ON THE COHOMOLOGY OF N¢(—2) IN POSITIVE CHARACTERISTIC

ERIC LARSON

ABSTRACT. Let C C P3 be a general Brill-Noether curve. A classical problem is to determine
when H°(Ng(—2)) = 0, which controls the quadric section of C.

So far this problem has only been solved in characteristic zero, in which case H*(N¢(—2)) =0
with finitely many exceptions. In this note, we extend these results to positive characteristic,
uncovering a wealth of new exceptions in characteristic 2.

1. INTRODUCTION

Let C be a general curve of genus ¢, equipped with a general embedding C' C P? of degree d.
A classical problem is to determine the cohomology groups of twists of the normal bundle N¢,
which control how C' intersects surfaces. Since x(N¢(—2)) = 0, the most interesting case is the
following.

Question. When is H°(N¢(-2)) = 0?

Since the normal bundle controls the deformation theory of C', this question is closely linked
to how C' intersects a fixed quadric surface (). More precisely, an affirmative answer to this
question is equivalent to the assertion that the map [C] --» [@ N C] is generically étale.

This question was first studied by Ellingsrud and Hirschowitz [4], and later by Perrin [10],
who used liason to give a partial answer in characteristic zero. (A discussion of how the
characteristic zero assumption is used in their proofs can be found in the Appendix to [10].)
Subsequent work of the author [7] determined that, in characteristic zero, H*(N¢(—2)) = 0
apart from six exceptions:

(d, g) € {(4,1),(5,2),(6,2),(6,4),(7,5),(8,06)}.

These results ultimately found application in the proof of the maximal rank theorem in char-
acteristic zero; see [6].

On the other hand, in characteristic 2, the normal bundle is the twist of a Frobenius pullback.
This has consequences for closely-related properties like stability [3] and interpolation [9], which
must therefore fail for rational space curves of even degree in characteristic 2. The natural guess
might thus be that this is the only additional reason for the vanishing of HY(Ng(—2)) to fail
in positive characteristic, or in other words, that H°(Ng(—2)) = 0 except if:

* (d,g) € {(4,1),(5,2),(6,2),(6,4),(7,5),(8,6)} or

e g =0 and d is even and the characteristic is 2.
Surprisingly, we show that this expectation is false. In other words, there are additional cases
where H°(Ng(—2)) # 0 in characteristic 2, corresponding to additional structure besides merely
the fact that N¢ is the twist of a Frobenius pullback! To state our theorem, we first make the
following definition.

Definition 1. A stable map f: C' — P? is called a Brill-Noether curve (BN-curve) if it corre-

sponds to a point in a component of MQ(P?’, d) which both dominates Mg, and whose generic
1
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member is a nondegenerate map from a smooth curve. Write
h(d,g) = h®(Ncag(—2)) where C(d,g) is a general BN-curve of degree d and genus g.
Theorem 2. We have

(1)

h(d, g) = 1 if the characteristic is 2 and d + g is even
9= 0 otherwise,

except in the following siz exceptional cases:

(d, g) | h(d,g)
4,1 2
(5,2) | 2
6,2)| 1
6,4)| 5
(7.5)| 3
(8,6) 1

We begin, in Section 2, by describing the novel additional structure that constrains the parity
of h(d, g) in characteristic 2. Sections 3 and 4 review the arguments of [7], and indicate how they
can be modified in positive characteristic. In particular, we show that the proof of Theorem 2
can be reduced to just four base cases. These final four cases require more delicate arguments,
which occupy Sections 5-7.

As a byproduct of our methods, we also prove the following theorem, which answers an
analogous question for the twist of the normal bundle by —1 in arbitrary characteristic. To
state the theorem, recall that a vector bundle £ on a curve C' is said to satisfy interpolation if
H'(€) =0, and for a general effective divisor D of any degree, either HY(£) =0 or H'(€) = 0.

Theorem 3. For C(d,g) a general BN-curve of degree d and genus g, the bundle Ne¢(a,q)(—1)
satisfies interpolation, except if (d,g) € {(5,2),(6,4)}, or if g = 0 and d is even and the
characteristic is 2. Consequently H'(N¢(a,g)(—1)) = 0 unless (d, g) = (6,4).

Acknowledgements. The author would like to thank Atanas Atanasov, Izzet Coskun, Isabel
Vogt, and David Yang, for many helpful conversations about normal bundles of curves, as well
as the anonymous referee for helpful comments on the manuscript. This work was supported
by NSF grant DMS-2200641, as well as NSF grant 1440140 while the author was in residence
at MSRI/SLMath in Berkeley CA during the spring of 2023.

