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Abstract

We prove that the Jacquet-Langlands correspondence for cohomological automorphic forms on quaternionic
Shimura varieties is realized by a Hodge class. Conditional on Kottwitz’s conjecture for Shimura varieties attached
to unitary similitude groups, we also show that the image of this Hodge class in £-adic cohomology is Galois
invariant for all £.
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1. Introduction

This article is motivated by the following question: Is Langlands functoriality in the case of cohomo-
logical automorphic forms on Shimura varieties induced by algebraic cycle classes? When the forms in
question contribute to H', this follows from Faltings’ theorem [17] on the Tate conjecture for divisors
on abelian varieties, but for higher H' it seems completely open even in the simplest of cases. Since con-
structing algebraic cycle classes seems extremely difficult, one can ask for the next best thing, namely
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to construct the associated absolute Hodge classes [15]. We study this problem in the most classical
example of functoriality, namely the Jacquet-Langlands correspondence for GL; and its inner forms.

1.1. The main theorem

Let F be a totally real field, [F : Q] = n. Denote by X, the set of infinite places of F, and for v € X, let
oy 1 F — R c C denote the corresponding embedding of F in C. Let F¢ C Q c C be the compositum
of o, (F) as v varies over 2. Thus, F€ is the Galois closure of the image of o (F) for any o € X,.

Let 7 = ®, 7, be an automorphic representation of GL,(Af) corresponding to a (cohomological)
holomorphic Hilbert modular newform of weight (k,r), where k = (ky,...,k,)andky =k, =--- =
k, = r mod 2. For simplicity, we will assume that 7 has trivial Nebentypus character so that it is self-
dual up to a (Tate) twist. (See §1.3.2 for the non-self-dual case.) Moreover, in the introduction alone, we
assume that 7 has parallel weight two and that the Hecke eigenvalues a,, () (suitably normalized) are
rational; thus, 7 (at least conjecturally) corresponds to an elliptic curve A/F. In any case, it is known
that to such a 7 and every rational prime ¢ one can attach a two-dimensional £-adic Galois representation
pr.¢ of the Galois group Gal(Q/F). The representations p, ¢ (for varying ¢) form a compatible system
in the sense that for all finite primes v of F not dividing £ and the conductor of 7, we have

tr pr ¢(Frob,) = a, (x),

where Frob,, denotes a geometric Frobenius element attached to v; in particular, this trace is independent
of £.

Let By and B; be two (nonisomorphic) quaternion algebras over F such that 7 admits Jacquet—
Langlands transfers to the algebraic groups G| = Resg/q B} and G2 = Resp g B5; we denote the
corresponding automorphic representations of G| (A) and G, (A) by 7| and 72, respectively. We assume
that the set of infinite places of F, where B is split agrees with the set of infinite places where B, is
split, and denote this common set of infinite places by X C Z.. Let Fx be the subfield of C given by

— {0 eGal(Q =3 . ¢ =
Fy = Q{(re al(Q/Q) | oZ=X} _ (FL){U'EGal(F /Q |o=5}

Then Fy is also characterized as the subfield of @ generated (over Q) by the elements

Zo-v(x), xeF

vex

and is called the reflex field of the pair (F, X).

Let X; and X, denote the quaternionic Shimura varieties associated with G| and G,. Then X; and
X, are of dimension d := |X| and have canonical models over the same reflex field Fy C Q c C.The
Langlands—Kottwitz method can be used to study the £-adic cohomology of the varieties X; and X,.
Following the work of several authors ([45], [11], [13], [59], [54]), we have the following theorem:
For i = 1,2, the m;-isotypic part of H:t(Xl.’@, Q) is concentrated entirely in the middle degree d and
moreover is isomorphic to the tensor induction

X b (L1

vex

where p? , denotes the representation of Gal(Q/c, (F)) given by g = pr.¢(0;'go,). As a conse-
quence, for all rational primes ¢, we have isomorphisms

