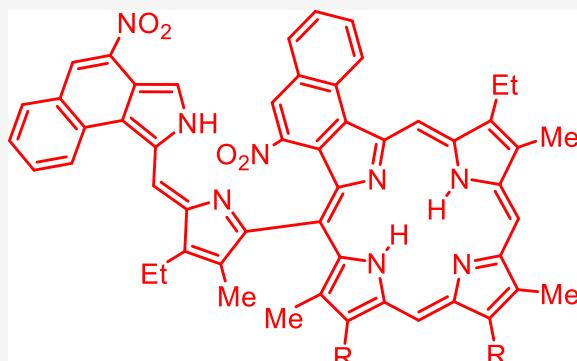


Serendipitous Discovery of Conjugated Dipyrromethene-Linked Nitronaphthoporphyrins

Timothy D. Lash* and Jared S. Salrin

Cite This: <https://doi.org/10.1021/acs.joc.4c00824>

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Acid-catalyzed condensation of a nitronaphthalene-fused dipyrromethane with dipyrromethene dialdehydes afforded unique dipyrromethene-naphthoporphyrin conjugates together with expected nitronaphthoporphyrins. The unusual conjugated system retained aromatic porphyrin-type characteristics but afforded highly modified UV-vis spectra with multiple absorptions throughout the visible region.

INTRODUCTION

Numerous approaches to modifying the porphyrin chromophore have been explored, including the synthesis of core modified systems,¹ annulated porphyrinoids,² expanded porphyrins³ and contracted porphyrin-like species.⁴ Porphyrin-type structures with absorptions in the red or far red have attracted substantial attention due to potential applications as photosensitizers for photodynamic therapy⁵ and in the development of sensors and novel optical materials.⁶ Fusion of aromatic rings to the porphyrin nucleus gives mixed results and mononaphtho[1,2-*b*]porphyrins **1**⁷ or related phenanthroporphyrins **2**⁸ (Figure 1) give only minor bathochromic shifts. However, related structures with additional fusion to *meso*-carbons give far more profound changes as illustrated by recently described porphyrins **3** and **4**.^{9,10}

In relation to our investigations into porphyrins with β,β' -fusion such as **1** and **2**, a series of nitronaphthoporphyrins **5**, **6**, **7** and **8a** were targeted for synthesis (Figure 1).¹¹ The results from this study showed significant differences in the chromophores depending upon the placement of the nitro substituent. Unfortunately, acidolytic scrambling gave isomeric mixtures in two cases, and this was particularly problematic in the synthesis of **8a**.¹¹ Although the nitro group is situated next to the porphyrin nucleus in **8a**, its UV-vis spectrum closely resembled the reported values for **1**. During these investigations, a porphyrin-like byproduct was observed in addition to **8a** with an unusual electronic absorption spectrum. This interesting system has now been isolated and fully characterized. These results demonstrate that an unprecedented dipyrromethene-naphthoporphyrin dyad was generated.

RESULTS AND DISCUSSION

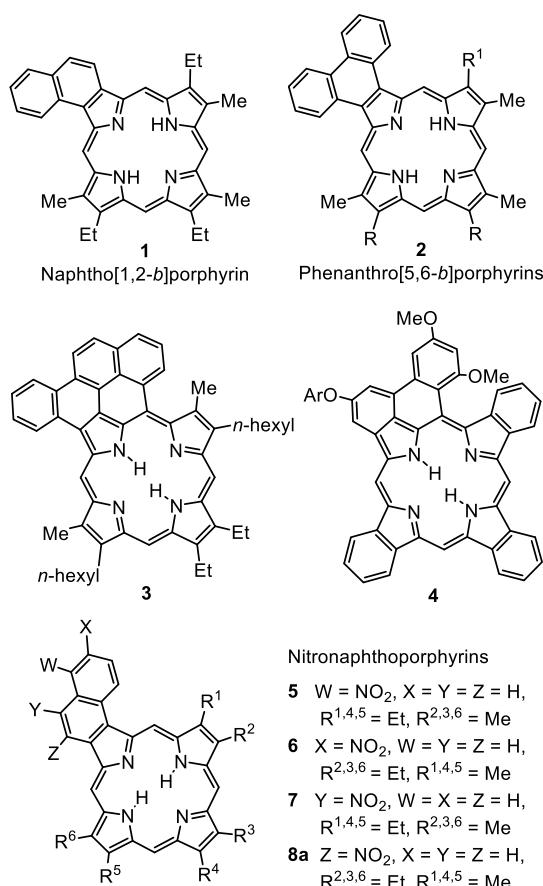
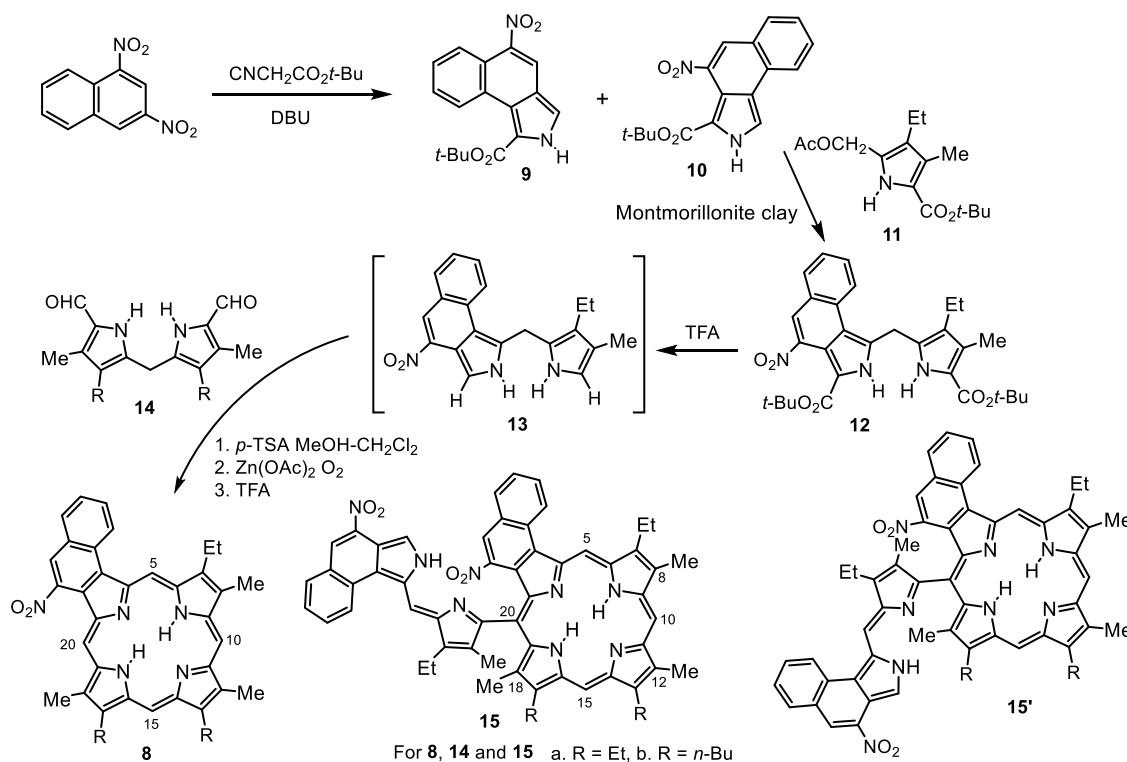
Naphthalene-fused pyrroles needed in the synthesis of nitronaphthoporphyrins were prepared from dinitronaphthalenes using a modification of the Barton-Zard reaction (Scheme 1).^{12–14} 1,3-Dinitronaphthalene reacted with *tert*-butyl isocyanacetate to give a mixture of nitronaphtho[1,2-*c*]pyrroles **9** and **10** together with a dipyrrolonaphthalene (structure not shown).¹¹ Reaction of **10** with acetoxymethyl-pyrrole **11**¹⁵ in the presence of K-10 Montmorillonite clay¹⁶ gave dipyrromethane **12**.¹¹ The *tert*-butyl ester protective groups were cleaved with trifluoroacetic acid (TFA) and the resulting crude intermediate **13** was reacted with dipyrromethane dialdehyde **14a**²¹ in the presence of *p*-toluenesulfonic acid. Air oxidation in the presence of zinc acetate, followed by demetalation with TFA, gave the porphyrin products.