2. LOWER BOUNDS IN CHARACTERISTIC 2

In this section, we explain the exceptional geometry in characteristic 2. Our main result is
Corollary 5 below, which establishes that h(d,g) = d + g + 1 mod 2 in characteristic 2.

2.1. The Exact Sequence of Projection. In any characteristic, we have the Euler sequence
for the conormal bundle:

(2) 0 — NA(1) = Of = 2YOc(1)) — 0,

where 21(O¢(1)) denotes the bundle of first principal parts of O¢(1). For a general choice of
O¢ quotient in the middle term (corresponding to a general point in P?), the Euler sequence
induces a map NY4(1) — Oc. We therefore obtain the exact sequence:

(3) 0— A2PHO0c(1)Y ~ K4(—2) = N4(1) = O — 0,
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and a corresponding extension class
e € Ext!(Oc, KX(—2)) ~ H (KY(-2)).

Dualizing and twisting, this gives rise to the normal bundle sequence induced by projection
from the point in P3 corresponding to our choice of O¢ quotient:

0— Oc(—l) — Nc<—2) — Kc(l) — 0.

Since H°(Oc(—1)) = H*(K¢(1)) = 0 for degree reasons, the associated long exact sequence in
cohomology implies that our desired cohomology groups H°(Ng(—2)) and H'(Ng(—2)) are the
kernel and cokernel respectively of the boundary map

HY(Kc(1)) = HY(Oc(-1)).

Using Serre duality between H°(K¢ (1)) and H'(Oc(—1)), this boundary map may be regarded
as a bilinear form

§: HY(Ko(1)) x HY(Kq(1)) = HY(K¢) ~ k,

obtained by multiplying sections and taking the cup product with the extension class e. Our
goal in the following two subsections is to prove Proposition 4, which asserts that § is skew-
symmetric in characteristic 2 — and thus has even rank.

2.2. The Frobenius Morphism and Its Friends. Here we recall some standard construc-
tions in positive characteristic; for ease of notation, we will suppose the characteristic is 2. For
a more detailed discussion, the reader can consult [2, §2.1-2.6], [11, §4], and/or [12, §10].

Write F': C' — ' for the relative Frobenius morphism. If L is a line bundle on C' (respectively
L’ is a line bundle on C”), then the norm and squaring maps are linear:

Nm,: H°(C,L) — H°(C',Nm L)
Sq: H°(C,L) — H°(C, L*?)
Sq': HY(C', L) — H°(C', (L")*?).

By construction, Sq = F* o Nm, and Sq' = Nm, oF™.
Recall that, if  denotes a local coordinate on C, so that y = z? gives a local coordinate on
C’, then the Cartier operator

C: F*KC — KC’

is, in our case, given by the formula

c((ao + @@ + @z’ + a3z’ + -+ ) - do) = (Var + Vasy + Vasy' + Vary + ) - dy.

The Cartier operator is independent of choice of local coordinate x, and can be defined more
generally on any smooth scheme X in any positive characteristic p, as an operator from closed
i-forms on X to i-forms on X'. For details see [2, §2.6].

Finally, let B denote the sheaf of locally exact differentials, which is a sheaf of Oc-modules
that can be defined in several equivalent manners:

(1) As the sheafification of the presheaf on C’ whose value on an open set U is the set of
exact differentials on F~1(U).

(2) As those differentials of the form (ag + agz? + asz* + - - ) - dx, for some (or equivalently
for any) local coordinate z on C.

(3) As the cokernel of the adjoint map O¢r — F.Oc.

(4) As the kernel of the Cartier operator (recalled above) ¢: F.Kc — Ker.
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It is well-known that the sheaf B is a square root of the canonical bundle, in both senses:
F*B~ Ks and B®?~ K.
Indeed, the first of these isomorphisms is induced by pullback of differentials, while the second

is induced by the map (F.O¢)®? — K¢ given by f ® g+ c(f - dg) = —c(df - g) = c(df - g). In
particular, Ko ~ Nm K.

2.3. The Bilinear Form ¢ in Characteristic 2. Here we prove the following.

Proposition 4. Suppose that the characteristic is 2. Then the bilinear form 0 is skew-symmetric,
i.e., 6(w,w) =0 for any w € H(Kc(1)).