H (X1, Q0)r, = H (X2, Q¢) (1.2)

as representations of Gal(@/ Fs). Here and henceforth, we write H*(X, Q) for the Q-vector space
H :;[ (X@, QK ) .
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The isomorphisms (1.2) above may be viewed as giving a collection of Tate classes in
H* (X X X,Q¢(d)),

and it is natural to ask if there is a single algebraic cycle Z € CHY(X; x X,) that gives rise to this
collection of Tate classes. If p; and p, are the two projections below,

X1 XX
X X3,
the class of such a putative algebraic cycle Z gives rise to a map
c(2)": HU(X)) = H'(X2), x> pa.(cl(Z) U p}(x)
for any Weil cohomology theory, which induces isomorphisms
HY(X1)m = H (X2)r, (1.3)

Moreover, these isomorphisms for different Weil cohomology theories will be compatible via the usual
comparison theorems.

With this motivation, we state our main theorem. We remark that our proof (of part (ii) of the
theorem below) assumes the validity of Kottwitz’s conjecture characterizing the Galois representations
occurring in the cohomology of Shimura varieties in the special case of Shimura varieties attached to
unitary similitude groups. (See Remark 1.4 below for a more extensive discussion of the status of this
conjecture.)

Theorem 1. Suppose that there is at least one infinite place of F at which By and B, are ramified.
(i) There is a nonzero Hodge class

&€ H(X) X X2, Qryam,

such that the induced map

() HY(X1,Q)r, = HY(X2,Q)rys X = p2.(£(d) U p}(x)) (1.4)

is an isomorphism of Q-Hodge structures. (i.e., is an isomorphism of Q-vector spaces that, after
extending scalars to C, preserves the Hodge filtration.)

(i) Assume Kottwitz’s conjecture for Shimura varieties attached to unitary similitude groups. Then the
Hodge class & can be chosen such that, for all rational primes €, the image &¢(d) of (the Tate twist)
&(d) in the C-adic étale realization

H2d(Xl X X29 Ql’)ﬂ'llznz(d)
is Gal(Q/ Fz)-invariant. Consequently, the induced map
£(d); - HY (X1, Qo)m, = HY (X2, Q0)ry» X > p2u(é(d) U p(x)) (1.5)

is an isomorphism of Gal(Q/ Fs)-modules. (Here, we view &(d) as an étale class via the Betti-étale
comparison theorems.)
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Our proof does not use the previously known isomorphisms (1.2). Rather, it provides an alternate
verification of these isomorphisms which may be of independent interest. We note also that the isomor-
phism (1.4) of Hodge structures implies relations between periods of modular forms on B} and BY.
Such period relations have been studied previously by relating the periods to the Fourier coefficients
of half-integral weight modular forms [55], [56], [53]. In principle, one could use the period relations
to deduce an isomorphism of Hodge structures; however, it seems very unlikely that such methods can
show that this isomorphism is also Galois equivariant.

1.2. Outline of the proof

We now explain the strategy of the proof of Theorem 1. In fact, the proof in the general case is very
similar to that for F = Q, n = d = 1, and so we first describe this case, even though formally speaking
this case is excluded from the theorem on account of the assumption that By and B, are ramified at
some infinite place. To be precise, one should work with intersection cohomology in this case, but for
simplicity we just use usual cohomology with the understanding that the proof given below is only
correct once generalized to the setting where F' is a totally real field and there is some infinite place
where B and B, are both ramified.

The basic idea of the proof is to embed X; X X; in a larger Shimura variety X, construct a Hodge
class £ on X and then show that its pullback to X; X X, has the right property. The implementation of
this idea is a bit involved and breaks up as follows.

1.2.1. Unitary Shimura varieties

We first replace X and X, by closely related unitary Shimura varieties. Pick an imaginary quadratic
field E that embeds in both B} and B;. Let Vi = By and V, = B», viewed as (right) E-vector spaces.
These are equipped with natural Hermitian forms that are of signature (1, 1) at the infinite place. The
corresponding unitary similitude groups are given by

GUEg(Vy) = (B X EX)/F*, GUg(Vy) = (B5 X EX)/F*. (1.6)
LetV = V;®V,. Thus V has signature (2, 2) at the infinite place. Consider the maps of algebraic groups
B} x B} — PBY X PB} « G(Ug (V) x Ug(V2))/E* — GUE(V)/E™. 1.7
These induce maps of the associated Shimura varieties
X\ xX, > X\ xX) ¥V =X