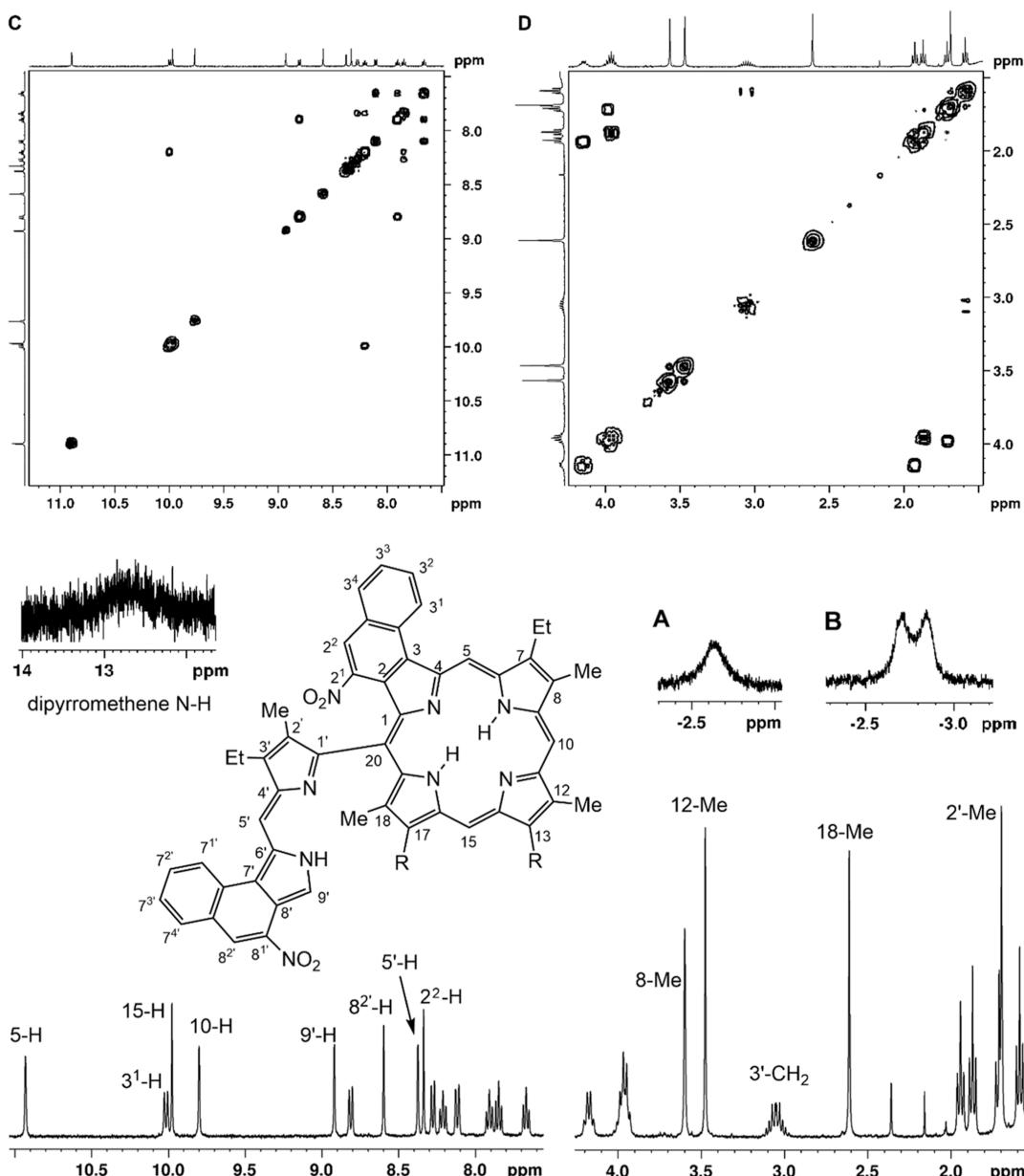
Two porphyrin products were identified with similar polarity, but these could be separated by column chromatography. The first fraction corresponded to the expected nitronaphthoporphyrin **8a**, although some isomerization due to acidolytic cleavage-recombination processes^{17,18} was evident in the proton NMR spectrum. The second component, isolated in 11–17% yield, was more complex and gave an atypical UV-vis spectrum with strong absorptions at 427 and 548 nm, together with medium-sized absorptions at 599 and

Received: April 5, 2024

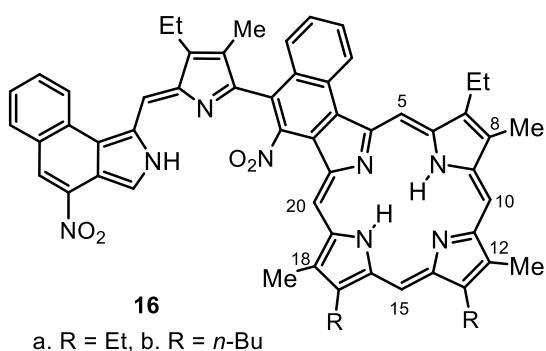
Revised: June 15, 2024

Accepted: July 11, 2024


Figure 1. Structures of selected annulated porphyrins.

674 nm. The high-resolution TOF-ESI mass spectrum for this species gave a $[M + H]$ peak at m/z 911.4022 that is consistent with the unknown product having the molecular formula $C_{57}H_{50}N_8O_4$. By itself, the molecular formula implied that two nitronaphthodipyrromethane units 13 had been incorporated into this structure. The proton NMR spectrum (Figure 2), while complex, showed that this compound, unlike porphyrin 8a, was isomerically pure.


The proton NMR spectrum of the byproduct showed the presence of five 1H singlets at 10.93, 9.98, 9.80, 8.60 and 8.33 ppm, and the three downfield resonances were assigned as bridging *meso*-protons on a porphyrin ring (Figure 3). NOE difference proton NMR spectroscopy (Figures S27–S30) showed a correlation between the singlet at 8.60 ppm and an aromatic doublet at 8.11 ppm, demonstrating that this peak corresponded to an isolated naphthalene proton. The singlet at 10.03 ppm gave an NOE correlation to a doublet at 10.02 ppm and a multiplet at 4.16 ppm, showing that this corresponded to the 5-H *meso*-proton. Unfortunately, some of the NOE correlations were weak due in part to the low solubility of this compound. Nevertheless, the *meso*-proton at 9.98 ppm interacted with the ethyl group resonances at 3.9–4.0 ppm and could be assigned to the 15-H, while the singlet at 9.80 weakly interacted with the methyl resonances at 3.57 and 3.46 ppm, confirming that this peak could be assigned to the 10-H. Four aromatic 1H doublets and four 1H triplets were noted corresponding to two benzo-units and the assignments for these were confirmed by analysis of the 1H – 1H COSY plot (Figure 2). The peak at 8.37 ppm appeared as a weakly coupled doublet, as did the resonance at 8.92 ppm, and these could be assigned to the bridge CH for the dipyrromethene unit and a pyrrolic C–H that were engaged in $^5J_{HH}$ coupling (ca. 1 Hz).

Scheme 1. Synthesis of Nitronaphthoporphyrins and Related Dipyrromethene Adducts

Figure 2. Proton NMR spectrum of nitronaphthophorphyrin byproduct **15a** in CDCl_3 at 50 °C. A broad peak between 12 and 13 ppm corresponds to the dipyrrromethene N-H. At 50 °C, the internal porphyrin NHs give rise to a broad resonance between -2.5 and -3.0 ppm (insert A), but at 29 °C, this resolves into two separate peaks (insert B). The ^1H - ^1H COSY spectrum for the downfield (C) and upfield (D) regions illustrates the coupling interactions in this unusual system.

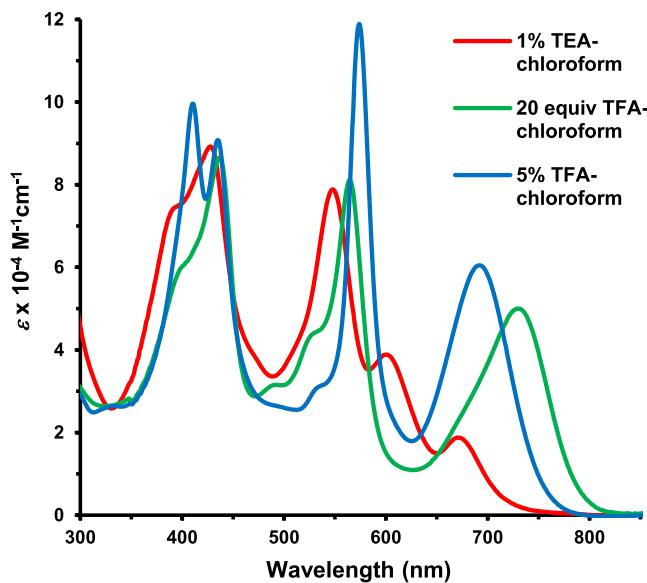
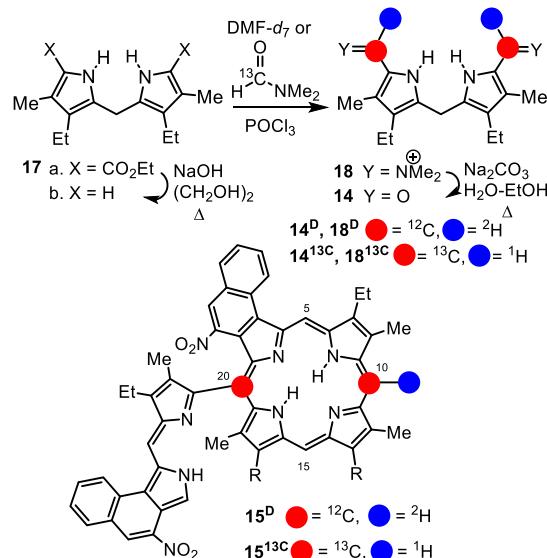
Figure 3. Initially proposed structures **16** for byproducts.

