flux boundary condition
can be imposed on the system, with the transport coefficient
estimated from the computed conjugate gradient.""’ The
major limitation of all such nonequilibrium approaches is the
substantial magnitudes of the necessary driving forces (or
fluxes), which often surpass their experimental counterparts by
several orders of magnitude. This raises profound questions
regarding the validity of the linear flux-driving force relation-
ships under such extreme conditions. It is therefore unclear
whether the proportionality constants estimated from such
simulations will be applicable to experimentally relevant
conditions.

An alternative approach, conceptually akin to nonequili-
brium techniques in the limit of small gradients, involves
utilizing linear response theory™® to express transport

https://doi.org/10.1021/acs.jctc.4c00148
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coeflicients in terms of autocorrelations of microscopic fluxes.
Linear response theory quantifies a system’s response when its
Hamiltonian is perturbed from equilibrium by a small external
field, ie., H(P, Q t) =
= (qy 9 - qn) and P = (py, py -, pn) correspond to the
positions and momenta of the constituent particles, respec-
tively. The temporal evolution of the expected value of another
mechanical observable, B(P, Q), will be given by

(AB(1)) = f_ ;”f(t’)d)ﬂg(t— t)dt' @

Here, AB(t) = B(t) — <B>‘Heq’ and ¢,,(7) can be inter-

preted as a response function and is given by
bag(7) = ﬂ(B(T)j{(O))weq (3)

For any specific transport coefficient, an external perturbation
can be applied to establish a suitably small macroscopic
gradient within the system. Equations 2 and 3 can then be
employed to relate the corresponding flux of interest to the
gradient. This approach leads to a collection of equations
known as Green—Kubo relationships,”"*” characterizing trans-
port coeflicients in terms of autocorrelations of mechanical
observables.

As an illustration, consider self-diffusivity, where a plausible
perturbation to the Hamiltonian can be formulated as

N
=-aw- ) q,
; )

Here, a represents a fixed force pulling the particles along a
unit vector w, resulting in a net flux of particles along w. The
response function for momentum flux along another unit

AP, Q)

vector u, B(P, Q) = “'Zill’p can be enumerated using eq 3:

bs®) ==L 3 wTp(0p! ()

ij=1

)

@ —mafu’ < z Vi(t)V,T(O) >W

© —mNafu” (v(t)v7(0))w

Here, (a) follows from the fact that momentum degrees of
freedom are uncorrelated, while (b) results from the
indistinguishability of particles. This expression can be utilized
to evaluate the mean velocity along the unit vector u:

lim u’(v(t)) = —ap Aqu

t— 00

(v(£)vT(0))wdt
This observation allows us to compute u’Dw, given by’

Tiv(oo o .
aDw = — <a(ﬂ )>=A a

Choosing u and w from among the basis vectors in Cartesian
coordinates yields the well-known relationship:

D= /0 ” (v(6)vT(0))dt

(v(£)v'(0))wdt

©)

where the integrand is typically referred to as the velocity
autocorrelation function (VACF). Similar expressions can be

‘7‘{eq(P, Q) — F(t)A(P, Q). Here, Q

derived for other transport coefhicients. For instance, the shear
viscosity tensor can be estimated from>’

V 00
Hoprs = kB_T fo (67,5(t)57,5(0) ) dt ©

where 7 is the second-rank stress tensor computed from the
virial relationship,”* and 87 = 7 — (7). Likewise, thermal
conductivity can be related to autocorrelations of heat flux:>

(1)J; (0))dt

(7)

with the instantaneous heat flux, J;, defined as,

_d§,
10 = g L0 o

Here, €,(t) is the sum of the kinetic and potential energy of
particle i. Finally, electric conductivity can similarly be
obtained from autocorrelations of the electric current:>

kTV/'oo»m»m o

with electric current, J,, given by J, = 3 N 1qv;.

A conceptually related class of relationships, developed by
Helfand,”” estimates transport coefficients through the
asymptotic slopes of time- and ensemble-averaged generalized
displacements. These displacements are time integrals of
microscopic fluxes. The most well-known example is the
Einstein relationship,”® which links diffusivity to the asymptotic
slope of mean-squared displacement (MSD):

D = lim <[1‘l(t) - ri(O)][ri(t) - l'i(o)]T>
S 2t (10)

Helfand>” expanded upon this approach by linearizing the
corresponding conservation laws and solving them over an
infinite domain. When it comes to the transport of linear
momentum, viscosity can be expressed as

N
. 1
Hypp = lim 2thTV< Z 1, (Or5(8) = B, (0)1;(0)]

[mu>xo—p<mamﬂ>

(11)

Similar expressions can be obtained for other transport
coefficients. For instance, heat conductivity is given by’

k = Lm ([h(t) — h(0)][h(t) — h(0)]")
t—o0 2th T (12)

Here, h(t) = [ {J,(7)dr is the integrated heat flux where J;,(7)
is defined by (8).

The Green—Kubo formalism is commonly regarded as the
primary method for estimating transport coefficients from MD
trajectories. In contrast, the Helfand approach is more
frequently applied in the estimation of diffusivity only and is
less commonly employed for other transport coeflicients. Its
limited usage can be partly attributed to the challenges
associated with its proper implementation, particularly when
dealing with periodic boundary conditions, as highlighted by
Viscardy and Gaspard.*’

2.2. Challenges in Confined Geometries. Under
confinement, all physical properties become functions of

https://doi.org/10.1021/acs.jctc.4c00148
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position. Moreover, transport coefficients also become
anisotropic, making it necessary to account for their tensorial
nature. (A conceptually related dependence on pair separation
can be realized even in translationally isotropic systems, e.g., in
the case of the pair distance diffusivity tensor,”" although such
quantities do not strictly depend on the position of the pair in
the Cartesian space). The main challenge in computing them,
however, lies in the absence of well-defined autocorrelation-
based estimators for open systems. Specifically, spatial profiles
of mechanical observables that are unambiguously defined for
arbitrary regions within the simulation box can be accurately
estimated using spatial binning. For instance, the spatial profile
of a mechanical observable R that is well-defined for every
particle can be expressed as

N RS(r, —r
) = (iR =)
(Xis, 6(x;, — 1)) (13)

In practice, R(r) is estimated by partitioning the simulation
box into nonoverlapping bins and determining the mean of
R(r) within each bin. For ergodic systems, R,, the average of
R over the k-th bin, can be estimated as

R = fotmRi(t))(k[ri(t)]dt
JAPATOIL o

where y.(-) is the characteristic function of the k-th bin.
However, there exists no natural extension of (14) for
quantities such as MSD or VACF, which are autocorrelations
of mechanical observables. This limitation arises due to particle
exchange among bins and the ambiguity in quantifying the
contribution of exchanged particles to the autocorrelation
associated with a specific bin. As a consequence, method-
ologies discussed in Section 2.1 are only robustly applicable in
the bulk. Moreover, the statistical behavior of microscopic
fluxes in confined geometries, such as particle mobilities,
diverges significantly from established conservation laws valid
in bulk systems. In the case of self-diffusivity, for instance, the
self-part of the van Hove correlation function,”> G(r, tlr,, 0),
satisfies the Fokker—Planck equation®* in the bulk:

9G, = V. [D-VG]
ot ¢ (15)

However, under confinement, both diffusivity and equilibrium
density become position-dependent, and G(r, tlry, 0) will
satisfy the Smoluchowski equation:®°

aGS _ . . _ +
—* = VAID(x)-(VG, + fGVF] = LiG, o

Here, 7(r) = —f ' In p,(x) represents the free energy profile

wherein py(r) denotes the number density profile. Unlike eq
15, which possesses straightforward analytical solutions in
simple geometries, eq 16 lacks a closed-form solution.
Consequently, it is not trivial to extract position-dependent
diffusivity tensors from MD trajectories. The remainder of this
review is dedicated to a comprehensive discussion of various
numerical approaches developed for tackling this nontrivial
task.

3. AD HOC EXTENSIONS OF CLASSICAL METHODS

As discussed above, well-established methodologies based on
MSD or VACF cannot be readily applied to confined
geometries since the Smoluchowski equation lacks a simple
analytical solution. Nevertheless, many researchers have still
presumed the local validity of such formalisms, and have
accordingly devised ad hoc extensions of MSD and VACEF for
the purpose of estimating position-dependent diffusivities. This
section is dedicated to a comprehensive discussion of such
efforts, including the common practices and conventions
underpinning such ad hoc extensions. Moreover, we discuss the
merits and limitations of the theoretical arguments that could
be made for making such ad hoc frameworks more rigorous.

3.1. Ad Hoc Mean Squared Displacements. As
discussed in Section 2.2, it is not feasible to analytically
establish a linear relationship between the asymptotic slope of
a localized notion of MSD and local diftusivity. Nonetheless,
this has been the most widely adopted approach in the
molecular simulations community for estimating position-
dependent diftusivity, wherein ad hoc localized notions of MSD
are constructed, and local diffusivity is extracted through a
linear regression between local MSDs and the observation
window (i.e., the time lag). As an illustration, in the case of
one-dimensional confinement along the z axis, a lateral MSD
for bin i can be formulated as

Mz, t) = ([(xq, — xr)z + ()’H_T - )’T)Z]
Elz(t )<y <inil)e (17)

Here, &[2z(t')] specifies the weight assigned to a particle’s
contribution to the ad hoc MSD of bin i, based on its trajectory
z(t") over the time interval 7 < #'< t + 7. The simplest choice
of &[] is given by

&lz(t)] = x(z,) (18)

wherein y,(+) is the characteristic function of the i-th bin. In
other words, eq 18 only allows particles that are within a
particular bin at the beginning of an observation window to
contribute to the local MSD of that bin.®*®” However, this
straightforward approach can lead to significant errors over
extended timeframes, as particles originating from bin i may
travel to distant bins. To address this issue, alternative
definitions have been proposed. For instance, some authors
use the average z along z(t') to allocate the particle to a
specific bin.®® More restrictive definitions, such as only
including particles present within the bin at both the beginning
and the end of the observation window,”*~”" or requiring the
trajectory to remain within the bin throughout the observation
window,”>”* have also been employed.

Despite inherent limitations of such ad hoc approaches, such
localized notions of MSD can be modified in creative ways to
yield more realistic proxies for position-dependent dynamics. A
notable example is the approach proposed by Liu and Berne,””
who approximate lateral diffusivity as

M(zi) t)
D,=D, 8 ————
» 4tP(t) (19)

Here, M(z, t) is a localized MSD as in eq 18, with the
convention that the trajectory should remain within the same
bin throughout the entire time interval. Additionally, P(t)
denotes the survival probability, ie., the probability that a

https://doi.org/10.1021/acs.jctc.4c00148
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particle starting within the i-th bin will still remain in that bin
after time t.

Another approach, akin in spirit, is proposed by Nagai and
Okazaki,”* wherein a biasing potential is introduced, which is
flat within a designated spatial bin but becomes strongly
repulsive outside the bin. The biased Hamiltonian is then
employed to launch MD trajectories from which the localized
MSD, Mgg(t), is computed, with "FB” denoting the “force-
biased” nature of these simulations. The authors argue that the
distortion introduced within the MSD due to force biasing is
independent of the magnitude of the local diffusivity, and is
instead determined by a geometric factor:

MFB(T)

G(r) = M)

Here, M(-) is the unbiased MSD in the bulk, 7 = tDy/
represents dimensionless time, and M = M/I; corresponds
to dimensionless MSD. After determining the geometric factor,
the diffusivity within each bin can be computed by iteratively
solving the following equation:

M
7”3”“’0_)2 = 2dD(r)t + C
g[tD(ro)lo ] (20)

wherein C is a constant corresponding to the nonzero intercept
of MSD.

While diffusivity profiles obtained from these ad hoc
approaches serve as semiquantitative proxies for spatial
dynamic heterogeneities in confined materials, they do not
strictly align with the Smoluchowski equation in the sense that
the mobility statistics implied by these approaches, in
accordance with (16), may not necessarily match actual G(r,
t) obtained from MD simulations. Additionally, these methods
provide only lateral components of the diffusivity tensor. There
have been attempts to overcome this latter limitation, e.g., by
employing dual simulation approaches for estimating the
normal component of the diffusivity tensor, as demonstrated
by Piu et al.’”> Finally, the ad hoc MSDs do not capture
diffusive behavior over extremely long time scales due to
interbin mixing’® (Figure 1). Consequently, fitting procedures
must be constrained to intermediate time scales to yield
reliable estimates.

106 T T T T :

— z/oaa=1.0

104

S 102
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=
100 F
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1072 1071 10° 10! 102 103 10%
t

Figure 1. Breakdown of linear scaling of the ad hoc MSD with time
for MSDs computed at different distances from the substrate within a
Kob—Andersen”” liquid. (Reprinted from ref 70 with the permission
of AIP Publishing).

While ad hoc definitions of MSD may be heuristic in nature,
they possess inherent fundamental merit. Specifically, the
Smoluchowski equation can be readily reformulated as

dp

P V) + VDL, 9l 0) = o~ )

(21)
Here, g and D represent the drift and diffusivity profiles,
respectively, and are related to the formal solution of (21) via

75,76 .
Kramers—Moyal relations:

u(s) = Tlirg % f(r — s)p,(xls)dr .

D(s) = TlinO1+ i f(r —s)(r — s)TpT (rls)dr (22b)

Given the interpretation of p.(rls) as a probability density,
(22a) can be readily recast as

X,,. - X
”(s) — hm+ < t+7 t>
=0 T X,=s (23a)
D(s) = lim (Kise = X) Ky = X))
r—0" 2T

X,=s (23b)

Therefore, local diffusivity can be approximated via the
following finite difference expression:

<(Xt+r B Xt)(Xt+r - Xt)T>
2T

D(s) # D'(s) =

X=s (24)

Likewise, it is possible to propose a finite-z estimator for the

drift p:

wo) w () = T =X

X,=s (25)

Here, the time scale 7 is system dependent, and should be
chosen in such a manner that single-particle trajectories behave
diftusively at and beyond 7. Notably, eq 24 bears resemblance
to the earlier ad hoc MSD definitions, therefore belonging to
the broad category of Helfand approaches. A crucial distinction
lies in the Helfand approach’s consideration of the limiting
slope of MSD at 7 — oo to ensure capturing long-term
diffusive behavior. In confined systems, it is instead imperative
to select a 7 that is as small as possible in order to avoid
interbin mixing. A large 7 will introduce considerable
discretization errors, compromising the spatial resolution of
diffusivity profiles. Thus, selecting an optimal 7 is pivotal to
preserve accurate data without loss due to discretization errors.
For systems that behave diffusively across all time scales, 7 can
be made as small as a single time step. MD trajectories,
however, are only diffusive beyond the caging regime, and as
such there is a strict lower bound on the 7 that can be used in
(24). (An operational procedure for the selection of 7 is
provided in Section 4.)

To comprehend the impact of time discretization introduced
by a nonzero 7, consider the formal solution of eq 16,

expressed as p (ylx) = etfy5(y — x). This solution allows the

reformation of D,(x) as follows:

https://doi.org/10.1021/acs.jctc.4c00148
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D) == [y =)0y = 97 56(y —x)dy

= % fetLY[(Y - x)(y — 0)'15(y — x)dy

o -1
f [Z TTLT,[(Y - x)(y —%)"15(y - X)}dy

I=1

where L, is the operator adjoint to the Li of eq 16 under the

standard L* inner product. Notably, the I = 1 term upon
integration precisely yields D(x), resulting in

D'(x) =D(x) +
o -1

f IZ Ly -0 - 018y - X)}dy

o U

The second term on the right-hand side represents an error
term, which vanishes as 7 — 0*. For nonzero 7, this expression
serves as a foundational reference to devise correction schemes
aimed at mitigating implicit mixing effects inherent in the error
term above. For instance, it has been demonstrated that in one
dimension, this series can be approximated to quadratic order

78,79
as’ ?

Xige — Xf)'Xt=x = tu(x) +

%[ﬂ(x)#’(x) + D(x)u" (x)] + O(=)

(26a)
(Xpgr = X)Xy — Xt)T>|Xt:x = 27D(x) +
(%) + [u(x)D()] + D(x)[D'(x) + u(x)]'}
+ o(z%) (26b)

Assuming that all derivatives of u(x) and D(x) are negligible
leads to the following simplified expressions:

Xigr — Xf>|xt=x = wu(x) + 0(z°) (27a)

<<Xt+r - Xt)(Xt+r - Xf)T)lXFx
= 2tD(x) + v’ (x) + O(z%) (27b)
Note that (27b) can be readily rearranged as

((AX,, — wu(x))(AX, . - Tﬂ(x))T>IXt=x

= 2:D(x) + O(7%) (28)

wherein AX,, = X,,, — X,. It must be noted that the left-hand
side of (28) constitutes a covariance of displacements. The
ability to estimate diffusivity from computing a local covariance
matrix suggests that the probability density function of X, a
particle’s position at time 7, can be approximated as

X, ~ N(l'o + Tﬂ(ro)r 2TD("O)) (29)

wherein 1, is the particle’s position at t = 0, and N(g, X) is a
multivariate Gaussian distribution with mean v and covariance
matrix X. Indeed, eq 24 has been emgloyed for estimating
lateral diffusivity of water near interfaces,” as well as diffusivity
along collective variables (CVs) employed in protein folding

simulations.®""*” Interestingly, it was shown by Hinczewski et
al.*” that even for collective variable spaces, the estimated
diffusivity is acutely sensitive to 7. A common st1‘ategyg3_85 in
protein folding simulations involves using eq 29 to fit
Gaussians into empirical histograms obtained around a certain
point but at different times, and use the following expression to

estimate diffusivity,
(A, - o*(A,)
2(r, — 1)

where A; is a random variable describing the state of the
system (within the CV space) at time t. In the limit of Az = 7,
— 7, = 0%, it can be demonstrated that

Do (20) = [ D, ()2 o

A

Drl,rz(/lo)

D(4,) ~
(4o) (30)

where p, denotes the solution of the Smoluchowski equation in
the collective variable space. Methods designed with this
specific application in mind will be detailed in Section 8.

3.2. Ad Hoc Velocity Autocorrelation Functions. In
confined geometries, suitable ad hoc definitions of VACF can
be devised in a fashion similar to MSD.”**® The local
diffusivity within bin i can then be evaluated as

+oo
D = f C, (t)dt
0
with C,(t), the localized VACF defined as

C,.(t) = (v(t + D)WV (D)E[r(t) <y <rpi])r

Here, £[r(t')] serves a similar role as in eq 17.

It is crucial to highlight two notable differences between the
ad hoc extensions of MSD and VACEF. First, we expect ad hoc
estimates of local diffusivity through VACEF to exhibit reduced
susceptibility to interbin mixing. This stems from VACF’s
inherent decay to zero within time scales relevant for such
mixing, thereby enhancing their practical utility. Second, as
expounded upon later in this section, specific ad hoc extensions
of VACF can be derived utilizing linear response theory. This
entails applying a suitable perturbation term to the entire
system while monitoring the response of a locally defined
mechanical observable to such a perturbation. The arising
mobility profiles can then be linked to local diffusivity in a
manner similar to the bulk. As will be discussed later, these
approaches are still inherently ad hoc in the sense that observed
mobility statistics are not guaranteed to conform to predictions
based on the Smoluchowski equation® or the Kramers-Klein
equation.75

An an illustration, consider Hunter et al.*” who introduce a
perturbation to the Hamiltonian given by

N
AP, Q) = —Ew- ). cq,
i=1

Here, F, represents the magnitude of the force, w is a unit
vector, and ¢; signifies the ’color’ associated with particle i,
allowing for the adjustment of both the direction and the
strength of the biasing force applied to different particles. The
authors adopt color currents as an elegant means of handling
correlations between momentum degrees of freedom. Such
correlations, while typically absent in a strict statistical
mechanical sense, are frequently present in MD trajectories
where the system’s net linear momentum is set to zero. By

https://doi.org/10.1021/acs.jctc.4c00148
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using ¢; = (—1), Hunter et al. demonstrate that such
correlations readily decay in the thermodynamic limit.