(where X is the Shimura variety associated with GUg (V)/E*, etc.), which may be viewed as giving a
correspondence on (X; X X,) X X. This correspondence induces a map on cohomology

o HY(X) - H (X X X3).
As such, since the kernel of the map
G(Ug(V1) x Ug(V2))/E* — PB} x PBY
is isomorphic to
G(EX X EX)JEX ~ EV) ~ EX/FX,
one can introduce a character n of EX/F* in the construction of the correspondence; this gives a map
G P HY(X) — H (X1 X Xa).

that depends on the choice of 7.

https://doi.org/10.1017/fmp.2023.20 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.20

Forum of Mathematics, Pi 7

1.2.2. Cohomological representations and Vogan—Zuckerman theory

Since the cohomology of X is given by automorphic forms [10], it is natural to first look for a nontempered
automorphic representation IT of GU(V) (or say of U(V) for simplicity) which contributes to H*(X) but
only to the (1, 1)-part. The paper of Vogan—Zuckerman [65] classifies cohomological representations;
one finds that there is a unique nontrivial (nontempered) representation IT., of U(Vg) = U(2, 2)r with
the property that

H"!(g,K;T1},) #0.

The representation IT!, can be realized as a cohomologically induced representation Ag, where q is a
0-stable parabolic subalgebra of g with Levi component u(1, 1) @ u(1, 1). In order to construct IT, it is
first natural to look for an explicit construction of IT!, which is what is accomplished in the next step.

1.2.3. An exceptional isogeny: Archimedean theta correspondence and Kudla—Millson theory

The representation I1., can be constructed as a theta lift of the trivial representation of U(1, 1) with
appropriate choices of splitting characters. However, for rather subtle reasons, this fact does not seem
to be useful in our construction. Instead, we use the fact that there is an exceptional isogeny

SU(2,2)r — SO(4,2)g. (1.8)

Ignoring for the moment the difference between U and SU, and between O and SO, we may view IIL,
as a representation of O(4,2)g, and viewed this way, the representation ITL is in fact a theta lift from
SL,. This fact may appear somewhat familiar to connoisseurs of Kudla—Millson theory. Indeed, Kudla—
Millson theory studies certain explicit closed forms that are Poincare dual to geodesic cycles coming
from embedded O(3,2)s in O(4,2) and shows that the corresponding automorphic representations of
O(4,2) (which contribute to H'-!) can be constructed as theta lifts of forms of weight 3 on SL,.

1.2.4. Inner forms

For our purposes, we need inner form versions both of the isogeny (1.8) and of the theta lift. Moreover,
we need to work with similitude groups rather than isometry groups. First, the theta lift: Let B be the
quaternion algebra given by B = B - B; in the Brauer group of Q. Since B and B, are assumed to be
nonisomorphic, B is a nonsplit quaternion algebra. Then there is a theta lift

0 : o (GUg(W)) — o/ (GUg(V)?),

where V is a certain three-dimensional B-vector space equipped with a B-skew-Hermitian form, W is
a one-dimensional B-vector space equipped with a B-Hermitian form and .7 (G) denotes the space of
automorphic forms on G. (To be precise, the theta lift depends on a choice of Schwartz function.) The
groups Ug(W) and U (V) are, respectively, the requisite inner forms of SL, and O(4,2). As for the
isogeny, we construct (in §5) an explicit isomorphism,

§ : PGUE(V) = PGUg(V)°, (1.9)
which is an inner form version of equation (1.8) above for (projectivized) similitude groups.
1.2.5. The global theta lift: Schwartz forms
With this preparation, we can describe the construction of a (1, 1)-class on X. Let & be a modular form
of weight 3 and central character £, the quadratic character associated with the extension E/Q, chosen

such that it admits a Jacquet-Langlands transfer to B*. Let 7, be the corresponding representation
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of GL;(A). Let JL denote the Jacquet-Langlands correspondence. Consider the composite maps of
automorphic forms

o (GLy) 25 o7 (BX) = o7 (GUE(W)) > o7 (GUx(V)°)

and

A (PGUR (7)Y 255 o/ (PGUE (V) = o (GUE(V)).