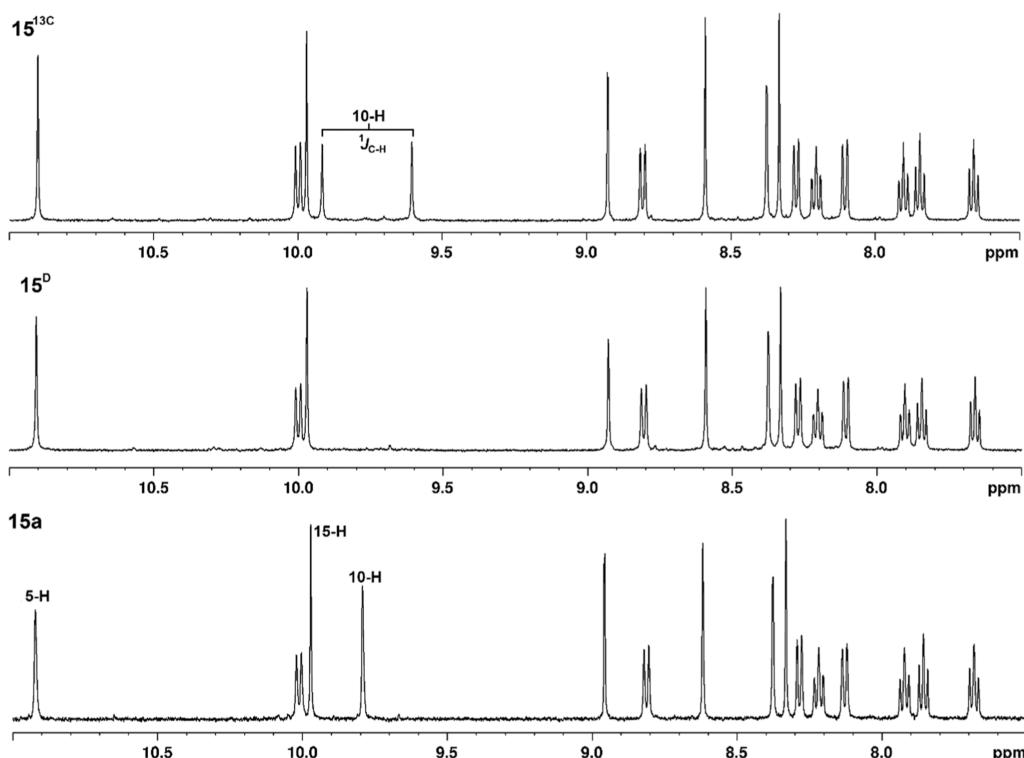
Four 3H singlets were present at 3.60, 3.48, 2.61, and 1.69 ppm. The diamagnetic ring current of porphyrins strongly deshields directly connected alkyl substituents and porphyrin-methyl groups generally show up near 3.6 ppm.¹⁹ Therefore, while two resonances are present in this region, the other two peaks diverge considerably from the expected values. A 2H quartet and a 4H multiplet between 4.20 and 3.90 ppm fall into the expected range for porphyrin- CH_2 units and the ^1H - ^1H COSY spectrum showed that these protons couple with 3H triplets at 1.94, 1.87, and 1.71 ppm, confirming that at least three ethyl substituents are present (Figure 2). In addition, a 2H multiplet at 3.12–2.98 ppm is consistent with a diastereotopic methylene unit and this also coupled with a 3H triplet at 1.59 ppm. NOE difference proton NMR spectroscopy showed that the CH_2 was placed next to the

bridging methine resonance of the dipyrromethene unit at 8.37 ppm. At 50 °C, a broad 2H resonance is observed at –2.64 ppm that is consistent with the internal NHs for a porphyrin macrocycle, but the very broad downfield peak at 13 ppm indicates that a strongly hydrogen bonded OH or NH is present; this is due to the dipyrromethene NH. At 29 °C, the porphyrin NH protons resolved into two broad peaks showing that proton exchange was slow enough to provide different chemical environments for the two protons (Figure 2). Some ambiguity arose because the singlet at 8.33 ppm did not show any NOE correlations. Initially the byproduct was assigned as structure 16 (Figure 3) as the species could plausibly arise by conjugative nucleophilic attack by a second dipyrromethene unit onto the nitronaphthalene moiety. A problem with this assignment is that the *meso*-proton at position 20 would have to correspond to the relatively upfield peak at 8.33 ppm. In addition, the resonance for the methyl group at position 18 appears at 2.61 ppm, which is about 1 ppm upfield from the expected value. This can be rationalized as being due to shielding due to the 20-H and 18-Me protons lying under the nitro substituent's π -system. The HSQC spectrum was also a cause for concern as the proton signal at 8.33 ppm corresponded to a carbon-13 resonance at 123.1 ppm. Unsubstituted *meso*-carbons in porphyrins usually show up between 90 and 105 ppm and indeed the remaining *meso*-protons appeared at 100.6, 98.1, and 97.1 ppm. Therefore, there would of necessity have to be a profound electronic effect to shift the *meso*-carbon resonance so far downfield. This type of shift is seen in core modified porphyrinoids such as thiaporphyrins¹⁹ and once again this possibility appears to be reasonable. The only alternative was that the dipyrromethene unit had been regioselectively introduced at position 20. The formation of this species, structure 15, Scheme 1, would require substitution at a sterically hindered site. The UV–vis spectrum (see below) was also quite different from previously described *meso*-linked dipyrromethene-porphyrin dyads.²⁰ A second example of this system with *n*-butyl substituents was prepared by reacting 13 with dialdehyde 14b. Unexpectedly, this version (15b) was far less soluble in organic solvents even though longer alkyl substituents are present. It was possible to obtain the proton NMR spectrum for 15b but the low solubility prevented us from obtaining a high quality carbon-13 NMR spectrum. In fact, 15a is also not very soluble and a noisy carbon-13 NMR spectrum could only be obtained at 50 °C when run for approximately 16 h.

The UV–vis spectra of 15a and 15b show strong absorptions in the near UV and most of the visible region (Figure 4). Although falling slightly short of being a panchromatic system, porphyrins with these types of absorption spectra are being sought for applications in dye-sensitized solar cells.²¹ Previously reported porphyrins with *meso*-dipyrromethene substituents gave very different electronic spectra showing strong Soret band and much weaker absorptions at longer wavelengths. Addition of trace amounts of TFA to 15a,b resulted in the formation of a protonated species with strong absorptions at 437, 562, and 728 nm. At much higher concentrations of TFA, a third species was generated with peaks at 410, 435, 574, and 692 nm. Nitronaphthoporphyrins 8 have reduced basicity compared to regular porphyrins and it is speculated that the initial protonation occurs on the dipyrromethene unit.

As the formation of 15 requires 2 M equivalents of 13 to 1 M equivalent of dialdehydes 14, the reaction was repeated with


Figure 4. UV–vis spectra of dipyrromethene-appended nitronaphthoporphyrin 15a in 1% $\text{Et}_3\text{N}-\text{CHCl}_3$ (red line), in CHCl_3 with 20 equiv of TFA (green line) and in 5% TFA- CHCl_3 (blue line).

up to two equivalents of the nitronaphthodipyrromethane. However, there was no significant improvement in the yields compared to reacting the dipyrrolic precursors in a 1:1 molar ratio. In addition, attempts to react nitronaphthoporphyrin 8 with 13 under the same conditions failed to give any formation of 15. This result indicates that 8 is not a precursor to 15 and the observation is supported by the spectroscopic results as 8 is a mixture of isomers but 15 is not significantly contaminated with isomeric structures.