To establish a localized notion of diffusivity in confined
geometries, they examine the response of a spatially localized
observable given by

wX cpy,(a)
mY 7.(a)

Here, y4(-) represents the characteristic function of set A.
Consequently, B signifies a colored momentum flux directed
along unit vector u and confined to A. By utilizing eq 3, one
can determine the response of 8 to the perturbation given by

A:

B(P; Q) =

BE. PIPACIO))

o0
=N‘/0 uTCv,A(t)wdt

_aB@) < Z w0V (07, (a,(8) >w )

Here, &,[r(t')] = ya[r(t + 7)]. Subsequently, Hunter et al.*’

propose the mean diffusivity within A to be associated with
C,a(t) as

1 ? +oo
D /A D(r)dr = fo C, A()dt )

While this quantity is a proxy for local diffusivity, it cannot be
directly mapped onto the Smoluchowski formalism. A suitable
theoretical framework to assert this proposition is the Kramers-
Klein equation,”” describing Langevin dynamics in the
underdamped regime:

9

1 1 _
L = vVp + VPV + Y (D7) vl
ot m mp

1 +
— D '(r): Hyp =
+ e (r):Hp=Lp (33)

Here, m represents particle mass, T(r) denotes a conservative
potential of mean force, [H,p];; = 0°p/dv,dv; is the Hessian
tensor with respect to velocity degrees of freedom, and ’:f

signifies full tensorial contraction. The adjoint operator of Liv

with respect to the standard inner product is given by

L =

I,V

V.F

vV, — -V, — L‘D_l(r)-vv + D '(r): H,
mfs

1
(mp)?
(34)
The ad hoc VACF of (32) can be formulated as

CV,A(t) = <V(t)VT(O)K[1‘(t) - 1'0]>
@ (v(t)v" (0)K[r(0) — rol)
= /vaK(s - 1'0)17, (r, vls, w)O(s, w)drdsdvdw
(33)

where K[r] is a properly normalized kernel function that, in the
case of Hunter et al.’s work, is taken as the indicator of set A
(with ry € A). Note that (a) follows from the linear response
theory. p,(-) is the solution of the Kramers-Klein equation and
can be formally expressed as

p(r, vls, w) = et'ﬂ”[é(r —5)8(v — w)]

By using the adjoint operator, the ad hoc VACF can be
expressed as

CV,A(t) = ‘/[etﬁ"v]vaK(r — 1)0(r, v)drdv

where O(r, v) is given by
d/2 2
m mp vl
O(r, v) = (—ﬂ) exp[— b }po(r)
2r

2

In the case of a trivial potential of mean force and fixed
diffusivity, it is easy to show that

1 1
L. v= _D Y s v = exp| — D v
’ mp mpp

which, upon integrating momenta degrees of freedom, yields

1 tD !
Coalt) =~ el = JACEENXOLE »

By time integrating (36), one can demonstrate the canonical
relationship between VACF and diffusivity, namely:

fo ™ VT O)K (r — 1))t = [P = 5, )

for a properly normalized kernel. However, for nontrivial
potential of mean force and position-dependent diffusivity,
L, , will possess the following mathematical form:

Vir D '(r)-v

m mf

‘Lr,vv ==

This makes constructing the et operator extremely

complicated since each successive application of £ will require
computing spatial derivatives of the unknown diffusivity profile
as well as the potential of mean force. More precisely, if one

denotes f,(r, v):=1lim, ,  ¢'“**v, then one can demonstrate
that

/0 " (VT O)K(x — 1))t

= fgL(r, vIVIK(r — 1,)0(r, v)drdv

where g L(r, v) is the solution of the partial differential
equation (PDE), L, g (r, v) = f, — v, which does not lend
itself easily to a solution, and is not definitely consistent with
the simplified postulation of (32). Therefore, even ad hoc
representations constructed using linear response theory fail to
yield diffusivity profiles consistent with the Smoluchowski or
the Kramers-Klein picture.

Despite this fundamental limitation, linear response theory
proves to be a potent framework for crafting effective—albeit
ad hoc—estimators for various transport coeflicients, especially
those characterizing the coupling among different thermody-
namic driving forces. A good illustration of such capability is
presented in the work of Mangaud and Rotenberg,** where the
authors investigate the transport properties of a solution within
a slit pore under simultaneous pressure and chemical potential
gradients. In such scenarios, transport coeflicients can be
appropriately defined utilizing eq 1.

https://doi.org/10.1021/acs.jctc.4c00148
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The particular geometry considered in ref 88 is a slit pore of a) 25
. . . . . e H EH-F
thickness h that is p.erpendl.cular to the z ax1s,.whlle pressure 20 ﬁ 1 newoll
and chemical potential gradients are both applied along the x A 1
: : : = 15 J -
axis, namely parallel to the walls of the slit pore. They consider < 0 P
two different perturbations to the Hamiltonian, namely, .10 0 12
) P
N — 05
VV.P =
Ap(P, Q) = N Z x, g 001 —1 ™
i=1 -0.5
. |
-1.0 ‘
Vo | N+ Ny 5 0 5 10 15 20 25 30
ﬂM(P,Q)=—1x in—a Z x; z/o
ta i=1 i=N,+1 b) 0.07
Here, N, and Ny are the number of particles of type A and B, 0.06 0050
respectively, x, = e.q, and @ = pi/p} is the ratio of bulk 2 0.05 /
densities of A and B. (Note that A and B particles are indexed S 0.04 0.00-4 i
as 1, 2, -+, Ny and Ny + 1, -, Ny + N, respectively.) T | e
Moreover, A, is formulated so that no net force is exerted on :;:\ 0.02
the solution in the bulk. In order to use the formalism of linear El 0'01 o
response theory, they define the following localized observ- = 7 =
ables that signify volume and concentration fluxes: 0.00 : 1 NEMD
-0.01 —

Ny

h
Bp(R, @ 2) = - 30z 2)

i=1

1
B(P,Q;z)=— v O(z, — z
(P, Q 2) VHGEM“ )

g N
- z 1)x,ié(zi - Z)
L+a v

One can then use eq 2 to enumerate the response of each
localized observable to the respective global perturbation.
More precisely, the coeflicients of the matrix M given by

(Bp(z, t)) Mpp Mp,
lim = -
=00 <B”(Z, t)> Mﬂ,?’ Mﬂ,ﬂ

VP
Vu

can be evaluated as

+00
M) = pv [ (BORA ) -
where i,j € {P, u}. For instance, Mpﬂ(z) and MW(Z)
computed using eq 37 for a binary Lennard-Jones™ (LJ)
liquid within a slit pore is depicted in Figure 2, alongside their
estimates obtained from NEMD. In particular, the authors
relate the diagonal components of M to viscosity and
diffusivity. More precisely, they interpret M,, as a Fickian
binary diffusivity D, along the x axis. By invoking continuum
approximation, they assume that Mpp(z) will take a form
consistent with Poiseuille flow:

2 2
pl(h h)
Mpp(z) = —||=| —|z— =
72(2) 277[(2) ( 2 ]
which enables them to fit the computed Mpp(z) to a
quadratic profile to estimate viscosity #. Similar to the first
example, these estimators are still ad hoc in nature, as they do
not yield a binary diftusivity profile that is compatible with the

Smoluchowski formalism.

5 0 5 10 15 20 25 30
z/o
Figure 2. (a) My ,(z) and (b) M, ,(z) computed using NEMD and

eq 37 for a binary L] fluid within a slit pore. (Reprinted from ref 88
with the permission of AIP Publishing.)

4. KERNEL-BASED APPROACHES

Kernel-based methods are a class of methods in which particle
positions (and displacements) are processed through the
application of a kernel function—also referred to as a filter. The
theoretical foundation of these methods is based on Ito’s
Lemma,”® which specifies the temporal evolution of stochastic
processes obtained by composing a standard It6 process with a
C? function. More precisely, suppose that X, € R¥ is an Itd
process, i.e., a stochastic process whose temporal evolution is
described by the following stochastic differential equation
(SDE):

dX, = p(X,)dt + m(X,)dW, (38)

wherein W, is the k-dimensional Wiener process. It6’s Lemma
states that the stochastic process Y, = F(X,) = [F(X)),
F>(X,), =, F,(X,)] € R" will evolve according to the
following SDE:

dY, = q(X,)dt + 6(X,)dW, (39)
with q €R" and 6 € R™* given by

qi(Xt) = V‘?‘yj(Xt)p(Xt) + %”T(Xt)Hi(Xt)”(Xt) (402)

o(X,) = V??(Xt)”(xt) (40b)

Here, 6; is the i-th column of 6 and H; is the Hessian of ¥;. It
follows from the general theory of SDEs that the pointwise
covariance matrix 66! can be estimated from individual
realizations of (39) using90’9l

(Y = Y)Y — X))
2h

6(r)o(r) = lim
h—0"
X,=r (41)
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Note that the Smoluchowski equation can be viewed as a
forward Kolmogorov equation associated with the overdamped
Langevin SDE given by

X, =
—[AD(X,)-VF(X,) + V-D(X,)]dt + {2D(X,) dW,
(42)

Clearly, eq 42 falls within the broader category of SDEs
described by (38) and (39). From It6’s lemma, an expression
similar to the one yielding Kramer-Moyal coefficients can also
be derived for a filtered trajectory by employing (40a) and
(40b). More specifically, suppose that y:R" — C is a piecewise
C* function. For an X, satisfying (42), Y; = y(X,) will evolve
according to the following SDE:

dy, = [Vr(X,)-n(X,) + D(X,): Hy(xt)]dt
+ Vr(X)-y2D(X,) -dW,
The associated covariance will thus be given by

V7 (5DE)Vy(x) = lim, <|y(Xt+h)4; (X))

i
(43)
The expectation given by (43) is proportional to the projection
of the diffusivity tensor along the direction given by Vy. The
ability to use a filter function gives one an increased level of
flexibility to design suitable estimators of diffusivity. It must be
noted that eqs 41 and 43 can be easily reformulated if X, is
drawn from a probability distribution v(-), which can be
identical to the equilibrium probability distribution py(-),

/d(r)oj(r)y(r)dr

— lim <(Yt+h B Yt)(Yt+h B Yt)T>
h—ot 2’1

X, ~v(r)

One of the first attempts to use general filters (as opposed to
characteristic functions that “count” particles in a bin) to
design diffusivity estimators in the context of molecular
simulations was undertaken by our research group, as
presented in a series of papers.”””> (Another example of
using a similar expression—albeit with a characteristic function
of a set as a filter—is the estimation of diffusivity in the
collective variable space by Hegger and Stock.”)

In the initial paper’” of the series, our focus was on the
analytical derivation of the estimator and its numerical
validation using synthetic data obtained from numerical
integration of (42) with known a priori diffusivity profiles.
All employed diftusivity profiles were functions of a single
spatial variable. The subsequent paper’” in this series delves
into the application of the method to MD trajectories.

In the first paper,” we propose a filter function of the form
n(r) = e*G(r). The complex exponential encodes
information about the directionality of the diffusivity tensor
(by yielding its projection along the unit vector k) while G(-)
is a localization function—also known as a kernel—that
enables estimating diffusivity around a certain point in space.
In practice, G(+) can be defined as

€

wherein K (r) > 0 is chosen in a way that approximates the
delta function as € — 0%. By applying eq 43 to the filter

functions y,(r) = e_iak'r[G(r) + ﬂ and conducting some

algebraic rearrangement, it can be demonstrated that
kK'D(r)kG(r)v(r)dr = li
JEDERGE () = lim

<[7k(xt+h) - Yk(xt)]* [fk (Xt+h) - fk (Xt)]>

X

xtNU(')

By letting € — 0, the integral on the left-hand side will
converge to the pointwise estimate of Dy, the diffusivity
projected along k, namely,

1 W[Zil Ahy]:k(xi,t)Ahf: (Xi,t)]
2a*h zji LG(X,,)

Dy (xp) ~

wherein A,g(X,) = g(X,,,) — g(X,) and the summation is
conducted over N trajectories. By letting @ — 0, one can
obtain a limiting estimator given by

A a—=0 1 Zf\il [G(Xi,t+h) + G(Xi,t)][k'Ahxi,t]z
Dkk (1'0) = — N,
4h Z,‘:l G(Xi,t)

(44)

It is important to note that eq 44 offers a natural means of
constructing an ad hoc extension of MSD in confined
geometries, by assigning equal weight to particles that are
present within a designated bin either at the beginning or at
the end of an observation window. (Particles present within a
bin both at the beginning and at the end of the observation
window would contribute twice as much to the ad hoc MSD.)

We wish to note that the filter-based estimators proposed by
us in ref 92 are closely related to Nadaraya-Watson (NW)
estimators’”’° in the statistics literature. NW estimators are
designed to construct a regression function m(x) that relates
two random variables, Y and X, with the condition that m(x) =
( YIX = ), all without resorting to parametric expressions. To
create this function, the following Taylor expansion of m(x)
centered at a specific point is introduced:

p
m(x) = Z z ﬂ](Xz - x)j1<€(x - Xi)

i j=0

Here, p is the order of the Taylor expansion, and K.(x — X;) is
a localization function that gives more weight to the X/’s that
are closer to x. Subsequently, a weighted least-squares problem
is formulated to determine coefficients of the estimator within
the Taylor expansion.

ﬂ; = arg min

2
K. (x — X,
PERP! o )

P
Y, - Z ﬁ](Xl - x)j
i=0

| (45)

By setting p = 0 in the expression provided above, we obtain
the following explicit solution:

. _p _ 2, YK(x — X))
i(x) = A, = T K- X)) (46)

Drawing inspiration from the pioneering works of Zmirou

and Bandi,”® it has been proposed that a similar approach can
be applied to estimate the Kramers-Moyal coeflicient:

https://doi.org/10.1021/acs.jctc.4c00148
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Figure 3. Application of eq S0 to the synthetic data wherein g,(-)’s are chosen from (A) Legendre and (B) Chebyshev polynomials, and (C)
Fourier series. Solid lines and symbols correspond to the true diffusivity and the projection-based estimates, respectively. (Reproduced with
permission from ref 92. Copyright 2023, American Chemical Society.)

L 2311 (Ahxi,t)(AhXi,t)TKe(r - Xi,t)
Zi Ke(l' - Xi,t)

ﬁe,h(t’ I') = 2h

(47)
where A,X/ /s are displacement samples drawn from
realizations of (42). Similar to filtered estimators, eq 47 can
be reformulated accordingly if X, /s (i.e., the starting points of
stochastic trajectories) can be drawn from any probability
distribution, v(r):

D(y)K.(y — r)v(y)d
i (Bt ) = /DKy - r)u(y)dy _
A0 JK(y — v)u(y)dy

D (t, r)

(48)
Therefore, both filter- and kernel-based estimators can easily
accommodate scenarios in which samples are drawn from
nonequilibrium distributions. In simulations of equilibrium
systems, the expression (47) can be further adapted by
averaging it over t, with v(x) being substituted by py(x) in
(48). Nevertheless, it is still imperative to observe the same
considerations when selecting an appropriate time scale 7 for
this approach. This approach can, in principle, be used for any
time series data that can be modeled by eq 39. It has been used
successfully in contexts as diverse as financial data,”
electroencephalographic (EEG) data,'” and stochastic de-
scriptions of chaotic deterministic systems."

We wish to highlight a subtle—but crucial—distinction
between the FCE estimators derived in ref 92 and the NW-
based estimators given by eq 48. Specifically, the former
method applies the kernel on the particle’s position at both the
beginning and the end of the observation window, whereas the
latter applies the kernel solely to the initial frame. This small
contrast potentially affords FCEs a marginal edge in resolving
the locality of diffusivity by more effectively attenuating the
impact of interbin mixing on displacement statistics.

In ref 92, the majority of numerical tests were conducted
using the triangle kernel, K,(z) o (1 — lzl)y,,(z). However,
the choice of kernel did not significantly impact the reliability
of diffusivity estimates. This is expected considering the
observation that

Dy (x,) = Dy (xp) +

€’K,: [Hp, (x,) + 2VDy () V"' In Py (r0)] (49)

where Hy is the Hessian of the scalar function f and K, =
% / yy' G(y)dy. In other words, eq 49 illustrates that the

variance of the kernel appears as a prefactor in front of the €
term, but does not alter the fundamental scaling of systematic

error with €. Furthermore, beyond a certain threshold,
reducing the value of € results in a kernel function with a
significantly narrowed support, which adversely affects
statistical accuracy, leading to the emergence of large error
bars. This observation aligns with the theoretical expectation
that, for small € values, the variance of the estimator should
scale proportionally to o €™ [Ki(z)dz.

One of the advantages of using kernel-based methods is that
the kernel function does not have to be localized, nor does it
have to be nonnegative. For instance, one can choose a
collection of kernels that belong to a family of orthogonal
functions, such as Fourier series, or special polynomials (Figure
3). One can then express

D(1)u(r) = Y’ Cg,(r)

The unknown coefficients within this sum can be projected
onto k in a similar fashion, and determined using

Cotae = kK'Ck = kak(r)gn(r)u(r)dr

N <[g,,(xt+h) + gn(Xt)][k-Ath)
- 4%

(50)

Upon evaluating the computational performance of the FCE
estimator, we found it to exhibit robust performance across
various scenarios, provided that the drift term remains
nondivergent. However, significant discretization errors were
observed in cases where the drift diverges, particularly in the
vicinity of hard boundaries. This phenomenon can be
attributed to the increased susceptibility of the Gaussian
approximation to temporal discretization in the presence of
strong (diverging) drifts. For trajectories that are stochastic at
all time scales, such errors can be effectively remedied by
choosing a sufficiently small k.

In the second paper in this series,”” we adopted the FCE
estimator to trajectories generated via MD. This requires
identifying a system- and position-dependent time scale 7
beyond which the system exhibits diffusive behavior. This was
achieved by introducing the concept of a cage escape time, i.e.,
the characteristic time scale for a particle to escape the cage
formed by its first coordination shell. More precisely, we
proposed the following autocorrelation function,
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(BN, 812(0) = 21éCz, 1(0)éCz, 1,(0) )

Clz, t) = L7
(ZN_ 1 01200) = 216z, 10Dz, 1,(0)) )
(s1)
Here, 1, the first valley of the radial distribution function at z,

and &(zr) = H[rcage(z) — |Ir]]] with H(-) the Heaviside
function. Intuitively, C(z,t) corresponds to the fraction of the
neighboring particles that remain within a distance r.(2) of a
central particle after time t has elapsed. C(zt) can thus be
computed for particles belonging to each spatial bin and be
fitted to a stretched exponential *" C(z,t) = exp[—[t/7.(z)]*?]
to obtain a position dependent time scale 7.(z). We wish to
note that this approach can serve as a systematic means of
determining a diffusive time scale in all methods for which the
specification of such a time scale is necessary.

Nevertheless, the kernel-based estimators introduced in ref
92. exhibit a small—but systematic—underestimation of
diffusivity when applied to MD trajectories, due to the
presence of the caging regime that follows the culmination of
the ballistic regime. This systematic error can, however, be
readily remedied using a slightly modified form of the
estimator, namely,

Ah Ny
A huhy hZDkl: - thkli
Dy = 2k Tk
hy = hy (82)
where h; and h, constitute two observation windows within the
diffusive regime. We applied the estimator given by eq 52 to an

L] fluid confined within a slit-pore, with the resulting diffusivity
profiles depicted in Figure 4. An analysis conducted for the

0.09
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Figure 4. Diffusivity estimate from (44) for a L] fluid confined within
a slit pore. (Reproduced with permission from ref 93. Copyright 2023,
American Chemical Society.)

purposes of validating the estimator demonstrated that the
computed D,,, D, profiles are accurate, but the predicted D_,
profile loses accuracy in the immediate vicinity of the wall due
to the divergin% drift. A Bayesian correction scheme based on
diffusion maps > was then introduced and applied to rectify
such inaccuracy.