We show that ® o JL(7},) has trivial central character and so may be viewed as an automorphic
representation of the group PGUg (V). Thus, we can consider the composite

II:=6"00®0JL(f),

which we may view as an automorphic representation of the group GUg (V)(A). This representation
has the property that I1,, ~ ITL, where T1., denotes the unique representation of GU(2, 2)z with trivial
central character whose restriction to U(2, 2)g is isomorphic to ITL . Further, one can check that

1 if(p,q)=(1,1 3,3);
dim HP (g, K:TL.) = i (p.q) = (1,1) or (3,3)

2 if (p,q) =(2,2).
Explicitly, we construct following the ideas of Kudla—Millson (and Funke—Millson in the higher weight
case), a Schwartz form ¢, (rather than a Schwartz function) such that with ¢ = g, ® ¢ for any choice
of a Schwartz function ¢4y, the theta lift

0,(¢)

may be viewed as giving a (1, 1)-class on X, for ¢ in the space of JL(7},). To be precise, the construction
only depends on the restriction of JL(f},) to the subgroup GL;(A)* (consisting of elements in GL;(A)
with positive determinant at infinity) and the vector ¢ must be chosen to lie in the antiholomorphic
component of this restriction.

1.2.6. Nonvanishing of the restriction

Next, we show that for suitable choice of 1, A, ¢fin and ¢, the (1, 1)-form ¢},(6,(¢)) is nonvanishing,
when projected to the m; ® m,-isotypic component. Let us now explain the main idea to prove this
nonvanishing. Let wy, and wg,, denote holomorphic one-forms in H '(Xp,,C)z, and H'(X3,,C)x,,
respectively. The strategy is to compute the integral

/ (0,(8) - (Plwsy A Phom)
XBI XXBZ

and show it is nonzero. Using the isomorphism § from equation (1.9) and noting that the decomposition
V =V; & V; of E-Hermitian spaces induces a decomposition V =V & V}y of B-skew-Hermitian spaces
such that

GUs (V)" = (BY x B)/F*, GUg(Vo)® = EX,
and

6 : G(Ug (V1) x Ug(V2))/EX = G(Ug(V) x Ug (Vo))" /F*,
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we can reduce the integral to a period on the left-hand side of the seesaw diagram below, which again
involves quaternionic unitary groups:

GU3(V) G(Ug(W) xUp(W)) .

=

G(Ug(V) x Ug(Wy)) GUg(W)

The seesaw then implies that the period can be computed on the right where it becomes a triple product
period of the form

/ 6 7000,
[GUB(W)]

where fp = 6’(]"_)_z;l ® fp,) is an automorphic form on GUg(W) =~ B* in the Jacquet-Langlands transfer
np of m. We then show that 7, &, ¢, and ¢ can be chosen (depending on the finite parts of fz, and f5,)
so as to make this triple product integral nonzero. A similar argument also shows that

/ (0,(0) - (Plwp AP3ws,)
XBI XX32

is nonzero, and in fact that the induced map
L29¢(¢) : Hl (XBI ’ C) - Hl (XBZ’ C)
is an isomorphism.

1.2.7. Hodge classes

As yet we do not know that 6, (¢) is a Hodge class. In fact, strictly speaking it is not likely to be a rational
cohomology class, but we show that it lies in the C-span of the Hodge classes in H2(X). The key point
here is that the (expected) classification of automorphic representations implies that any automorphic
representation that is nearly equivalent to IT must have Archimedean component lying in the (unique)
A-packet containing I1L,. Moreover, this Archimedean A-packet consists of two representations ITL, 12,
and the latter contributes only to H*(X) and not H>(X). From this, we deduce that H>(X, C)[I1g,] is
entirely of type (1, 1). (The notation H*(X, C)[IIg,] stands for the subspace of H?(X,C) on which the
unramified Hecke algebra at some finite level acts by the same Hecke eigenvalues as on I1gy.)