The final structural identification of these byproducts relied upon the introduction of isotopic labels. A deuterated dipyrromethane dialdehyde was prepared using the Vilsmeier–Haack reaction (Scheme 2). Diester 17a²² was heated with sodium hydroxide in ethylene glycol to afford 17b and this was reacted with the Vilsmeier complex derived from phosphorus

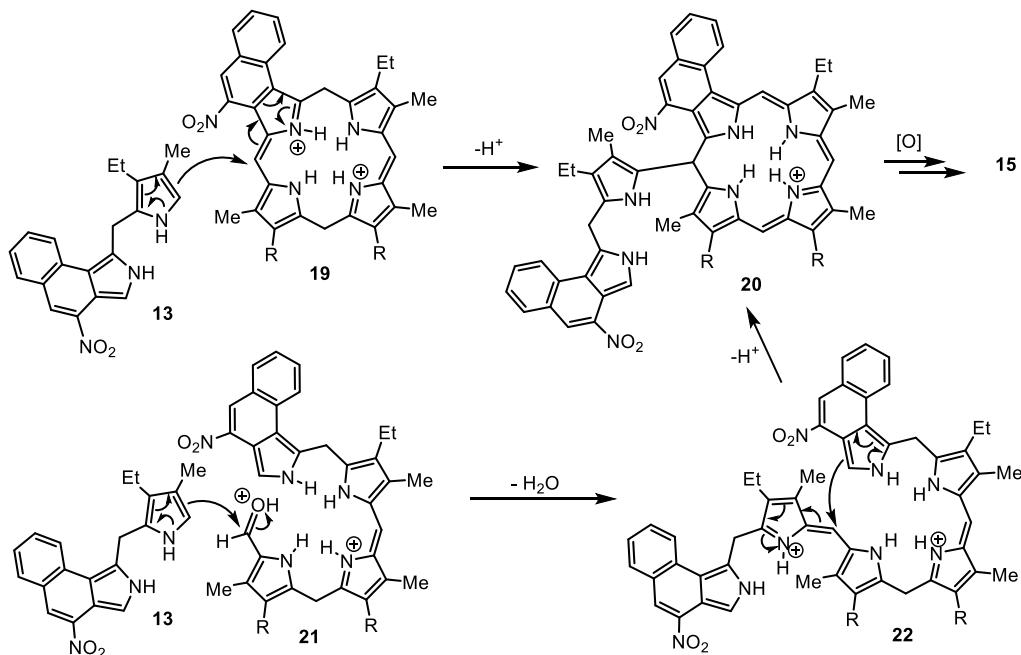

Scheme 2. Synthesis of Isotopically Labeled Dipyrromethane Dialdehydes and Porphyrinoid Products

Figure 5. Proton NMR spectra of byproduct **15** (bottom), deuterated byproduct **15^D** (middle) and ¹³C-labeled byproduct **15¹³C** (top) showing details of the aromatic region.

Scheme 3. Potential Mechanisms for the Formation of Dipyrromethene-Appended Nitronaphthoporphyrins **15**

oxychloride and DMF-*d*₇ to give imine salt **18^D**; subsequent hydrolysis afforded labeled dialdehyde **14^D**. Reaction of **14^D** with **13** as described above (Scheme 1) gave nitronaphthoporphyrin **8a** and deuterated byproduct **15^D**. The proton NMR spectrum for the isolated byproduct showed the loss of the resonance at 9.80 ppm but the peak at 8.33 ppm was still present (Figure 5). If this corresponded to a *meso*-proton, as would be expected if the product were in fact **16**, this resonance should also be lost. However, this study did not

allow an unambiguous assignment to be made. Examination of the proton NMR spectrum for the nitronaphthoporphyrin **8a** formed in this reaction showed that no deuterium incorporation was present. This observation was confirmed by high resolution TOF-ESI mass spectrometry. Hence, proton exchange with the *meso*-protons must have occurred and could potentially take place in the byproduct as well. In order to address this issue, carbon-13 labeled dialdehyde **14¹³C** was prepared from 1-¹³C DMF (Scheme 2). Reaction with **13** as

before gave carbon-13 labeled nitronaphthoporphyrin **8**^{13C} and byproduct **15**^{13C}. As expected, the nitronaphthoporphyrin was contaminated with isomeric impurities. However, incorporation of the ¹³C-label was also evident. The proton NMR spectrum for **15**^{13C} (Figure 5) gave rise to a doublet for the 10-H resonance ($^1J_{CH} = 155.7$ Hz); however, the peak at 8.33 ppm was unaffected, demonstrating that structure **16** cannot be correct. The carbon-13 NMR spectrum showed a labeled methine carbon at 97.1 ppm and a quaternary carbon at 105.4 ppm. The latter signal corresponds to *meso*-carbon C-20 in structure **15**. The observed upfield shift to the methyl substituent at position 18 can be ascribed to it lying under the π -system for the dipyrromethene unit. Two conjugated conformations, **15** and **15'** (Scheme 1), are feasible. In the former, hydrogen bonding to a nitro substituent may be possible.

The formation of dyads **15** was unexpected and difficult to fully rationalize. MacDonald condensation of **13** with dialdehydes **14** would be expected to generate porphodimethenes **19** and these may be more prone to nucleophilic attack from a second equivalent of **13** at position **20** due to the electron-withdrawing nature of the fused nitroarene unit (Scheme 3). Subsequent air oxidation of intermediate **20** would then afford the observed product. However, this does not explain why byproducts **15** are obtained in isomerically pure form, while nitronaphthoporphyrins **8** exhibit a significant degree of scrambling. The conjugate addition could take place prior to porphyrin formation but the methine linkage is likely to initially form at position 10 due to the reduced nucleophilicity of the nitronaphthopyrrole component. This would lead to the formation of an open-chain tetrapyrrole **21** that could undergo an intermolecular attack from **13** to give, following elimination of water, a hexapyrrolic intermediate **22**. Cyclization would generate **20** and subsequent oxidation would again produce **15**.

CONCLUSIONS

A unique dipyrromethene-naphthoporphyrin conjugate has been synthesized by acid-catalyzed condensations of a nitronaphthodipyrromethane with dipyrromethane dialdehydes. The dipyrromethene and porphyrin components appear to strongly interact as the resulting UV-vis spectrum for this system gives atypical absorptions over most of the visible region. The formation of this novel porphyrin derivative indicates that other interesting architectures may be accessible when electron-deficient subunits are present.

EXPERIMENTAL SECTION

Melting points are uncorrected. NMR spectra were recorded using a 400 or 500 MHz NMR spectrometer and were run at 302 K unless otherwise indicated. ¹H NMR values are reported as chemical shifts δ , relative integral, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; m, multiplet; br, broad peak), and coupling constant (J). Chemical shifts are reported in parts per million (ppm) relative to CDCl₃ ¹H residual CHCl₃ singlet δ 7.26 ppm, ¹³C CDCl₃ triplet δ 77.23 ppm, and coupling constants were taken directly from the spectra. Structural assignments were made with additional information from gCOSY, gHSQC, and NOE difference NMR experiments. Mass spectral data were acquired using positive-mode electrospray ionization (ESI⁺) and a high-resolution time-of-flight mass spectrometer. ¹H and ¹³C{¹H} NMR spectra for all new compounds are reported in Supporting Information.

Deuterated 3,3'-Diethyl-4,4'-Dimethyl-2,2'dipyrromethane-5,5'-Dicarbaldehyde 14^b. A mixture of dipyrromethane

diethyl ester **17a**²² (770 mg, 2.06 mmol), ethylene glycol (10 mL), sodium hydroxide (1.0 g) and 2 drops of hydrazine was placed in a preheated oil bath at 200 °C and stirred under reflux for 2 h. The mixture was cooled, poured into water (100 mL) and extracted with hexanes. The organic solution was dried over sodium sulfate, filtered and the solvent evaporated under reduced pressure to give deprotected dipyrromethane **17b** as a pale yellow oil. DMF-*d*₇ (0.50 g) was placed in a 25 mL round-bottom flask and cooled in a salt ice bath to <10 °C. Phosphorus oxychloride (1.05 g) was added dropwise to the stirred liquid while maintaining the temperature between 10 and 20 °C. The resulting Vilsmeier complex, which solidified, was allowed to stand at room temperature for 15 min and then dissolved in dichloromethane (2.5 mL) and cooled to 10 °C. Dipyrromethane **17b** was dissolved in dichloromethane (2.5 mL) and added dropwise to the Vilsmeier reagent. The resulting mixture was stirred under reflux by heating the flask with a hot water bath for 15 min. The solvent was removed on a rotary evaporator and the residue refluxed with sodium carbonate (1.0 g) and a 1:1 ethanol–water mixture (16 mL) on a boiling water bath. The mixture was cooled, diluted with water (20 mL) and the resulting precipitate collected by suction filtration. The solid was dried in vacuo and recrystallized from chloroform–hexanes to give **14^D** (443 mg, 1.54 mmol, 75%) as a pale yellow solid, mp 215–216 °C. IR (ATR): ν /cm⁻¹ 3217 (N–H stretch), 2117 (C–D stretch), 1593 (C=O stretch). ¹H NMR (CDCl₃, 500 MHz): δ 10.55 (br s, 2H, 2 \times NH), 3.95 (s, 2H, bridge-CH₂), 2.47 (q, 4H, J = 7.5 Hz, 2 \times CH₂CH₃), 2.29 (s, 6H, 2 \times pyrrole-CH₃), 1.08 (t, 6H, J = 7.5 Hz). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 176.7 (t, $^1J_{C-D}$ = 25.7 Hz, 2 \times CDO), 134.7, 132.3, 129.2 (5,5'-C), 125.2, 23.1 (bridge-CH₂), 17.3 (2 \times CH₂CH₃), 15.3 (2 \times CH₂CH₃), 9.0 (2 \times pyrrole-CH₃). HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₇¹H₁₉²H₂N₂O₂, 287.1723, found, 287.1723.