Kernel-based estimators provide a robust extension of the
concept of an ad hoc mean squared displacement, due to their
conceptual clarity and computational simplicity. Similar to the
Kramer-Moyal estimator presented in eq 24, kernel-based
estimators offer the distinct advantage of accommodating a
local time scale 7 for each position at which diffusivity is to be
estimated. This feature proves advantageous when compared
to other methodologies (discussed later in this review) that

require the usage of a fixed observation window for the whole
system, as 7, the time scale required to fully transition into the
diffusive behavior might exhibit strong dependence on position
in many circumstances. In approaches where a single time scale
must be selected for discretizing the Smoluchowski equation
across the entire system, it becomes imperative to choose 7.,
= sup, 7,(z) to ensure that ballistic effects have been overcome
uniformly. It should be noted that, as the time scale 7 increases,
the potential influence of drift effects on the accuracy of the
diffusivity estimate D(r) also becomes more pronounced.

Finally, it is pertinent to acknowledge that implementing this
method requires determining certain free parameters, such as €
in the case of localized kernels or the total number of basis
functions N when employing a projection approach. The
optimal selection of these parameters may necessitate a
systematic exploration to attain the desired level of precision
in the analysis. Schemes for choosing € have been proposed in
the statistics literature in the context of Nadaraya-Watson
estimators.””'%

5. BAYESIAN APPROACHES

Bayesian approaches attempt to obtain a maximum likelihood
estimate (MLE) of diffusivity from MD data, by means of
constructing a suitable likelihood function,

[P(Dldata)  [P(datalD)

which is then maximized over the space of all plausible
diffusivity profiles. While Bayesian approaches can be
employed without any prior information about the diffusivity
profile, it might, in many cases, be convenient to include
preexisting information about diffusivity as a prior distribution,
resulting in the following likelihood function:

[P(Dldata)  P(datalD)P(D) (53)

Maximizing (53) results in a maximum a posteriori (MAP)

estimate of diffusivity. A schematic flowchart of Bayesian
. . I 104

approaches is depicted in Figure 5.
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Figure S. Schematic flowchart of applying Bayesian approaches to
estimate position-dependent diffusivity. (Reproduced with permission
from ref 104. Copyright 2013, American Chemical Society.)

Indeed, one of the most widely known and popular methods
for estimating position-dependent diffusivity is a Bayesian
approach proposed by Hummer,'” which is also based on
spatial discretization of the Smoluchowski operator. Let Q be a
stochastic matrix wherein Q; is the expected probability of
transitioning from bin i to bin j, and let P the matrix that
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contains the actual transition probabilities obtained from MD.
The likelihood that Q accurately represents the data is given by

P(datalQ) = H Q Fifu

ij=1 (54)

where n,,; is the total number of observed transitions starting
from the i-th bin. By taking the logarithm of both sides, and
adding +Y " 1nw,i2j”i 1P; log P;; to the right-hand side, the log
posterior probability can be expressed as

P.
log P(Qldata) = —Z n,; Z log — + C,
i=1 Ql] (55)

Note that maximizing (55) over all stochastic matrices would
trivially yield Q = P. One, however, needs to only conduct
maximization over matrices that are consistent with diffusive
behavior. In Hummer’s approach, Q is parametrized as Q = ¢™
wherein R is a rate matrix with its entries satisfying the
following properties:

7ij i>j
-2 i=)
i I#i
rj,pl,/pj i<j (s6)

Here, p; refers to the equilibrium probability of finding a
particle at bin j, and the condition ryp; = r;p; is included to
ensure detailed balance. Therefore, the rate matrix R will
n,(m, + 1)
2
optimization problem can be solved using a variety of
methods, such as Monte Carlo sampling from a posterior
distribution of the rate matrix R:

possess n; = 1 free entries. The associated

log P(Rldata) = —Z WZ ij log —7— tR +G
o o le ]; (57)

We wish to note that such a posterior will generally be high-
dimensional considering the quadratic scaling of n with n,.
However, since Q; approximates =/ pt(r Ir;)) as a dlscretlzed
solution of the Smoluchowski equation, the ansatz Q = €™

implies that R can be regarded as a discrete representation of

the £ operator (akin to the operator discretization methods
described in Section 6, such as ref 106).

By drawing an analogy with finite difference discretization,
constraints can be applied to the matrix R to ensure its sparsity,
predominantly preserving nonzero elements along few off-
diagonal positions. Such constraints would effectively reduce
the dimensionality of the posterior distribution, resulting in a
linear scaling between ny and n,. Furthermore, this will allow
the utilization of efficient diagonalization techniques for
computing the matrix exponential in (57). Much in the same
way as the operator discretization scheme of Sicardi et al."’’

(discussed in Section 6), Hummer employs finite differences to

discretize £ in one dimension, following Bicout and Szabo,"*®

yielding the following relationship:

D. + D, 12
.+ D. )
1714'1 = szRi‘H_l[L]
2 1 (58)

i+

where Ax is the thickness of each bin. This results in a matrix
R that is tridiagonal. In other words, within the scope of this
approximation, particle exchanges primarily occur between
adjacent bins (i.e., the instantaneous rate of exchange between
nonadjacent bins is assumed to be zero). This expression
provides a means of calculating the diffusivity profile using
posterior samples of R or through a maximum likelihood
estimate of R, achieved by optimizing (57). Similarly, (58)
enables Monte Carlo sampling of D, from which the
components of the matrix R defining the likelihood can be
specified.

In the approach formulated above, the derivative of the
diffusivity profile is left unconstrained, potentially leading to
the emergence of rapid oscillations in D(x) due to inherent
noise in the underlying MD data. To mitigate this, and
consistent with the expectation that physical properties within
a single thermodynamic phase are expected to be continuous
functions of position, Hummer introduced the following prior
distribution within the space of diffusivity profiles:

P(D) o [ 227
i (59)

We wish to note that there might be a more physically
motivated prior than the one described by (59). Specifically,
assuming the validity of the Smoluchowski equation, individual
realizations of single-particle trajectories can be generated
using the SDE given by eq 42 with a drift term given by

u(r) = D(r)-Vlog p,(r) + V-D(r) (60)
Multiplying both sides of (60) by p, yields
D(r)vpo + pOVD(l‘) = V[p()D(r)]

P
V-[pOD(l‘)] ~ 70<Xt+1' - Xt>|x,=r

= ph(r)

+ 0(z?) 1)

This equation establishes a connection between diffusivity,
D(r), and drift, p(r), within the Smoluchowski framework. It
serves as a necessary condition as it offers d equations, which
are fewer than the required d(d + 1)/2 independent
components of D(r). However, it provides an expression
that bounds the spatial derivative of D(r), offering a2 means to
define a prior distribution for D(r) as an alternative to the one
in eq 59.

As mentioned above, Hummer’s method leverages a finite
difference discretization of £ in two fundamental ways. First,
this discretization serves to reduce the dimensionality of the
posterior, thereby enhancing the method’s convergence rate.
But crucially, the key contribution of the finite difference
discretization method—originally introduced by Bicout and
Szabo'**—is its ability to establish a direct connection
between the matrix R and D(r) through eq 58. It is important
to note that this scheme is only valid in one dimension, and its
extension to more intricate geometries or to alternative
curvilinear coordinate systems would necessitate the develop-
ment of appropriate discretization schemes. This will, in turn,
result in relationships between R and D that are more
complicated than (58). Thus, Hummer’s approach cannot be
readily applied to more complex settings despite its elegance
and simplicity. As explained in Appendix A, however, this
strategy can still be applied to infer D_(z) in situations
wherein the diffusivity tensor is axisymmetric.
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Hummer applied his Bayesian approach to a simple model
system, as well as to the alanine dipeptide''® model. Since
then, however, several authors have employed his approach to
compute diffusion constants, e.g., in confined hard sphere
fluid'” (Figure 6), and solutes within lipid bilayers."" """

D(z =1

P2

Figure 6. Normal diffusivity and number density profiles for hard
sphere fluids of varying packing fractions confined within a slit pore.
Diffusivities are computed using Hummer’s approach.'®® (Reprinted
with permission from ref 109. Copyright 2008, the American Physical
Society.)

A conceptually similar approach was introduced by Ghysels
et al.'"® who ensured the continuity of diffusivity as a function
of position via expanding it using a series of orthogonal
functions g,(r), namely D(r) = Y ;2 ag,(r). By truncating
the sum to a finite order, the authors applied Monte Carlo
sampling to infer the posterior distribution of the coefhicients
within this expansion. Additionally, Ghysels et al. extended
Hummer’s approach to simultaneously infer radial and normal
components of the diffusivity tensor in one-dimensional
confinement in scenarios where the diffusivity tensor could
be decomposed as D(z) = Dy(z)[e.ef + eje)] + D, (2)e.el.
The differential operator L of eq 16 can then be expressed in
cylindrical coordinates:

D@ a( 9 0 o f
N a—r(’gf)ﬁDi(")”“%[po(z)]
(62)

The second term on the right-hand side corresponds precisely

L

to £ in one dimension. Therefore, employing separation of
variables, the authors demonstrated the feasibility of using
Hummer’s method to construct a matrix e™ and estimate
D, (z) by minimizing (57) and utilizing (58). In order to also
determine D) (z), they devised a Bayesian scheme in which the
transition matrix W, is constructed for a given D(2) to yield
the probability of transitioning from bin i to bin j in the z
direction, while exhibiting a lateral mobility corresponding to
m-th radial bin:
+00
W, ~ Z M[CIR—% diag(DH)]t]“
s my 272 ij
i 7 () (63)

Here, diag(D;) denotes a diagonal matrix, with its entries
being Dy (z;)’s, where z; represents the center of the i-th bin

along the z direction. Jo(-) is the zeroth order Bessel function
of the first kind. In order to construct a series solution (rather
than an integral of Bessel functions), the authors chose a
sufficiently large distance s where they imposed an artificial
absorbing boundary condition, i.e.,, p(r = szt = 0,2,0) = 0.
Therefore, a;’s are given by a; = 1;/s wherein A is the k-th
smallest positive root of J,(x). By also defining circular bins for
radial mobility, an empirical equivalent of W, denoted by E;
can be estimated from MD. After determining D, (z), an MLE
estimate of Dj(z) can be obtained by minimizing:

103 L
—log P(Wldata) = n,, Z E, ,;log 7 +C,
ij,m=1 i,mj

The utilization of a finite-order expansion in terms of
orthogonal functions guarantees the smoothness of both
D,(z) and Dy(z). They employed their methodology to
characterize oxygen diffusion within organic membranes
(Figure 7). Since its development, this approach has found
widespread application in molecular simulations, particularly
for probing diffusion across membranes.'”'" It has also been
used to predict diffusivity of colloid suspensions''*
collective variable spaces for protein folding.*”'"

as well in
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Figure 7. (a) Normal and (b) lateral diffusivity profiles of oxygen
across a hexadecane/water film alongside (c) the anisotropy ratio
computed from the Bayesian approach of Ghysels et al.'"?
(Reproduced with permission from ref 113. Copyright 2017,
American Chemical Society.)
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Motivated by the success of these Bayesian approaches,
several other Bayesian methodologies have been developed for
estimating diffusivity. One example is a method proposed by
Comer et al,'* sometimes referred to as the adaptive biasing
force (ABF) method. A crucial distinction between their
approach and that of Hummer lies in the absence of spatial
discretization in the former. Instead, it is based on the
observation that X,, the stochastic process associated with the
Smoluchowski equation, exhibits a Gaussian distribution over
short times. More precisely, for a sufficiently small h:

X, — 1o ~ N(u(ro)h, 2D(xo)h) (64)

which is just a restatement of (29) in terms of X;,. Using eq 64,
it is possible to calculate the probability of observing a
particular single-particle trajectory {x, x,, -, x,,} leading to the
following expression,

1
(47h)N4/2

n (Xi — X~ hﬂ(xi—1))2 long(Xi—l)l
eXP{_Z [ WD) 2 ]}

P({x}h ) = th(xilxi—l) ~
i=1

i=1

which can be viewed as a likelihood function for a particular

diffusivity and drift profile:
P({x;}=)) ~ P[{x;},D(x), p(x)] (65)

Here, the drift term is given by (60). The log-likelihood of
D(x) given an observed trajectory will thus be given by

—log [P[{Xi};lzllD(X)) p(x)] ~ % Z log |D(X,'—1)|
i=1

+ zn: Hxi — X, hﬂ(X,-_l)Hz +C
p 4hD(x,_,)! ! (66)

While p, can be independently estimated from an equilibrium
simulation, and the expression above could be considered as a
likelihood for D(x) alone, the authors choose to treat f = V log
Po as a function to be determined through the Bayesian
optimization scheme. Ultimately, the total log likelihood is
derived by summing (66) over all observed trajectories.

Given that it is not necessary for the trajectories {x;};” ,
entering (66) to be discretized, it becomes more convenient to
parametrize both p(x) and D(x) using predefined functional
forms. The Bayesian scheme will then be used to obtain the
unknown parameters. In the particular one-dimensional case
considered in ref 104, the authors define a grid with regular
spacing /, namely q; = il + q,. Within the ith cell, D(x) is
expressed using cubic interpolants of the following mathemat-
ical form:

3 x — g\t
D(x) = a; + z ai(k)(—q’)

k=1 ! (67)

with a/’s given by

ai(l) S B |
2
2@ = —aip + 44, — Sq
' 2
a® = Gi+2 T 3a;41 + 34,
=
2

A similar approach is utilized for parametrizing y(x). Upon
selecting a parametrization for D(x), it will become possible to
derive analytical expressions for the gradients in (60) in terms
of the unknown parameters. As in the method proposed by
Hummer,'* the authors incorporate prior distributions, which
can be applied in tandem with (66) to penalize rapid
oscillations in D(x). Specifically, they employ the prior (59),
alongside:

logP({a,}) = —Z log g; -
i 8

which ensures that log a; are sampled uniformly.** It must be
emphasized that the choice of functional forms used for
parametrizing D(x) is by no means unique. For instance, D(x)
and p(x) could be parametrized using a neural network, and
(66) could be used as a loss function for its training. The
authors present numerical comparisons between their method
and Hummer’s approach, indicating general qualitative agree-
ment.

We would like to comment on some numerical aspects of
this approach. While it circumvents the need for imposing a
spatial discretization of the Smoluchowski operator and the
associated numerical inaccuracies, the accuracy of the log-
likelihood function used therein relies significantly on the
Gaussian approximation of (64). This approximation is only
valid for short times, and its validity diminishes as the strength
of the PMF applied to the particles increases. We anticipate
that this could pose challenges, particularly in situations
involving hard boundaries close to which Vlog py(x) will
diverge. Instead, methodologies that rely on spatial discretiza-
tion might offer enhanced accuracy in such circumstances, as
they frequently incorporate a zero-flux boundary condition to
address the effects of hard boundaries

We wish to note that one can introduce another Bayesian
approach by noting that the logarithm of Hummer’s prior,
given by eq 59 in one dimension, can be viewed as a Riemann

sum. More precisely, by defining y = 7+ Ax, it can be
demonstrated that

ID, — D,/
—log[P(D)=Z’7z’+l=
i 2y
1 D, - Dy, 1 §
z‘_ Ax zf‘imx) dx
277 7 Ax 27 dx

Therefore, in order to find a MAP estimator, one could
attempt to minimize the posterior probability by computing its
functional derivative with respect to D(x):

S S
1 = 1
50(x) og P[D(x)ldata] 50(x) og P[data|D(x)]
165 d g
" 27 () J o] (69)
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Note that the second term will be proportional to D”(x).
Therefore, setting eq 69 equal to zero leads to a second-order
differential equation for D(x), which can be solved through a
variety of means, provided that one can calculate the functional
derivative of the log-likelihood. A somewhat analogous
approach, while adhering to the same principles, was
introduced by Chang et al.''® In line with Bayesian approaches
in one dimension, the authors perform functional derivatives
on g(x), which is related to diffusivity through D(x) = Dyet™).
This ensures that D(x) remains a non-negative function. In
contrast to Hummer’s prior, they propose the following prior:

logP(D) = —% /‘g(x){ﬁ e—ydz/dxz]g(x)dx

1
= f 2R, [g(x)dx (70)

The differential operator R, ,, corresponds to the exponential

of the second derivative, with # and y serving as regularization
parameters—akin to y in eq 59—that control the degree to
which rapid oscillations in diffusivity are penalized. Much like
the methodology proposed by Comer et al.'”* the log-
likelihood is given by eq 66, and a prior with the same
structure as eq 70 is applied to the drift term p(x). This yields
a system of coupled differential equations, pertaining to y(x)
and g(x), arising from the conditions & log P(g(x), u(x)ldata)/
Sg(x) = 0 and & log P(g(x), p(x)ldata)/Sp(x) = 0, which are
solved simultaneously. To simplify the presentation, we
primarily focus on g(x) given that pu(x) can be readily
expressed in terms of D(x) and py(x). The functional
derivative of eq 66 yields

N,

traj

IRHOIEDWAC)

a=1 (71)

where summation is over the data coming from distinct
trajectories. Each trajectory contributes to the corresponding
ODE with a forcing term given by

1 . d a a a o
f() =~ D {0 - 2N — 2 = p(xDh)}
i=1

n 2 2 2
_ l Z S[x — x.(“)] 1— l‘xi(a) B ‘xt(fil —H (x,(fi)h
2 i=1 1 ZhD(xz(fi

(72)
Given that the right-hand side of eq 71 comprises a
superposition of Dirac masses, and considering the linearity
of the equation, we can multiply both sides by a Green’s
function associated with a singular Dirac mass. Denoting this
Green’s function as Gy, (x, y) for a source located at y yields

glx) =

n Ny ((z)
1 j dGﬂ},(x, X; ) @ - “
_ i x_(z _ xf _ x:’ h
ZE'M Ox L 21— (D]
ol _ B0 = 1P — D
= Gy, lx, xi( )] 1 - 1 1

2hD(x)
(73)

Since this expression is valid for any point x within the

simulation domain, it should also hold for the xj(")’s, the points

(@)

along all trajectories. Evaluating g(x) at each ;" results in a
large system of nonlinear equations, which can be solved
numerically to determine g[xl(" ]’s. Once known, eq 73 can be
employed to extrapolate g(x) to all points. To successfully
carry out this procedure, prior knowledge of Gg, (x, y) is
required. The precise mathematical form of Gy (x, y) is,
however, only known in the absence of hard boundaries. In ref
116, the authors consider x € [0, o), which is a semi-infinite
domain. As such, the Green function takes the following
mathematical form:

—(x—=y)% /2 o)
Gy, (%, y) = Ple (/27 _ =49 /21]

It is worth mentioning that as part of the procedure to
determine this Green’s function, the authors introduce a
boundary condition at x = 0, namely g(0) = 0. Boundary
conditions are generally necessary when formulating MAP
estimators as differential equations. In cases involving complex
geometries where a closed-form expression for Gy, (x, y) may
not be readily available, one might start from (71) and (72)
and explore alternative means of solving partial differential
equations.

The procedure outlined above can be applied iteratively for
different choices of regularization parameters, f and y. The
authors provide a Bayesian framework for sampling these
parameters, employing an approximate maximum marginal
likelihood approach. This results in a posterior distribution for
p and y, which can be utilized to derive error estimates for the
fitting procedure. As mentioned earlier, it is crucial to
emphasize that the specific form of the differential operator
is contingent on the chosen regularization approach.
Consequently, one can, in principle, consider suitable
alternatives to (70).

Lastly, it is worth mentioning an intermediate approach
proposed by Tiirkcan et al.''” bridging elements from both
Hummer’s'” and Comer et al.’s'®* methods. This approach is
intermediate in the sense that it involves spatial discretization
akin to the one used by Hummer, but the transition matrix is
constructed using the Gaussian approximation rather than a
matrix exponential. More precisely, the observation domain is
partitioned into n;, bins {$;}!%,, and the transition matrix is
denoted with Q wherein Qz is the probability of transitioning
for B; to B, over a time increment h, for a given spatial profile

of {D;, p;},-1.x,, - The likelihood function is thus expressed as
—log [P(datalD, ”i) = —Z log Qij
ij
with Qj's estimated from multiplying contributions from
individual trajectories, namely:

Niraj

Q=[]
' 1:[1 ' (74)

Here, Qi(j“) corresponds to the likelihood associated with
trajectory o and is given by
(a)

Q7= I G2 Dm)
) eBxes, (75)

Taking logarithms from both sides of (74) yields
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Maj 1
log Q,] = Z 2)@3’ (X(ka_)l))(gg_ (Xia)) X
a=1 k=1 ’
log p, () ; D, p.)
0g p, \Xp "Xy Uy K, (76)

with log p,(ylx; D, p;) the log of the transition probability
calculated from a single trajectory using the following Gaussian
approximation:

—log p, (x(“Ix{; D,, p )z (7)) %

Ilxe — %y — ﬂ,.hllz
4hID|

1
+ Elongil x._, €5,

0 otherwise

Note that the indices i and j pertain to spatial bins, while x;’s
represent points along a discrete-time trajectory, with the index
k tracking time increments.