Suppose for the moment that IT has coefficients in Q. Then

H?*(X,Q)[Isn] ®g C = H*(X, C) [Tgn],

hence H*(X,Q)[Ilg,] is a rational Hodge structure, pure of type (I,1). Since 0,(¢) lies in
H?(X,C)[IIg,], we see that it lies in the C-span of H?(X,Q)[IIg,] and in particular is a C-linear
combination of Hodge classes &. We have already seen that 6,(¢) # 0 and moreover that its restric-
tion to the 7 ® mp-component of X; X X, is nonzero. From this and a simple continuity argument, one
deduces that there is a Hodge class & € H>(X, Q)[II4,] such that the induced map

Ll](g(l)))k : Hl (XBl’Q)m - HI(XBz’ Q)ﬂz
given by
x - pas(pl(x) - 5,E(1))

is an isomorphism of rational Hodge structures.
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1.2.8. Galois representations

Next, we need to understand the Galois representation on H*(X) associated to the A-packet containing
I1. Again, for simplicity let us suppose F = Q, d = 1, the general case being similar. Then the
expected relation between the Galois representation and the A-parameter can be deduced from Kottwitz’s
conjecture (see Remark 1.4 below). In our case, we have

H*(X, Q)i = Qe(-1),
H*(X, Qo) = Qe(=2) ® Sym*(pn.¢),
H®(X,Q¢)n = Qe (-3),

where pj, ¢ is the two-dimensional £-adic representation attached to 4. From this, one deduces that as a
Galois module, H*(X, Q) [T,] =~ Q¢ (—=1)" for some integer m. For every rational prime £, the action
of Gal(Q/Q) on &(1) is then trivial and thus £(1)* (viewed as acting on ¢-adic cohomology via the
Betti-étale comparison) is a Galois equivariant isomorphism.

1.2.9. Descending coefficients

The argument above needs a bit more care since II may not have coefficients in Q. Thus, one needs
some care to ensure that the Hodge class constructed has coefficients in Q. This argument needed to
achieve this is explained in detail in § 1 2. Roughly, the point is to replace H>(X, Q) [Is,] by H2(X, Q)[I],
where [ is the kernel of the action of the unramified Hecke algebra (with Q-coefficients) on I1,. Another
possible source of extra coefficients is the character 7, and this needs to be handled separately.

1.2.10. The general case
This completes the outline of the proof of Theorem 1 in the case F = Q, n = d = 1, k = 2. The general
case (assuming still that k = (2,...,2)) is only slightly more complicated. In general, we have

Ur(V)(R) = U(2,2)4 x U(4)"™,

where the U(2, 2) factors correspond to the places in X and the U(4) factors to the infinite places not
in . At the infinite places in X, that is, where B and B, are both split, we just imitate the constructions
above. However, we need to deal as well with the infinite places where B; and B, are both ramified. At
such places the representation I, is trivial and the local A-packet is a singleton, consisting of just the
trivial representation. This is consistent with the fact that at such places v, we have

Ug (V)v = U(4), UB(‘N/)V = 0(6)’ UB(W)V =~ SL,

and the theta lift of the weight 3 holomorphic discrete series representation on SL, is the trivial
representation of O(6). The conclusion then is that H>? (X, C)[Is,] consists entirely of (d, d)-classes
and one can find a Hodge class & € H>?(X, Q)[I1g,] such that the induced map

£(d) - HY(Xp,,Q) — HY(Xp,, Q)
given by
x - pos(pi(x) - 5,6(d))

is an isomorphism of rational Hodge structures, that is also Galois invariant.

Remark 1.1. We note the following conceptual reason why we work with the group Ug(V) which at
Archimedean places is (almost) isomorphic to a product O(4, 2)¢ x 0O(0, 6)"~<¢. After all, in principle,
one could also construct Kudla—Millson classes directly on the group Ug(V), which at Archimedean
places looks like a product O(2,2)? x 0(0,4)" ¢, by taking a lift of a form of parallel weight two.
However, the issue is that on this smaller group, the Hodge classes are mixed up with other classes of

https://doi.org/10.1017/fmp.2023.20 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.20

Forum of Mathematics, Pi 11

the same degree, and therefore it is difficult to see that the Kudla—Millson class is in the C-span of the
Hodge classes, except in the ‘trivial’ situation when B; = By; in that case, the group Ug (V) is quasi-
split and there are obvious ‘diagonal’ cycles in the correct degree. On the larger group, however, the
Hodge classes in degree (d, d) can be separated out using Hecke operators; this is the crucial idea on
which the proof rests.