Carbon-13 Labeled 3,3'-Diethyl-4,4'-Dimethyl-2,2'dipyrromethane-5,5'-Dicarbaldehyde 14^{13C}. Following the procedure detailed above, 1-¹³C-DMF (0.50 g; 67.5 mmol) and dipyrromethane **17a**²² (0.830 g, 2.22 mmol) afforded ¹³C-labeled dialdehyde **14^{13C}** (500.5 mg, 1.74 mmol, 78%) as a pale gray solid, mp 218–219 °C. IR (ATR): ν /cm⁻¹ 3217 (N–H stretch), 1584 (C=O stretch). ¹H NMR (CDCl₃, 500 MHz): δ 10.73 (br s, 2H, 2 \times NH), 9.49 (d, 2H, $^1J_{C-H}$ = 72.3 Hz, 2 \times CHO), 3.95 (s, 2H, bridge-CH₂), 2.47 (q, 4H, J = 7.5 Hz, 2 \times CH₂CH₃), 2.29 (s, 6H, 2 \times pyrrole-CH₃), 1.07 (t, 6H, J = 7.5 Hz). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 176.9, 134.8, 132.4 (br), 129.1 (d, $^1J_{C-C}$ = 67.8 Hz, 5,5'-C), 125.2 (d, $^2J_{C-C}$ = 3.3 Hz), 22.9 (bridge-CH₂), 17.3 (2 \times CH₂CH₃), 15.5 (2 \times CH₂CH₃), 9.0 (2 \times pyrrole-CH₃). HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₇¹³C₂H₂₁N₂O₂, 287.1665, found, 287.1660.

Reaction of Nitronaphthodipyrromethane **12 with Dialdehyde **14a**.** Dipyrromethane **12**¹¹ (100 mg, 0.187 mmol) was stirred with TFA (2 mL) under nitrogen for 10 min. The mixture was then diluted with chloroform (50 mL) and washed sequentially with water, 5% aqueous sodium bicarbonate solution and water. The organic layer was dried over sodium sulfate, the solution filtered and the solvent removed under reduced pressure. The residue and dialdehyde **14a**²² (48.2 mg, 0.168 mmol) were dissolved in dichloromethane (206 mL) and methanol (10 mL), a solution of *p*-toluenesulfonic acid (225 mg) in methanol (10 mL) was added, and the resulting mixture was stirred at room temperature open to the air for 16 h. A saturated solution of zinc acetate in methanol (10 mL) was then added and the mixture was stirred open to the air for 2 additional days. The mixture was then washed with water and the solvent was removed under reduced pressure. The residue was dissolved in TFA and allowed to stand for 5 min. Following dilution with chloroform, the solution was washed with water, 5% aqueous sodium bicarbonate solution and water. The solvent was removed under reduced pressure and the residue purified on a grade 3 alumina column eluting with dichloromethane. The colored fractions corresponding to the porphyrin products were evaporated to dryness, loaded onto a grade 3 alumina column and eluted with 50–80% v/v toluene–hexanes. The initial red-colored fraction was recrystallized from chloroform–methanol to give nitronaphthoporphyrin **8a** (15.2–16.6 mg, 0.0261–0.0285 mmol, 15–17%) as purple crystals, mp 257–259 °C. This compound has

been reported previously¹¹ and is contaminated with isomeric impurities. ¹H NMR (TFA-CDCl₃, 500 MHz): δ 11.57 (s, 1H, 20-H), 11.46 (s, 1H, 5-H), 10.60 (s, 2H, 10,15-H), 9.96 (d, 1H, J = 8.5 Hz, 3¹-H), 9.45 (s, 1H, 2²-H), 8.66 (d, 1H, J = 7.9 Hz, 3⁴-H), 8.50 (t, 1H, J = 7.7 Hz, 3²-H), 8.19 (t, 1H, J = 7.7 Hz, 3³-H), 4.19–4.10 (m, 6H, 3 \times CH₂CH₃), 3.66 (s, 3H, 18-CH₃), 3.65 (s, 3H), 3.63 (s, 3H) (8,12-CH₃), 1.75 (t, 3H, J = 7.8 Hz), 1.73–1.69 (m, 6H) (3 \times CH₂CH₃), –2.52 (br s, 1H, NH), –2.89 (br s, 1H, NH), –3.54 (br s, 1H, NH). A second dark fraction was collected and recrystallized from chloroform–methanol to give dipyrromethene-porphyrin dyad **15a** (9.5–14.4 mg, 0.0104–0.0158 mmol, 11–17%) as dark crystals, mp > 300 °C. UV-vis (1% Et₃N-CHCl₃): λ_{max} /nm (log ϵ) 392 (sh, 4.87), 428 (4.95), 548 (4.90), 601 (4.59), 671 (4.27). UV-vis (20 equiv TFA-CHCl₃): λ_{max} /nm (log ϵ) 293 (4.50), 437 (4.93), 489 (sh, 4.49), 525 (sh, 4.63), 564 (4.90), 730 (4.69). UV-vis (5% TFA-CHCl₃): λ_{max} /nm (log ϵ) 410 (5.00), 435 (4.96), 533 (sh, 4.49), 574 (5.07), 692 (4.78). ¹H NMR (CDCl₃, 50 °C, 500 MHz): δ 12.6 (v br, 1H), 10.93 (s, 1H, 5-H), 10.02 (d, 1H, J = 8.5 Hz, 3¹-H), 9.98 (s, 1H, 15-H), 9.80 (s, 1H, 10-H), 8.92 (d, 1H, J = 1.4 Hz, 9'-H), 8.81 (d, 1H, J = 8.5 Hz, 7¹-H), 8.60 (s, 1H, 8²-H), 8.37 (d, 1H, J = 0.8 Hz, 5'-H), 8.33 (s, 1H, 2²-H), 8.27 (d, 1H, J = 8.0 Hz, 3⁴-H), 8.20 (t, 1H, J = 7.7 Hz, 3²-H), 8.11 (d, 1H, J = 8.2 Hz, 7⁴-H), 7.90 (t, 1H, J = 7.6 Hz, 7²-H), 7.84 (t, 1H, J = 7.5 Hz, 3³-H), 7.66 (t, 1H, J = 7.6 Hz, 7³-H), 4.19–4.11 (m, 2H), 4.02–3.90 (m, 4H) (3 \times porphyrin-CH₂), 3.57 (s, 3H, 8-Me), 3.46 (s, 3H, 12-Me), 3.12–2.98 (m, 2H, 3'-CH₂), 2.61 (s, 3H, 18-Me), 1.93 (t, 3H, J = 7.7 Hz, 7-CH₂CH₃), 1.87 (t, 3H, J = 7.7 Hz, 17-CH₂CH₃), 1.71 (t, 3H, J = 7.7 Hz, 13-CH₂CH₃), 1.69 (s, 3H, 2'-Me), 1.59 (t, 3H, J = 7.6 Hz, 3'-CH₂CH₃), –2.64 (br s, 2H, 2 \times NH). ¹³C{¹H} NMR (CDCl₃, 50 °C, 125 MHz): δ 156.5, 154.2, 152.7, 146.6, 146.15, 146.08, 144.8, 142.03, 142.00, 141.2, 141.1, 140.6, 139.0, 138.7, 138.5, 136.8, 136.3, 135.3, 135.3, 133.4, 132.8, 132.64, 132.59, 132.1, 131.9 (7⁴-CH), 131.3, 131.1, 131.0, 130.8, 130.5, 129.3, 127.30, 127.22, 127.07, 126.96, 125.9, 124.2, 124.0, 123.9 (8²-CH), 123.1 (2²-CH), 105.4 (20-C), 100.6 (5-CH), 98.1 (15-CH), 97.1 (10-CH), 20.1, 19.9, 18.9, 17.7, 17.5, 17.1, 16.3, 13.0, 11.7, 11.3, 9.6. HRMS (ESI) m/z : [M + H]⁺ calcd for C₅₇H₅₁N₈O₄, 911.4028, found, 911.4022.