Akin to the Bayesian methods that are based on Gaussian
approximations, this approach does not explicitly include any
boundary information. It might therefore exhibit diminished
accuracy in the presence of hard boundaries in comparison to
Hummer’s approach. One notable contribution of Tiirkcan et
al.''” is to apply their methodology to trajectories obtained
from confocal microscopy experiments. In order to account for
uncertainties in position measurements, they add an isotropic
noise in their definition of the transition matrix, namely:

—loglp, (XI<|1"1<—1)))(Bx (-] ~

llx = % = bl
4hiD|

X1 €5

0_2
D, + —I

+ 4
—I10
2 % P

0 otherwise

where o is the measurement noise, and I is the identity matrix.
This approach has since been used to probe the diffusive
motion of fluorescently tagged proteins at the surface of a
cell.'"*

6. OPERATOR DISCRETIZATION APPROACHES

Operator discretization approaches are developed based on the
recognition that the Smoluchowski equation, eq 16, possesses a

formal solution given by p,(ylx) = etﬁyé(y — x), and rely on

N i
the spatial discretization of either L or ¢'D to estimate

diftusivity without invoking Bayes’s theorem. As an illustration,
consider the approach of Sicardi et al.'”” who use Markov state
models''” to estimate position-dependent diffusivity. In this
approach, the simulation box is discretized into n, bins, and an
empirical transition matrix Mi(jT) is computed from MD
trajectories, recording the number of times a particle moves
from bin i to bin j over a time window 7. This approach utilizes
the same approximation as in (24) but expresses it in terms of
expectations of the solution of the Smoluchowski equation:

<(Xt+‘r - Xt)(Xt+T - Xt)T>|xt:ri

= / (y - 0y - 0)"p (yx)dy 77)

~ Z (rj - ri)(rj - ri)TMé,T) = CEZ)’T
j

(78)
A similar expression can be obtained for the drift:
Ko = XDy, = [ = 0pOmdy
R~ Z (r; — ri)MiE-T) =cVr
j (79)

Note that the integrals in (77) and (79) are expressed in terms
of the nominal solution of the Smoluchowski equation, namely
pdylx), and are further discretized based on the employed
spatial binning. One can then relate eq 78 to diffusivity by
employing eqs 24 and 26a. More specifically, it can be
demonstrated using the partial correction in (26a) that

¢ — W e " = 2¢D(x) + O(7?) (80)

Similar to many other techniques discussed in this review,
implementing this approach requires selecting for the entire
system a uniform transition time scale, 7, which cannot be
chosen to be arbitrarily small due to delayed transition into the
diffusive regime within MD trajectories. As discussed earlier,
this might cause difficulties in probing systems with substantial
dynamical heterogeneity. A possible means of resolving this
issue is to choose 7 as the smallest time scale beyond which
relaxation times computed from the ei§envalues of the
transition matrix become insensitive to z.'”” It is crucial to
acknowledge that employing a larger 7 diminishes the accuracy
of the diffusivity estimate not only due to temporal
discretization errors but also because of the prevalence of
drift effects.

It is essential to highlight that determining the full diffusivity
tensor using this methodology requires binning the simulation
domain across all dimensions, even in cases where confinement
is unidimensional. Similar to what was discussed in Hummer’s
approach, however, it is feasible to apply this method only for
estimating D,,, the normal component of the diffusivity tensor,
while resorting to alternative approaches, such as kernel-based
methods, to estimate D,, and D,,. Additionally, it is critical to
take into account overarching considerations related to system
discretization to ensure accurate construction of a Markov
state model.

An alternative—but related—approach involves discretizing

L7 instead of €'t as proposed by Palmer et al.'”® In this
method, diffusivity is treated as a free parameter to be
optimized by minimizing the following objective function:

x(D) = Z Z [et’L(D)Ai]‘ - Cij(ts)]z
s i) (81)

Here, the index s runs over time increments, while i and j
correspond to the bins employed for spatial discretization of
the simulation box. C;(t) is a time correlation function for the
number of particles in i-th and j-th bins, and is defined as

Cy(t) = (N(£)N(0))

while A;’s correspond to equilibrium correlations between bin
occupancies:

A; = (N(0)N(0))

The main intuition behind this method is the expectation that
the temporal evolution of C;(t) will be suitably described by
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etLAi]- wherein L is a discretized version of the continuous

operator L using the same spatial discretization employed in
computing A; and C;(t). However, instead of using the
operator that defines the spatial part of the Smoluchowski
equation, the authors consider the following simplified
operator:

Lif = V-[D(x), Vf]

which corresponds to a diffusive process with a position-
dependent diffusivity tensor but without a drift term. The
authors incorporate drift indirectly by means of applying a no-
flux boundary condition. In turn, the operator is discretized as
a matrix using finite differences, and the boundary conditions
appear explicitly in the discretization scheme. The discretized
operator L(D) is a matrix whose entries depend on the
diffusivity profile, which can then be used as an independent
variable to minimize the objective function (81).

It is worth noting that the approach, as currently described,
assumes that the drift term can be satisfactorily represented by
a no-flux boundary condition. We wish to note that many
confined liquids exhibit strong layering at substrates, even
when fluid-wall interactions are short-range in nature. Under
such circumstances, the absence of an explicit drift term can
cause systematic errors in the estimated diffusivity profiles.
Moreover, it is crucial to emphasize that the outlined
procedure involves the computation of matrix exponentials,
which, in turn, requires efficient matrix diagonalization during
each iteration.

Finally, we wish to discuss the work of Schulz et al.,'*” which
is strikingly similar to Hummer’s Bayesian approach.'” In this
approach, the simulation domain is discretized into bins, and
the transition probability between bins is described using a
tridiagonal rate matrix, R:

Qt;(t) = [etR]ij

It is important to note that this approach is fundamentally an
operator discretization approach, as the matrix R serves as a

discretization of the differential operator L', However, instead
. ) . 10s

of using Bayes’ theorem, as in Hummer, ~ Schulz et al

minimize the mean-squared error (MSE) given by

cQm), P = = ¥ FiR() - Q1P

T k=1 iy (82)

Here, P; is the observed transition probabilities obtained from
MD simulations or experiments. The diffusivity is then inferred
from R using eq 58. In ref 120, the authors directly apply their
methodology to concentration profiles inferred from light
absorption experiments to probe drug diffusion over the skin.
One potential drawback of minimizing MSE rather than
maximizing likelihood is that the latter is based on Kullback—
Leibler (KL) divergence, which usually results in stronger
gradients that lead to faster convergence.

7. BIAS-BASED METHODS

One intriguing approach for estimating diffusivity profiles in
confined systems involves explicitly applying a suitable biasing
potential to the system’s Hamiltonian and utilizing the
resulting mobility statistics to infer local diffusivity. At a
fundamental level, these methods are exact as long as the
underlying assumptions about the approximate mathematical
form of the Hamiltonian are satisfied. However, introducing a

bias to the Hamiltonian will inherently alter the free energetics
and dynamics of the system in nontrivial ways, potentially
impacting the magnitudes and functional forms of transport
properties. Furthermore, it typically requires multiple MD
simulations (each with biasing potentials centered at different
positions) to reconstruct the complete diffusivity profile. This
stands in sharp contrast to the methods discussed in previous
sections, which infer the full diffusivity profile from a single
unbiased MD trajectory.

The very first method of this kind, and one of the earliest
methods for estimating position-dependent diffusivity profiles,
was introduced by Straub et al."*"'** This approach is based
on the generalized Langevin equation (GLE) given by

dX, = Vdt

mdV, = —{VT(XJ + /Otg(t - s)-Vsds]dt +f, )

Here, ¥ is the system’s Hamiltonian, () is a memory kernel
friction tensor, and f; is a zero-mean random force. In the one-
dimensional case, assuming a harmonic PMF, F(x) =

[ 2 . . . .
Smw (x — %), the dimensionless velocity autocorrelation

function,

(x(1)x(0))
(&)

will satisfy the following differential equation:

C(t) =

ac, gt
= fo K(2)C(t — 7)de )
with
K(t) = 0* + 40} (s5)
m

Typical decay characteristics of a friction memory kernel
computed for a simple model system is depicted in Figure 8. In
practice, the Hamiltonian ¥ is rarely harmonic in atomic and
molecular systems. Therefore, a harmonic biasing potential
with a sufficiently large angular velocity is added to the
system’s Hamiltonian to restraint a tracer particle at x,. The
time-dependent friction coefficient, {(¢) is then estimated from
C,(t). The friction coefficient at x, is obtained from the
following integral:

r(x,) = i fo ()t

(86)

The local diffusivity is subsequently related to the local friction
coefficient using the Stokes—Einstein relationship:'*’

mpy(xy)D(x,) = 1 (87)

As stated above, it is crucial for the force constant of the
biasing potential to be sufficiently large in order for the PMF to
behave as a harmonic oscillator.'**

A refined and elegant alternative to this method was
introduced by Woolf and Roux.'”> By taking a Laplace
transform from both sides of (85), they demonstrate that
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Figure 8. Typical decay characteristics of the friction kernel of eq 83
computed for a model diatomic molecule within a solvent of LJ
particles. (Reproduced with permission from ref 121. Copyright 1987,
American Chemical Society.)
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(88)

Here, C(s) and D,(s, x,) correspond to the Laplace
transforms of C,(t) and D,(t, x,), respectively, and D,,(t, x,)
denotes the time-dependent diffusivity obtained by changing
the upper limit of integration in (86) from oo to t. (A more
accessible step-by-step derivation of (88) is provided by
Gaalswyk and Rowley.'*®) It is noteworthy that the infinity
limit in (86) corresponds to the s — 0* limit in (88). In
practice, D, (s, x,) can be computed at multiple values of s and
extrapolated to zero.

Finally, Hummer'*® demonstrated that the s — 0* limit in
(88) can be analytically estimated, resulting in the following
expression:

((x(t) = x,)")
fo e C(t)dt (89)

where C,(t) is the position autocorrelation function
(PACF)'%'?° defined as

C,(t) = (Ix(t) — x,1[x(0) — 1) (90)

Dy = lim Z)m(s, xo) =
s—0"

Note that eq 89 can be re-expressed as
_ ((x = x0)2>
T (91)

with the time scale, 7, given by

L ey
TG0 - )

Dy

Upon closer inspection, eq 91 is reminiscent of the concept of
mean-squared displacement, specifically the estimators based
on Kramers-Moyal coefficients given by (24). However, a
notable limitation of these approaches is their assumption that
diffusivity is a scalar (i.e., isotropic) position-dependent
quantity, a condition almost never met in confined systems.
Consequently, it is necessary to adapt these expressions to such
circumstances. In Appendix A, we demonstrate the adaptability
of this methodology to estimate anisotropic diffusivities that
are axisymmetric. Due to its suitability for one-dimensional
collective variables, this method has been applied in studies of
protein foldi_ng to compute diffusivity along a reaction
coordinate, "> *"?7

Despite their differences, these methodologies fall under the
broad category of static restraint (SR) methods, as per Holland
et al."** since they all rely on restraining the position of a tracer
particle at a fixed location using a harmonic spring. An
alternative approach for estimating £(¢) in eq 83 can be devised
by applying the fluctuation—dissipation theorem, demonstrat-
. 68,139,130
ing that

(1) = UEE (0)) (92)

Here, f(t) = F(t) — (F(t)), is the residual force exerted on the
tracer particle at time t. The diffusivity tensor can then be
estimated as (refer to Appendix B)

-1

D =57 [ ) )i o

Note that eq 93 is valid even without a restraining force as long
as the diffusivity is constant. It can also be applied, akin to SR
methods, to estimate local diffusivity when the restraining force
is sufficiently strong to locally restrain the tracer particle.
However, since the force autocorrelation function is
independent of the tracer’s temporal evolution, it can be
computed even for a constrained tracer particle. This
corresponds to taking the limit of (93) as @ — oo. In such
a scenario, the diffusivity at r, can be computed by pinning a
particle at that position and computing the force autocorre-
lation function for that particle:**"*"

-1

D) =57 [ (h OF e 0 o

Eq 94 features a constraint rather than a restraining force.
Therefore, following Holland et al’s'?® terminology, the
corresponding method can be labeled as a static constraint
(SC) method.

The aforementioned approaches, whether based on pinning
the particle to a fixed position or employing a restraining force,
prove valuable in capturing diffusivity profiles within regions of
the simulation box with low probabilities of being visited by
certain solutes. Indeed, these approaches were historically
developed for the study of membrane permeation, and have
been extensively utilized in estimating the diffusivity of
permeants across lipid membranes®®">*"*'""** and jon
transport through pores."”” A detailed review of such
approaches is given by Shinoda.'*

One can devise an alternative® method for estimating the
friction coefficient (and diffusivity) starting with the SDE
describing underdamped Langevin dynamics:

https://doi.org/10.1021/acs.jctc.4c00148
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dX, = Vdt

dv, = =(VF (X)) + 7(X)-V,)dt + \[2D(X,) dW,
(95)

Here, m is the mass of the particle, F(r) = m'F(r) is the
reduced PMF, and D is the ‘velocity diffusivity* (i.e., with units
of velocity squared divided by time). Taking the expectation
value of both sides of the velocity equation yields

m(dV,) = [(By) + my(r)-(V)] (96)

where (F,,) is the mean external force exerted on the tracer
(due to both the PMF and possibly nonequilibrium external
forces). Note that (F,,) does not include any random forces,
which average out to zero. Assuming that the external force can
be kept sufficiently small for the change in velocity to be
negligible, one can use the magnitude of the net force to
compute the friction coefficient. In the simplest case of one-
dimensional diftusivity, this will result in

D(z) ~ (W)
ﬁ(Fext> (97)

One way of implementing (97), originally proposed by Cicotti
and Jacucci,"* is to apply vanishingly small external forces
such that the friction can overcome F,,. However, it must be
emphasized that F,, also encompasses the effects of the PMF
and is not solely comprised of the external force exerted during
nonequilibrium MD. This may cause some issues in applying
this methodology in the vicinity of hard boundaries.

The most interesting applications of this expression come
from the works of McKinnon et al.”*” and Holland et al."**®
Both use steered molecular dynamics in which a harmonic
potential is applied to the tracer particle with a moving
minimum z(t). In McKinnon et al.’s work,"”” this minimum
moves with a constant velocity v; and the instantaneous
magnitude of the external force is calculated such that the left-
hand side of (96) remains zero at all times. The forcing term
can therefore be replaced by a term involving the work of the
restraining force:

2
D] = — (D
ﬂd(mx,f)/dz ﬂ<vvext> tﬂ<vvext> (98)

Using Holland et al’s terminology,128 this method can be

categorized as a dynamic restraints (DR) method. Clearly,
neglecting the effect of PMF will affect the validity of eq 98.
Indeed, a more rigorous derivation, which explicitly accounts
for the effect of the PMF and uses overdamped Langevin
dynamics, is given bgf Park and Schulten.">®

Holland et al.'*® highlight several practical issues in
numerically implementing the method proposed by McKinnon
et al."”” and introduce a new method, which they call a
dynamic constraint (DC) method, to address some of those
issues. They consider the limiting case in which the tracer
particles are constrained to follow a prescribed path z(t) rather
than being subjected to a harmonic force centered at z(%).
Intuitively, this could be thought of as a special case of the
latter approach in the limit of very stiff springs. The external
force, F.,(t), needed to drive the particle along z(t) is then
back-calculated by estimating the force exerted on the tracer by
the environment. The work from this force is then subtracted
from the change in PMF and employed in (98).

They also remark on proper choices of (I} and v, in eq 98
when the DR approach is employed. They argue that the
observation window t needs to be partitioned into smaller
windows of duration At < t, where t, is the characteristic
oscillation period of the harmonic spring. They then argue that
(I) and v, need to be chosen as

=3 a8zl =

i=1

Zw (Az)

In other words, (I) needs to be chosen as the average arc
length of tracer paths, while v; should be estimated from the
net displacement. Failing to do so will result in a systematic
underestimation of diffusivity, as shown in Figure 9. In
contrast, the DC approach, in which the particle follows a
prescribed path, is not impacted by such uncertainties and
provides more accurate estimates of diffusivity.

8,‘ -
- * L % L] * [ ] % [] % [] % [
2 drladafadagiy
o =+ MSD method
w4k @ DRP -originl
° E b
[a) o ; ° % ° % ° % ° % ° { o]
0o 0‘.5 i l‘.5 2‘ 2.5
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Figure 9. Effect of the particular choice of (I) on the performance of
the DR method described by eq 98. Using the path length results in
better agreement with the true value of diffusivity (estimated from
MSD). Overall, the DC method exhibits a superior performance in
comparison with different implementations of the DR method.
(Reprinted with permission from ref 128. Copyright 2012, American
Physical Society.)

Since restraining force-based methods have been in use for a
long time, known numerical issues with their implementation
have been reported. For instance, it is known that Langevin-
based thermostats, such as the Berendsen thermostat,'*’
introduce extra unphysical friction despite correctly sampling
the equilibrium Boltzmann distribution. This additional
friction results in a systematic underestimation of diffusivity,'*®
which is absent from deterministic thermostats, such as the
Nosé—Hoover thermostat."*”'*" Another obvious issue is that
using stiff springs might necessitate employing a smaller MD
time step.

An interesting implementation question is the sensitivity of
the estimated friction coeflicient to the particular choice of the
spring constant. Gallswyk et al.'?¢ investigated this issue,
comparing the VACF-based method of Woolf and Roux,'*
with its reformulation by Hummer,'*® given by eqs 88 and 89,
respectively. They observed that for moderate values of k, the
VACF-based approach of eq 88 is more sensitive to k. They
conjecture that this increased sensitivity arises from the
uncertainties in the numerical extrapolation of (88) to s —
0* for larger values of k (Figure 10). Despite the reduced
sensitivity of the PACF-based method of Hummer to k, it can
suffer from slow decay of PACF in some circumstances.'>® In
bulk liquids, a few picoseconds might be sufficient for the
position autocorrelation function to decay to zero at room
temperature. In contrast, a solute restrained deep inside a lipid
bilayer might exhibit long-lived oscillations that last up to
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Figure 10. Effect of spring constant on (a) estimates of diffusivity
obtained using eqs 88 and 89 and (b) the qualitative behavior of
D, (s) in eq 88. (Reproduced with permission from ref 126. Copyright N

2016, American Chemical Society.)

hundreds of picoseconds, resulting in slow decay of PACF.
This observation is corroborated by Daldrop and Netz,'** who
demonstrate a 100 ps decay for the PACF of a methane
molecule restrained within water.

Daldrop and Netz'* also analyze the effect of larger spring
constants on the performance of Hummer’s PACF-based
approach, something not considered by Gaalswyk et al.'*
They demonstrate that while larger ks lead to faster decay of
PACEF, they might make it highly oscillatory, which could also
make its accurate numerical integration more challenging.
Moreover, they observe that larger spring constants lead to a
systematic overestimation of the friction coefficient, and hence
an underestimation of diffusivity. For instance, they report that
the friction coefficient of a methane solute within SPC/E
water'*’ increases by 60% in the limit of k — oco. They
attribute the source of this systematic error to the alteration of
the dynamics of the first hydration shell by a frozen molecule.
For instance, they compute an orientational autocorrelation
function for the water molecules in the first hydration shell and
find it to decay more slowly when the solute is frozen (Figure
11). This discrepancy becomes larger when stronger
interactions are present between the solute and the solvent.
Similarly, they observe an increase in the mean escape time of
water molecules around the solute. In other words, solvent
molecules tend to be less mobile around a pinned particle.
This, once again, underscores the fundamental issue with bias-
based methods in general that can alter the dynamics of the
underlying system in nontrivial ways, and highlights the merits
of utilizing alternative approaches, e.g., based on path sampling
techniques,'** to study membrane permeation.

