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1 Prologue

A wide variety of observational evidence points to the very early universe
having experienced a phase of accelerated expansion, or inflation [1]. Cos-
mological spacetimes are described by the scale factor a(t) and its two first
time derivatives H(t) (Hubble parameter) and €(t) (1st slow-roll parameter):
H

ds* = —dt* + a*(t)dx -dx , H(t) . €(t) = 1z (1)
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Inflation is characterized by the positivity of both derivatives of a(t):
H(t) >0 & 0 < ¢€(t) < 1. The standard inflationary cosmology is that of
the maximally symmetric de Sitter spacetime: *

ds® = —dt* + a*(t)dx - dx = a*(n) [ —dn? + a*(n)dx - dx| , (2)

L) 3)

a(t) = th = _H—’r] =

During inflation, quantum physics implies the production of real particles
out of the vacuum as long as they are effectively massless, possess classically
non-conformally invariant free Lagrangians, and have adequately large wave-
length. The carrier of the gravitational force, the graviton, is such a particle
and inflationary evolution eventually will produce a dense ensemble of in-
frared gravitons [2,3].

Can the universally attractive nature of the gravitational interaction al-
ter cosmological parameters, kinematical parameters and long-range forces?
There are perturbative indications for such changes from many loop compu-
tations which show a time dependence of powers of Ina(t) [4-13]. Because
the dimensionless coupling constant of quantum gravity is GH?, at some
time the secular increase by powers of Ina(t) will overwhelm GH? causing
perturbation theory to break.

It is always a formidable affair to decipher the dynamics of a theory after
the perturbative analysis has become invalid. While it is easy to state what
is needed - a re-summation technique for these leading logarithms - it is very
hard to realize it. Usually one tries to first understand what happens in an

'Hellenic indices take on spacetime values while Latin indices take on space values.
Our metric tensor g, has spacelike signature (— + ++) and our curvature tensor equals

R, =1%;,+19,17 35— (1« v). Co-moving time is denoted by ¢ and conformal
time by 7.



analogous situation in a simpler theory that retains the essential interaction
structure of gravity. The latter feature is satisfied by non-linear o-models
since they possess the same kind of derivative interactions as gravity; they
lack the tensor structure and gauge fixing dependence of quantum gravity.
Of these, it is obviously the gauge issue that is the strongest simplification
because a true physical effect is by definition independent of the gauge fixing
functional.

Recently a particular non-linear o-model - the AB model - has been
perturbatively analyzed and the required re-summation techniques have been
indicated: curvature-dependent variants of the stochastic technique [14,15]
and of the renormalization group [16-18].

Yet another theory that could be similarly analyzed before facing the full
quantum gravity, is that of a massless minimally coupled (MMC) scalar in
a de Sitter spacetime which we describe in Section 2. The contribution of
a loop of MMC scalars to the graviton self-energy has been computed be-
fore [19], however, it was not then realized that a finite renormalization of the
cosmological constant is required in order to make the graviton self-energy
conserved [20]. This mistake was compounded by choosing to represent the
non-conserved result as a linear combination of automatically conserved ten-
sor differential operators acting on structure functions [19,21]. These erro-
neous representations were then used to solve for 1-loop corrections to the
graviton mode function [22] and to the two scalar potentials which represent
the gravitational response to a static point mass [23]. Four conclusions were
reached:

e The graviton mode function experiences no secular enhancement;

e Both potentials experience secular enhancement by fractional correc-
tions of the form GH?In(a), and a logarithmic running in space by
fractional corrections of the form GH? In(Hr);

e The coefficients of the temporal and spatial logarithms differ; and
e There was a huge gravitational slip.

The two errors described above might have canceled out, but it would
be foolhardy to attempt resummation before checking. That is the purpose
of this paper; we also wish to determine leading late time correction to the
graviton mode function. We will show that the two errors do not cancel,



and that this changes some of the four conclusions. The result for the 1-loop
MMUC correction to the 2-point gravitational function is found in Section 3,
including the finite renormalization of the cosmological constant. We also
represent the result, without any preconceptions, as the sum of a complete
set of 21 tensor differential operators. Its effect on the gravitational mode
functions and gravitational force are displayed in Sections 4 and 5, respec-
tively. Our conclusions are given in Section 6. One appendix contains the
relevant Feynman diagrams as well as a tabulation of the primitive results.
A second appendix describes the various integrals needed to solve the 1-loop
effective field equations.

2 The MMC theory
The dynamics of a MMC scalar in a de Sitter background are defined by:

[ — [R_(lzgﬂ?g;\]\/__g_% M¢8V¢guu\/__g ’ AE(D—l)H2 , (4)

leading to the following gravitational field equations:

1

1
S(D=2)Ag,, = &rG{am 00 = 39m9" 0y ac,¢} . (5)

The graviton field h,,(x) is defined by conformally rescaling the full metric
with the scale factor:

1
Ruy - iRg“y +

G = @* G = a® (N + Khy) : K = 167G . (6)

Here k is the loop-counting parameter of quantum gravity. Our notation
throughout is that indices are raised and lowered with the Minkowski metric,
for instance, A" = n*’n"h,, and O* = n**0,. Furthermore, parenthesized
indices are symmetrized.

e The MMC Model: Counterterms

Our model (4) is not renormalizable, but the divergences of any theory
can be removed by BPHZ (Bogoliubov, Parasiuk [24], Hepp [25] and Zim-
mermann |26, 27] counterterms. Those of our model (4) were the first ever
studied using dimensional regularization [28]. At 1-loop order they consist
of Eddington and Weyl terms:

AL = 61R2\/ —g+ca Caﬁ’yaCaﬁ’yé vV—Y4 (7)
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where the coeflicients are [19]:

- :U’D_4F(€) (D_2) (8)
' 2877 (D—1)*(D=3)(D—4)
o= ’ . ()

2877 (D+1)(D-1)(D=3)*(D—4)

We can decompose R? into three pieces as follows:
2
R? = (R - DA) +2DA [R - (D—2)A] L D(D—4A2,  (10)

so that the Eddington counterterm becomes the sum of three contributions:

ALy, = ¢ (R _ DA)Z\/—_g , (11)
ALy = 2Dc1A[R - (D—Q)A] Nars (12)
ALy = D(D—4)c\*/—g . (13)

- There is also a finite renormalization of the cosmological constant which
is necessary to make the graviton self-energy conserved [20]:

A£3 =C3\/—g = C3 CLD\/ —5 . (14)

e The MMC Model: Conservation

Stress-energy conservation has been discussed in detail in [20]. The start-
ing point of the analysis is the Ward identity which follows from stress-energy
conservation for a matter loop contribution to the graviton self-energy:

Wi x (=) [S(0] (52) =0, (15)
with the Ward operator defined thusly:
W5 = 06", 0p) + alld" nap - (16)

When the scalar obeys its equation of motion the Ward operator annihilates
the graviton variation:
i05[¢, 0]

WE 5 X = g@“gb(:ﬁ)x

i55(6,0]
Ohap(z) '

6¢()

(17)
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- It can be shown [20] that in de Sitter spacetime and before renormal-
ization we have:

)
Wuaﬁ X (_7’) [aﬁzggm} (SL’, LU/) = Zé‘%{_nu(pao) |:CLD5D(.§L’—,§L’/):|
1
5l P [a25D($—x/)]} , (18)
where § = %H 2k. This equation exhibits the obstacle to achieving

conservation albeit when only the primitive form of the 1-loop graviton self-
energy is taken into account.

- Upon renormalizing the 1-loop graviton self-energy the contributions
from the counterterms (7) are considered. We employ the decomposition of
the Eddington counterterm into three pieces (11-13) and have sequentially
computed the action of the Ward operator on the various pieces. It turns
out [20] that except for the counterterm (13) the Ward operator annihilates
their contribution to the graviton self-energy:

W5 % (=) [E57] (z32") = Wiy x (=) [*'247] (a;2')
= Wi x (=) [E}] (z:2)) = 0, (19)
The only non-zero contributions come from:

(i) the cosmological constant counterterm (14) with coefficient c3, and

(7i) the cosmological constant like counterterm (13) emanating from the Ed-
dington decomposition (10) with coefficient v = D(D—1)*(D—4)H"¢;.
The results are [20]:

. 2
Wi x i [0582,] (o) = 122D {—n‘“ﬂa") @767 (')

FgaP [azéD(:)s—x')]} , (20)

and because the functional form of the objection (20) is identical to that of
the primitive objection (18), it is possible to arrange their coefficients so that
they cancel against each other:

§=—(cs+7) (21)
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and achieve the desired conservation. Substituting into (21) the values of
k, & and v we see that this corresponds to a finite renormalization of the
cosmological constant in D =4:

pP=tHY (D-2)L(2+1)  HP (D-2)(D) H*

= — — — —— . (22
@ 2% D-3 (4m)% AD(2+1) 872 (22)

3 The 1-loop QFT results: Self-Energy

As discussed previously, the first step in our project involving (4) is its per-
turbative contribution to the 1-loop graviton self-energy given by:

0S|y, 9] y i0S[p, 9]

Shy () oo 0h,e ()
i0°S[ip, g] i6°AS[g]

ST ()0, () ¢+5h“,,(x)5hpo(x’)1]‘9>  (23)

—1 [“”2”"] (x;2") = <Q ‘ T

PP

P

where the subscripts indicate how many weak fields contribute, the 7™ sym-
bol stands for time-ordering with any derivatives taken outside, and AS|g]
denotes the 1-loop counterterm action. 2 The 1st and 2nd variations required
for (23) are: 3

i0S[p, g] UK poo w, . av 1 mv o
(5h,uu(l’) op 2 ¢ [8 P 0%¢ 2” o 81190] ’ (24>
i62S[p, g] K ool ulpao)
~ =—a — a7 8 — PO p O
0Py (2)0hpo ('), 2

1 1 1 1
+1 0 O p+ 00" g + 5 (77“(”77")” -~ 577“”77””) 0% (%@]
x i6P (z—2') . (25)

e The 4-point Contribution

2The Feynman diagrams corresponding to the 3 terms in (23) can be seen in Fig. 1-3.
3The variation with respect to the graviton is related to the variation with respect to
the metric as 5%‘?/(:5) = Kka? 5(]”‘3 7 due to (6).