Reaction of Nitronaphthodipyrromethane **12a with Deuterium Labeled Dialdehyde **14D**.** The foregoing experiment was repeated by reacting dipyrromethane **12a**¹¹ (100 mg, 0.187 mmol) with isotopically labeled dialdehyde **14D** (48.4 mg, 0.168 mmol) to give nitronaphthoporphyrin **8a** (16.0 mg, 0.027 mmol, 16%) as dark maroon crystals and monodeuterated dyad **15D** (9.9 mg, 0.011 mmol, 11%) as dark purple crystals. As was the case for the previous reaction, porphyrin **8a** was contaminated with isomeric impurities; the sample did not retain significant levels of deuterium incorporation. **8a:** mp > 260 °C. ¹H NMR (TFA-CDCl₃, 500 MHz): δ 11.57 (s, 1H, 20-H), 11.46 (s, 1H, 5-H), 10.60 (s, 2H, 10,15-H), 9.96 (d, 1H, J = 8.5 Hz, 3¹-H), 9.45 (s, 1H, 2²-H), 8.66 (d, 1H, J = 7.9 Hz, 3⁴-H), 8.50 (t, 1H, J = 7.7 Hz, 3²-H), 8.19 (t, 1H, J = 7.7 Hz, 3³-H), 4.19–4.10 (m, 6H, 3 \times CH₂CH₃), 3.66 (s, 3H, 18-CH₃), 3.65 (s, 3H), 3.63 (s, 3H) (8,12-CH₃), 1.75 (t, 3H, J = 7.8 Hz), 1.73–1.69 (m, 6H) (3 \times CH₂CH₃), –2.52 (br s, 1H, NH), –2.89 (br s, 1H, NH), –3.54 (br s, 1H, NH). HRMS (ESI) m/z : [M + H]⁺ calcd for C₃₇H₃₆N₈O₂, 582.2864, found, 582.2841.

15D. Mp > 300 °C. ¹H NMR (CDCl₃, 50 °C, 500 MHz): δ ¹H NMR (CDCl₃, 50 °C): δ 10.91 (s, 1H, 5-H), 10.00 (d, 1H, J = 8.5 Hz, 3¹-H), 9.97 (s, 1H, 15-H), 8.93 (d, 1H, J = 1.2 Hz, 9'-H), 8.80 (d, 1H, J = 8.4 Hz, 7¹-H), 8.59 (s, 1H, 8²-H), 8.37 (d, 1H, J = ca. 1.0 Hz, 5'-H), 8.33 (s, 1H, 2²-H), 8.27 (d, 1H, J = 7.9 Hz, 3⁴-H), 8.20 (t, 1H, J = 7.7 Hz, 3²-H), 8.11 (d, 1H, J = 8.2 Hz, 7⁴-H), 7.90 (t, 1H, J = 7.6 Hz, 7²-H), 7.84 (t, 1H, J = 7.4 Hz, 3³-H), 7.66 (t, 1H, J = 7.6 Hz, 7³-H), 4.19–4.11 (m, 2H), 4.03–3.91 (m, 4H) (3 \times porphyrin-CH₂), 3.57 (s, 3H, 8-Me), 3.46 (s, 3H, 12-Me), 3.12–2.98 (m, 2H, 3'-CH₂), 2.61 (s, 3H, 18-Me), 1.92 (t, 3H, J = 7.7 Hz, 7-CH₂CH₃), 1.87 (t, 3H, J = 7.7 Hz, 17-CH₂CH₃), 1.71 (t, 3H, J = 7.6 Hz, 13-CH₂CH₃), 1.69 (s, 3H, 2'-Me), 1.59 (t, 3H, J = 7.6 Hz, 3'-CH₂CH₃), –2.68 (br s, 2H, 2 \times NH). HRMS (ESI) m/z : [M + H]⁺ calcd for C₅₇H₅₀²HN₈O₄, 912.4091, found, 912.4061.

Reaction of Nitronaphthodipyrromethane **12a with Carbon-13 Labeled Dialdehyde **14¹³C**.** The foregoing experiment was repeated by reacting dipyrromethane **12a**¹¹ (100 mg, 0.187 mmol) with isotopically labeled dialdehyde **14¹³C** (48.4 mg, 0.168 mmol) to give nitronaphthoporphyrin **8¹³C** (16.5 mg, 0.028 mmol, 17%) as dark maroon crystals and dyad **15¹³C** (7.9 mg, 0.0087 mmol, 9.2%) as dark purple crystals, mp 259–260 °C. As expected, porphyrin **8¹³C** was contaminated with isomeric impurities. ¹H NMR (TFA-CDCl₃, 500 MHz): δ 11.61 (d, 1H, $J_{\text{C}-\text{H}}$ = 164.7 Hz, 20-H), 11.50 (s, 1H, 5-H), 10.65 (d, 1H, $J_{\text{C}-\text{H}}$ = 162.7 Hz, 10-H), 10.65 (s, 1H, 15-H), 9.97 (d, 1H, J = 8.5 Hz, 3¹-H), 9.49 (s, 1H, 2²-H), 8.69 (d, 1H, J = 8.0 Hz, 3⁴-H), 8.52 (t, 1H, J = 7.7 Hz, 3²-H), 8.21 (t, 1H, J = 7.5 Hz, 3³-H), 4.21–4.12 (m, 6H, 3 \times CH₂CH₃), 3.67 (s, 3H, 18-CH₃), 3.66 (s, 3H), 3.64 (s, 3H) (8,12-CH₃), 1.78–1.70 (m, 9H, 3 \times CH₂CH₃), –2.83 (br s, 1H, NH), –3.15 (br s, 1H, NH), –3.82 (br s, 1H, NH). HRMS (ESI) m/z : [M + H]⁺ calcd for ¹²C₃₅¹³C₂H₃₆N₈O₂, 584.2931, found 584.2939.

15¹³C. Mp > 300 °C. ¹H NMR (CDCl₃, 50 °C, 500 MHz): δ 10.90 (s, 1H, 5-H), 10.00 (d, 1H, J = 8.5 Hz, 3¹-H), 9.97 (s, 1H, 15-H), 9.76 (d, 1H, $J_{\text{C}-\text{H}}$ = 155.7 Hz, 10-H), 8.93 (d, 1H, J = 1.3 Hz, 9'-H), 8.80 (d, 1H, J = 8.3 Hz, 7¹-H), 8.59 (s, 1H, 8²-H), 8.37 (d, 1H, J = 1.3 Hz, 5'-H), 8.33 (s, 1H, 2²-H), 8.27 (d, 1H, J = 7.9 Hz, 3⁴-H), 8.21 (t, 1H, J = 7.7 Hz, 3²-H), 8.10 (d, 1H, J = 8.1 Hz, 7⁴-H), 7.90 (t, 1H, J = 7.6 Hz, 7²-H), 7.84 (t, 1H, J = 7.5 Hz, 3³-H), 7.66 (t, 1H, J = 7.5 Hz, 7³-H), 4.19–4.10 (m, 2H), 4.02–3.92 (m, 4H) (3 \times porphyrin-CH₂), 3.57 (s, 3H, 8-Me), 3.46 (s, 3H, 12-Me), 3.12–2.98 (m, 2H, 3'-CH₂), 2.61 (s, 3H, 18-Me), 1.92 (t, 3H, J = 7.7 Hz, 7-CH₂CH₃), 1.87 (t, 3H, J = 7.7 Hz, 17-CH₂CH₃), 1.71 (t, 3H, J = 7.7 Hz, 13-CH₂CH₃), 1.69 (s, 3H, 2'-Me), 1.59 (t, 3H, J = 7.6 Hz, 3'-CH₂CH₃), –2.68 (br s, 2H, 2 \times NH). HRMS (ESI) m/z : [M + H]⁺ calcd for ¹²C₅₅¹³C₂H₅₁N₈O₄, 913.4095, found, 913.4073.