Various other details in the implementation of bias-based
methods have been examined in the literature. For instance,
Fujimoto et al.'* examined the impact of finite size effects,
especially in the context of long-range -electrostatic inter-
actions. Additionally, Holland et al.'*® illustrated that
increasing the speed of the moving spring might adversely
impact the accuracy of diffusivity estimates. These findings
collectively emphasize the importance of exercising careful

0 2 4 6 8 10 12
t [ps]

Figure 11. Sensitivity of the orientational autocorrelation functions of
water molecules within the first hydration shell of a fixed and a freely
moving (a) methane and (b) water molecules.(Reproduced with
permission from ref 142. Published 2017 by the American Physical
Society under the terms of the Creative Commons Attribution 4.0
International license.)

consideration when selecting parameters for the implementa-
tion of bias-based methods.

8. COLLECTIVE VARIABLE-BASED APPROACHES

In this section, we will discuss methodologies originally
developed in the context of collective variables, i.e., mechanical
observables carefully chosen to accurately represent the free
energy landscapes of physical and biological systems,
particularly with the aim of characterizing the kinetics and
mechanisms of rare events."*®'*” These variables can be
formulated through various approaches, including physical
intuition, experimental insights, or data science methodologies
such as principal component analysis,"**'*" diffusion
maps,"””"*" and machine learning."**~">° From a mathemat-
ical standpoint, CVs can be seen as embeddings or projections
that map the high-dimensional configuration space onto a
lower-dimensional space. The projection formalism introduced
by Mori and Zwanzig'*®'®” demonstrates that the temporal
evolution of a collective variable can be modeled as a stochastic
process with memory, even in cases where the underlying
equations of motion are Hamiltonian. In situations with
negligible memory effects, or just as a first approximation, a
Smoluchowski-type equation is postulated within the CV
space:

&» _y. , _
pall [D(A)-[Vap + BV F(A) = Lp (99)

Here, A represents a vectorial CV that exhibits diffusive
behavior, and F(4) denotes the Landau free energy profile'*®
with respect to A.
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Assuming the validity of this description, algorithms can be
developed to estimate D(4) from the CV time series, A,
Indeed, several of the algorithmssz’105’107’115’125’127 discussed in
prior sections have also been employed for characterizing
diffusivity variations within a CV space. In this section, we
want to focus on two classes of conceptually distinct
methodologies, both historically rooted in computational
chemistry and biology, which are based on estimating the
mean first passage time (MFPT) and committor analysis,
respectively. We discuss both approaches within the framework
of transition path theory'® (TPT), specifically focusing on
transitions between A and B, two open sets within R", which
are also (meta)stable basins of attractions within the free
energy landscape.

8.1. MFPT-Based Approaches. Consider an open set C C
R". The first passage time to leave C (while starting at 4, € C)
is defined as

7,(Cld,) = inf{t > 0: 4, & C}
t

First passage times can be estimated by imposing absorbing
boundary conditions at C’s boundary, i.e.,

p(A, t) =0, VA*ecC*coac (100)

Note that the p(4, t) that satisfies (100) will not be properly
normalized, and will instead represent a joint probability
density, i.e., the probability that the particle is found at 4 at
time f and that it has not crossed the absorbing boundary C*
up to time t. Within the Smoluchowski framework, TfP(CllO)
can be calculated as”’

7(Clhy) = /0 B —t%{ /C p(4, tl/lo)dl]dt

= fc [ /O °°p(,1, tlllo)dt}dll = fc G(AlAy)dA (101)

The second equality is derived through the inversion of the
order of integration and the application of integration by parts.
The function G(Aldg) = [ & p(A, tldo)dt represents a Green’s
function that satisfies the following PDE:

V-[D(A)-[V,G(AlA,) + BG(AlAg)V,E(A)]]
=p(4) = 84 — 4) (102)

Eqs 101 and 102 are valid for any open set C within a
multidimensional CV space. Following Weiss,”" it is possible to
derive an analytical expression for the first passage time for a
scalar (i.e., one-dimensional) CV. First, one can define:

u(d, t) = fp(Y) tiA)dy
c
Note that u(4,t) is the probability that z,(CIA) > t and satisfies
the adjoint evolution equation given by
ou _ PRy, [, ~PFR)
— ="V, [e D(A)-Vyu] = Lu
o el (A)-Vaul (104)

where L is the adjoint of the operator on the right-hand side of
(99). As discussed previously, 7;,(CIA) can be calculated as

® Ju
ClIA) = — t—dt
75(C) ./2 ot

{)t chn be demonstrated that 7;,(CIA) will satisfy the following

(103)

pubs.acs.org/JCTC
OV, [ PTID(A) Vi (CIA)] = —1 (105)

All these assertions are valid for any CV space, irrespective of
its dimensionality. If the CV is scalar, however, (105) will turn
into an ordinary differential equation (ODE), which can be
solved analytically for an arbitrary open interval, C = (a,b) to
yield:

7,(ClA) = Co +

2 A y
Cl/a po(y)lD(y)dy_ f Po(y)lDQV)[/a po(z)dz]dy

(106)

Here, po(4) = e/ [ b dle# ) represents the conditional
equilibrium distribution of A within the interval (a,b). The
constants C, and C; depend on the specific boundary
conditions imposed at a and b.

We now consider the solutions of eq 106 when reflective
boundary conditions are imposed at a and b. This scenario is
widely explored in the literature, representing the case where a
and b correspond to two (local) minima in the free energy
landscape, indicative of transitions between two (meta)stable
basins. Additionally, we introduce an intermediate point 4; €
(a,b) where an absorbing boundary condition is applied.
Consequently, trajectories can originate from two distinct sets:
4 € [adg] or 1 € [A4b], each featuring a reflective and an
absorbing boundary condition. The mean first passage time of
reaching A, can be readily estimated as™

2 PEE)  pb
[ dée [ e ety bl
A ¢

(112) ;  D(&)
A dge/ﬂ’(i) £ P
f/1 7D(§) /; dle A € [a, Af]
(107)

Note that the system can only exit the starting set at 4, as
reflective boundary conditions are applied at the other end.
This is why we denote the first passage time with Tfp(/lfl/l)
instead of 7;,(ClA). Eq 107 can be subsequently used to derive
the following expressions for D(A) in terms of the derivative of
7 with respect to A

BE(2) b
= [(Ou a>a
o1,/ 04 J2 !
D(4) =
PFD) 2
_—/ e—ﬂF(f)dé )< /1}
drfp/ oA Ja (108)

Alternative, one can define the notion of a round-trip time as®*

7.4, Ap) = sign(d — A)[75,(4, A7) + 75(45, A)]

A RO b
— dé dCe—ﬂF(C)
4 D(&) /a

By differentiating eq 109 with respect to 4, it is easy to
demonstrate that

(109)

1
Py (A)0t,./ 04 (110)

Here, we adopt the notation employed by Hinczewski et al.**
who use eqs 108 and 110 to compute diffusivity along different

D() =

https://doi.org/10.1021/acs.jctc.4c00148
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CVs associated with folding of a helix-forming short peptide
into an a-helix (Figure 12). However, similar expressions for

1071 ¢ f |
;(a)
B 1107 Z
= 1 g
Q S
11078
- {1070
= o
E B R
Q o E
{1078
1073 :
00 02 04 06 08 10

¢

Figure 12. Computing diffusivity along gq,, the root-mean-square
deviation from a perfect helix for an a-helix forming short peptide. (a)
D(q,) computed from eq 108 (green curve), eq 110 (blue curve) and
using Hummer’s Bayesian approach'®® (red curve). (b) D(q,)
estimates from eq 110 (blue curve) as well as using eq 30 using
different lag times (green curves). (Reprinted from ref 82, with the
permission of AIP Publishing.)

the case of 1 € [a,/lf] have also been utilized by Chahine et
al,'** Sedlmeier et al.*® and Bollinger and Truskett."®° It is
crucial to underscore that these analytical expressions are exact
when applied to one-dimensional CV spaces. Consequently,
they have found widespread applications in characterizing
transitions within biomolecular systems that can be adecxiuately
represented by a scalar CV. Both Hinczewski et al.”* and
Chahine et al."** employed these expressions for probing
protein folding, while Sedlmeier et al.** and Bollinger and
Truskett'®” applied them to estimate actual diffusivity profiles
within an axisymmetric geometry—specifically for SPC/E
water' ™ confined within a slit pore and the hard sphere fluid
exposed to a one-dimensional sinusoidal potential, respectively.
In both cases, diftusivity was solely a function of z, and the
methodology was applied to estimate D,,, which is justified due
to the axisymmetric geometry of the system (see Appendix A).

It is important to acknowledge that the numerical
implementation of this approach may pose challenges, even
in cases that are truly one-dimensional. This challenge arises
from the necessity to estimate the derivatives of either the
mean first passage time or the round-trip time with respect to
A. Importantly, these derivatives appear in the denominators of
(108) and (110). As such, substantial instabilities might arise if
such derivatives are small in magnitude. Alternatively, one can
introduce appropriate approximations to estimate these
derivatives, thereby mitigating the reliance on numerical
differentiation.

One such approximate approach was proposed by Belousov
et al,'®" who consider a sufficiently narrow interval containing

Ay namely C = [4, — I, 4y + /]. By applying absorbing
boundary conditions at both ends of C, (106) will yield:

7 Clho) = fj_; M= MO D(y‘)iio(y)
where
Moo= [ o
f’lo” M(y)dy
M= ;3;1.1 D(y;;JU(y)
do—1 DG)py(») (111)

and py(4) « e ”*™, The approximation works by obtaining the
Taylor expansion of F(4) and log diffusivity around the fixed
point A

E(A) = F(4,) + F'(A)(4 — 4,) + O(I4 = AP)

D'(4)
D(4,)

pR) _

(i) = (A = Ay) + 0014 = A,)

which can then be used to estimate mean first passage and
roundtrip times over short displacements within the CV space.
For instance, the MFPT of starting at A, and reaching 4, + /
will be given by'®!

1
ﬂKF/(/lo)D(/lo)

Tfp( CM‘O) ~

cosh{[fF'(4,) + «11/2} .
cosh{[SF'(4,) — «]1/2}
(112)

Here, k = D'(4,)/D(4,). If k < 1, eq 112 can be further
simplified to yield:

I tanh[BIF'(4,)/2]
ﬂD(/lo)F,(/lo) (113)

Therefore, D(4) can be directly estimated from the first
derivative of F(1), i.e., the mean force exerted along the scalar
CV, and the mean first passage time of reaching A + /. Further
approximations along the same lines can be made, particularly
if the Smoluchowski equation is replaced by a related Fokker—
Planck equation.'®

8.2. Committor-Based Methods. Here, we discuss a
method'® proposed by Berezhkovskii and Makarov that
estimates position-dependent diffusivity from committor
analysis. Assuming the existence of two basins of attractions,
A and B, within the free energy landscape, gg(x), the
committor probability of reaching B, is defined as

Tfp( CMVO) ~

qB(/’L) =P(Ty < T,)
where T is the first passage time of reaching set C:
T. = inf{t > 0: 4, € C}
t
Assuming that the evolution of A, within the CV space follows

(99), it can be demonstrated that gqz(A) will satisfy the
following elliptic PDE:'“*

https://doi.org/10.1021/acs.jctc.4c00148
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VD@ [Vigll=0 AgAUB
q =1 A € 0B

0 A € 0A

g

(114)

It is necessary to note that (114) is only valid when AZAUB,

otherwise qz(A) = 0 and 1 for A € 0A and A € 9B, respectively.

In the case of a scalar CV, one can obtain an analytical

expression for gz(4). More precisely, for A = (—o0, a) and B =
(b, ), it can be demonstrated that

//1 ems)d
S
a D(s)
g5(4) = b PG
/a H* (115)

Upon differentiation and rearrangement, (115) can be re-
expressed as'®

faqu(z)(l — q,(2))p, (2)dz
(1), (A)(z,(a, b)) we)

Here, 7,(a,b), the transition time, is the earliest time that a
trajectory initiated at a or b leaves the interval (a,b). Note that
the transition time is smaller than the first passage time. For a
one-dimensional CV space, the mean transition time is given

by

D() =

b

b ,PF(s)
(ty(a, b)) = /{; i)(s) ds'/a qB(u)[l — qB(u)]e‘ﬂF(u)du

(117)

Note that the only derivative appearing in eq 116 is g3(4),
which can be evaluated using recent algorithms for the
parametrization of the commitor probabilities, e.g., through the
application of neural networks.'®> While eq 116 can, in
principle, be used to estimate D(4), we are not aware of any
instance of its application in the literature, possibly due to
numerical instabilities emerging from the exceedingly small
values of q;(4) within regions that are too far from the
transition state.

9. CONCLUSIONS

In this work, we provide a brief overview of computational
attempts to estimate position-dependent diffusivity tensors
(and other related transport coefficients) from MD trajectories
of confined systems. At a fundamental level, these method-
ologies involve solving the inverse problem of inferring
diffusivity profiles within the Smoluchowski framework from
the observed mobility statistics of individual particles. We
classify these attempts based on their underlying theoretical
foundations. In addition to ad hoc extensions (Section 3) of
rigorous algorithms developed for bulk simulations (Section
2), we discuss more rigorous methodologies, such as kernel-
based methods (Section 4), Bayesian approaches (Section §),
operation discretization methods (Section 6), and bias-based
methods (Section 7). We also discuss the related problem of
estimating diffusivity profiles in collective variable spaces
through estimating mean first passage times and committor
probabilities (Section 8).

In order to effectively implement these algorithms, it is
imperative to make certain design choices. First and foremost,
most such methods rely on partitioning the simulation domain

into discrete bins, necessitating the specification of the size of
each bin. On one hand, it would be preferable for the bins to
be as small as possible to resolve subtle spatial variations of the
diftusivity tensor. On the other hand, utilizing bins that are too
narrow could compromise the statistical precision of these
estimates due to insufficient sampling within each bin.
Therefore, choosing the optimal bin size can be viewed as an
optimization problem, balancing a trade-off between resolution
and precision. It is crucial to note that the optimal bin size
could vary across different algorithms, even if applied to the
same system. For instance, the MFPT-based methods of
Section 8 are more susceptible to binning due to their reliance
on determining the first derivative of MFPT, which can be
fairly noisy if the bins are too small.

In practice, bin sizes are usually determined through a
combination of physical intuition and sensitivity analysis (i.e.,
observing the qualitative impact of altering the bin width on
the diffusivity estimate). The latter approach can be made
more systematic by splitting the MD trajectories into smaller
subsets and choosing the smallest bin size for which the
variance among estimates obtained from different subsets
remains smaller than a prespecified threshold. For some
methods, more rigorous frameworks can be utilized. For
instance, in kernel-based methods of Section 4, one could use
the leave-one-out cross validation (LOOCV) framework'* to
formulate an optimization problem for choosing €, the
thickness of the localization kernel. In methods based on
Markov state models, approaches such as time-lagged
independent component analysis'®” (tICA) can be used for

approximating the eigenfunctions of ¢'*r and use the second
eigenfunction, corresponding to the PMF, to devise suitable
binning schemes.'"”

For methods that rely on projecting diffusivity profiles onto
a finite set of orthogonal basis functions, such as refs 92 and
113, no binning is necessary. Instead, the critical design
parameter is the number of basis functions utilized in the
projection, which is typically determined by progressively
including more basis functions until the representation of the
diftusivity profile ceases to change meaningfully. Since many
classical dictionaries of basis functions (such as Fourier series)
become increasingly oscillatory, the optimal number of basis
functions is connected to the decay characteristics of the
diffusivity profile in the Fourier domain, which are often a
priori unknown.

While we primarily focus on methods developed and utilized
in the context of molecular simulations, we wish to note that
the Smoluchowski equation can be equivalently expressed as
the forward Kolmogorov equation associated with a stochastic
process. The task of deducing the PMF and position-
dependent diffusivity from observed mobility statistics can
thus be perceived as an inference problem in stochastic
processes, which has a rich history within the statistics
community and remains an active area of research.'**~'7°
Our kernel-based method, as elaborated in our previous
works,”?* and detailed in Section 4, represents an endeavor to
adapt successful estimators from the statistics community to
the problem of determining transport coefficients in molecular
simulations. We contend that numerous unexplored oppor-
tunities exist in this realm. An interesting example is the study
of electromagnetic wave propagation in highly scattering
media, a process that is described by a PDE very similar to
the Smoluchowski equation. Consequently, methodologies in
the optics community have been developed to estimate
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diffusion tensors,'”" and there exists potential in adapting such
approaches to molecular dynamics trajectories.

On a broader—but related—note, the question of inferring
a term (or parameter) within a PDE from observations of its
solutions—generally referred to inverse problem—is at the
heart of applied mathematics. Indeed, the applied mathematics
literature is replete with many more strategies for discretizing
the Smoluchowski operator, often validated using synthetic
data, as in the work of Crommelin and Vanden-Eijnden.172
Adapting such strategies to be applicable to MD data could
provide further opportunities to develop effective operator
discretization algorithms for diffusivity estimation, beyond
those already considered in this review.

In addition to developing new diftusivity estimators, it is also
imperative to establish standard benchmarks for validating and
assessing the performance of—new and existing—estimators.
Establishing such benchmarks is essential due to the challenges
in ensuring the numerical accuracy and stability of the
employed algorithms, even when adhering to best practices
in numerical analysis. Traditionally, the validation of new
estimators has relied on their ability to accurately recover
diffusivity profiles used for generating synthetic stochastic
trajectories or to precisely estimate diffusivity within bulk
systems. We contend that such traditional benchmarks are
necessary, but not sufficient, for guaranteeing the robustness
and reliability of an estimator, and more rigorous validation
criteria are necessary. One such approach, as demonstrated in
our previous work,” involves feeding the predictions of the
estimator into a Langevin-based SDE, and comparing the
mobility statistics of the arising stochastic trajectories, with the
van Hove correlation functions obtained from MD simulations.
This will not only enable one to evaluate the estimator’s
capability to generate internally consistent diffusivity profiles,
but will also make it feasible to identify and flag deviations
from the Smoluchowski picture within specific systems.

It is essential to acknowledge that the Smoluchowski
equation serves as an approximation for describing particle
mobility over extended time scales and may not be universally
applicable to all molecular systems. A key assumption within
the Smoluchowski formalism pertains to the Gaussian nature
and the absence of temporal correlation for the random force
acting on each particle. This assumption can be relaxed by
extending the GLE formalism of eq 83, or through the
incorporation of colored noise. Such extensions accommodate
scenarios where the dynamics of a typical particle is non-
Markovian. The GLE framework also exhibits improved
agreement with VACFs computed from MD.'*> Notably,
there have been endeavors' '»'’* within the molecular
simulations community, including machine learning ap-
proaches, to fit data from MD simulations to a GLE framework
without explicitly aiming to estimate diffusivity. Adapting such
methodologies for the estimation of position-dependent
diffusivity could be a promising avenue for future inves-
tigations.

An interesting category of systems and processes, not
addressed in this discussion, include those exhibiting
anomalous diffusion.'”>™"”” One notable example is systems
comprised of interacting Brownian particles governed by the
McKean-Vlasov equation.'”® Unlike the standard and gener-
alized Langevin formalisms, which both rely on a ‘mean field*
treatment of a typical particle within a bath, the McKean-
Vlasov equation makes it possible to account for multiparticle
effects. The estimation of transport coefficients within such

generalized frameworks poses an intriguing question that has
not been addressed in this review. It must be noted that such
complicated scenarios, such as those involving anomalous
diffusion or systems described by the McKean-Vlasov
equation, can still be tackled by modifying some of the
methodologies discussed earlier. One viable option is to
employ Bayesian or operator discretization approaches, known
for their adaptability to diverse settings. In cases where the
PDE governing the spatiotemporal evolution of probabilities is
associated with a stochastic process, such as the McKean-
Vlasov equation, kernel-based methods offer a valuable avenue.
Depending on the specific characteristics of the underlying
stochastic process, adapting autocorrelation-based techniques
is also conceivable, although their generalization might prove
more challenging.