The 4-point contribution (Fig. 2) is the expectation value of (25):

2

i [“yzzo] (LL’; SL’/) _ %aD—2 [_nu(pa/a)gu ZA(LL’7 SL’/) . ,r]l/(ﬁa/cr)a# ZA(:L’, LL’/)
—l—%n’wﬁp@"’ iA(z; ") + %np(’@”a’” iA(z;2")

+% (nwnfﬂv - %nuvnm)aaa; iA(x; x')] i6P(x—a') , (26)

which simplifies to: *

D—-1)(D—-4 1
—i [uuzzo] (LU7 ZL’/) _ ( 4)1() )Iizl{?H2CLD (§nuunpo . n,u(p,r]cr)u> ’L(SD (I—I/) :
(27)
and hence vanishes in D=4 spacetime dimensions.

“Due to the identity: 0005 iA(z;2")

— _ (D2 2 — HP2 (D)
- ( D )kH Gop 5 k= (am% T(5)

x'=x



e The 3-point Contribution
The expectation value of (24) is the 3-point contribution to the 1-loop
self-energy (Fig. 1):

), 2
i) ) = (5) <aa'>D‘2{2‘3’”8'(” A a!) 90 i )

—n 00" iA(w;2") 0,07 i (w;a!) — 7 OO iA(w;2) 0" 0iA(w; )
1 /D - / / - /
—I—§n‘“’77p"0“05 iA(x;7") 0a05 1A (252 )}
= —1X3; — 1235 — 1234 — 1234y - (28)

Notice that the first term —i3l3;, besides being the most difficult, recovers all
three remaining terms by suitable contractions:

— [WZQU] (z;2") = [5“,15”/3 - %77’“/%5} [5@5”5 - %?7”"%]

) 2
x2( ) (aa)P 2 970 i (ws0!) 000 i@ a') . (29)

All terms are quartically divergent, whereas the product of two undifferen-
tiated propagators is logarithmically divergent. In view of the two derivatives
on each propagator, we must therefore retain three terms in the expansion
of each propagator [4,29]:

1 [ar(®) 1
iNx;2) = 2
( ) 47r%{ D—2 (aa’Aﬁ)%‘l

r(Z+1 H? I'(2+2 H*

TGy T L
2(D—4) (aa'Az2)z72  16(D—6) (aa’Ax?)z 3

.Dﬂ- / .D_l 2 / 2
+k {—WCOt(7> + In(aa’) + (W)H aa’ Az + .. } . (30)

Coordinate differences are indicated throughout by a A:

Art = (z—2" | An=n—-v , Ar=|7-7|. (31)



Taking two derivatives of the propagator gives:

P orin(a o) = Y0000 a=a)  T(5) | v DAcAwr
) - aP—2 27r§(aa’)%_1 AxD AqxD+2
+(D—2)[aH5“%izf;—A:):“a’H5po] n (D—Z)ZZ’DFZCSMO(SPO N %aa, ie
nke (D—2)AztAxP  (D—4)[aH" Az — Azta HO )
“ | AgD2 AxP * 2AxP—2
(D—4)aa' H*6" 6", N D(D+2)a2a,2H4 n*  (D—4)AztAz?
4AgP—4 128 AgP—4 AxP-2
(D—6)[aHé" AxP —Axta’ HO")]  (D—6)aa’ H*6"0",
* 2AxP—4 * 4AxP—6 L
D—-1
+k {O — ( 5 )aa'H2 [n”p — aH" Az’ + o' HAzH ",
1 1172 251 Cp
—§aaH Ax 5050]+... . (32)

Now the product of the two doubly-differentiated propagators in (29)
consists of two local terms plus a product of two nonlocal terms:

5o 2
2(@) (aad) P2 P PiA(x; 2') DOV iA(x;2') =

a
2
D-1
+ (5 )Rk Has 057 18P (w—a)
RATAHE) [ e DAzt Azl n?" DAz Az
8D AzP — AgD+? L AzD — Azb+2 T 39

The first 8 terms in each of the curly bracketed expressions can make a non-
zero contribution and are shown in Table 8. Because of symmetrization there
are a total of 36 independent products of these 8 terms.

We shall not present the very complicated procedure of reducing the afore-
mentioned products to isolate the divergences and the non-local finite parts
they contain. It should be sufficient to incorporate the reuslts in the analysis
that follows.



e The 3-point Contribution: Tensor Basis
A covariant generalization of [30] provides an appropriate tensor basis for
the primitive divergent contributions:

21
i [Wzgjim} (z2) = K x 3 Ti(a;a) x [WD;.’U] wioP(z—a) | (34)
=1

where the divergent prefactor I is:
RIAD) PR

X = .
8 b 217 (D—3)(D—4)

K= (35)

The tensor differential operators [ D?’] are listed in the table below:

i D)o " D;”] i " D"

L e |8 | orage || 15 | 8%9M8%00,
nenn |9 | sWesTy | 16 | 88n000°
n8%0% |10 | e |17 | 9mevah,60,
avyne || 11| a)es?y |18 | 6% 016197

a0 |12 | akped) |19 | 6 anarae

s e || 13 | §0%0%0% | 20 | 997807
v oede | 14 | 80807 | 21 | oraroroe

N | O | O = W N

Table 1: The 21 basis tensors used in expression (34). The pairs (3,4), (5,6), (7,8),
(10,11), (14,15), (16,17) and (19, 20) are related by reflection.

The same tensor basis is appropriate for the counterterm contributions
(Fig. 3):

21
S| (550) = K ) YD AT (@0l x [Df7| x i (a—a) . (36)
i=1
e The 3-point Contribution: Primitive Divergences

The primitive divergences coming only from the first term —i¥3; provide
contributions of the same form as (34), but with different coefficients that we
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shall call T%(x;2’). Including the three trace terms according to (29) gives
complicated relations for those T"’s whose [*” D#?]’s contain either n** or .
Hence, a subset of the T%’s will be equal to the T’s:

™=7* , T =T Vi>9, (37)

while the remaining T%’s will be linear combinations of the 7%’s. Of these,
T satisfies:
(D—2)? (D—4) (D-2)

1 _ \Fe) g1\ g2 e 3 g4
r=—T+—"T T HT)+

(D-2)
4

(T T)0y = 2(T + TN + T8,

(D-2)
4

8\ 92 1 1 10 11 1 12 52 1 13
(T"+T%)0 — T+ T+ T+ 1T70° + T

(T° +T5)0

+

1 1
+Z(T19 + T2)0%0, + 17'2184 , (38)

while the remaining ones are simpler and are presented in Table 9.

The T*(x;2") have been laboriously computed and are presented in Ta-
ble 10. For the cases i = 2 and ¢ > 9 they are identical with T%(x;2’). The
most complicated case when T% # T is (38): °

T (2 2') = (D’—2D-2)0"  (3D°~18D°+24D—16)ad' H*9"
S = 3(Db+1)(D-1)(D—2) 512(D—1)
_(D=2)(D—3)ad H*5} N (D—2)(D—4)(D*—48D+64)aa’* H* (39)
64(D—1) 4096(D—1) ‘

The remaining cases for which 7% # T are given in Table 11.

e The 3-point Contribution: Weyl Counterterm
A simple computation shows that the contribution of the Weyl countert-
erm to the graviton self-energy equals:

52iAS,
0hy (2)0h e (") Ihyw=0

— 21%202 Caﬁyé;w [CLD_‘ICaﬁ-y(SpoiéD (LL’—LL’/)] 7 (40)

5Note that differences of scale factors combine to give a — a’ = aa’ HAn.
The resulting factors of An acting on 67 (x — z’) can be reduced using: Andy — —1 ,
An?0? — =2 | Andpd? — —0% + 203 .
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where the tensor differential operator Caﬁ,ﬂg” " is defined via the linearized,
conformally rescaled Weyl tensor thusly:

Caprs = Cogys™ Xty + O(K7H?) . (41)

Its explicit form is:

v v ]' v v v v
Caprs™ = Dapns” — p—3 [ Dsd” = 15Dsd” + 135Dl = 15D,
o o Dr
(D—-1)(D-2)

where the various derivatives are:
wo— L o) (n sv) (b sv)
Doy = —5[5 5. 0305 — 6. 67 050, + 5158”5 0,0,
s awaﬁ] , (43)
v (% v 1 v 14 v
Dyt = 17D = =5 10505 — 20067 0y + 850 07| L (a4)
DM = Dy = 0" — v =TI (45)

Consequently, the explicit form of (40) becomes: °

52'éA52 o 9 D-3 I [T+ 1P . /
S (@)l @) im0 " C?(ﬁ) een ‘ﬁ]” (w—a')
2
K'i afyduv po cdf B
+26-3-5-7r26 [ln(a)(/’om(S i0"(x :c)} +0O(D—-4) , (46)

with the prefactor of the divergence equaling:

D-3 1
2/-@202<

D—2> =X D= D=-2) -

(47)

The divergent contribution to each T%(z;z’) is given in Table 12.

e The 3-point Contribution: Eddington Counterterm
In (10), the Eddington counterterm R? was decomposed into three pieces.
We shall analyze them in reverse order.

6Taking also into account the usual expansion of the measure factor,
aP=* =1+ (D—4)In(a) + O[(D—4)?].
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- The last of these is the counterterm (13) which is the same as a cosmo-
logical constant and finite:
62 iASy,
0hy (2)0h e (2)

K2H*
h;u/ =0 64:7T2

1
[_nu(pna)'/ + 577””77“’} at i54(58—$,) . (48)

- The second of these is the Einstein counterterm (12) whose contribution
to the graviton self-energy is:
62 iAS,
0hy (2)0h,e ()

= D(D—1)01K2H2{ [n“(pn”)” — 77’“’17””} DidP (xz—a")
By =0

n [Q(ywnu)(p@a) Frorae + a’ﬂa’”np(’] [aD‘2 iéD(fE-I’)} } , (49)

where D = 9*aP”~29,. By employing the delta function to express the scale
factor a”~2 as half primed and half unprimed so that:

P2 s (ad)E = aa’(l — (2-2)In(aa’) + 0[(D—4)2]) . (50)
by moving all scale factors to the left, for example:

DibP(z—a') = (aa/)%_1[02 + g(g—naafﬂﬂ i6P(z—2) ., (51)
by extracting a factor of IC from the multiplicative prefactor:

D(D—2)H?