Proof. Our first claim is that the extension class e lies in the image of the pullback map
F*: HY(BY @ Nm O¢(—1)) — H' (K}(—2)).

Indeed, since 2'(0c(1)) =~ F*F.Oc(1), and the evaluation map O} — F*F,Og(1) is the
pullback under Frobenius of the evaluation map Of, — F.O¢(1), the entire Euler sequence (2)
is the pullback of an exact sequence under Frobenius. Moreover, the formation of (3) from (2)
is also compatible with Frobenius. More precisely, (3) is the pullback under Frobenius of an
exact sequence of the form

0 — AY(F.0c(1)Y ~ BY @ Nm O¢(—1) — @ = Ogr — 0.

This implies that e is a pullback under Frobenius as desired.

Next, we claim that the image of Sq: H°(Kc(1)) — HY(KE?*(2)) lies in the kernel of the
Cartier operator. This follows from the following commutative diagram (because the composi-
tion along the bottom row is zero):

HY(Ko(1)) o

le*

H°(B® B®@NmOg(1)) — H'(F.Kc® B&NmOx(1)) = H' (Ko ® B®NmOg(1))

> HO(KC X Kc(2))

push-pull

Since the Cartier operator is the Serre dual of Frobenius pullback (see for example [12, §10]),
it follows that d(w,w) = 0 as desired. O

Corollary 5. In characteristic 2, we have h(d,g) =d+ g+ 1 mod 2.

Proof. This follows from Proposition 4, since the rank of a skew-symmetric form is even, and

hO(Ke(1))=d+g— 1. O
3. REVIEW: THE SiX EXCEPTIONAL CASES

The geometric descriptions given in [7] quickly yield that h(d, g) is at least the value claimed
by Theorem 2 in the six exceptional cases (and in fact is equal to the claimed values when
(d,g) € {(4,1),(5,2),(6,4)}). For completeness, we briefly recall these descriptions here.

3.1. (d,g) = (4,1). Such curves are the complete intersection of two quadrics, so we have
N¢ =~ O¢(2)2. In particular h°(No(—2)) = 2.

3.2. (d,g) = (5,2). Such curves lie on a quadric ). By a Chern class computation, we have
Nejg ~ Ke(2), and so h®(Ne(=2)) > h°(Nejg(—2)) = h°(K¢) = 2. In fact, with a bit more
work, one can show h°(Ng(—2)) = 2 (see [3, Lemma 3.1]).
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3.3. (d,g) = (6,2). Such curves are the projection of a curve C C P* from a point not lying

on C, and C = QNS is the intersection of a quadric hypersurface @ and a cubic scroll S in P*.
In particular h°(Ng(—2)) > hO(Né/S( 2)) = h(Opg) = 1.

3.4. (d,g) = (6,4). Such curves are the complete intersection of a quadric and cubic surface,
so we have Ng ~ O¢(2) @ O¢(3). In particular h°(Ng(—2)) = 5.

3.5. (dyg) = (7,5). Such curves are the projection of a canonical curve C c P* from a point

p € C, and C' is the complete intersection of three quadrics. In particular, we have an exact
sequence

0= Oa(1)(2p) ~ Oc(1)(3p) = Ox(2)*° ~ Oc(2)(2p)** — Ne(p) — 0.
Therefore h%(Ne(—2)) > 3 - h9(Oc(p)) — B(Oc(—1)(2p)) =3 -1 -0 = 3.

3.6. (d,g) = (8,6). Such curves lie on a cubic surface S. By a Chern class computation, we

have N¢ys =~ K¢ (1), and so h°(Ne(—2)) > h%(Neys(—2)) = h°(Ke(—1)) = 1.

4. REVIEW: DEGENERATION ARGUMENTS

The basic strategy of [7] to prove upper bounds is degeneration to reducible curves. In this
section, we review these arguments. We indicate how trivial modifications can be made to
remove the characteristic zero assumption in all but four cases, which will be take up in the
following sections. To show the reducible curves constructed in [7] are BN-curves, we will use
[8, Theorems 1.6 and 1.7]. Although [8] assumes characteristic zero for the proofs of its main
theorem, this assumption does not enter into the proofs of these two theorems.

Lemma 6 (Variant of [7, Lemma 2.6]). Let f: C'Ur D — P" be an unramified map from a
reducible curve, with C and D smooth, and let E and F' be divisors supported on C T and
D N T respectively. Write

o 1051 =) = B e o)

pel

Then
h(Ny(—E — F)) < dimker o + codim (H°(Ny,(—F)) € H (N;¢|p(=F))) + h°(Ny.(—E)).