Remark 1.2. The assumption that B and B; are ramified at some infinite place is made for technical
reasons; it ensures that the auxiliary Shimura variety X used in the proof is compact. We believe that,
with some extra work (e.g., working with intersection cohomology), this assumption could be relaxed.

Remark 1.3. Our proof of Theorem | requires the construction of the particular automorphic represen-
tation IT on the unitary group PGUg (V) and a precise characterization of the near equivalence class of
this representation. We give two proofs of this characterization. The first proof uses the expected classi-
fication of nontempered automorphic representations on unitary groups (associated to Hermitian spaces
over a CM field) in terms of local and global A-packets, which is work in progress of Kaletha, Minguez,
Shin and White [34]. The expected results from their work that we need are stated carefully in §11.1
and §11.2. But we also give another, more direct proof, of the characterization of this representation
using the theta correspondence, that does not use [34]. While this latter proof is unconditional, we have
retained the proof using the full classification, since it provides a conceptual justification for why the
method works, and since it may be useful in other situations.

Remark 1.4. As mentioned before, our proof of part (ii) of Theorem | is conditional on the truth of
Kottwitz’s conjecture describing the Galois representations occurring in the cohomology of Shimura
varieties in terms of automorphic representations. The main results on Galois representations that we
need are stated in Propositions 11.8 and 11.9.In §11.5, we explain in some detail how these propositions
follow from Kottwitz’s conjecture [37].

While we do not prove any new results towards Kottwitz’s conjecture in this paper, it is an area of
active investigation and the results we rely on will hopefully be available in the near future. For the
benefit of the reader, we now explain what results towards this conjecture are currently available and
what work still needs to be done. In loc. cit., Kottwitz outlined a strategy to prove the conjecture via
establishing a stable trace formula and comparing it to the Grothendieck-Lefschetz trace formula. In
the subsequent papers [38], [39], Kottwitz used this strategy to verify his conjecture for certain Shimura
varieties of PEL type.

The Shimura varieties that we use are of abelian-type but not PEL. For abelian-type Shimura varieties,
a stable trace formula and the comparison with the Grothendieck—Lefschetz trace formula has recently
been established by Kisin—Shin—Zhu [35]. However, (as is explained in loc. cit. §0.2 and §9.2) two
additional pieces of work need to be done to complete the characterization of Galois representations:

(i) First, one needs an equality relating the stable distribution of [35] to the one in Kottwitz. This
relation is encoded in the expected formula (9.2.2.1) of [35], which the authors of [35] are planning
to investigate in a sequel to that paper.

(ii) Second, one needs the classification of automorphic representations on unitary similitude groups
in terms of A-parameters. The corresponding results for unitary groups are the subject of past and
ongoing work of Kaletha—Minguez—Shin—White. The extension of these results from unitary groups
to unitary similitude groups is also expected to be within reach.

Remark 1.5. At the request of one of the referees, we discuss the relation between this paper and the
work of Bergeron—Millson-Mceglin (e.g., [6] and [5]), which proves many cases of the Hodge conjecture
for certain orthogonal or unitary Shimura varieties. The strategy in those papers is to show that in a
range of degrees, the space of Hodge classes on the varieties under consideration is spanned (for the
most part) by the classes of Kudla—Millson cycles, which are linear combinations of cycle classes of
sub-Shimura varieties, and are thus algebraic. (In some cases, for example U(2, 2), they also need to use
classes that are known to be algebraic due to the Lefschetz-(1, 1) theorem, but are not obviously in the
span of the classes of Kudla—Millson cycles.) Our work is complementary to this, and in a somewhat
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orthogonal direction, since in our setting, there are no obvious Kudla—Millson cycles in the degrees
under consideration, nevertheless we construct interesting Hodge classes. For example, the simplest
interesting setting for us (beyond (1, 1)-classes for U(1, 1) which can be addressed using Lefschetz-
(1, 1)) is the case of (2, 2)-classes for U(2,2) x U(2, 2), which is not covered in loc. cit. Our expectation
is that these Hodge classes (that represent functoriality) cannot be obtained from cycle classes of sub-
Shimura varieties by any functorial process, even if one throws in classes that are known to be algebraic
by the Lefschetz-(1, 1) theorem.