D(D—1)c;k*H? = —
(D=berw KX stm-1)

(52)

we derive the divergences shown in Table 13.

- Finally, we consider the divergences associated with AL, of (11). We
follow the same procedure as for the Weyl countertem and express R — DA
as a tensor differential operator acting on a single graviton:

|
R—DA=— X F x Kl + O(K*h?) (53)
where the tensor differential operator ' is:

F = grgy g [82 — (D=1)aHdy| — 2(D—1)aHs" 0"
+D(D—1)a’H*§",6", . oY

13



The operator we actually need is obtained by partially integrating F to
obtain:

Fr = gher — v [62 4 (D—1)aHd + (D—1)a2H2} +2(D—1)aHs" 8"
+(D-2)(D—1)a*H?*§",6", | (55)
The resulting second variation of Sy, is:

62iAS1,
0hy (2)0h e (2)

= 2k%c; F™ [aD_4fp°i5D(x—x’)] (56)
hyu =0
2

. / K v o /
= 257 F FP7i6P (z—a') + J6.32.2 FH [ln(a) Fridt(z—x )] +... (57)

The multiplicative prefactor is:

(D-2)

2o, = [ x
= (D)

Table 14 gives the divergences contributed by Si,.

e The 3-point Contribution: Primitive + Counterterm Results

The primitive divergences of the 1-loop graviton self-energy that have
just been evaluated, can be summarized in Table 15 which lists the basis
coefficients T*(z; z').

Similarly, the counterterm divergences of the 1-loop graviton self-energy
that have just been evaluated, can be summarized in Table 16 which lists the
basis coefficients AT*(x; 2').

By adding Tables 15 and 16 we arrive at the residuals shown in Table 17.
A few remarks are in order:

- The residuals actually vanish for tensor factors [* D!’} with 13 <14 < 21.
- For s =1, 7= 2 and ¢ = 12 the residual vanishes in D = 4.

- For 3 < i < 11 there is a more complicated cancellation scheme based on
the observation:

And* = 9" Ay + 5" . (59)

- Sometimes (for instance, i = 7 and ¢ = 8) this must be done twice before
the An acts on the id”(z — 2/) and vanishes. The clusters of tensor factors
which cancel in this way are:

1. The case of i = 10 and ¢ = 11, which combine to cancel i = 9.

14



2. The case of ¢ = 8, which contributes to i = 6 to produce a An term that
cancels i = 4.

3. The case of ¢ = 7, which contributes to i = 5 to produce a An term that
cancels i = 3.

The final result is displayed in Table 18 with each tensor factor being
proportional to at least one factor of (D — 4). The final step, reported in
Table 19, multiplies by the factor of ﬁ in /C:

I‘€2

1
=55 X 5= T OlD—) (60)

and then takes the limit of D = 4.

e The 3-point Contribution: Finite Local Contributions
There are six sources of finite, local contributions to the graviton 1-loop
self-energy:

- The local terms arising from the action of two derivatives on the scalar
propagator which is given in equation (32). Upon substituting the local
contribution from (32) into equation (29) and setting D = 4 gives:

32 HA Ao o0 1 v oo Lo i . .
3972 {5(M077 g )0 - 55%5 o’ — 577” 6750% — nt'n }a4z54(1’—x') . (61)

- The local terms arising from adding the primitive divergences to the coun-
terterms; they can be found in Table 19:

ad'k*H? 5.5 A 1.,
N v, po - (po)v 1 vslp a0)
W{ <40 +2aaH)n“77p +2877“”77 a Hn'" 6,0
+a5(”08”)77p" +noPI7 + O* 7 — 3aa’H25(”0n”)(p50)0
—a' H§¥ )7 4+ aHoWy ) g™ — 0(”77”)(p8")} i0t(z—2') . (62)

- The local logarithm terms we found in equation (46) from the Weyl coun-

terterm:

/€2

26.3.5.72
- The local terms we found in equation (48) from the finite renormalization
of the cosmological constant:
k?*H'a*
6472

oo [m(a) Cons™ i54(x—x/)] . (63)

1
[—77“(”770)” + 5?7“"17”"} it x—2') . (64)
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- The local logarithm terms we found in equation (49) from the Einstein
counterterm:
/{2 H2
19272

aa’ In(aa’) { [77“(”77”)” —17“”17”"] [82 +2aa'H2]
+2 [—8(“77”)(p0”) —d H§Y ) *97) +a HO¥n 067+ aa’ H26W ") 057,

+nt [8@" —2aH 60" +2a2H25p05”0]
+n" [8“8”—261}15(“08”) +2a2H25”05”0} } it (x—a') . (65)

- The local logarithm terms we found in equation (57) from the Eddington

counterterm: )

K vV ag s
W‘/—'W |:1I1(CL) Fp 164($—$/)] . (66)
e The 3-point Contribution: Finite Non-local Contributions
The finite, non-local contributions are of the form:

5 21
i Dl 39 = xZ{Tﬁ(“’a‘@ <[pormgaet
™
1=1

2N 2
4T (a,d, )% [“”Df"} x 07 [%} } . (67)
where the tensor differential operators in (67) have been defined before in
Table 1. As before, the finite non-local contributions coming from the first
term —iX3; in (28) have coefficients 7°. Including the three trace terms
—12334i. 3443, 3iv gives the full coefficients T¢. The relations between these two
sets of coefficients were displayed in (37) and in Table 9; here, since we only
condider finite contributions we can set D =4 in the latter relations.
Our final results for T} are given in Table 20, with the trace terms included
to give T in Table 21. Similarly, Table 22 gives T4, and Table 23 presents
T%.

e The 3-point Contribution: Summary
We conclude this Section by summarizing the various contributions to the
1-loop renormalized graviton self-energy. We organize these according to the

16



tensor operators they contain.

- First we gather the contributions coming from expressing the linearized
Weyl tensor and Ricci scalar as 2nd order tensor differential operators con-
tracted into the graviton field - (41) and (53). The resulting contributions
are (63) and (66):

Ii2

926.3.5.712 [hl(a) Caﬁyapa it (l’—l’,):|
2

+26 T 5 F [ln( )fpai54(x—l'/)] : (68)

ren

—q [‘“’Zp” } (x;2') =

- Next we gather the contributions to the 1-loop graviton self-energy involving
the 21 tensor differential operators of Table 1. There are local contributions
that can be expressed as (34):

g2 2

i [Wzg‘c]( zia) = < 927T2ZTZ a,d’,d) [“”Df"] St a—a') . (69)

and are shown in Table 2; as well as non-local contributions that can be
expressed as (67):

[Wzﬁgnloc} (:L’; I/) = _—2 % i{Ti‘(a’ a/’ a) 8 [WDZPU} % ln(,uzAa?2)

2 A 2
4T (a,d,9) X [WDZ.PU} x 87 [%] } . (70)
with the explicit results for the coefficients T%(a, d’, d), Th(a,d’,d) shown in
Tables 21,23 respectively.

We conclude with a description of the origin of the various entries in Ta-
ble 2. In the 1st column under the name “Residuals” we have included the
contributions of (62) from the renormalization residuals of Table 19, in the
2nd column under the name “In(aa’)x Einstein” the logarithmic contribu-
tions of (65) coming from the Einstein term, in the 3rd column under the
name “AA” the contributions of (64) from the cosmological constant like
term and of (14) with c3 given by (22) from the cosmological counterterm,
and in the 4th column under the name “Marginal” the contributions of (61)
emanating from the action of the two derivatives on the scalar propagator.
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i Residuals In(aa’) x Einstein AA Marginal
1| —2ad'0® — 4a2d’H? || —ad'8* — 2a%a/* H? —gaza’2H2 —3aa’* H?
2 aa' 0 ad'&® + 2a2a*H? || 9a2a*H? || —6a2a’*>H?
3 0 2a%a’ H? 0 0

4 0 2aa"* H? 0 0

5 —2ad*H —2a?d’'H 0 0

6 2a%a' H 2aa’* H 0 0

7 2aa’ aa 0 0

8 2aa’ aa 0 0

9 —6a2a’* H? 2a%a/* H? 0 0

10 —2ad*H —2ad*H 0 0

11 2a%a?H 2a%a’' H 0 0

12 —2aad’ —2aad’ 0 0

Table 2: Local contributions to each T%(a,a’, d) from the various sources.

4 Solving the Effective Field Equations

The linearized effective field equation for the graviton field A, (z) (6) is:

DHP? hpo (z) = 8TGTH (x) + /d4x/ (18P (a5 2") Khpo(2)

where [*¥7)(x;2") is the graviton self-energy in the "in

—in” formalism
[31-39], T (x) is minus the variation of the matter action with respect to

hy(z) and D**? is the Lichnerowicz operator on de Sitter background:

D" h,, = %f O — R PO By + 00— 20000 R,

+Ha? [nﬂvaoh — D — 2 8P hyg + 20% R | + 3H2a " heo . (T2)
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The purpose of this Section is to use the 1-loop scalar contribution to the
graviton self-energy to solve (71) for 1-loop corrections to plane wave gravi-
tational radiation and for the gravitational response to a static point mass.
The Section begins by giving the “in—in” form of the 1-loop scalar contri-
bution to [*¥r7](x;2’). Then, we explain generally how equation (71) can
be solved for 1-loop corrections to h,(z). Setting T (z) = 0 gives dynam-
ical gravitons, and setting T (x) = —6",6",Ma §*(Z) gives the Newtonian
potential.

4.1 The Graviton Self-Energy

After making the simple conversion from the "in—out” formalism of Section 3
to the "in—in” formalism [39], the 1-loop scalar contribution to the graviton
self-energy [F*377](z; 2") can be written:

K,2caﬁ~/5uu

[ln(a)C’aﬁ,y(;pU(S‘l(Ax)]
9 21

e > " Ti(a,d,0)[" D)5 (Ax)
19272 &= V7 :

K:qul/
 576m2

[m(a)f'f"’aﬂt(mﬂ
I€2H2 21

+3847r3 —

{ia(a, a0 DY) x 6(An—Ar)

+Ti(a,d,0) [** D] & [e(An—Ar) (m[m(An?—Ar?)] —1)}} . (73)

The notation in expression (73) requires explanation:

- The tensor differential operators [* D??] are given in Table 1.

- The coefficient functions fi(a, a’',d) and fﬁl(a, a',d) are listed in Table 3,
while the T%(a, a’, ) are listed in Table 4.