We also do not discuss the problem of estimating transport
properties other than diffusivity. Given the mathematical
similarity between mass and charge transport, we expect some
of the techniques described here to be applicable to the
estimation of position-dependent and anisotropic electrical
conductivity. Indeed, methodologies such as the one proposed
by Mangaud and Rotemberg®® have been employed by Helms
et al.'” to estimate the response matrix M(z) in the presence
of an external electrical potential. It is, however, far more
challenging to treat momentum and heat transfer in a similar
fashion. Although frameworks akin to the one discussed in ref
88 can be utilized alongside closed-form solutions of
macroscopic fluid mechanics problems to estimate quantities
such as viscosity, their applicability to more intricate
geometries remains uncertain.

We contend that more systematic approaches for estimating
transport coeflicients, such as viscosity, can be formulated by
positing that f(t,r,v), the probability density of a particle being
at r and having a velocity v will satisfy the following kinetic
ansatz:

0 -
Ef(t' r,v) + v-V.f + V.U-V,f = O[f] (118)

Here, the operator O[f] encapsulates the effective interactions
among particles in the system. For instance, in the case of the

> O[] is given by

4 7S
Kramers-Klein equation,””

1
(mp)?

O[f] = Vv{miﬂn“(x)-vf] + D '(x): Hf

In the context of a master equation framework, O[] can have
the following structure:

o1 = [IW(, v, Vi, ¥, v)
— W(x, v, v, vV)f(¢, x, v)]dr'dv’ (119)

Multiplying (118) by v and integrating over velocity space
allows the derivation of a momentum balance equation. A
similar approach can be employed to derive an energy
conservation equation. Data-driven techniques can then be
applied to fit the statistics obtained from MD simulations to
such a kinetic description. Transport coefficients would be
implicit to the choice of the operator, and could potentially be
extracted from it. These concepts present avenues for future
exploration.
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Bl APPENDIX A: AXISYMMETRIC SOLUTION TO THE
SMOLUCHOWSKI EQUATION

Here, we consider a scenario in which both the diffusivity and
PME are functions of z only, and that the diffusivity tensor is
axisymmetric, i.e., D,.(z) = D,,(z) = D,(2). This will imply
translational invariance within the xy plane, a condition met in
systems wherein a fluid is sandwiched between chemically
uniform parallel plates. Under these conditions, the Smolu-
chowski equation takes the following form:

0,
ox*

ap
= D,(2) o

ot

+ —

0 0
D,.(2)p,—| £
0z oz\ p,

(A1)
with the operator acting on D,,(z) denoted as

)

L;:—

D2y (2)2

which is the differential operator on the right-hand side of the
one-dimensional Smoluchowski equation. It can be shown that

g
L = 4D, () (K2 + KDp + LI

ot
Pk ky, 2, 0) = 8(z — z) (A2)
with p(k,, ,z,t), the partial Fourier transform of p(-) defined

as
pA(kx; ky; Z, t) =

/ e—27ri[kx(x—x0)+ky(y_}’o)]p(x, ¥, 2, t|x0, Ty zo)dxdy
[RZ

(A3)
In other words, ﬁ(kx,ky,z,t) satisfies a diffusion-reaction
equation in one dimension. Considering the translational
invariance within the xy plane for p(x,y,z,tlx,, y0,20), which is
solely a function of Ax = x — x, and Ay = y — y,, we observe

that the marginal probability density:
p(z, tlzy) = /zp(Ax, Ay, z, tlzy) dAx dAy

is identical to p(0,0,2,tlzy), as given in (A3). By setting k, = k,
= 0 in (A2), the reactive term vanishes, and p(z,tlzo) =
0(0,0,z,tlz,) satisfies the one-dimensional Smoluchowski
equation. This implies that for any system accurately described
by (A1) or (62), the time series of z coordinates will adhere to
the one-dimensional Smoluchowski picture. As such, methods
developed for scalar diffusive coordinates, such as the ones
discussed in Section 8, can be applied to estimate D,,(z).

B APPENDIX B: RELATIONSHIP BETWEEN
DIFFUSIVITY AND FORCE AUTOCORRELATION
FUNCTION

Consider the SDE given by eq 95, which describes under-
damped Langevin dynamics. By imposing the Boltzmann
distribution as the steady-state distribution of (95), it can be
demonstrated that D(r) = (mf)>D~'(r) and y(r) =
(mp)7'D7'(r). The second term on the right-hand side of
the velocity equation can be interpreted as a random
acceleration term resulting from interactions with the
surrounding environment. Denoting this random acceleration
as éla;ng), Kubo’s framework can be used to demonstrate
that

D= f " (5a(X,)5aT (X,))dt
=L f " (56(X,)5E7(X,))dt

where 0f, = mda, represents the random forcing terms over the
time interval dt. Eq 93 directly follows from the relationship
between D and D. It is important to note that forces in
molecular dynamics are continuous functions of time, so the
assumption of the validity of underdamped Langevin dynamics
is an approximation.

B AUTHOR INFORMATION

Corresponding Author
Amir Haji-Akbari — Department of Chemical and
Environmental Engineering, Yale University, New Haven,
Connecticut 06520, United States; ® orcid.org/0000-0002-
2228-6957; Email: amir.hajiakbaribalou@yale.edu

Authors
Tiago S. Domingues — Department of Chemical and
Environmental Engineering, Yale University, New Haven,
Connecticut 06520, United States
Ronald Coifman — Department of Mathematics and
Department of Computer Science, Yale University, New
Haven, Connecticut 06520, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.4c00148

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

AH.-A. gratefully acknowledges the support from the National
Science Foundation Grants CBET-1751971 (CAREER
Award) and CBET-2024473. This work was supported as
part of the Center for Enhanced Nanofluidic Transport
(CENT), an Energy Frontier Research Center funded by the
U.S. Department of Energy, Office of Science, Basic Energy
Sciences under Award #DE-SC0019112.

B REFERENCES

(1) Alcoutlabi, M.; McKenna, G. B. Effects of confinement on
material behaviour at the nanometre size scale. J. Phys.: Condens.
Mater. 2005, 17, R461.

(2) Jackson, C. L.; McKenna, G. B. The melting behavior of organic
materials confined in porous solids. J. Chem. Phys. 1990, 93, 9002—
9011.

(3) Swallen, S. F; Kearns, K. L; Mapes, M. K; Kim, Y. S;
McMahon, R. J.; Ediger, M. D,; Wu, T.; Yu, L,; Satija, S. Organic
glasses with exceptional thermodynamic and kinetic stability. Science
2007, 315, 353—356.

(4) Giovambattista, N.; Rossky, P. J.; Debenedetti, P. G. Phase
transitions induced by nanoconfinement in liquid water. Phys. Rev.
Lett. 2009, 102, No. 050603.

(5) Zhang, C.; Guo, Y.; Priestley, R. D. Glass transition temperature
of polymer nanoparticles under soft and hard confinement. Macro-
molecules 2011, 44, 4001—4006.

(6) Chaban, V. V.; Prezhdo, V. V.; Prezhdo, O. V. Confinement by
carbon nanotubes drastically alters the boiling and critical behavior of
water droplets. ACS Nano 2012, 6, 2766—2773.

(7) Moore, E. B.; Allen, J. T.; Molinero, V. Liquid-ice coexistence
below the melting temperature for water confined in hydrophilic and
hydrophobic nanopores. J. Phys. Chem. C 2012, 116, 7507—7514.

https://doi.org/10.1021/acs.jctc.4c00148
J. Chem. Theory Comput. XXXX, XXX, XXX—XXX


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Amir+Haji-Akbari"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-2228-6957
https://orcid.org/0000-0002-2228-6957
mailto:amir.hajiakbaribalou@yale.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tiago+S.+Domingues"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ronald+Coifman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00148?ref=pdf
https://doi.org/10.1088/0953-8984/17/15/R01
https://doi.org/10.1088/0953-8984/17/15/R01
https://doi.org/10.1063/1.459240
https://doi.org/10.1063/1.459240
https://doi.org/10.1126/science.1135795
https://doi.org/10.1126/science.1135795
https://doi.org/10.1103/PhysRevLett.102.050603
https://doi.org/10.1103/PhysRevLett.102.050603
https://doi.org/10.1021/ma1026862?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma1026862?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nn3002533?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nn3002533?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nn3002533?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp3012409?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp3012409?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp3012409?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00148?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

EVE

pubs.acs.org/JCTC

(8) Rodriguez-Larrea, D.; Bayley, H. Multistep protein unfolding
during nanopore translocation. Nature Nanotechnol. 2013, 8, 288—
298.

(9) Hayes, R; El Abedin, S. Z.; Atkin, R. Pronounced structure in
confined aprotic room-temperature ionic liquids. J. Phys. Chem. B
2009, 113, 7049—7052.

(10) Fumagalli, L.; Esfandiar, A,; Fabregas, R;; Hu, S.; Ares, P,;
Janardanan, A.; Yang, Q; Radha, B.; Taniguchi, T.; Watanabe, K;
et al. Anomalously low dielectric constant of confined water. Science
2018, 360, 1339—1342.

(11) Feng, X.; Kawabata, K.; Cowan, M. G.; Dwulet, G. E.; Toth, K;
Sixdenier, L.; Haji-Akbari, A.; Noble, R. D.; Elimelech, M.; Gin, D. L,;
et al. Single crystal texture by directed molecular self-assembly along
dual axes. Nat. Mater. 2019, 18, 1235—1243.

(12) Le, T.; Morita, A.; Tanaka, T. Refractive index of nanoconfined
water reveals its anomalous physical properties. Nanoscale Horiz.
2020, 5, 1016—1024.

(13) Hu, H-W,; Carson, G. A.; Granick, S. Relaxation time of
confined liquids under shear. Phys. Rev. Lett. 1991, 66, 2758.

(14) Demirel, A. L.; Granick, S. Glasslike transition of a confined
simple fluid. Phys. Rev. Lett. 1996, 77, 2261.

(15) Zhang, Z.; Sun, X.; Dresselhaus, M.; Ying, J. Y.; Heremans, J.
Electronic transport properties of single-crystal bismuth nanowire
arrays. Phys. Rev. B 2000, 61, 4850.

(16) Raviv, U,; Laurat, P.; Klein, J. Fluidity of water confined to
subnanometre films. Nature 2001, 413, 51—54.

(17) Kim, O,; Jo, G; Park, Y. J.; Kim, S.; Park, M. J. Ion transport
properties of self-assembled polymer electrolytes: The role of
confinement and interface. J. Phys. Chem. Lett. 2013, 4, 2111-2117.

(18) Pourali, M.; Maghari, A. Non-equilibrium molecular dynamics
simulation of thermal conductivity and thermal diffusion of binary
mixtures confined in a nanochannel. Chem. Phys. 2014, 444, 30—38.

(19) Berrod, Q.; Ferdeghini, F.; Judeinstein, P.; Genevaz, N.; Ramos,
R.; Fournier, A.; Dijon, J.; Ollivier, J; Rols, S.; Yu, D.; et al. Enhanced
ionic liquid mobility induced by confinement in 1D CNT membranes.
Nanoscale 2016, 8, 7845—7848.

(20) Tu, C.-H,; Veith, L.; Butt, H.-J.; Floudas, G. Ionic conductivity
of a solid polymer electrolyte confined in nanopores. Macromolecules
2022, 55, 1332—1341.

(21) Lucent, D.; Vishal, V.; Pande, V. S. Protein folding under
confinement: a role for solvent. Proc. Natl. Acad. Sci. U.S.A. 2007, 104,
10430—10434.

(22) Mittal, J.; Best, R. B. Thermodynamics and kinetics of protein
folding under confinement. Proc. Natl. Acad. Sci. U.S.A. 2008, 108,
20233-20238.

(23) Jiang, Q; Ward, M. D. Crystallization under nanoscale
confinement. Chem. Soc. Rev. 2014, 43, 2066—2079.

(24) Haji-Akbari, A.; Debenedetti P. G. Computational inves-
tigation of surface freezing in a molecular model of water. Proc. Natl.
Acad. Sci. US.A. 2017, 114, 3316—3321.

(25) Altabet, Y. E.; Haji-Akbari, A.; Debenedetti, P. G. Effect of
material flexibility on the thermodynamics and kinetics of hydro-
phobically induced evaporation of water. Proc. Natl. Acad. Sci. U.S.A.
2017, 114, E2548—E2SSS.

(26) Hussain, S.; Haji-Akbari, A. Role of nanoscale interfacial
proximity in contact freezing in water. J. Am. Chem. Soc. 2021, 143,
2272-2284.

(27) Shoemaker, B. A.; Khalifa, O.; Haji-Akbari, A. Correlations in
Charged Multipore Systems: Implications for Enhancing Selectivity
and Permeability in Nanoporous Membranes. ACS Nano 2024, 18,
1420—1431.

(28) Rosenbluth, M. N.; Rosenbluth, A. W. Further results on
Monte Carlo equations of state. J. Chem. Phys. 1954, 22, 881—884.

(29) Alder, B; Frankel, S; Lewinson, V. Radial Distribution
Function Calculated by the Monte-Carlo Method for a Hard Sphere
Fluid. J. Chem. Phys. 1955, 23, 417—419.

(30) Alder, B. J; Wainwright, T. E. Phase transition for a hard
sphere system. J. Chem. Phys. 1957, 27, 1208—1209.

(31) Alder, B. J.; Wainwright, T. E. Studies in molecular dynamics. L.
General method. J. Chem. Phys. 1959, 31, 459—466.

(32) Rahman, A. Correlations in the motion of atoms in liquid
argon. Phys. Rev. 1964, 136, A405.

(33) Gubbins, K. E.; Liu, Y.-C.; Moore, J. D.; Palmer, J. C. The role
of molecular modeling in confined systems: impact and prospects.
Phys. Chem. Chem. Phys. 2011, 13, 58—85.

(34) Croxton, C.; Ferrier, R. Statistical mechanical calculation of
surface properties of simple liquids. IV. Molecular dynamics. J. Phys. C
Solid State 1971, 4, 2447.

(35) Lee, J. K; Barker, J.; Pound, G. Surface structure and surface
tension: Perturbation theory and Monte Carlo calculation. J. Chem.
Phys. 1974, 60, 1976—1980.

(36) Liu, K. Phase separation of Lennard-Jones systems: A film in
equilibrium with vapor. J. Chem. Phys. 1974, 60, 4226—4230.

(37) Abraham, F. F.; Schreiber, D. E.; Barker, J. On the structure of a
free surface of a Lennard-Jones liquid: A Monte Carlo calculation. J.
Chem. Phys. 1975, 62, 1958—1960.

(38) Toxvaerd, S.; Praestgaard, E. Molecular dynamics calculation of
the liquid structure up to a solid surface. J. Chem. Phys. 1977, 67,
5291-529S.

(39) Subramanian, G.; Davis, H. Molecular dynamics of a hard
sphere fluid in small pores. Mol. Phys. 1979, 38, 1061—1066.

(40) Onsager, L. Reciprocal relations in irreversible processes. I
Phys. Rev. 1931, 37, 405.

(41) Avron, J. Odd viscosity. J. Stat. Phys. 1998, 92, 543—557.

(42) Hoover, W. G. Nonequilibrium molecular dynamics. Annu. Rev.
Phys. Chem. 1983, 34, 103—127.

(43) Evans, D. J.; Morriss, O. Non-Newtonian molecular dynamics.
Comp. Phys. Rep. 1984, 1, 297—343.

(44) Vogelsang, R.; Hoheisel, G.; Luckas, M. Shear viscosity and
thermal conductivity of the Lennard-Jones liquid computed using
molecular dynamics and predicted by a memory function model for a
large number of states. Mol. Phys. 1988, 64, 1203—1213.

(4S) Svishchev, L; Kusalik, P. Nonequilibrium molecular dynamics
of a dense ionic fluid. Phys. Chem. Liq. 1994, 26, 237—246.

(46) Wang, Y,; Ruan, X;; Roy, A. K. Two-temperature non-
equilibrium molecular dynamics simulation of thermal transport
across metal-nonmetal interfaces. Phys. Rev. B 2012, 85, 205311.

(47) Jadhao, V.; Robbins, M. O. Probing large viscosities in glass-
formers with nonequilibrium simulations. Proc. Natl. Acad. Sci. U.S.A.
2017, 114, 7952—7957.

(48) Miiller-Plathe, F. A simple nonequilibrium molecular dynamics
method for calculating the thermal conductivity. . Chem. Phys. 1997,
106, 6082—6085.

(49) Tenney, C. M.; Maginn, E. J. Limitations and recommendations
for the calculation of shear viscosity using reverse nonequilibrium
molecular dynamics. J. Chem. Phys. 2010, 132, 014103.

(50) Marconi, U. M. B.; Puglisi, A; Rondoni, L; Vulpiani, A.
Fluctuation—dissipation: response theory in statistical physics. Phys.
Rep. 2008, 461, 111—-195.

(51) Green, M. S. Markoff random processes and the statistical
mechanics of time-dependent phenomena. II. Irreversible processes in
fluids. J. Chem. Phys. 1954, 22, 398—413.

(52) Kubo, R. Statistical-mechanical theory of irreversible processes.
I. General theory and simple applications to magnetic and conduction
problems. J. Phys. Soc. Jpn. 1957, 12, 570—586.

(53) Bradlyn, B.; Goldstein, M.; Read, N. Kubo formulas for
viscosity: Hall viscosity, Ward identities, and the relation with
conductivity. Phys. Rev. B 2012, 86, 245309.

(54) Shi, K; Smith, E. R; Santiso, E. E.; Gubbins, K. E. A
perspective on the microscopic pressure (stress) tensor: History,
current understanding, and future challenges. J. Chem. Phys. 2023,
158, No. 040901.

(55) Schelling, P. K.; Phillpot, S. R.; Keblinski, P. Comparison of
atomic-level simulation methods for computing thermal conductivity.
Phys. Rev. B 2002, 65, 144306.