Reaction of Nitronaphthodipyrromethane **12a with Dialdehyde **14b**.** Dipyrromethane **12a**¹¹ (100 mg, 0.187 mmol) was stirred with TFA (2 mL) under nitrogen for 10 min. The mixture was then diluted with chloroform (50 mL) and washed sequentially with water, 5% aqueous sodium bicarbonate solution and water. The organic layer was dried over sodium sulfate, filtered and the solvent was removed under reduced pressure. The residue and dialdehyde **14b**²² (57.8 mg, 0.169 mmol) were dissolved in dichloromethane (206 mL) and methanol (10 mL), a solution of *p*-toluenesulfonic acid (225 mg) in methanol was added, and the resulting mixture was stirred at room temperature open to the air for 16 h. A saturated solution of zinc acetate in methanol (10 mL) was then added and the mixture was stirred open to the air for 2 additional days. The mixture was washed with water and the solvent was removed under reduced pressure. The residue was dissolved in TFA and allowed to stand for 5 min. Following dilution with chloroform, the solution was washed with water, 5% aqueous sodium bicarbonate solution and water. The solvent was removed under reduced pressure and the residue purified on a grade 3 alumina column eluting with dichloromethane. The colored fractions corresponding to the porphyrin products were evaporated to dryness and taken up in a minimal amount of toluene. The solution was placed on a grade 3 alumina column and eluted with 1:1 v/v hexanes-toluene. The initial red-colored fraction was recrystallized from chloroform–methanol to give nitronaphthoporphyrin **8b** (21.2 mg, 0.0332 mmol, 20%) as a magenta-colored powder, mp 258–260 °C. UV-vis (CHCl₃): λ_{max} /nm (log ϵ) 396 (sh, 4.83), 418 (5.22), 521 (3.91), 557 (4.42), 577 (4.12), 670 (2.49). UV-vis (5% TFA-CHCl₃): λ_{max} /nm (log ϵ) 403 (4.96), 424 (5.34), 565 (4.17), 613 (4.17). ¹H NMR (CDCl₃, 500 MHz): δ 10.28 (s, 1H), 10.26 (s, 1H) (5, 20-H), 9.75 (s, 1H), 9.65 (s, 1H) (10, 15-H), 9.59 (d, 1H, J = 8.5 Hz, 2¹-H), 8.59 (s, 1H, 3²-H), 8.28 (d, 1H, J = 7.9 Hz), 8.06 (t, 1H, J = 7.5 Hz), 7.80 (t, 1H, J = 7.3 Hz), 3.99 (t, 2H, J = 7.9 Hz), 3.86 (t, 2H, J = 7.8 Hz), 3.78 (q, 2H, J = 7.8 Hz), 3.56 (s, 3H), 3.44 (s, 6H), 2.28–2.18 (m, 4H), 1.81–1.73 (m, 4H), 1.71 (t, 3H, J = 7.8 Hz), 1.15–1.11 (2 overlapping triplets, 6H), –4.71 (br s, 2H). ¹H NMR (500 MHz, TFA-CDCl₃): δ 11.58 (s, 1H), 11.48 (s, 1H) (5,20-H), 10.62 (s, 1H), 10.61 (s, 1H) (10,15-H), 9.96 (d, 1H, J = 8.4 Hz), 9.47 (s, 1H), 8.67 (d, 1H, J = 7.9 Hz), 8.51 (t, 1H, J = 7.7 Hz), 8.20 (t, 1H, J = 7.5 Hz), 4.17 (q, 2H, J = 7.8 Hz), 4.10 (t, 4H, J =

7.8 Hz), 3.66 (s, 3H), 3.65 (s, 3H), 3.63 (s, 3H) (3 \times porphyrin-CH₃), 2.17–2.06 (m, 4H), 1.74–1.61 (m, 4H), 1.71 (t, 3H, *J* = 7.8 Hz), 1.10–1.05 (2 overlapping triplets, 6H), –2.68 (br s, 1H), –3.04 (br s, 1H), –3.70 (br s, 1H). ¹³C{¹H} NMR (TFA-CDCl₃, 500 MHz): δ 145.0, 144.2, 144.0, 143.5, 143.3, 143.2, 142.5, 142.1, 139.5, 138.9, 138.3, 136.9, 133.8, 133.6, 133.5, 132.3, 131.6, 130.8, 130.1, 129.8, 127.0, 123.4, 101.6, 99.2, 98.92, 98.89, 34.48, 34.46, 26.7, 23.2, 20.5, 16.3, 13.92, 13.89, 12.2, 12.0, 11.8. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₄₁H₄₄N₅O₂, 638.3490, found, 638.3511. A second dark fraction was collected and recrystallized from chloroform–methanol to give dipyrromethene-appended naphthoporphyrin **15b** (10.3 mg, 0.0106 mmol, 11%) as dark green crystals, mp > 300 °C. UV–vis (CHCl₃): $\lambda_{\text{max}}/\text{nm}$ (log ϵ) 393 (sh, 4.77), 427 (4.90), 493 (sh, 4.46), 548 (4.81), 599 (4.49), 674 (4.08). UV–vis (25 equiv TFA-CHCl₃): $\lambda_{\text{max}}/\text{nm}$ (log ϵ) 402 (4.72), 436 (4.87), 489 (sh, 4.49), 493 (sh, 4.46), 528 (sh, 4.63), 562 (4.86), 726 (4.62). UV–vis (10% TFA-CHCl₃): $\lambda_{\text{max}}/\text{nm}$ (log ϵ) 411 (4.92), 436 (4.91), 574 (4.97), 689 (4.68). ¹H NMR (CDCl₃, 55 °C, 500 MHz): δ 10.95 (s, 1H, 5-H), 10.03 (d, 1H, *J* = 8.5 Hz, 3¹-H), 9.98 (s, 1H, 15-H), 9.80 (s, 1H, 10-H), 8.92 (d, 1H, *J* = 1.3 Hz, 9'-H), 8.82 (d, 1H, *J* = 8.3 Hz, 7¹-H), 8.61 (s, 1H, 8²-H), 8.38 (d, 1H, *J* = 1.2 Hz, 5'-H), 8.34 (s, 1H, 2²-H), 8.28 (d, 1H, *J* = 7.9 Hz, 3⁴-H), 8.21 (t, 1H, *J* = 7.6 Hz, 3²-H), 8.13 (d, 1H, *J* = 8.1 Hz, 7⁴-H), 7.92 (t, 1H, *J* = 7.6 Hz, 7²-H), 7.85 (t, 1H, *J* = 7.5 Hz, 3³-H), 7.68 (t, 1H, *J* = 7.6 Hz, 7³-H), 4.19 (q, 2H, *J* = 7.8 Hz), 4.01–3.85 (m, 4H) (3 \times porphyrin-CH₂), 3.61 (s, 3H, 8-Me), 3.46 (s, 3H, 12-Me), 3.10–3.00 (m, 2H, 3'-CH₂), 2.60 (s, 3H, 18-Me), 2.28 (p, 2H, *J* = 7.3 Hz), 2.15 (p, 2H, *J* = 7.2 Hz) (13,17-CH₂CH₂), 1.95 (t, 3H, *J* = 7.8 Hz, 7-CH₂CH₃), 1.84–1.73 (m, 4H, 2 \times CH₂CH₂CH₃), 1.71 (s, 3H, 2'-Me), 1.59 (t, 3H, *J* = 7.6 Hz, 3'-CH₂CH₃), 1.16 (t, 3H, *J* = 7.4 Hz), 1.13 (t, 3H, *J* = 7.4 Hz) (2 \times CH₂CH₂CH₃), –2.59 (br s, 2H, 2 \times NH). HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₆₁H₅₉N₈O₄, 967.4654, found, 967.4651.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its online [Supporting Information](#).

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.joc.4c00824>.

Selected UV–vis (Figures S1–S15), IR spectra of isotopically labeled dipyrromethane dialdehydes (Figure S16), ¹H NMR, ¹H–¹H COSY, HSQC, DEPT-135, ¹³C{¹H} NMR (Figures S11–S59), and mass spectra (Figures S60–S69) ([PDF](#))

AUTHOR INFORMATION

Corresponding Author

Timothy D. Lash – Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States;
orcid.org/0000-0002-0050-0385; Email: tdlash@ilstu.edu

Author

Jared S. Salrin – Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States

Complete contact information is available at:

<https://pubs.acs.org/10.1021/acs.joc.4c00824>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under grants CHE-1855240 and CHE-2247214. The NSF is

also acknowledged for providing funding for the departmental NMR spectrometers (CHE-0722385) and mass spectrometer (CHE-1337497) under the Major Research Instrumentation (MRI) program.