The reader may also be interested in the discussion in §1.3.3. As pointed out there, there are also
situations where there are Kudla—Millson cycles in the degrees of interest, but they do not span the space
of Hodge classes. Thus it seems that to understand whether these Hodge classes are algebraic requires
studying algebraic cycles on Shimura varieties that do not arise from sub-Shimura varieties. This is a
topic that has not seen much systematic work so far.

1.3. Extensions and generalizations

In this section, we discuss some extensions and generalizations of the main result stated above.

1.3.1. Local systems and normalizations
While we have stated the main result for trivial coefficients, it works equally well for local systems. In
the main text, this more general case is treated.

We briefly mention the numerology in the case of general local systems. Suppose that the form 7
has weights k = (ki,. .., k,). Then (in the classical normalization) the Hodge structure of H*(X;), is
a tensor product over the places v in Z of a Hodge structure of type

(kv - 1’0) + (O’ kv - 1)
Thus, H*(X|)r, ® H*(X2)n, is a tensor product over the places v in X of a Hodge structure of type
(2ky —2,0) +2(ky, — 1,k — 1) + (0, 2k, — 2). (1.10)

The Hodge class in H*(X1)r, ® H*(X2)r, should come from the tensor product over the places v in
> of a class of type (k, — 1,k, — 1). In our construction, we pick an auxiliary form 7 of weights
k+1=(ki+1,...,k, +1). Then JL(7) corresponds to a Hodge structure which is a tensor product
over the places v in X of a Hodge structure of type

(ky,0) + (0, ky).

Its lift IT to Ug (V) contributes to different cohomological degrees, so there is an associated Hodge
diamond which is the tensor product over the places v in £ of a Hodge diamond of the form

(ky + 1, ky +1) (1.11)
(2k,,0) 2(ky, ky) (0,2ky)
(ky —1,k, —1).

The Hodge class in H*(X)p; comes from the tensor product over the places v in X of the class of
type (k, — 1,k, — 1). The ‘rest’ of the Hodge structure at any place v consists of Tate twists of this
(k, —1,k, — 1) class and Sym? of the Hodge structure attached to 7.

In the main text, we use the ‘automorphic normalization’ instead of the classical normalization. This
amounts to twisting the Hodge structures in equations (1.10) and (1.11) above by (2 — k,,2 — k,,). This
twist is therefore not visible in parallel weight 2.
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1.3.2. The non-self-dual case

The assumption that 7 has trivial central character forces 7 to be self-dual and is just made for simplicity.
The non-self-dual case can also be treated similarly; we do not treat this in the paper, but we outline
here the main differences.

Let us denote the contragredient of 7 by 7, and let y be the central character of 7 so that 7 ~ 7V ® .
The method described above extends to this case, except that we must choose 77 such that 7| ax = x 'to
compensate for the central character of 7. We remark on one unusual feature. Namely, it seems that the
method outlined here naturally produces a Hodge class £ € H*?(X,Q(x?))n such that

(i) The induced map
£(d)* : H'(Xp,, QU ™")rv = HY (X, Q)

is an isomorphism of Q(y) = Q(y~!)-vector spaces and preserves the Hodge filtration (on tensoring
with C).

(i) The Galois module H?? (X, Q¢ (x?)) is isomorphic to (a sum of copies of) Q¢ (—d)(x?>) and the
induced map

E(d)* : H'(Xp,, Qe (x ™ )mr = H (X5, Qe (X)),

satisfies the following Galois equivariance:
T (£ (X)) = x* () - € (o (x)).