- The tensor differential operators F** and C,,, s were defined in (41) and
(53-55) respectively by expanding the Weyl tensor and Ricci scalar in powers
of the graviton field A, .
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i T(a,d,0) Ti(a,d',0)
1 —ad In(aa’)[0* + 2aa’ H?| —1a2d? H?0%0?
—3aa'0* — ad' O — 6a*a’> H?
2 ad’ In(ad’)[0? + 2aa’ H?] 0
+ad' & + 3a*a’* H?
3 2a%a’ H?[In(aa’) + 5] 0
4 2aa’* H?[In(ad’) + 2] 0
5 —2a%a’ H[In(aa') + 4] La%a”® H?0y0?
6 2aa’*H[In(ad') + 4] La%a”® H?0y0?
7 aa'[In(aa’) + 3] —1a?d' H0y0? + La*a* H?0?
8 aa'[In(aa’) + 3] lad?H0u0? + La*a” H20?
9 2a%a’* H?[In(aa’) + 1] 0
10 —2aa’*H|[In(ad") + 2] 0
11 2a*a’H[In(aa') + 2] 0
12 —2ad[In(aa’) + 1] —a?a” H?*D?
18 0 —3a*a*H?0?
19 0 a*a HO?
20 0 —aa”” HO?
21 0 tad 9* — a?a’* H?

Table 3: Coefficients T%(a, a’,d) and fj& (a,a’,d) which appear in expression (73).
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i Ti(a,d’,d) i || Ti(a,a',d)
|| g, et B gy | 0 e
2 _85’9]‘;2 . aa:lﬁz o 11211’22H2 13 3a2a2’2H2
3 a’182 3aa’zH80 + a2a’22H2 14 3112%
4 # o 3a2aL;H80 + (12(1’22H2 15 _%
1 R )
7 o T8~ % 18 | %
8 8?()3{22 — % — %2 19 ~4H
9 _3a2a2’2H2 20 %
10 a*a’ll 21 — i

2
e

Table 4: Coefficient functions f}é(a, a’,0) which appear in expression (73).

The terms in expression (73) involving summation have the generic form
of coefficient functions of (a,a’,d)) multiplying tensor differential operators
[#* D7), all acting on three different functions of (z — )

§(z—2') ) 0(An—Ar)
fola;2') = & [Q(An—m) (mW(AnZ—ArZ)] —1)} (74)
Important relations convert the three functions into one another:
I*0(An—Ar) = 8n6*(z—2a') | (75)
An fp(x;2') = —200° O(An—Ar) . (76)
The middle function also obeys the relation:
(And*+20y) 0(An—Ar) =0 . (77)
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4.2 Perturbative Solution

We possess only the single scalar loop contribution to the graviton self-energy
so it is only possible to solve equation (71) perturbatively:

hw = h) + 5200 + k') + . (78)
We consider the stress tensor to be Oth order so h,(f)y) obeys the equation:
D”"””/ﬁhg?,)(x) =81GTH (x) . (79)
The 1-loop correction we seek obeys:
DM PR (x) = /d4x' [ S87] (5 2") KB (2) (80)

The D = 4 contributions from the first two terms of [*X{7](x;2’) in
expression (73) can be written in terms of linearized curvatures. Relation
(41) implies that the first term is:

RZCOPom 4, po 4 / ©) (.1
T 060m7 In(a) [d*2"C, 45" 0" (x—2") x Kh,) (2')
I€2 Coeﬁ'yéuu ) H28p8
= = g (0) puov
g0 () Ces] = T () 0] (81)
and relation (53) implies a similar form for the second term:
K2 FH 4 o o4 0 K2 2 (0

o lln(a)/d ' FrOo*(xz — ') x Iihga) ()| =— o2 [ln(a) a’R( )] .

(82)

4.3 Dynamical Gravitons

Dynamical gravitons are characterized by their 3-momenta k and polarization
A. The graviton field for a dynamical graviton takes the form:

Kby () = € (K, \)e®Fu(t, k) (83)

where u(t, k) is the graviton mode function and the polarization tensors take
the same form in cosmology that they do in flat space. In particular, their
temporal components vanish, they are transverse and traceless:

e\ =0, k(b A) =0 e(k,\)=0 . (84)
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The action of the Lichnerowicz operator (72) on such a field is:

2

DT h (1) = € (k, Nl x (— %) {ag +2aH8, + K2ult,k) . (85)

The general perturbative expansion (78) implies a similar expansion for
the graviton mode function:

u(t, k) = uo(t, k) + k*uy (¢, k) + s ug(t, k) + . .. (86)

The point of this sub-section is to compute the 1st order solution wuy(¢, k).
The canonically normalized Oth order solution is well known:

uo(t, k) = \/2% [1 — ;—[—k(J exp [;f—]{;] -

Its first two conformal time derivatives are:

Oog = i[ K ] exp [ﬁ} , 8gu0 =

(1 + ikn)e~*1 (87)

H
vV 2k3

e e[ ]

V23l Ha Ha Ha Ha
(88)
Relations (88) imply four useful identities:
(83 — ]{72)1,60 = —27,]{3801,60 y (83 — l{:z)uo = %(80 — ik>2U0 y (89)
(83 + k’2)UQ = —2Ha80u0 s (83 + k‘2)2U0 =0. (90)

The right hand side of the effective field equation (71) for dynamical
gravitons (83-84) consists of the two local contributions (81-82) and a series

of local and non-local terms proportional to the 21 tensor differential opera-
tors of Table 1.

- Contributions from the F-term (82): Because dynamical gravitons are
source-free solutions, the linearized Ricci scalar vanishes: R = 0. Hence,
there are no such contributions.

- Contributions from the C-term (81): To evaluate (81) we first make a 3+ 1
expansion of the derivatives:

k20,0, K20? 2k20,0; -
° 1 (0) puov | _ 0 |y (0) OOV | _ 0% (0) 0(uv)i
18072 M@ ¢ } 48O7r2[n(a)0 ] 48072 [n(a)c ]
,%28-8]- -
v (0) ipgv
s [m(a)c ] . (91)
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Now note that, for dynamical gravitons, the non-zero components of the
linearized Weyl tensor are:

iy = € ey x (=1 — k) uo . (92)
C(g?}k = eiﬂf(%kk Ezkk) x 500U (93)
CZ(]O]gZ = 6“;% (eikéﬂ — Ekjégi + Ejg(sik — Egi(skj) X (—i)(ag + ]{32) Ug

+6“;'f <€ikkjk?g — Ekjk‘gk‘i + Ejgk‘ik‘k — Egik‘kk‘j> X %uo . (94)

Substituting (92-94) into (91) and exploiting the properties (84) of the polar-
ization tensor and the identities (89) obeyed by the mode function implies:

H28pa K elkx uv
g O puov| _ ME € [ 1 B
48072 [ln(a)C } 48072 { 8(80+Zk) [ n(a)(0p—ik) uo}}
K ezkx i . ) 5
= “igonz X (ORI (95)

- Contributions from the “Summation” terms: The remaining terms on the
right hand side of equation (71) all involve sums of the tensor differential
operators [**D??] of Table 1. These can be partially integrated to act on
the factor of h,,(z’), whereupon most of the [*D??] give zero because they
access a temporal component, or a divergence, or a trace. Only the case
of [ D§?] = nPy?¥ contributes, and a further simplification is that the
coefficient function fj (a,d’,0) vanishes. Each surviving term has a common
factor of e®Zem which can be canceled out from equations (85) and (95) to
give a scalar equation for uy (¢, k):

k2H?a?
48072
/ 42/ T2 a, d',0) 64w —1') x e~ FAF (¢ k)

2
—% 83+2aH00+k:2] K2u; =
/€2H2
19272

K2H?

+ 38473

X (—i)kfaoUO

/d4:c’ Ti(a,d,0) fz(z;2') x e‘iE'Afuo(t’, k) . (96)

(i) For the term in (96) involving the coefficient T2%(a, a’,d), it is possible
to obtain an exact result:

T?(a,d’,d) = ad' In(aa’) [82 + 2aa’H2] + ad' & + 3a*d*H? . (97)
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Performing the delta function integral, and using relations (89-90) gives:

2H2 - -
i / 42 T2a, a',0) 64w —1') x e~ ROy (¢ k)

- 19272
_ e {—aln(a)(82+k2)[a ]+ 4a*In(a) H?
~ 102 0 o o
—a(03+k*)[aln(a)ug) — a(0F+k?)[aug] + 3a4H2u0} (98)
k*H?
-t {a4H2u0 + a3Haou0} . (99)
Expression (87) implies that uo(t, k) approaches a constant at late times:

H
Jim uo(t, k) = NoTE

Expression (88) implies that dyug falls off like 1/a, so (99) goes like a’.
(ii) For the non-local part of (96) which involves T2(a, d’, d):
o 1. .7192 1.2 12772
02 700'0° — 5a”a"H” | (101)
upon substituting (101) in the final term of (96), reflecting the derivatives
and partially integrating to act on ug(t', k) we get:

2772
k“H A
/d4x’ fo(x;2') x e”HAT

38473
{_ (054 k)2
S0H?2

The mode function identities (90) serve to eliminate the derivatives on the
2nd line of (102):

{_(8’§+k2)2
80H?

= U (100)

fé(a,a',@) = —

— La(@24k2)d — La? ’2H2}u0(t’,k:) . (102)

- ia(@'?ﬁkz)a'— %azaaHQ} uo(t' k) = —1a® d*H?An uo(t', k) .
(103)
At this stage we can exploit relation (76) to simplify the T contribution to:
K>H?

/ diz’ 8,6° [e(An—Ar)} x e~ FAT o 20 g (1 k)

38473
k*H? T, s An sin(kr)
= a’H? kQ/d” t’k/d2714
g ) [ o) [ D (100
2H2 n
-0 — 2H3/ dnf a*ug(t', k) cos(kAn) . (105)
967 -
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The integrand in (105) is a total derivative:
o O , St 2ika’ .
aug(t', k) cos(kAn) = Z—H 8—ﬁ/{a'2e”m_2’k" - [a'2 — %}e"k"} . (106)
If we keep only the upper limit contribution the result is:

2H2 n 2H2
H—a2H3/ dnf " uo(t', k) cos(kAn) —s _’;6 5
. m

- 9672 .

x a*H?ug(t, k) .