(56) Ma, Q; Kang, D.; Zhao, Z.; Dai, ]. Directly calculated electrical
conductivity of hot dense hydrogen from molecular dynamics

https://doi.org/10.1021/acs.jctc.4c00148
J. Chem. Theory Comput. XXXX, XXX, XXX—XXX


https://doi.org/10.1038/nnano.2013.22
https://doi.org/10.1038/nnano.2013.22
https://doi.org/10.1021/jp902837s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp902837s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/science.aat4191
https://doi.org/10.1038/s41563-019-0389-1
https://doi.org/10.1038/s41563-019-0389-1
https://doi.org/10.1039/D0NH00180E
https://doi.org/10.1039/D0NH00180E
https://doi.org/10.1103/PhysRevLett.66.2758
https://doi.org/10.1103/PhysRevLett.66.2758
https://doi.org/10.1103/PhysRevLett.77.2261
https://doi.org/10.1103/PhysRevLett.77.2261
https://doi.org/10.1103/PhysRevB.61.4850
https://doi.org/10.1103/PhysRevB.61.4850
https://doi.org/10.1038/35092523
https://doi.org/10.1038/35092523
https://doi.org/10.1021/jz4009536?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz4009536?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz4009536?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.chemphys.2014.09.012
https://doi.org/10.1016/j.chemphys.2014.09.012
https://doi.org/10.1016/j.chemphys.2014.09.012
https://doi.org/10.1039/C6NR01445C
https://doi.org/10.1039/C6NR01445C
https://doi.org/10.1021/acs.macromol.1c02490?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.1c02490?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.0608256104
https://doi.org/10.1073/pnas.0608256104
https://doi.org/10.1073/pnas.0807742105
https://doi.org/10.1073/pnas.0807742105
https://doi.org/10.1039/C3CS60234F
https://doi.org/10.1039/C3CS60234F
https://doi.org/10.1073/pnas.1620999114
https://doi.org/10.1073/pnas.1620999114
https://doi.org/10.1073/pnas.1620335114
https://doi.org/10.1073/pnas.1620335114
https://doi.org/10.1073/pnas.1620335114
https://doi.org/10.1021/jacs.0c10663?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.0c10663?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.3c07489?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.3c07489?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.3c07489?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1740207
https://doi.org/10.1063/1.1740207
https://doi.org/10.1063/1.1742004
https://doi.org/10.1063/1.1742004
https://doi.org/10.1063/1.1742004
https://doi.org/10.1063/1.1743957
https://doi.org/10.1063/1.1743957
https://doi.org/10.1063/1.1730376
https://doi.org/10.1063/1.1730376
https://doi.org/10.1103/PhysRev.136.A405
https://doi.org/10.1103/PhysRev.136.A405
https://doi.org/10.1039/C0CP01475C
https://doi.org/10.1039/C0CP01475C
https://doi.org/10.1088/0022-3719/4/16/010
https://doi.org/10.1088/0022-3719/4/16/010
https://doi.org/10.1063/1.1681303
https://doi.org/10.1063/1.1681303
https://doi.org/10.1063/1.1680892
https://doi.org/10.1063/1.1680892
https://doi.org/10.1063/1.430685
https://doi.org/10.1063/1.430685
https://doi.org/10.1063/1.434707
https://doi.org/10.1063/1.434707
https://doi.org/10.1080/00268977900102241
https://doi.org/10.1080/00268977900102241
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1023/A:1023084404080
https://doi.org/10.1146/annurev.pc.34.100183.000535
https://doi.org/10.1016/0167-7977(84)90001-7
https://doi.org/10.1016/0167-7977(84)90001-7
https://doi.org/10.1080/00268978800100813
https://doi.org/10.1080/00268978800100813
https://doi.org/10.1080/00268978800100813
https://doi.org/10.1080/00268978800100813
https://doi.org/10.1080/00319109408029496
https://doi.org/10.1080/00319109408029496
https://doi.org/10.1103/PhysRevB.85.205311
https://doi.org/10.1103/PhysRevB.85.205311
https://doi.org/10.1103/PhysRevB.85.205311
https://doi.org/10.1073/pnas.1705978114
https://doi.org/10.1073/pnas.1705978114
https://doi.org/10.1063/1.473271
https://doi.org/10.1063/1.473271
https://doi.org/10.1063/1.3276454
https://doi.org/10.1063/1.3276454
https://doi.org/10.1063/1.3276454
https://doi.org/10.1016/j.physrep.2008.02.002
https://doi.org/10.1063/1.1740082
https://doi.org/10.1063/1.1740082
https://doi.org/10.1063/1.1740082
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1103/PhysRevB.86.245309
https://doi.org/10.1103/PhysRevB.86.245309
https://doi.org/10.1103/PhysRevB.86.245309
https://doi.org/10.1063/5.0132487
https://doi.org/10.1063/5.0132487
https://doi.org/10.1063/5.0132487
https://doi.org/10.1103/PhysRevB.65.144306
https://doi.org/10.1103/PhysRevB.65.144306
https://doi.org/10.1063/1.5013631
https://doi.org/10.1063/1.5013631
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00148?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

EVE

pubs.acs.org/JCTC

simulation beyond Kubo-Greenwood formula. Phys. Plasmas 2018,
2§, No. 012707.

(57) Helfand, E. Transport coefficients from dissipation in a
canonical ensemble. Phys. Rev. 1960, 119, 1.

(58) Einstein, A. Uber die von der molekularkinetischen Theorie der
Wirme geforderte Bewegung von in ruhenden Fliissigkeiten
suspendierten Teilchen. Ann. Phys. 1905, 322, 549—560.

(59) Kinaci, A.; Haskins, J. B.; Cagin, T. On calculation of thermal
conductivity from Einstein relation in equilibrium molecular
dynamics. J. Chem. Phys. 2012, 137, No. 014106.

(60) Viscardy, S.; Gaspard, P. Viscosity in molecular dynamics with
periodic boundary conditions. Phys. Rev. E 2003, 68, No. 041204.

(61) Mittal, J.; Hummer, G. Pair diffusion, hydrodynamic
interactions, and available volume in dense fluids. J. Chem. Phys.
2012, 137, No. 034110.

(62) Van Hove, L. Correlations in space and time and Born
approximation scattering in systems of interacting particles. Phys. Rev.
1954, 95, 249.

(63) Fokker, A. D. Die mittlere Energie rotierender elektrischer
Dipole im Strahlungsfeld. Ann. Phys. 1914, 348, 810—820.

(64) Planck, M. Uber einen Satz der statistischen Dynamik und
seine Erweiterung in der Quantentheorie. Sitzber. Preuss. Akad. 1917,
24, 324-341.

(65) Smoluchowski, P. M. Drei vortrage iiber diffusion, brownsche
molekularbewegung und koagulation von kolloidteilchen. Phyz. Z.
1916, 2, 530—594.

(66) Teboul, V.; Simionesco, C. A. Properties of a confined
molecular glass-forming liquid. J. Phys.: Condens. Mater. 2002, 14,
5699.

(67) Desai, T.; Keblinski, P.; Kumar, S. K. Molecular dynamics
simulations of polymer transport in nanocomposites. J. Chem. Phys.
2005, 122, 134910.

(68) Marrink, S.-J.; Berendsen, H. J. Simulation of water transport
through a lipid membrane. J. Phys. Chem. 1994, 98, 4155—4168.

(69) Langon, P.; Batrouni, G.; Lobry, L.; Ostrowsky, N. Brownian
walker in a confined geometry leading to a space-dependent diffusion
coefficient. Physica A 2002, 304, 65—76.

(70) Haji-Akbari, A.; Debenedetti, P. G. The effect of substrate on
thermodynamic and kinetic anisotropies in atomic thin films. J. Chem.
Phys. 2014, 141, No. 024506.

(71) Haji-Akbari, A.; Debenedetti, P. G. Thermodynamic and kinetic
anisotropies in octane thin films. J. Chem. Phys. 2015, 143, 214501.

(72) Liu, P.; Harder, E.; Berne, B. On the calculation of diffusion
coefficients in confined fluids and interfaces with an application to the
liquid- vapor interface of water. J. Phys. Chem. B 2004, 108, 6595—
6602.

(73) Shi, Z.; Debenedetti, P. G.; Stillinger, F. H. Properties of model
atomic free-standing thin films. J. Chem. Phys. 2011, 134, 114524.

(74) Nagai, T.; Tsurumaki, S.; Urano, R.; Fujimoto, K.; Shinoda, W.;
Okazaki, S. Position-Dependent Diffusion Constant of Molecules in
Heterogeneous Systems as Evaluated by the Local Mean Squared
Displacement. J. Chem. Theory Comput. 2020, 16, 7239—7254.

(75) Kramers, H. A. Brownian motion in a field of force and the
diffusion model of chemical reactions. Physica 1940, 7, 284—304.

(76) Moyal, J. Stochastic processes and statistical physics. J. R. Stat.
Soc. B Met. 1949, 11, 150—210.

(77) Kob, W.; Andersen, H. C. Scaling behavior in the f-relaxation
regime of a supercooled Lennard-Jones mixture. Phys. Rev. Lett. 1994,
73, 1376.

(78) Friedrich, R.; Renner, C.; Siefert, M.; Peinke, J. Comment on
“Indispensable Finite Time Corrections for Fokker-Planck Equations
from Time Series Data. Phys. Rev. Lett. 2002, 89, 149401.

(79) Gottschall, J.; Peinke, J. On the definition and handling of
different drift and diffusion estimates. New J]. Phys. 2008, 10,
No. 083034.

(80) Sedlmeier, F.; von Hansen, Y.; Mengyu, L.; Horinek, D.; Netz,
R. R. Water Dynamics at Interfaces and Solutes: Disentangling Free
Energy and Diffusivity Contributions. J. Stat. Phys. 2011, 145, 240—
252.

AA

(81) Oliveira, R. J. d. Coordinate-Dependent Drift-Diffusion Reveals
the Kinetic Intermediate Traps of Top7-Based Proteins. J. Phys. Chem.
B 2022, 126, 10854—10869.

(82) Hinczewski, M.; von Hansen, Y.; Dzubiella, J.; Netz, R. R. How
the diffusivity profile reduces the arbitrariness of protein folding free
energies. J. Chem. Phys. 2010, 132, 245103.

(83) Yang, S.; Onuchic, J. N.; Garcia, A. E.; Levine, H. Folding Time
Predictions from All-atom Replica Exchange Simulations. J. Mol. Biol.
2007, 372, 756—763.

(84) Yang, S.; Onuchic, J. N.; Levine, H. Effective stochastic
dynamics on a protein folding energy landscape. J. Chem. Phys. 2006,
125, No. 054910.

(85) Freitas, F. C; Lima, A. N.; Contessoto, V. d. G.; Whitford, P.
C.; Oliveira, R. J. d. Drift-diffusion (DrDiff) framework determines
kinetics and thermodynamics of two-state folding trajectory and tunes
diffusion models. J. Chem. Phys. 2019, 151, 114106.

(86) Mamonov, A. B.; Kurnikova, M. G.; Coalson, R. D. Diffusion
constant of K+ inside Gramicidin A: A comparative study of four
computational methods. Biophys. Chem. 2006, 124, 268—278.

(87) Hunter, M. A,; Demir, B.; Petersen, C. F.; Searles, D. J. New
Framework for Computing a General Local Self-Diffusion Coefficient
Using Statistical Mechanics. J. Chem. Theory Comput. 2022, 18,
3357-3363.

(88) Mangaud, E.; Rotenberg, B. Sampling mobility profiles of
confined fluids with equilibrium molecular dynamics simulations. J.
Chem. Phys. 2020, 153, No. 044125.

(89) Lennard-Jones, J. E. On the Determination of Molecular Fields.
Proc. R. Soc. London A 1924, 106, 463—477.

(90) Schuss, Z. Theory and Applications of Stochastic Processes: An
Analytical Approach; Applied Mathematical Sciences; Springer-Verlag:
New York, 2010.

(91) Weiss, G. H. Advances in Chemical Physics; John Wiley & Sons,
Ltd., 1967; pp 1-18.

(92) Domingues, T. S.; Coifman, R. R.; Haji-Akbari, A. Robust
Estimation of Position-Dependent Anisotropic Diffusivity Tensors
from Stochastic Trajectories. . Phys. Chem. B 2023, 127, 5273—5287.

(93) Domingues, T. S.; Coifman, R. R.; Haji-Akbari, A. Robust
Estimation of Position-Dependent Anisotropic Diffusivity Tensors
from Molecular Dynamics Trajectories. J. Phys. Chem. B 2023, 127,
8644—8659.

(94) Hegger, R; Stock, G. Multidimensional Langevin modeling of
biomolecular dynamics. J. Chem. Phys. 2009, 130, No. 034106.

(95) Nadaraya, E. A. On Estimating Regression. Theor. Probab. Appl.
1964, 9, 141—142.

(96) Watson, G. S. Smooth regression analysis. Sankhya Ser. A 1964,
26, 359—372.

(97) Florens-Zmirou, D. On Estimating the Diffusion Coefficient
from Discrete Observations. J. Appl. Probab. 1993, 30, 790—804.

(98) Bandi, F. M.; Phillips, P. C. B. Fully Nonparametric Estimation
of Scalar Diffusion Models. Econometrica 2003, 71, 241—283.

(99) Jiang, G. J.; Knight, J. L. A Nonparametric Approach to the
Estimation of Diffusion Processes, with an Application to a Short-
Term Interest Rate Model. Economet. Theor. 1997, 13, 615—645.

(100) Lamouroux, D.; Lehnertz, K. Kernel-based regression of drift
and diffusion coefficients of stochastic processes. Phys. Lett. A 2009,
373, 3507-3512.

(101) Phillips, J. Stretched exponential relaxation in molecular and
electronic glasses. Rep. Prog. Phys. 1996, 59, 1133.

(102) Coifman, R. R; Lafon, S. Diffusion maps. Appl. Comput.
Harmon. Anal. 2006, 21, 5—30.

(103) Silverman, B. W. Density estimation for statistics and data
analysis; Routledge, 2018.

(104) Comer, J; Chipot, C; Gonzalez-Nilo, F. D. Calculating
Position-Dependent Diffusivity in Biased Molecular Dynamics
Simulations. J. Chem. Theory Comput. 2013, 9, 876—882.

(105) Hummer, G. Position-dependent diffusion coefficients and
free energies from Bayesian analysis of equilibrium and replica
molecular dynamics simulations. New J. Phys. 2008, 7, 34.

https://doi.org/10.1021/acs.jctc.4c00148
J. Chem. Theory Comput. XXXX, XXX, XXX—XXX


https://doi.org/10.1063/1.5013631
https://doi.org/10.1103/PhysRev.119.1
https://doi.org/10.1103/PhysRev.119.1
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1063/1.4731450
https://doi.org/10.1063/1.4731450
https://doi.org/10.1063/1.4731450
https://doi.org/10.1103/PhysRevE.68.041204
https://doi.org/10.1103/PhysRevE.68.041204
https://doi.org/10.1063/1.4732515
https://doi.org/10.1063/1.4732515
https://doi.org/10.1103/PhysRev.95.249
https://doi.org/10.1103/PhysRev.95.249
https://doi.org/10.1002/andp.19143480507
https://doi.org/10.1002/andp.19143480507
https://doi.org/10.1088/0953-8984/14/23/304
https://doi.org/10.1088/0953-8984/14/23/304
https://doi.org/10.1063/1.1874852
https://doi.org/10.1063/1.1874852
https://doi.org/10.1021/j100066a040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100066a040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S0378-4371(01)00510-6
https://doi.org/10.1016/S0378-4371(01)00510-6
https://doi.org/10.1016/S0378-4371(01)00510-6
https://doi.org/10.1063/1.4885365
https://doi.org/10.1063/1.4885365
https://doi.org/10.1063/1.4935801
https://doi.org/10.1063/1.4935801
https://doi.org/10.1021/jp0375057?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp0375057?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp0375057?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.3565480
https://doi.org/10.1063/1.3565480
https://doi.org/10.1021/acs.jctc.0c00448?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00448?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00448?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1111/j.2517-6161.1949.tb00030.x
https://doi.org/10.1103/PhysRevLett.73.1376
https://doi.org/10.1103/PhysRevLett.73.1376
https://doi.org/10.1103/PhysRevLett.89.149401
https://doi.org/10.1103/PhysRevLett.89.149401
https://doi.org/10.1103/PhysRevLett.89.149401
https://doi.org/10.1088/1367-2630/10/8/083034
https://doi.org/10.1088/1367-2630/10/8/083034
https://doi.org/10.1007/s10955-011-0338-0
https://doi.org/10.1007/s10955-011-0338-0
https://doi.org/10.1021/acs.jpcb.2c07031?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.2c07031?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.3442716
https://doi.org/10.1063/1.3442716
https://doi.org/10.1063/1.3442716
https://doi.org/10.1016/j.jmb.2007.07.010
https://doi.org/10.1016/j.jmb.2007.07.010
https://doi.org/10.1063/1.2229206
https://doi.org/10.1063/1.2229206
https://doi.org/10.1063/1.5113499
https://doi.org/10.1063/1.5113499
https://doi.org/10.1063/1.5113499
https://doi.org/10.1016/j.bpc.2006.03.019
https://doi.org/10.1016/j.bpc.2006.03.019
https://doi.org/10.1016/j.bpc.2006.03.019
https://doi.org/10.1021/acs.jctc.2c00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0013952
https://doi.org/10.1063/5.0013952
https://doi.org/10.1098/rspa.1924.0082
https://doi.org/10.1021/acs.jpcb.3c00670?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.3c00670?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.3c00670?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.3c03581?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.3c03581?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.3c03581?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.3058436
https://doi.org/10.1063/1.3058436
https://doi.org/10.1137/1109020
https://doi.org/10.2307/3214513
https://doi.org/10.2307/3214513
https://doi.org/10.1111/1468-0262.00395
https://doi.org/10.1111/1468-0262.00395
https://doi.org/10.1017/S0266466600006101
https://doi.org/10.1017/S0266466600006101
https://doi.org/10.1017/S0266466600006101
https://doi.org/10.1016/j.physleta.2009.07.073
https://doi.org/10.1016/j.physleta.2009.07.073
https://doi.org/10.1088/0034-4885/59/9/003
https://doi.org/10.1088/0034-4885/59/9/003
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1021/ct300867e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct300867e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct300867e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/1367-2630/7/1/034
https://doi.org/10.1088/1367-2630/7/1/034
https://doi.org/10.1088/1367-2630/7/1/034
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00148?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

EVE

pubs.acs.org/JCTC

(106) Palmer, B. J.; Chun, J.; Morris, J. F.; Mundy, C. J.; Schenter,
G. K. Correlation function approach for diffusion in confined
geometries. Phys. Rev. E 2020, 102, No. 022129.

(107) Sicard, F.; Koskin, V.; Annibale, A; Rosta, E. Position-
Dependent Diffusion from Biased Simulations and Markov State
Model Analysis. J. Chem. Theory Comput. 2021, 17, 2022—2033.

(108) Bicout, D. J.; Szabo, A. Electron transfer reaction dynamics in
non-Debye solvents. J. Chem. Phys. 1998, 109, 2325—2338.

(109) Mittal, J.; Truskett, T. M; Errington, J. R; Hummer, G.
Layering and Position-Dependent Diffusive Dynamics of Confined
Fluids. Phys. Rev. Lett. 2008, 100, 145901.

(110) Hermans, J. The amino acid dipeptide: small but still
influential after 50 years. Proc. Natl. Acad. Sci. U.S.A. 2011, 108,
3095-3096.

(111) Ghorbani, M.; Wang, E.; Krimer, A.; Klauda, J. B. Molecular
dynamics simulations of ethanol permeation through single and
double-lipid bilayers. J. Chem. Phys. 2020, 153, 125101.

(112) Krimer, A.; Ghysels, A.; Wang, E.; Venable, R. M.; Klauda, J.
B.; Brooks, B. R.; Pastor, R. W. Membrane permeability of small
molecules from unbiased molecular dynamics simulations. J. Chem.
Phys. 2020, 153, 124107.

(113) Ghysels, A;; Venable, R. M.; Pastor, R. W.; Hummer, G.
Position-Dependent Diffusion Tensors in Anisotropic Media from
Simulation: Oxygen Transport in and through Membranes. J. Chem..
Theory Comput. 2017, 13, 2962—2976.

(114) Beltran-Villegas, D. J.; Edwards, T. D.; Bevan, M. A. Self-
Consistent Colloidal Energy and Diffusivity Landscapes in Macro-
molecular Solutions. Langmuir 2013, 29, 12337—12341.

(115) Best, R. B.; Hummer, G.; Wolynes, P. G. Coordinate-
Dependent Diffusion in Protein Folding. Proc. Natl. Acad. Sci. U.S.A.
2010, 107, 1088—1093.

(116) Chang, J. C,; Fok, P.-W.; Chou, T. Bayesian Uncertainty
Quantification for Bond Energies and Mobilities Using Path Integral
Analysis: Biophysical Journal. Biophys. J. 2015, 109, 966—974.

(117) Tiitkcan, S.; Alexandrou, A.; Masson, J.-B. A Bayesian
Inference Scheme to Extract Diffusivity and Potential Fields from
Confined Single-Molecule Trajectories. Biophys. J. 2012, 102, 2288—
2298.

(118) Masson, J.-B.; Dionne, P.; Salvatico, C.; Renner, M.; Specht,
C. G,; Triller, A;; Dahan, M. Mapping the Energy and Diffusion
Landscapes of Membrane Proteins at the Cell Surface Using High-
Density Single-Molecule Imaging and Bayesian Inference: Application
to the Multiscale Dynamics of Glycine Receptors in the Neuronal
Membrane. Biophys. J. 2014, 106, 74—83.