REFERENCES

- (a) Brückner, C.; Akhigbe, J.; Samankumara, L. P. Porphyrin Analogs Containing Non-Pyrrolic Heterocycles. In *Handbook of Porphyrin Science - With Applications to Chemistry, Physics, Material Science, Engineering, Biology and Medicine*; Smith, K. M., Kadish, K. M., Guilard, R., Eds.; World Scientific: Singapore, 2014; Vol. 31, pp 1–275. (b) Chatterjee, T.; Shetti, V. S.; Sharma, R.; Ravikanth, M. Heteroatom-Containing Porphyrin Analogs. *Chem. Rev.* **2017**, *117*, 3254–3328. (c) Lash, T. D. Recent Developments in the Chemistry of Heteroporphyrins and Heterocarbaporphyrins. In *Adv. Heterocycl. Chem.*; Scriven, E. F. V., Ramsden, C. A., Eds.; Elsevier: Oxford, UK, 2022; Vol. 138, pp 243–334..
- (2) Lash, T. D. Modification of the Porphyrin Chromophore by Ring Fusion: Identifying Trends due to Annulation of the Porphyrin Nucleus. *J. Porphyrins Phthalocyanines* **2001**, *05*, 267–288. and references cited therein
- (3) (a) Sessler, J. L.; Seidel, D. Synthetic Expanded Porphyrin Chemistry. *Angew. Chem., Int. Ed.* **2003**, *42*, 5134–5175. (b) Tanaka, T.; Osuka, A. Chemistry of *meso*-Aryl-Substituted Expanded Porphyrins: Aromaticity and Molecular Twist. *Chem. Rev.* **2017**, *117*, 2584–2640.
- (4) (a) Orlowski, R.; Gryko, D.; Gryko, D. T. Synthesis of Corroles and Their Heteroanalogues. *Chem. Rev.* **2017**, *117*, 3102–3137. (b) Inokuma, Y.; Osuka, A. Subporphyrins: Emerging Contracted Porphyrins with Aromatic 14- π -Electronic Systems and Bowl-Shaped Structures: Rational and Unexpected Synthetic Routes. *Dalton Trans.* **2008**, *37*, 2517–2526. (c) Shimizu, S. Recent Advances in Subporphyrins and Triphyrin Analogues: Contracted Porphyrins Comprising Three Pyrrole Rings. *Chem. Rev.* **2017**, *117*, 2730–2784.
- (5) (a) Bonnett, R. Photosensitizers of the Porphyrin and Phthalocyanine Series for Photodynamic Therapy. *Chem. Soc. Rev.* **1995**, *24*, 19–33. (b) Ethirajan, M.; Chen, Y.; Joshi, P.; Pandey, R. K. The Role of Porphyrin Chemistry in Tumor Imaging and Photodynamic Therapy. *Chem. Soc. Rev.* **2011**, *40*, 340–362.
- (6) Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di Natale, C. Porphyrinoids for Chemical Sensor Applications. *Chem. Rev.* **2017**, *117*, 2517–2583.
- (7) Lash, T. D.; Denny, C. P. Porphyrins with Exocyclic rings. Part 5. Synthesis of a Naphtho[1,2-*b*]porphyrin. *Tetrahedron* **1995**, *51*, 59–66.
- (8) (a) Novak, B. H.; Lash, T. D. Porphyrins with Exocyclic Rings. Part 11. Synthesis and Characterization of Phenanthroporphyrins, a New Class of Modified Porphyrin Chromophores. *J. Org. Chem.* **1998**, *63*, 3998–4010. (b) Lash, T. D.; Rauen, P. J. Extended Porphyrinoid Chromophores: Heteroporphyrins Fused to Phenanthrene and Acenaphthylene. *Tetrahedron* **2021**, *100*, 132481. and references cited therein
- (9) Lash, T. D.; Mathius, M. A.; AbuSalim, D. I. Synthesis of Chrysoporphyrins and a Related Benzopyrene-Fused System. *J. Org. Chem.* **2022**, *87*, 16276–16296.
- (10) Muramatsu, K.; Okujima, T.; Mori, S.; Kikuchi, S.; Ando, S.; Okada, Y.; Takase, M.; Uno, H.; Kobayashi, N. Synthesis of Peripherally Annulated Phenanthroporphyrins. *Org. Lett.* **2023**, *25*, 3049–3054.
- (11) Lash, T. D.; Wijesinghe, C. B.; Manley, J. M.; Park, S. M. Modified Porphyrin Chromophores: Synthesis and Spectroscopic Properties of Nitronaphtho[1,2-*b*]porphyrins, Benzothieno[1,2-*b*]porphyrins and their Metalated Derivatives. *Tetrahedron* **2023**, *145*, 133601.
- (12) (a) Barton, D. H. R.; Zard, S. Z. A New Synthesis of Pyrroles from Nitroalkenes. *J. Chem. Soc., Chem. Commun.* **1985**, *21*, 1098–1100. (b) Barton, D. H. R.; Kervagoret, J.; Zard, S. Z. A Useful Synthesis of Pyrroles from Nitroolefins. *Tetrahedron* **1990**, *46*, 7587–

7598. (c) Gribble, G. W. Barton-Zard Reaction. In *Name Reactions in Heterocyclic Chemistry*; Li, J. J., Ed.; Wiley: Hoboken, NJ, 2005; pp 70–78.

(13) Lash, T. D.; Novak, B. H.; Lin, Y. Synthesis of Phenanthropyrroles and Phenanthrolinopyrroles from Isocyanoacetates: An Extension of the Barton-Zard Pyrrole Condensation. *Tetrahedron Lett.* **1994**, *35*, 2493–2494.

(14) Ono, N.; Hironaga, H.; Simizu, K.; Ono, K.; Kuwano, K.; Ogawa, T. Synthesis of Pyrroles Annulated with Polycyclic Aromatic Compounds; Precursor Molecules for Low Band Gap Polymers. *J. Chem. Soc., Chem. Commun.* **1994**, *30*, 1019–1020.

(15) Clezy, P. S.; Crowley, R. J.; Hai, T. T. The Chemistry of Pyrrolic Compounds. L. The Synthesis of Oxorhodoporphyrin Dimethyl Ester and Some of Its Derivatives. *Aust. J. Chem.* **1982**, *35*, 411–421.

(16) Jackson, A. H.; Pandey, R. K.; Rao, K. R. N.; Roberts, E. Reactions on solid supports part II: a convenient method for synthesis of pyrromethanes using a montmorillonite clay as catalyst. *Tetrahedron Lett.* **1985**, *26*, 793–796.

(17) Jackson, A. H.; Lertwanawatana, W.; Pandey, R. K.; Rao, K. R. N. Mechanism of the acid-catalysed rearrangement of α -free pyrromethanes. *J. Chem. Soc., Perkin Trans. 1* **1989**, 374–375.

(18) Lash, T. D.; Chaney, S. T.; Richter, D. T. Conjugated macrocycles related to the porphyrins. Part 12. Oxybenzi- and Oxyppyriporphyrins: Aromaticity and Conjugation in Highly Modified Porphyrinoid Structures. *J. Org. Chem.* **1998**, *63*, 9076–9088.

(19) Medforth, C. J. NMR Spectroscopy of Diamagnetic Porphyrins. In *The Porphyrin Handbook*; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, 2000; Vol. 5, pp 1–80.

(20) (a) Maravin, G. B.; Tauber, A. Y.; Mironov, A. F. Synthesis of Oligopyrrole Linear-Cyclic Chromophores. *Synlett* **1993**, *1993*, 355–356. (b) Xu, L.; Kim, G.; Kim, T.; Cheng, F.; Zhou, M.; Xu, L.; Tanaka, T.; Yin, B.; Osuka, A.; Kim, D.; Song, J.; et al. Strategic Construction of Directly Linked Porphyrin-BODIPY Hybrids. *Angew. Chem., Int. Ed.* **2017**, *56*, 12322–12326.

(21) (a) Jradi, F. M.; O'Neil, D.; Kang, X.; Wong, J.; Szymanski, P.; Parker, T. C.; Andersson, H. L.; El-Sayed, M. A.; Marder, S. R. A Step Toward Efficient Panchromatic Multi-Chromophoric Sensitizers for Dye Sensitized Solar Cells. *Chem. Mater.* **2015**, *27*, 6305–6313. (b) Samankumara, L. P.; Dorazio, S. J.; Akhigbe, J.; Li, R.; Nimthong-Roldán, A.; Zeller, M.; Brückner, C. Indachlorins: Nonplanar Indanone-Annulated Chlorin Analogues with Panchromatic Absorption Spectra between 300 and 900 nm. *Chem.—Eur. J.* **2015**, *21*, 11118–11128. (c) Hu, G.; Liu, R.; Alexy, E. J.; Mandall, A. K.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Panchromatic chromophore–tetrapyrrole light-harvesting arrays constructed from Bodipy, perylene, terrylene, porphyrin, chlorin, and bacteriochlorin building blocks. *New J. Chem.* **2016**, *40*, 8032–8052. (d) Piradi, V.; Xu, X.; Wang, Z.; Ali, J.; Peng, Q.; Liu, F.; Zhu, X. Panchromatic Ternary Organic Solar Cells with Porphyrin Dimers and Absorption-Complementary Benzodithiophene-based Small Molecules. *ACS Appl. Mater. Interfaces* **2019**, *11*, 6283–6291. (e) Tang, W.; Xie, L.; Liu, Z.; Zeng, J.; Zhou, X.; Bi, P.; Tang, W.; Yan, L.; Wong, W.-K.; Zhu, Z.; Hao, X.; Zhu, W.; Wang, X. Panchromatic Terthiophenyl-Benzodithiophene Conjugated Porphyrin Donor for Efficient Organic Solar Cells. *Mater. Chem. C* **2022**, *10*, 1077–1083.

(22) Lash, T. D. Porphyrins with Exocyclic Rings. Part 10. Synthesis of meso, β -Propanoporphyrins from 4,5,6,7-Tetrahydro-1*H*-indoles. *Tetrahedron* **1998**, *54*, 359–374.