(107)
- The Total Contribution: Combining expressions (95), (99) and (107) gives:

2
—% [8§+2aHao+k2] K2y
K2H? .
9672 {_ Toarr X @ Houo + a* Hug + a® HOuo — a4H2uo} (108)
2 K2H2E2 ik
T N T4 {H[l_l_l()]E*‘“} : (109)
Equation (109) is easy to solve at late times:
9 i 272 L sk o
Kup(t, k) — 1577 X U 10(aH) n(a)+...p . (110)

The fact that there is no growing contribution agrees with previous analyses
[21,22]. It is useful to combine the 1-loop correction (110) with the tree order
result and express both in terms of the “electric” components of the Weyl
tensor:

Couog(t,) — Ciny (1. D{1 = % In(a) + O(x")} (111)

The functional form, although not the sign, resembles the logarithmic en-
hancement induced by inflationary gravitons in the electric field strength of
electromagnetic radiation [11].

4.4 Response to A Point Mass

The symmetries of cosmology are homogeneity and isotropy. Four compo-
nents of the metric are scalar under these symmetries, of which any two can
be gauged away. We choose the two non-zero scalar potentials to be:

Khoo = 2V (t, 1) , khij = —2®(t,r)d;; , (112)
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so that the invariant element in conformal coordinates is:
ds® = —a*(1 — 2¥)dn® + a*(1 — 2®)d7-dT . (113)

In the spacetime geometry (112-113) the left hand side of the effective
field equation (71):

EM =DM kh,, (114)

can be 3 + 1 decomposed to give:
E® = ¢? [—6a2H2\If+ (—2V2+6aHao)q>} , (115)
E% = 29 [—QCLH\II+280<I>] : (116)

EY = 299 [—qf - @} ¥ a25ij{(v2+2aHao+6a2H2)\p
+(v2—4aHaO—2ag)q>} . (117)
Relations (115-117) suggest that we identify four scalar components:
E% =g , E% = 9, , E9=0'0& +69E, . (118)
Conservation implies two relations between them:

0,E" + aH§"\E*, =0 (119)

{8051 + V2€2 + aH(—51+V253+354) = O}

Qs+ V25 + € =0 (120)

Hence, up to integration constants, any two of the four components (118)
determine the other two.
In the geometry (112-113) the right hand side of equation (71):

St (z) = 8nGT" + /d4a:' (1P (x5 ") khpo(2) (121)
must obviously have the same tensor structure (118) as the left hand side:
S0 =g , SV=9S, ST =08+ 098, . (122)

Therefore we can solve any two of the four scalar equations & = S;. The
simplest choice is obviously the combination of ¢ = 2 and 7 = 3, which implies
first order equations for ¥ and &:

20,80(0,\11) = —82 — 2(80—2&[’[)83 s 2&00(&@) = 82 — 20,H83 . (123)
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However, one must bear in mind that S; and Sz alone leave W and  unfixed
up to a free function f(r):

AU(t,r) = @ — _AD(t,7) . (124)

Because the i = 4 equation & = 84 vanishes for (124), this ambiguity must
be fixed by appealing to the : = 1 equation, & = Si:

A& = 2aV3f(r) . (125)
For a static point mass M in an expanding universe we find:

() = 25% { M [ir =g (R >} (126)

xH=(7,%)

= =66 Mad*(T) . (127)

This is one of those cases for which the ¢ = 1 equation & = &; must be
employed to determine the full Oth order solutions:

Wo(t,r) = i—y = —By(t, ) . (128)

There are three derivatives of W (¢, r) which shall be important in the analysis
that follows:
4rGMS*(T)

ooV =—aHVy , OBVy=0 , V> Vy=—
a

(129)

- Contributions from the F-term (82) and C-term (81): The linearized Ricci
scalar and Weyl tensor are:

2V20,

RO = -, (130)
Chity = (—0:0; + 36, V), (131)
Coih =0, (132)
Cl5he = |30 ie—0ud 1)V = Guk; 00+ 04500, —03e0: D4+ 8604 | Wo . (133)
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Although the Ricci scalar is proportional to a d-function, the j-function con-
tributions to the Weyl tensor (131-133) all cancel. Substituting into ex-
pressions (81-82) and segregating appropriate components yields the local
contributions to &;_s:

_ K}(V?—3aH0y+9a*H?) )
Sire = — STon2 [—QIH(CL)V \IIO]
R Vatl )

+iso7 | 3@ Vo] (134)

k2(—0y+3aH) ) K200 o )
O [—21n(a)v xpo} + s [3 In(a) V \IIO] . (135)
Sire = — [ 9mm(a) v2u 592 68) In(a) @ 136
T T BT6n? 20 0]+4807r2 (V=) (e W] . (130)

Of these the only contribution that does not vanish away from the origin

comes from Ss: 7
Kk2H?a?

Ssre 0 A80nE x Wo(t,r) . (137)
i| [DE xhyo(a) | i | DI X (2') | i | [ DE] % hyo ()
1 7 h() 8 Or” x h(z") 15 5(“03") X hoo(2")

2 B () 9 | 8Uno(a) | 16 | %0007 xhye(a')
3 N hoo(2) 10 5(“08p xhVe(x") || 17 O*0” X hoo(x")

4] Fph(e) | 1| oxk?y@) | 18 | 690707 xhy(a)
5| e xh(a) | 12 | 0%d,xhe(at) || 19 | 6%01070% x by (')
6| 0% xh(z') 13 8"00"5hoo () 20 | 0"0"9Px Dy ()

T\ " 0PO7 X hpo(a') || 14 | 60007 X hyo(z') | 21 | O"0¥0P07 X hye (')

Table 5: Contraction of h,, (') into the 21 tensor differential operators given in Table 1,
which act on the functions (74).

"This is because V2 = —2TEM 53(7),
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- Contributions from the “Summation” terms: The other three contributions
to the graviton self-energy (73) involve sums over the 21 tensor differential
operators [** D??] listed in Table 1, acting on the three functions of (z — z’)
given in expression (74), and contracted into mhgg,) (2'). The results of these
contractions are presented in Table 5. It remains to substitute lih(()%) (2') =
2Wy(t',r") and mhg-)) (') = 2Wo(t',7")d;5, and then identify contributions to
each of the three sources S;_3. Note the relevant contractions:

khO(2') = 4Wo(t' "), 9 xrhly (2') = 20 x Wo(t',7") |
0" xkhQ) = 2(35 + V) xTy(t,1') . (138)

Recall that each of the contractions [ D!’] x khiY (2') consists of a ten-
sor differential operator acting on x* and multiplied by the same function
Wo(t',r"). Therefore, we need only keep track of the factor F;_; which acts
on the functions (74) for each of the three sources. Table 6 gives these fac-
tors for the sources Sz and Sy, while Table 7 for the source S;. Because
partially integrating temporal derivatives would produce unwanted surface
terms, whereas there are none for spatial derivatives, we have eliminated
second time derivatives:

0f =—-0>+V* . (139)
i Fi i Fs | i Ty
8 4 6 2 17 —20,
12 2 8 | —40, | 18 —y
17 2 10 1 19 —0* 4+ 2V?
20 —20, 11 | -1 20 | —20% 4 2V?
21| —20* +4V? | 15 1 21 | 2000 — 40,V?

Table 6: The first two columns give the non-zero factors contributing to the source Ss.
The last four columns present the nonzero factors contributing to the source Ss.
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i Fi i Fi i Fi

1 —4 8 | —49*+4V2? | 15 —20p

2 2 9 —2 16 —20% + 4V?

3 —2 10 20, 17 —20% + 2V?

4 4 11 20y 18 —20% + 2V?

5 20 12 | 207 -2V% || 19 2000% — 49, V?

6 —40, 13 2 20 2000 — 20,V?

7\ 20* —4V? | 14 —20y 21 | 20* — 20°V? + 402V?

Table 7: Source S; factors arising from the contractions [°° D] x Hh(o)( ).

- The Source S3: The simplest source is S3, which receives contributions only
from i = 8,12,17,20,21. Combining information from Table 3 for T%(a, a’'d)
and for [/ D] x khY from Table 6 gives:

— 2H2 4.0 z % 4
Sur = — 19%22/de 0,d,0) x Fi x 04(z—a') x Uo(t,') (140
2 1722
Sk / '3/ Sad 5z —2') x o(t',r') . (141)
The same two tables give the initial contribution from T%(a, ', d):
2?2 G i
Sar, = TV Z/d x TA a,a’,0) x Fa x 0(An—Ar) x Wo(t',r") (142)
2H2
_r d%’{—aa'84+4aa’2H8082+2a2 2 25
38473

+ [2aa’282—4a2 /zHﬂ v2} B(AN—AF) x Uo(t',r') , (143)
as well as the initial contribution from fg(a, a,0):

22 2L
Sar, = 3847T3 /d4x' Th(a,a',0) x Fax fp(x; ') x o(t', 1) (144)

K*H? 30 a0 V2
= 38473 /d49:’{ 10H2 _FOWLM&HAU—W} fo(@;a") x Wo(t',1") (145)
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There is some ambiguity in how we describe the three contributions (141),
(143) and (145). For instance, one can exploit relation (75) to convert
the —ad’0* in (143) into an additional +4aa’ in (141). Also the factor of
+aa” HAn in (145) can be converted by expression (76) into an additional
—2aa’* Hy0? in (143). When these simplifications are made the result can
be written in terms of particular cases of the four generic integrals which are
defined and evaluated in the Appendix:

Ssr + Sar, + Ssry =

H2H2 2H2
_ 2420 { 20.H 8y +2a> H?0?) x I
1927r2 0+3843 (2aH0y0"+2a"H=07) x I}
30° ) 1
200" x Iy — 40 H? X L5 + £ X Iy — S0 I — 5H2><1g5} . (146)

Substituting the relevant results from the Appendix in (146) gives the final
contribution from &Ss:

— 42 K2 K2H? Kk2H3ar
S3T + 83TA _'_ S3TB =a @0{_2407r2a27,2 T 4872 T T 24x2 . (147)

- The Source S;: The contributions to S, from T%(a,d’,d) and fj“(a,a’,@)
can be obtained from Tables 3 and 6:

21

Sor = — 1;5; Z/d%'T’ a,a’,0) x Fy x 8 z—a") x Uo(t', ') (148)
= —Fig;z /d4x' {ln(aa') [—aa/ﬁo a? /2H2An] 12aa’dy
—4a*d’ H+ 12aa'2H} S z—a") x Uo(t',7) (149)
K22 & N .
Sor, = 3803 ;/d‘%' T (a,a’,0) x Fy x 0(An—Ar) x Wo(t',r")  (150)
K H? 4,1 / 2 1 2 4 ey 52 2 177292
= 350, /d x {[aa Oy—a“a’ H+4aa H]@ + [—2aa 000" 4+2a°a'H"0

—daa®HO* +4a%a '2H2ao} v2} B(An—Ar) x Wo(t', 1) . (151)
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Similarly, Tables 4 and 6 give the contribution from T4 (a, a’, ):
21

2H2 e )
Sory, = % Z/d%' Ty(a,d',0) x Fy X fp(z;z") x Uo(t',r") (152)
T
=1
,%2[{2 4 0002 3a a’ 2 / 2 2
= 3543 /d x {—4H2+[E—ﬁ]8 + [—Saa +a ]80—aa H

o a a7,
+[5H2_E+E]V } X fp(x;a") x Wo(t',r') . (153)
To simplify expressions (149), (151) and (153) we use the identities (75-76)

and we reduce their total to a sum of the integrals evaluated in the Appendix:

2H2
Sor+Sor, +Sor, = ;847r3 {2a2H82 w ILs— (20 HO? — 462 H?0p) I
80? a®\ o (& a
_ YN T (——>IO}. 154
(4H2+4H>X BT\ o)~ B (154)
The final answer is:
Sor+Sor, + S :a?’H\IfO{—%;;%} . (155)

- The Source S;: The factors F; needed for the S; source can be seen in

Table 7. 8 The results are:
21

_ RH? 4,1 i iy, 54

Sir = ~To2.2 ;:1 /d ' T'a,d’,0) x Fi x 6*(x—a") x Wo(t', ") (156)
w2 H%a® 4,1 / 12 2 12772
- /d - {m(aa)[—aa Hoy+12d%a H}

- [8a2a/+4oaa’2} Hoy + 44a2a’2H2} F(z—a') x U(t',r') , (157)

22 2 N .

§847r3 2 / 'z’ Ti(a,a’,0) x Fj x 0(An—Ar) x We(t'1')  (158)
=1

k2 H?

38473

+ [—3aa'84 +2aad' V20 — (20’ —4aad’*) HOyO* +2a%a’”> H?H?

SITA =

/d4x'{ [aa/02 + (aza/—4aa’2)H80+a2a/2H2} ot

a2 B2V V2L 0(An—Ar) x Bo(t 1), (159)

8The factor of 6*(z — 2) in S11 has been used to consolidate factors of a and a’, and
we have suppressed contributions proportional to §3(%).
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2p2 2t N ,
Sitp = % Z/d4x'T§(a,a’,8) x JFi X fp(z;a') x Wo(t', 1)
=1

H2H2/d4x/{[_5_a+i}0082+[§a2_4aa/+1@/2]82

~ 38478 AH " 2H 4 2
0? V2 a a 1
i 2.1 2 v v e w .2 r 12 2
[4&& aa }H80+[4H2 4H2+(2H H)80 50 +3aa’—a }V}
X fr(z;a’) x Wo(t',1") . (160)

We next simplify using the identities (75) and (76), express the result in
terms of the generic integrals evaluated in the Appendix:

Sir+Sir, +Sim, =
K2 H? 2 2 71 2 277292 2 172v2 2
= 47T3{—a HOy? x s + [QaHaoa 1202 H%P — 40> H?V?| x 12,
300,07 3 3
— S I — [Za82+§a2H80] wIL
82 V2 a@o 1
+[4H2 T 5H? _ﬁ} xIgs 5“"}‘5} ! (161)
and conclude:

Sir+Sir, +Sim, = a' H W { g2 b (162)

- Corrections to the potentials ® and W: The 3rd and final term in expression
(147) is a spatial constant and would therefore be annihilated by the prefactor
of 8" which S; carries as seen from (122) . If we drop this term and include
the Weyl contribution (137) to Ss, the &5 = S5 equation reads:

—a?(U, + ) = a2xp0{ S ?msz} . (163)

T 240n2a2r2 16072

Solving for ¥, gives:

U, = —®, + \110{2405&2?2 + 3“2H2} . (164)

16072

Substituting (164) in the & = S, equation, and making some simple manip-
ulations implies:

2

Onl(a®r) = HVof — gty — Sl (165)
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The solution, up to a function f(r), takes the form:

,
@1 = Wo{ ot + Sontr xIn(a) b + 1) (166)

a

We can determine the function f(r) by combining the & = &; and & = S,
equations to find:

v2q>1 \110{1607r 2q278 136%112‘{;2} . (167)

If we choose the integration constant so that ¥, agrees with the flat space
limit at the initial time, the two 1-loop potentials are:

U, = \1/0{32%;%2 _ e xln(aHr)} , (168)
O = Wo{ gt + Sl [n(atr)+1] | (169)

5 Epilogue

This re-computation of the MMC scalar loop contribution to the graviton self-
energy was prompted by the recent discovery that a finite renormalization of
the cosmological constant is needed to make —i[**¥°7](z; 2’) conserved [40].
The absence of this renormalization in the original computation [19] was com-
pounded by the decision to express the result as a sum of conserved tensor
differential operators acting on structure functions [21]. While it was possi-
ble that the two mistakes might have canceled one another, it was obviously
necessary to check. In addition to including the missing renormalization we
have expressed the fully renormalized, "in—in” result (73) without any pre-
conceptions about its tensor structure. Our solution of the effective field
equations in Section 4 confirms the original finding of no secular 1-loop cor-
rections to graviton mode function [21,22], however, our results (168-169) for
the response to a point mass differ from the previous calculation [23] in two
ways:

1. The coefficient of the In(a) correction changed to agree with that of the
old In(Hr) correction so that the two add to give In(aHr); and

2. We concluded that the large gravitational slip originally reported [23]
is not present.
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We also pushed the calculation of the graviton mode function to include
falling corrections which nonetheless cause the electric components of the
Weyl tensor (111) to experience secular growth compared to the classical
result.

It is significant that all three of our secular 1-loop corrections (111) and
(168-169) have the same coefficient of —31’%25{22 . This is reminiscent of the
secular 1-graviton loop corrections to the electric field strength of plane wave
photons [11] and to the Coulomb potential [10]. Those effects both had
a renormalization group explanation [40] and we will show, in a follow-up
work [41], that the same applies to (111) and (168-169). Support for this
comes from the observation that all three of these secular corrections derive
from the factors of In(a) which were induced by the incomplete cancellation
of primitive divergences and counterterms:

@H)P  (pa)?
D—4  D—4

pa
= —In(£) + O(D—1). (170)
for the Einstein counterterm (12) and for the 92 part of the Weyl counterterm.

We should also comment on the sign of the three secular 1-loop effects.
In each case they reduce the classical result. We believe this might arise from
the inflationary production of scalars sucking energy from the gravitational
sector. Additional support for this supposition comes from the fact that the
scalar loop induces a negative cosmological constant, which is what required
a positive renormalization of the cosmological constant [20], both in order
to make the graviton self-energy conserved and so that the constant “H”
corresponds to the true Hubble parameter.

Finally, a major reason for making this computation was to facilitate the
analysis of graviton loops. It seems inevitable that a finite renormalization
of the cosmological constant is also necessary for them. The fact that we
have seen here that this matters for the scalar loop contribution points to
the need for re-computing the effects of gravitons [12,13].
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6 Appendix: Figures & Tables

Fig. 1: Contribution from the two 3-point vertices; graviton lines are wavy, scalar lines

are solid.

X

Fig. 2: Contribution from the 4-point vertex; graviton lines are wavy, scalar lines are
solid.

AN AN NN

Xz

Fig. 3: Contribution from the counterterms; graviton lines are wavy.
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nHP
AzxD

_ DAzt AzP
AsDT2
D-2)[aHS" AxP—Axta’ HS?
0 0
2AzxD
(D—2)aa’ H26",6”,
4AxD—2
Daa’ H2nHr
8ArD—2
(D-2)Daa’ H? Azt AxP
8AxzD
D—4)Dad’ H2[aH6"  AzP —Axta HS”
0 0
16AzD—2
2
(D—-4)Da2a’? H*6* 6",
32AxD—4

0 ||| O W N

Table 8: Contributing terms from the doubly-differentiated propagator.

1 T

3 AT AT 4 AT - LT0, — §TV0?

1 AT AT 4 AT - LT MG — $T100?

5 _@7-5 _ %(7-10 +7—11> + %7-14 _ %71860 _ %7-2032
6 _@7-6 i %(7-10 +7—11) + %7-15 i %7—1880 i %7'1982
7 —BATT AT LT — ST, — 3T

8 _@78_57-12+%7-17_%7&060_%72162

Table 9: The coefficients T as linear combinations of the 77 ’s.
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i T (x;2")
94 Daa’ H292 D2(D_2)2a2a/2H4
1 64(D+1)(D=1)(D=2) + 128(D—1) + 1024(D—1)
a* Daa’ H?9* | D*(D-2)*a?a’*H*
2 32(D+1)(D=1)(D=2) + 64(D—1) + 512(D—1)
3 (D—2)a’* H?9?
64(D—1)
4 (D—2)a®H?5?
64(D—1)
5 _ _d'H®> _ D(D-2)%ad*H?
32(D—1) 128(D—1)
aHH? D(D-2)%a?d' H3
6 200-1) T 1m(D-1)
7 DO? D(D—2)aa’ H?
64(D+1)(D—1)(D—2)+ 128(D—1)
8 DO? D(D—2)aa’ H?
64(D+1)(D—1)(D—2)+ 128(D—1)
9 D(D—2)%a2a’*H*
128
D(D—2)a?a’ H3
10 64(D—1)
D(D—2)aa’?H3
11 64(D—1)
12 o 92 __ Dad' H?
16(D+1)(D—1)(D—2) _ 32(D-1)
(D—2)BCL2CLI2H4
13 64
(D—2)2a%a’ H?
14 —
(D—2)2aa’2H3
15 —
(D—2)%a?H?
16 64(D—1)
(D—2)2a’2H2
17 64(D—1)
(D—2)aa’ H?
18 16
(D—2)aH
19 32(D—1)
(D—2)d’ H
20 " 32(D-1)
D
21 64(D+1)(D—1)