Proof. This follows as in [7, Lemma 2.6], which states that h°(N;(—E — F)) = 0 provided that
o is injective, H*(Ny,(—=F)) = H°(Ny|p(—F)), and h°(Ny.(—E)) = 0. O

Lemma 7 (Variant of [7, Lemma 5.3]). Let T C P? be a set of 5 general points, C' a gen-
eral BN-curve passing through ', and D a general canonical curve passing through I'. Then
h°(Neup(—2)) < h%(Ne(—2)) and interpolation for No(—1) implies interpolation for Noup(—1).

Proof. Let E and F' be divisors supported on C' N\ T and D \ T" with Op(F) ~ Op(2). The
same argument as in [7, Lemma 5.3, using Lemma 6 in place of [7, Lemma 2.6], implies
h°(Neup(—FE — F)) < h%(Ng(—E)). The desired results follow. O

If C"and D are as in Lemma 7, then by [8, Theorem 1.6], the resulting curve C' U D is a
BN-curve of degree d + 6 and genus g + 8. We conclude that (1) for all general BN-curves
of genus ¢ implies (1) for all general BN-curves of genus g + 8, respectively interpolation for
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Ne(—1) for all general BN-curves of genus g implies interpolation for No(—1) for all general
BN-curves of genus g + 8. It therefore suffices to prove Theorems 2 and 3 for

g€{0,1,2,3,4,5,6,7,9,10,12, 13, 14},

plus Theorem 3 for g = 8.

For any such genus g, the Brill-Noether theorem implies d > ¢, which is equivalent to
inequality (b) in [1, Proposition 4.12] for E = N¢(—1). Combining [1, Proposition 4.12] with
[9, Theorem 1.4] therefore completes the proof of Theorem 3. For the remainder of the paper
we thus consider only Theorem 2.

Lemma 8 (Variant of [7, Lemma 5.2]). Let C' C P? be a general BN-curve, and L be a general
1-secant line. Then

h'(Ne(=2)) =1 if h%(Ne(=2)) > 0;
R (Neur(—2)) < < 1 if h°(Nc(—2)) = 0 and the characteristic is 2;
0 if h°(Ng(—2)) = 0 and the characteristic is zero or odd.

Proof. The first two cases follow from Lemma 6, with (C, D) = (L,C). The final case follows
from [7, Lemma 5.2] (whose proof works when the characteristic is zero or odd). U

We conclude that (1) for BN-curves of degree d and genus g implies (1) for BN-curves of degree
d+1 and genus g, and moreover that the truth of Theorem 2 for (d, g) = (5,2) (respectively for
(d, g) = (8,6)) implies the truth of Theorem 2 for g = 2 (respectively for g = 6). This reduces
the proof of Theorem 2 to a finite number of cases:

(d,g) € {(3,0),(4,1),(5,1),(5,2),(6,3),(6,4), (7,4),(7,5),(8,5)
(8,6),(9,7),(10,9), (11,10), (12,12), (13,13), (14, 14)}.

All but four of these cases follow either from trivial modifications of arguments in [7], or directly
from the above results.

4.1. (d,g) = (3,0). In this case, N¢ is balanced by [3, Theorem 1], so h(3,0) = 0 as desired.
4.2. (d,g) € {(4,1),(5,2),(6,4)}. These cases were already settled in Section 3.

4.3. (dyg) = (5,1). When the characteristic is zero or odd, the proof in [7, Section 10]
applies to show h(5,1) = 0. (The only reason this argument fails in characteristic 2 is because
the curve f(L) appearing in the proof is a strange curve; of course, this cannot happen when
the characteristic is zero or odd.)

In characteristic 2, we may apply Lemma 8 to show h(5,1) < 1; since h(5,1) is odd by
Corollary 5, this shows h(5,1) = 1 as desired.

44. (d,g) € {(10,9),(11,10),(12,12),(13,13),(14,14)}. These cases follow as in [7,
Lemma 7.1], again using Lemma 6 in place of [7, Lemma 2.6].

4.5. (d,g) € {(6,3),(9,6), (9,7)}. We construct reducible curves with H°(Ng(—2)) = 0 as
in [7, Corollary 8.2].