(119) Husic, B. E; Pande, V. S. Markov state models: From an art to
a science. J. Am. Chem. Soc. 2018, 140, 2386—2396.

(120) Schulz, R.; Yamamoto, K.; Klossek, A.; Flesch, R.; Honzke, S.;
Rancan, F.; Vogt, A.; Blume-Peytavi, U,; Hedtrich, S.; Schafer-
Korting, M,; Riihl, E;; Netz, R. R. Data-based modeling of drug
penetration relates human skin barrier function to the interplay of
diffusivity and free-energy profiles. Proc. Natl. Acad. Sci. U.S.A. 2017,
114, 3631—-3636.

(121) Straub, J. E.; Borkovec, M.; Berne, B. J. Calculation of
dynamic friction on intramolecular degrees of freedom. J. Phys. Chem.
1987, 91, 4995—4998.

(122) Straub, J. E.; Berne, B. J.; Roux, B. Spatial dependence of time-
dependent friction for pair diffusion in a simple fluid. J. Phys. Chem.
1990, 93, 6804—6812.

(123) Miller, C. C. The Stokes-Einstein law for diffusion in solution.
Proc. R. Soc. London A 1924, 106, 724—749.

(124) Chahine, J; Oliveira, R. J; Leite, V. B. P.; Wang, J.
Configuration-dependent diffusion can shift the kinetic transition
state and barrier height of protein folding. Proc. Natl. Acad. Sci. U.S.A.
2007, 104, 14646—14651.

(125) Woolf, T. B,; Roux, B. Conformational Flexibility of o-
Phosphorylcholine and o-Phosphorylethanolamine: A Molecular
Dynamics Study of Solvation Effects. J. Am. Chem. Soc. 1994, 116,
5916—5926.

AB

(126) Gaalswyk, K.; Awoonor-Williams, E.; Rowley, C. N.
Generalized Langevin Methods for Calculating Transmembrane
Diffusivity. . Chem. Theory Comput. 2016, 12, 5609—5619.

(127) Socci, N. D.; Onuchic, J. N.; Wolynes, P. G. Diffusive
dynamics of the reaction coordinate for protein folding funnels. J.
Chem. Phys. 1996, 104, 5860—5868.

(128) Holland, B. W,; Gray, C. G; Tomberli, B. Calculating
diffusion and permeability coefficients with themc 39oscillating
forward-reverse method. Phys. Rev. E 2012, 86, No. 036707.

(129) Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys.
1966, 29, 25S.

(130) Roux, B,; Karplus, M. Ion transport in a gramicidin-like
channel: dynamics and mobility. J. Phys. Chem. 1991, 95, 4856—4868.

(131) Saito, H.; Shinoda, W. Cholesterol Effect on Water
Permeability through DPPC and PSM Lipid Bilayers: A Molecular
Dynamics Study. J. Phys. Chem. B 2011, 115, 15241—15250.

(132) Carpenter, T. S.; Kirshner, D. A; Lau, E. Y,; Wong, S. E;
Nilmeier, J. P.; Lightstone, F. C. A Method to Predict Blood-Brain
Barrier Permeability of Drug-Like Compounds Using Molecular
Dynamics Simulations. Biophys. J. 2014, 107, 630—641.

(133) Sugii, T.; Takagi, S.; Matsumoto, Y. A molecular-dynamics
study of lipid bilayers: Effects of the hydrocarbon chain length on
permeability. J. Chem. Phys. 2008, 123, 184714.

(134) Shinoda, W.; Mikami, M.; Baba, T.; Hato, M. Molecular
Dynamics Study on the Effects of Chain Branching on the Physical
Properties of Lipid Bilayers: 2. Permeability. ]. Phys. Chem. B 2004,
108, 9346—9356.

(135) Shinoda, W. Permeability across lipid membranes. BBA -
Biomembranes 2016, 1858, 2254—2265.

(136) Ciccotti, G.; Jacucci, G. Direct Computation of Dynamical
Response by Molecular Dynamics: The Mobility of a Charged
Lennard-Jones Particle. Phys. Rev. Lett. 1975, 35, 789—792.

(137) McKinnon, S. J; Whittenburg, S. L.; Brooks, B. Non-
equilibrium molecular dynamics simulation of oxygen diffusion
through hexadecane monolayers with varying concentrations of
cholesterol. J. Phys. Chem. 1992, 96, 10497—10506.

(138) Park, S.; Schulten, K. Calculating potentials of mean force
from steered molecular dynamics simulations. J. Chem. Phys. 2004,
120, 5946—5961.

(139) Berendsen, H. J.; Postma, J. v.; Van Gunsteren, W. F.; DiNola,
A.; Haak, J. R. Molecular dynamics with coupling to an external bath.
J. Chem. Phys. 1984, 81, 3684—3690.

(140) Nosé, S. A molecular dynamics method for simulations in the
canonical ensemble. Mol. Phys. 1984, 52, 255—268.

(141) Hoover, W. G. Canonical dynamics: Equilibrium phase-space
distributions. Phys. Rev. A 198§, 31, 1695—1697.

(142) Daldrop, J. O.; Kowalik, B. G.; Netz, R. R. External Potential
Modifies Friction of Molecular Solutes in Water. Phys. Rev. X 2017, 7,
No. 04106S.

(143) Berendsen, H. J.; Grigera, J. R.; Straatsma, T. P. The missing
term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269—6271.

(144) Malmir, H.; Epsztein, R; Elimelech, M.; Haji-Akbari, A.
Induced charge anisotropy: A hidden variable affecting ion transport
through membranes. Matter 2020, 2, 735—750.

(145) Fujimoto, K.; Nagai, T.; Yamaguchi, T. Momentum removal
to obtain the position-dependent diffusion constant in constrained
molecular dynamics simulation. J. Comput. Chem. 2021, 42, 2136—
2144.

(146) Valsson, O.; Tiwary, P.; Parrinello, M. Enhancing important
fluctuations: Rare events and metadynamics from a conceptual
viewpoint. Annu. Rev. Phys. Chem. 2016, 67, 159—184.

(147) Hussain, S.; Haji-Akbari, A. Studying rare events using
forward-flux sampling: Recent breakthroughs and future outlook. J.
Chem. Phys. 2020, 152, No. 060901.

(148) Sittel, F.; Stock, G. Perspective: Identification of collective
variables and metastable states of protein dynamics. J. Chem. Phys.
2018, 149, 150901.

(149) Kacirani, A,; Uralcan, B.; Domingues, T. S.; Haji-Akbari, A.
Effect of Pressure on the Conformational Landscape of Human yD-

https://doi.org/10.1021/acs.jctc.4c00148
J. Chem. Theory Comput. XXXX, XXX, XXX—XXX


https://doi.org/10.1103/PhysRevE.102.022129
https://doi.org/10.1103/PhysRevE.102.022129
https://doi.org/10.1021/acs.jctc.0c01151?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c01151?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c01151?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.476800
https://doi.org/10.1063/1.476800
https://doi.org/10.1103/PhysRevLett.100.145901
https://doi.org/10.1103/PhysRevLett.100.145901
https://doi.org/10.1073/pnas.1019470108
https://doi.org/10.1073/pnas.1019470108
https://doi.org/10.1063/5.0013430
https://doi.org/10.1063/5.0013430
https://doi.org/10.1063/5.0013430
https://doi.org/10.1063/5.0013429
https://doi.org/10.1063/5.0013429
https://doi.org/10.1021/acs.jctc.7b00039?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00039?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la403261m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la403261m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la403261m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.0910390107
https://doi.org/10.1073/pnas.0910390107
https://doi.org/10.1016/j.bpj.2015.07.028
https://doi.org/10.1016/j.bpj.2015.07.028
https://doi.org/10.1016/j.bpj.2015.07.028
https://doi.org/10.1016/j.bpj.2012.01.063
https://doi.org/10.1016/j.bpj.2012.01.063
https://doi.org/10.1016/j.bpj.2012.01.063
https://doi.org/10.1016/j.bpj.2013.10.027
https://doi.org/10.1016/j.bpj.2013.10.027
https://doi.org/10.1016/j.bpj.2013.10.027
https://doi.org/10.1016/j.bpj.2013.10.027
https://doi.org/10.1016/j.bpj.2013.10.027
https://doi.org/10.1021/jacs.7b12191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.7b12191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.1620636114
https://doi.org/10.1073/pnas.1620636114
https://doi.org/10.1073/pnas.1620636114
https://doi.org/10.1021/j100303a019?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100303a019?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.458950
https://doi.org/10.1063/1.458950
https://doi.org/10.1098/rspa.1924.0100
https://doi.org/10.1073/pnas.0606506104
https://doi.org/10.1073/pnas.0606506104
https://doi.org/10.1021/ja00092a048?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00092a048?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00092a048?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00747?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00747?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.471317
https://doi.org/10.1063/1.471317
https://doi.org/10.1103/PhysRevE.86.036707
https://doi.org/10.1103/PhysRevE.86.036707
https://doi.org/10.1103/PhysRevE.86.036707
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1021/j100165a049?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100165a049?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp201611p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp201611p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp201611p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.bpj.2014.06.024
https://doi.org/10.1016/j.bpj.2014.06.024
https://doi.org/10.1016/j.bpj.2014.06.024
https://doi.org/10.1063/1.2102900
https://doi.org/10.1063/1.2102900
https://doi.org/10.1063/1.2102900
https://doi.org/10.1021/jp035998+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp035998+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp035998+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.bbamem.2016.03.032
https://doi.org/10.1103/PhysRevLett.35.789
https://doi.org/10.1103/PhysRevLett.35.789
https://doi.org/10.1103/PhysRevLett.35.789
https://doi.org/10.1021/j100204a070?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100204a070?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100204a070?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100204a070?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1651473
https://doi.org/10.1063/1.1651473
https://doi.org/10.1063/1.448118
https://doi.org/10.1080/00268978400101201
https://doi.org/10.1080/00268978400101201
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1103/PhysRevX.7.041065
https://doi.org/10.1103/PhysRevX.7.041065
https://doi.org/10.1021/j100308a038?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100308a038?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.matt.2019.12.022
https://doi.org/10.1016/j.matt.2019.12.022
https://doi.org/10.1002/jcc.26742
https://doi.org/10.1002/jcc.26742
https://doi.org/10.1002/jcc.26742
https://doi.org/10.1146/annurev-physchem-040215-112229
https://doi.org/10.1146/annurev-physchem-040215-112229
https://doi.org/10.1146/annurev-physchem-040215-112229
https://doi.org/10.1063/1.5127780
https://doi.org/10.1063/1.5127780
https://doi.org/10.1063/1.5049637
https://doi.org/10.1063/1.5049637
https://doi.org/10.1021/acs.jpcb.4c00178?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00148?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

EVE

pubs.acs.org/JCTC

Crystallin from Replica Exchange Molecular Dynamics Simulations. J.
Phys. Chem. B 2024, 128 (20), 4931—4942.

(150) Ferguson, A. L.; Panagiotopoulos, A. Z.; Debenedetti, P. G.;
Kevrekidis, I. G. Systematic determination of order parameters for
chain dynamics using diffusion maps. Proc. Natl. Acad. Sci. U.S.A.
2010, 107, 13597—13602.

(151) Evans, L.; Cameron, M. K;; Tiwary, P. Computing committors
in collective variables via Mahalanobis diffusion maps. Appl. Comput.
Harmon. Anal. 2023, 64, 62—101.

(152) Nadler, B.; Lafon, S.; Coifman, R. R.; Kevrekidis, I. G.
Diffusion maps, spectral clustering and reaction coordinates of
dynamical systems. Appl. Comput. Harmon. Anal. 2006, 21, 113—127.

(153) Appeldorn, J. H.; Lemcke, S.; Speck, T.; Nikoubashman, A.
Employing artificial neural networks to identify reaction coordinates
and pathways for self-assembly. J. Phys. Chem. B 2022, 126, 5007—
5016.

(154) Beyerle, E. R; Zou, Z.; Tiwary, P. Recent advances in
describing and driving crystal nucleation usingmachine learning and
artificial intelligence. Curr. Opin. Solid St. M 2023, 27, 101093.

(155) Domingues, T.; Hussain, S.; Haji-Akbari, A. Divergence
between local structure, dynamics and nucleation outcome in
heterogeneous nucleation of close-packed crystals. J. Phys. Chem.
Lett. 2024, 15, 1279—1287.

(156) Zwanzig, R. Ensemble method in the theory of irreversibility.
J. Chem. Phys. 1960, 33, 1338—1341.

(157) Mori, H. Transport, collective motion, and Brownian motion.
Prog. Theor. Phys. 1965, 33, 423—45S.

(158) Mendels, D.; Piccini, G.; Parrinello, M. Collective variables
from local fluctuations. J. Phys. Chem. Lett. 2018, 9, 2776—2781.

(159) E, W.; Vanden-Eijnden, E. Transition-path theory and path-
finding algorithms for the study of rare events. Annu. Rev. Phys. Chem.
2010, 61, 391—420.

(160) Bollinger, J. A.; Jain, A.; Truskett, T. M. Structure,
Thermodynamics, and Position-Dependent Diffusivity in Fluids with
Sinusoidal Density Variations. Langmuir 2014, 30, 8247—8252.

(161) Belousov, R.; Qaisrani, M. N.; Hassanali, A.; Roldan, E. First-
passage fingerprints of water diffusion near glutamine surfaces. Soft
Matter 2020, 16, 9202—9216.

(162) Belousov, R.; Hassanali, A.; Roldén, E. Statistical physics of
inhomogeneous transport: Unification of diffusion laws and inference
from first-passage statistics. Phys. Rev. E 2022, 106, No. 014103.

(163) Berezhkovskii, A. M.; Makarov, D. E. Communication:
Coordinate-dependent diffusivity from single molecule trajectories. J.
Chem. Phys. 2017, 147, 201102.

(164) E, W.; Vanden-Eijnden, E. Transition-Path Theory and Path-
Finding Algorithms for the Study of Rare Events. Annu. Rev. Phys.
Chem. 2010, 61, 391—420.

(165) Khoo, Y.; Lu, J; Ying, L. Solving for high-dimensional
committor functions using artificial neural networks. Res. Math. Sci.
2019, 6, 1.

(166) Molinaro, A. M.; Simon, R.; Pfeiffer, R. M. Prediction error
estimation: a comparison of resampling methods. Bioinformatics 20085,
21, 3301-3307.

(167) Schwantes, C. R.; Pande, V. S. Modeling molecular kinetics
with tICA and the kernel trick. J. Chem. Theory Comput. 2018, 11,
600—608.

(168) Yuecai, H; Dingwen, Z. Nadaraya-Watson estimator for
reflected stochastic processes driven by Brownian motions. arXiv
Preprint 2022, 00141.

(169) Ganguly, A. Infinite-dimensional optimization and Bayesian
nonparametric learning of stochastic differential equations. J. Mach.
Learn. Res. 2022, 24, 1-39.

(170) Ren, Y;; Lu, Y.; Ying, L.; Rotskoff, G. M. Statistical Spatially
Inhomogeneous Diffusion Inference. arXiv Preprint 2023, 05793.

(171) Markel, V. A.; Schotland, J. C. Inverse problem in optical
diffusion tomography. I. Fourier—Laplace inversion formulas. J. Opt.
Soc. Am. 2001, 18, 1336—1347.

AC

(172) Crommelin, D.; Vanden-Eijnden, E. Diffusion estimation from
multiscale data by operator eigenpairs. Multiscale Model. Simul. 2011,
9, 1588—-1623.

(173) Vroylandt, H.; Goudenége, L.; Monmarché, P.; Pietrucci, F.;
Rotenberg, B. Likelihood-based non-Markovian models from
molecular dynamics. Proc. Natl. Acad. Sci. US.A. 2022, 119,
No. €2117586119.

(174) Xie, P; Car, R; E, W. Ab Initio Generalized Langevin
Equations. arXiv Preprint 2022, 06558 DOI: 10.48550/
arXiv.2211.06558.

(175) Jeon, J.-H.; Monne, H. M.-S.; Javanainen, M.; Metzler, R.
Anomalous diffusion of phospholipids and cholesterols in a lipid
bilayer and its origins. Phys. Rev. Lett. 2012, 109, 188103.

(176) von Hansen, Y.; Gekle, S.; Netz, R. R. Anomalous anisotropic
diffusion dynamics of hydration water at lipid membranes. Phys. Rev.
Lett. 2013, 111, 118103.

(177) Krott, L. B.; Gavazzoni, C.; Bordin, J. R. Anomalous diffusion
and diffusion anomaly in confined Janus dumbbells. J. Chem. Phys.
2016, 145, 244906.

(178) McKean, H. P., Jr A class of Markov processes associated with
nonlinear parabolic equations. Proc. Natl. Acad. Sci. U.S.A. 1966, S6,
1907—-1911.

(179) Helms, P.; Poggioli, A. R.; Limmer, D. T. Intrinsic Interface
Adsorption Drives Selectivity in Atomically Smooth Nanofluidic
Channels. Nano Lett. 2023, 23, 4226—4233.

https://doi.org/10.1021/acs.jctc.4c00148
J. Chem. Theory Comput. XXXX, XXX, XXX—XXX


https://doi.org/10.1021/acs.jpcb.4c00178?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.1003293107
https://doi.org/10.1073/pnas.1003293107
https://doi.org/10.1016/j.acha.2023.01.001
https://doi.org/10.1016/j.acha.2023.01.001
https://doi.org/10.1016/j.acha.2005.07.004
https://doi.org/10.1016/j.acha.2005.07.004
https://doi.org/10.1021/acs.jpcb.2c02232?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.2c02232?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cossms.2023.101093
https://doi.org/10.1016/j.cossms.2023.101093
https://doi.org/10.1016/j.cossms.2023.101093
https://doi.org/10.1021/acs.jpclett.3c03561?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.3c03561?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.3c03561?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1731409
https://doi.org/10.1143/PTP.33.423
https://doi.org/10.1021/acs.jpclett.8b00733?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.8b00733?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1146/annurev.physchem.040808.090412
https://doi.org/10.1146/annurev.physchem.040808.090412
https://doi.org/10.1021/la5017005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la5017005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la5017005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D0SM00541J
https://doi.org/10.1039/D0SM00541J
https://doi.org/10.1103/PhysRevE.106.014103
https://doi.org/10.1103/PhysRevE.106.014103
https://doi.org/10.1103/PhysRevE.106.014103
https://doi.org/10.1063/1.5006456
https://doi.org/10.1063/1.5006456
https://doi.org/10.1146/annurev.physchem.040808.090412
https://doi.org/10.1146/annurev.physchem.040808.090412
https://doi.org/10.1007/s40687-018-0160-2
https://doi.org/10.1007/s40687-018-0160-2
https://doi.org/10.1093/bioinformatics/bti499
https://doi.org/10.1093/bioinformatics/bti499
https://doi.org/10.1021/ct5007357?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct5007357?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2205.00141
https://doi.org/10.48550/arXiv.2205.00141
https://doi.org/10.48550/arXiv.2312.05793
https://doi.org/10.48550/arXiv.2312.05793
https://doi.org/10.1364/JOSAA.18.001336
https://doi.org/10.1364/JOSAA.18.001336
https://doi.org/10.1137/100795917
https://doi.org/10.1137/100795917
https://doi.org/10.1073/pnas.2117586119
https://doi.org/10.1073/pnas.2117586119
https://doi.org/10.48550/arXiv.2211.06558
https://doi.org/10.48550/arXiv.2211.06558
https://doi.org/10.48550/arXiv.2211.06558?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2211.06558?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevLett.109.188103
https://doi.org/10.1103/PhysRevLett.109.188103
https://doi.org/10.1103/PhysRevLett.111.118103
https://doi.org/10.1103/PhysRevLett.111.118103
https://doi.org/10.1063/1.4972578
https://doi.org/10.1063/1.4972578
https://doi.org/10.1073/pnas.56.6.1907
https://doi.org/10.1073/pnas.56.6.1907
https://doi.org/10.1021/acs.nanolett.3c00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.nanolett.3c00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.nanolett.3c00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00148?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