Table 10: Primitive divergences before including the three trace terms.
Act each 7% on —K x [*D?7] x i6P (x — a').
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. 5 . /
i T (x;2")
3 _ (D=2)2d?H?9*> _ (D—2)%aa’>H3d 4 (D—2)2(D—4)a2a’? H*
64(D—1) 64 256
4 _ (D=2)2a?H?> | (D-2)%ad’H3dy i (D—2)2(D—4)a2a’? H*
64(D—1) 64 256
5 (D—2)a’ H®?> | (D—2)ad’ H?3y _ (D—2)%a?a’H® | D(D-2)%ad’’H> | D(D-2)a*a’’H*An
32(D—1) 32 64 256(D—1) 128(D—1)
6l — (D—2)aHd> i (D—2)aa’ H?*dy | (D—2)%aa’’H®  D(D-2)%a?d’H® | D(D-2)a?a’’H*An
32(D—1) 32 64 256(D—1) 128(D—1)
7 _ (D*-2D-2)0? _ (D=2)aHdy _ D?*(D—4)ad’ H? (D—2)2a%H?
64(D+1)(D—1)(D—2) 64(D—1) 256(D—1) 128(D—1)
] _ (D*-2D-2)9? + (D—2)a’Hdy _ D?*(D—4)aa’H? (D—2)2a'?H?
64(D+1)(D—1)(D—2) 64(D—1) 256(D—1) 128(D—1)

Table 11: Primitive divergences after including the three trace terms.
Act each T on —K x [*D??] x i6P (x — 2').

i AT (z; 7))
1 o
32(D+1)(D—1)2(D—2)
2| — o
32(D+1)(D—1)(D—2)
7 - o
32(D+1)(D—1)2(D—2)
8 — o
32(D+1)(D—1)2(D—2)
82
12 16(D+1)(D—1)(D—2)
1
21 " 32(D¥1)(D-1)?

Table 12: Divergent contributions from the Weyl counterterm (46).
Act each AT on —K x [* D] x i6P (z — 2').
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i (e ol
AT (x;2")
D(D—2)aa’ H20? | D2(D—2)%a2a’?H*
128(D—1) 512(D—1)

_ D(D-2)ad’ H?9*> _ D*(D—2)%a*a’’H*
128(D—1) 512(D—1)
_ D*(D-2)%a?a*H*

512(D—1)
_ D*(D-2)%a?a*H*
512(D—1)
D(D-2)%a?d' H3
128(D—1)
_ D(D-2)%ad*H?
128(D—1)
D(D—2)aa’ H?
128(D—1)
_ D(D—2)aa’H?
128(D—1)
_ D(D-2)3a?a’*H*
256(D—1)
D(D—2)%aa’* H?
128(D—1)
_D(D—2)2a2a’H3
128(D—1)
D(D—2)aa’ H?
12 64(D—1)

O |0 | N[O | Ot | =W | N |-

—_
(@)

—_
—_

Table 13: Divergent contributions from the Einstein counterterm (49).
Act each AT}, on —K x [* D] x 6P (z — 2).

41



i AT], (x;2")

1 _ (D=2)Dy D
64(D—1)2

3 (D—2)2a/2H2D;
64(D—1)

4 (D—2)%2a2H?D)
64(D—1)

5 _ (D—2)d’HD;

6

7

8

32(D—1)
(D—2)aHD;
32(D-1)
(D—2)Dy
64(D—1)2
(D—2)D;
64(D—1)2
(D—2)3a2a’2H4
B\ ———
(D—2)%a2%a' H3
14|| (P2t
(D—2)2aa/?H3
LB ————
(D—2)2a?H?
16 T 64(D-1)
(D—2)2a’2H2
17— 64(D—1)
(D—2)aa’ H?
18 e
(D—2)aH
19 " 32(D-1)
(D—2)a’ H
20 32(D—1)

(D-2)
21 " 64(D—1)2

Table 14: Divergent contributions from the Eddington counterterm (57).
Act each AT}, on —K x [*D??] x i6P (x — 2).
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i T (z;x")
1 (D2-2D—2)0* (3D3—18D2+24D—16)aa’ H20?
32(D+1)(D—1)(D—-2) 512(D—1)
_ (D—=2)(D—3)aa’ H?53 4 (D—2)(D—4)(D*—48D+64)a%a’> H*
64(D—1) 4096(D—1)
a4 Daa' H282 D2(D_2)2a2a/2H4
2 32(D+1)(D=1)(D=2) + 64(D—1) + 512(D—1)
3 _ (D-2)%d?H?9%>  (D—2)%ad’*H3 4 (D—2)2(D—4)a2a’> H*
64(D—1) 64 256
4 _ (D=2)%a?H?3> | (D-2)%aa’ H3dy 4 (D—2)2(D—4)a2a’> H*
64(D—1) 64 256
5 (D—2)a’ H®? | (D—2)aa’ H28y (D—2)2a2a’H3 | D(D—2)3ad’>H3 | D(D—2)a2a/?H*Any
32(D—-1) 32 - 64 256(D—1) 128(D—1)
6 (D—2)aH®? | (D—2)aa’ H28y |, (D—2)2aa’?H3 D(D—2)3a2a’H3 | D(D—2)a2a’?H*Aq
T 32(D-1) + 32 + 64 T 256(D—1) 128(D—1)
7 (D2-2D-2)9? (D—2)aH3y D?(D—4)aa’ H? (D—2)%2a2H?
T 6a(D+)(D=1)(D=2) " 64D-1) —  256(D=1) 128(D—1)
8 (D2-2D-2)9? (D—2)a’ Hoy D?(D—4)aa’ H? (D—2)2a/?H?
_64(D+1)(D—1)(D—2)+ 64(D—1) ~  256(D—=1) 128(D—1)
9 D(D—2)2a2a’? H*
128
D(D—2)a?a’ H?
10 T 64(D-1)
D(D—2)aa’?H?3
11 64(D—1)
12 o 92 _ Dad H?
16(D+1)(D—1)(D—2) _ 32(D—1)
(D—2)3a2a’2H4
13 —
(D—2)%a2%a' H3
14 —
(D—2)2aa’?H3
15 —
(D—2)2a2 H?
16 64(D—1)
(D—2)2a’2H2
17 64(D—1)
(D—2)aa’ H?
18 16
(D—2)aH
19 32(D—1)
(D—2)a' H
20 " 32(D-1)
D
21 64(D+1)(D-1)

Table 15: Coefficients T of primitive divergences in (34). Each term acts on

—K x [* D] x 6P (x — 2).
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~.

AT (z;2')

1 (D2—2D—2)9* (D—2)2%ad'H?? | (D—2)(D—3)ad’H?3 | (D+4)(D—2)(D—4)a%/*H*
D+ (D=1)(D=2) 128(D—1) 64(D—1) + 512(D—1)
9 94 D(D—2)aa’ H202  D2(D—2)2a2a’>H*
T 3RO+ (D-1)(D=2)  ~ 128(D-1) B 512(D—1)
3 (D—2)2a/2H20% | (D—2)%aa’?H38, i (D—2)%a*a’’H*  D?*(D-2)%a*a’*H*
64(D—1) 64 64 512(D—1)
A (D—2)%a®>H?9> _ (D—2)%a*a’H3d i (D—2)%a*a’’H*  D?*(D-2)%aa’*H*
64(D—1) 64 64 512(D—1)
5 _ (D=2)a’H?* _ (D-2)ad’H?dy _ (D—2)a’a’H3 D(D—2)2a%a’ H3
32(D—1) 32 32 128(D—1)
6 (D—2)aH®?>  (D—2)ad’ H28y |, (D—2)aa’’H3  D(D—2)%aa’>H3
32(D-1) 32 + 32 T 128(D-1)
7 (D2-2D—2)9? (D—2)aHdy (D—2)a? H? D(D—2)aa’ H?
64(D+1)(D—1)(D—2)+ 64(D—1) + 64(D—1)  128(D—1)
8 (D2—2D—2)H? (D—2)a’Hdy , (D—2)a’?H2  D(D—2)aa’ H>
64(D+1)(D—1)(D—2) ~ 64(D—1) + 64(D—1) 128(D—-1)
9 D(D—-2)3a2a/? H*
T 256(D—1)
D(D—2)2aa’?H3
10 128(D—1)
D(D—2)2a?a’ H?
11 " 128(D-1)
92 D(D—2)aa’ H?
12 16(D+1)(D—1)(D—2)+ 64(D—1)
(D—2)3a2a/? H*
13 — e
(D—2)%a%a’ H?
14 —
(D—2)2aa’2H3
15 — g
(D—2)%2a?H?
16 64(D—1)
(D—2)2a/?H?
17 IR
(D—2)aa’ H?
18 16
(D—2)aH
19 " 32(D-1)
(D—2)a’ H
20 32(D—1)
21 D

~ 64D+ 1)(D-1)

Table 16: Divergent coefficients AT of the counterterms in (36). Each term acts on

—K x [** D] x i6P (z — a').

44




i T (z; o) + AT (x; ")
1 D(D—4)(3D—2)aa’ H29? + D(D—2)(D—4)(D3+8D—32)a2a’> H*

512(D—1) 4096(D—1)
9 _ D(D—4)aa’ H?0?

128(D—1)
3 (D—2)2(D—4)a%a’? H* i (D—2)%a*a’’H*  D?*(D-2)%aa’*H*
256 64 512(D—1)
4 (D—2)2(D—4)a%a’? H* i (D—2)%a*a’’H*  D?*(D-2)%aa’*H*
256 64 512(D—1)

5 _ D*(D-2)a’d’H® | D(D-2)%ad’’H® | D(D-2)a*a’’H*An

128(D—1) 256(D—1) 128(D—1)
6 D2(D—2)aa’?H3  D(D—2)3a2a’H3 | D(D—2)a%a’>H*An

128(D—1) T 256(D—1) 128(D—1)
7 _ D?*(D—4)aa’ H? D(D—2)a?a’ H3An
256(D—1) 128(D—1)
8 _ D*(D-4)ad’ H®> _ D(D-2)aa’*H3An
256(D—1) 128(D—1)
9 D2(D—2)2a%a/*H*
256(D—1)
10 D(D—2)(D—4)aa’?H3  D(D—-2)a%a/2H%An
128(D—1) B 64(D—1)
11 _ D(D-2)(D-4)a*a’H?®  D(D-2)a’a’*H*An
128(D—1) 64(D—1)
D(D—4)aa’ H?