To show the resulting curves are BN-curves, we use [8, Theorem 1.6] for (d, g) € {(6,3),(9,6)},
respectively [8, Theorem 1.7] for (d, g) = (9, 7). (The original argument in [7] shows the resulting
curves are BN-curves by using results of [5] that require a characteristic zero hypothesis.)
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4.6. The Remaining Cases: (d,g) € {(7,4),(7,5),(8,5),(8,6)}. In these cases, the
arguments of [7] break down more seriously in positive characteristic, thereby requiring new
ideas. The remainder of the paper will be devoted to these four cases.

5. THE CASES (d,g) € {(7.5),(8,6)}

In these cases, we apply Lemma 6. We take C' to be a 2-secant line, respectively the union
of two disjoint 2-secant lines, to a curve D of degree 6 and genus 4.

The curve D lies on a unique (smooth) quadric ). The surjectivity of a can be shown by
restricting to the subspace H(Np,o(—2)), so dimker« is 3 and 1 respectively. The equality
H°(Np(—2)) = H°(Ncup|p(—2)) follows from H°(Op(C N D)) = H°(Op), thanks to the

following commutative diagram:

0 —— Npjg(—2) —— Np(—2) —— Ng|p(—2) ~Op —— 0

| | |

0 —— Np/g(—2) —— Ncup|p(—2) — Op(CN D) ——— 0.

Since H°(N¢(—2)) = 0, the upper bound from Lemma 6 is dim ker o, which matches the lower
bounds established in Section 3.

6. THE CASE (d,g) = (8,5)

We begin by taking a hyperelliptic curve D of genus 3, and points p; and p, not conjugate
under the hyperelliptic involution. Write f: D — P? for the map obtained from the complete
linear system |2H +p; + po|. By construction, f maps p; and ps to a common point g € P3, but
is injective on every other divisor of degree 2 (so in particular unramified). Projection from ¢
realizes the complete linear system |2H|, which maps 2-to-1 onto a plane conic; therefore, the
image of f lies on a singular quadric () with vertex at g. Write Np_,q for the normal sheaf of
the map D — (). Using the exact sequence

0— ND%Q(—2> ~ KD(p1 —|—p2) — Nf(—2) — NQ|D(—2) ~ OD(—pl —pg) — 0,

we see that h%(N;(—2)) = 4, with all sections arising from the subbundle Np_,o(—2). Since
6 >2-3—2, the map f is automatically a BN-curve.

We attach general 2-secant lines Ly and Ly to D, with L; meeting D at points {¢;1, o}
By [8, Theorem 1.6], the resulting map f:DUL; ULy — P?is a BN-curve. We then apply
Lemma 6.

The injectivity of « follows from the generality of the ¢;; and the fact that h®(Ny(—2)) =4
with all sections arising from the subbundle Np_,o(—2), which is transverse to the L,. The
equality H°(Ns(—2)) = H°(Nj|p(—2)) follows from

HO(OD(QH +qot @1+ gae—pr—p))=0= HO(OD(—pl —p2)),

thanks to the following commutative diagram:

e}

0 — ND—>Q(_2) — Nf(_z) ” OD(_pl —p2)

| | |

0 —— Npoo(—2) —— N¢lp(=2) —— Op(qu + 12+ @21 + g22 —p1 —p2) —— 0.

Since H°(Np,(—2)) = 0, this completes the proof.
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7. THE CASE (d,g) = (7,4)

In this section, we establish Theorem 2 for (d,g) = (7,4). Rather than computing the
cohomology group H°(N¢g(—2)), we will reason geometrically to show that [C] --» [C'N Q] is
generically étale. In fact, our argument will show a bit more: This map is generically étale of
degree 3, and has a Galois group isomorphic to Ss.

Let I' C Q ~ P! x P! be a general set of 14 points. Then T lies on a pencil of (3, 3)-curves,
and the residual to I' in the base locus is a general set of 4 points IV C (). After a generically
étale basechange (of degree 3 with Galois group Ss3), we may partition IV = I"; U T’y into two
sets of 2 points each. (This partition is unordered, i.e., we do not label which set is I'; and
which set is I';.) Given such a partition, our goal is to construct a BN-curve C' of degree 7 and
genus 4 whose intersection with @) is I'.

Write L; C P3 for the line joining the two points of I';. By dimension count, our pencil of
(3,3)-curves on @ lifts uniquely to a pencil of cubic surfaces in P? containing L; U L,. We
construct C' as the residual to L; U Ls in the base locus of this pencil of cubic surfaces. By the
liason formula, C' has degree 7 and genus 4, and is automatically a BN-curve because d > 2g—2.
Finally, by construction, CNQ =T.
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