12 64(D—1)
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 0

Table 17: Sum of Tables 15 and 16. Each term multiplies —K x [**D?] x i6? (x — 2).
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i T (z;2") + AT (x; 2')
1 D(D—4)(3D—2)aa’ H29? + D(D—2)(D—4)(D3+8D—32)a2a’> H*
512(D—1) 4096(D—1)
9 _ D(D—4)aa’ H?0?
128(D—1)
3 D(D—2)(D—4)%a?a’*H*
512(D—1)
A D(D—2)(D—4)2a2a'2 H*
512(D—1)
5 D(D—2)2(D—4)aa’? H3
256(D—1)
6 _ D(D-2)?(D—4)a*a' H3
256(D—1)
7 _DQ(D—4)CL(1’H2
256(D—1)
8 _DQ(D—4)CL(1’H2
256(D—1)
9 (D+2)D(D—2)(D—4)a%a’? H*
256(D—1)
D(D—2)(D—4)aa’2H3
10 128(D—1)
11 __ D(D-2)(D—4)a?d'H?
128(D—1)
D(D—4)aa' H?
12 64(D—1)
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 0

Table 18: Reduction of Table 17 using And* = 9*An + &*.
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i || limpoy 5 [T (z;2') + AT (z; )]
Saa’ H?9? | a®a’’H*

! 192 24

3 0

4 0

5 aaf8H3

6 i

; =y

9 aQa{EH‘*

10 aaf8H3

1 —

12 e

13 0

14 0

15 0

16 0

17 0

18 0

19 0

20 0

21 0

Table 19: Final finite residuals. Act each factor on — £ x [ DF] x i6*(x — 2).
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1 Ti(a,a',0)
aa'3 H46%
64
ada’ H49*
64

aa’?’H36*
%6
a2a’ H39%
96
a2a/2 HA 92
192
a2a/2 HA 92
192
a2a’ 2 HA o4
I
a?a’ H39*
0 192
aa’ 2 H36%
11 192
a2a/2H4a2
12 56
a2a/2H4a2
18 S
a?a’ H39?
19 e
. aa/2H382
20 T
aa’ H292 _ a2a’*H*
21 192 96

O |0 | N[O | Ot | =W

—_

Table 20: Non-local contributions acting on In(u?Ax?) before including the trace terms.
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; Ti(a,d,0)

1 aa’ H20%  a2a/’H*9* a2a’2H48382 7a%a/? H* Andpd* ada/ HO An294

768 128 128 768 128

a?a’® H And*
64

_ a3a’? H5 Ano*
64

aa/2H384 . a2a’2H4A1784 + a2a’2H48082
64 384 64

. a2a' H394 a2a/2H4A7784 a2a/2H4aOa2

64 384 64

_ad H*9* _ ad’ H39,0? a?a/?H4H?
384 192 192

__ad' H?9* aa'? H3902 aa’? H49?
384 192 192

. a2a'2H4 94
32

O |0 | N[O | Ot | = | W

a?a’ H39*
10 192

aa’?H36%
11 192

a2a/2H4a2
12 56

a2 a/2H4a2
18 5

a?a’ H39?
19 e

_aa’2H382
20 T

21 aa’ H292 _ a2a’*H*
192 96

Table 21: Non-local contributions acting on In(u?Ax?) in expression (67).
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Table 22: Nonlocal contributions acting on 92|

1 Th(a,d’,0)
1 _8*  adH%9?  a2d/*H*
3840 192 96
2 _8*  adH%9?  a2d/*H*
1920 96 48
a/2H282
3 192
a?H?%9?
4 192
a/ HH? aa’?H3
5 192 + 48
6 __aH®?* _ a?dH?
192 48
7 9% adH?
960 96
8 9% ad H?
960 96
a2a/2H4
9 R T
a’a’H?
10 5
aa/QHS
11 48
9% aa’ H?
12 960 + 48
a2a/2H4
13 G
a2a’H3
14 16
aa’2H3
15 16
a’H?
16 96
CLI2H2
17 96
aad’ H?
18 6
aH
19 96
o' H
20 96
1
21 480
In(p?Az?)

Ax?

50

] before including the trace terms.



i Tk(a,d',0)
1 9t aa' H292 _ad’ H2Andy9? a2a’2HAAn2 92 _ a?a/?H4 Andy _ d2a®H*
640 64 192 192 48 96
2 _8*  adH%9?  a2d/*H*
1920 96 48
3 a'2H29? aa’2H30,
96 32
4 a?H252 o a?a’ H39y
96 32
5 __d'HO?> _ ad H?dy a?dH3 _ ad/’H3
96 32 48 96
6 aHd?>  ad H%dy + a?dH3 _ ad/’H3
96 32 96 48
7 9% | aHOy _ aH?
640 192 192
8 02 dHdy _ o*H?
640 192 192
(12(1,2H4
9 ~ 16
a’ad' H3
10 5
CL(l,QHS
11 =
9% aa’ H?
12 960 + 48
(12(1,2H4
13 G
a2a H3
14 G
aa’2H3
15 16
a’H?
16 96
CLI2H2
17 96
aa’ H?
18 6
ald
19 96
o' H
20 96
1
21 480
2 2
Table 23: Non-local contributions acting on 82[%] in expression (67).
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7 Appendix: Integrals for the Potential

The purpose of this section is to evaluate the integrations needed for Section
4.4. These have the generic form:

Ii(t,r) = /d4x/9(An—Ar) x a” Uo(t' 1) | (171)

) = o / a'a! {o(an—ar) (nu?(d? —Ar] 1) }
xa'l Wo(t', ') . (172)
Relations (75) and (77) constrain I7:

02
91 = 8na Wo(t,r) <E - 2H80) I =1l (173)

Similarly, expression (76) implies a relation between I4 and I3:
—2HO I =157 — 117 . (174)
Both the A-Type and B-Type integrand factors:

O(An—Ar) 84{9(An—Ar)<ln[u2(An2—Ar2)]—1>}. (175)

depend only on the conformal coordinate difference (x — 2’), so derivatives
can be reflected 9, — —d,,. Partially integrating with respect to time pro-
duces surface terms which we will always avoid. On the other hand, causality
compels the integrands to vanish at spatial infinity, so we will partially inte-
grate factors of V2 and take advantage of the simplification:

ArGM &3 (T
VR, 1) = _T() | (176)
This implies two additional generic integrations:
= / 42! 6(An—Ar) xa” VUt 1) | (177)

Ihs = 84/d41”{9(A17—A7’) (ln[pz(Anz—Arz)]—1>}

xa”! VUt r') . (178)
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obviously related to (171-172):
Is(tr) = V2Iq(tr) . Ihs(tr) = V2I4(tr) (179)

The temporal integrations begin at 7, = —H !, and we will assume that
the coordinate radius from source to observer obeys:

1
Hr<1-—-. (180)
a
- Evaluation of the I integral:
We begin by making the change of variable 7 = ¥ — f and then performing
the angular integrations:

n _
I = GM/ dnf a'J‘1/d3y w (181)
17—l
_ 2nGM An
il /d a7 1/ dyy[r+y— |r—y|] ) (182)
0

We now make use of (180) to decompose the 7' and y integrations of (182)
into regions for which the absolute value |r — y| is either r — y or y — r:

ArGM N
I = Wf {/ dn' a'’” 1 /dyy +/ dyyr / dn '’ 1/ dyy2}(183)
0

4rGM K _
s {/ dn' a’~ 1[ rAn2—%7’3} +/ dn '’ 1%An3} . (184)
e

r i r
In acting 02 it is useful to exploit the identity:
1
P f ) = —(0r=00) (D +D0)[r f(n, 7)] - (185)

It follows that:

M
82[1{:—87? {r/ '’ + /dn’ e 1An} . (186)
i n—-r

Proceeding similarly, it is straightforward to check relations (173).

53



- Buvaluation of the I} integral:
The initial reduction of I}(¢,r) is the same as that of I, except for the
logarithm and the external derivatives:

ArGM (T
I = (02-03)% x {/ d' a'’ 1[/0 dyy2<ln[u2(A772—y2)]—1>
n

r

i

+/TAZly yr x (ln[u2(Aﬂ2—y2)]_1)]

_|_/nd77’ a’J_l/AcnlyyZ (ln[,uQ(An2—y2)]—1>} , (187)

—r 0

so that we get:

r

n—r
= 4TCM gy { / dif ™ [=3(An* =) nfu(An—1)
n

i

(AR ) I An+7)] — 2An*r = 5]

KA
+/ dn' a"”~ T(A’/]z—’f‘2)<% ln[,uz(An2—r2)]—1>
n

i

n
+/ dn a7 A [% ln(Q;LAn)—%] } : (188)
n

As a result, I} equals:

n
1= 2N e n(2ur) + (0~ [ @ mensn)} - s

r n—r

Here a, = (Hr + )7! is the scale factor evaluated at n' =n —r.

o4



- Buvaluation of the 145 and I} integrals:
The -function integrals (177-178) are rather simple. For the A-type generic
integral we have:

KA
Il = —4nGM / dn'a” ", (190)
i
while the generic B-type integral is:
ArGM e _
Iy =~ (02— R)? { / dn' a” 1(1n[u2<An2—r2>]—1)} (191)
r i

(192)

167GM | o/~ (J—1)Ha!
- — — + .
r r r
- Particular integrals required:
We display here the list of the specific integrals needed for the computation
of the gravitationally induced potentials in Section 4.4.

(i) For I we require only J = 2, acted on by either 9 or 9y0*:

8TGM
I = —— {glnmr) + 97— ﬁln%)} ) (193)
8rGM
272 1 a
0001 = - {Hln(ar)} . (194)

(ii) For I}, we only need two values of J:

B 167GM

r

B 167GM

0
IB
r

{Hr+%ln(2,ur)} I {m(zw)}. (195)

(iii) For I{; the only cases we need are J =1 and J = 2:

AnGM
G x%ln(ar). (196)

2
) IAJ__

e :_47TGM 7’[ 1]
A5

”
(iv) For I} only the cases of J =0 and J = 1 are required:

16rGM 1 16rGM 1
0 _ 1 _
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