We note that Q(x ') = Q(x) and Q¢ (x ") = Q¢ (x).

The reason this is unusual is that one might expect to have a natural construction producing a ra-
tional Hodge class in H*(Xpg,, Q( )()),,lv ® H*(XB,,Q(x))x,. since after all the Galois representation
H*(Xp,, Qe( )()),,lv ® H*(Xp,, Qr(x))x, always contains the trivial representation as a direct summand.
Instead, our construction naturally produces a Hodge class (with coefficients in a number field) in
H*(XB,,Q(x))x, ® H(Xp,,Q(x))x, and then one has to ‘untwist’ it to produce the rational Hodge
class that one expects to exist.

1.3.3. Absolute Hodge classes

The main theorem above is close to saying that the class & is an absolute Hodge class in the sense of
Deligne [15]. However, what is missing is the de Rham piece of the story, that is, in order to show that
¢ is absolutely Hodge, we would need to show in addition to the above that it is also de Rham rational
and that for every embedding 7 of Fy in C, the class 7(&) is a Hodge class, whose image in £-adic
cohomology is Galois invariant for all £. It seems difficult to show this directly. In a previous version
of this paper, we expressed the hope that one might be able to deduce that & is absolutely Hodge by
showing that it satisfies a stronger property, namely that it is a motivated cycle in the sense of André.
However, the strategy that we had in mind runs into a serious obstacle that we are unable to circumvent
at the moment, so the problem of showing that ¢ is absolutely Hodge remains open. The obstacle is
related to the following fact: There exist tempered L-packets IT of representations on Ug (V) (with
dimg (V) = 3) which contribute to Hodge classes on the associated Shimura varieties such that the rank
of the I1-isotypic component of the space of algebraic cycles of group-theoretic origin (i.e., coming
from embeddings Ug (V') — Ug(V), with dimg (V') = 2) is nonzero, yet is strictly smaller than the
dimension of IT-isotypic component of the space of Hodge classes. In particular, there exist Hodge
classes on such varieties that are not represented by algebraic cycles coming from embedded unitary
groups.
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1.3.4. Functoriality for unitary groups
It would be very interesting to generalize the results of this paper to general unitary groups. The main
obstacle to doing this seems to be understanding automorphic periods for the embedding

Ug (V1) xUg(V2) = Ug(V), (1.12)

where dimg (V) = dimg (V;) = n say, with tempered representations 7, 72 on Ug (V) and Ug(V>),
respectively, and a nontempered representation 7 on Ug (V). In the case treated in this paper, this is
accomplished for n = 2 by using exceptional isogenies to relate the unitary groups above to inner forms
of orthogonal groups and then using a seesaw to relate the requisite period integrals to triple product
periods for GL,, which are well understood and fall within the purview of the Gan—Gross—Prasad (GGP)
conjectures. In the general case, these exceptional isogenies are not available. Thus, it seems important
to formulate and prove analogs of the GGP conjecture in the setting of the equation (1.12) above.

2. Shimura varieties, local systems and motives

2.1. Realizations of motives

Some of our definitions below may be somewhat nonstandard.

2.1.1. Hodge structures

Let L be a number field given with a fixed embedding in C. An L-Hodge structure pure of weight n

will be an L-vector space V equipped with a descending filtration F"V¢ on Ve = V ®, C such that for
p+qg=n+1, we have

Vo= FPVe @ FiVe.
For any pair (p, g) with p + g = n, we set VP9 = FPVe N F4Ve.

2.1.2. Realizations of motives with coefficients

Let k and L be number fields. Let Moti denote the category of motives over k with coefficients in L.
(For the moment, it is not very important what equivalence relation we use on algebraic cycles.) We
are particularly interested in certain realization functors on MotX, assuming we are given embeddings

k> QcCandL cC.

o The Betti realization. The Betti realization Hg (M) which is an L-Hodge structure.
o The t-adic realizations. For each rational prime ¢, H¢(M) is a free L ® Q,-module, equipped with a
continuous (L ® Q-linear) action of G := Gal(Q/k).

We also have a natural comparison isomorphism
Hp(M) ® Q¢ = H¢(M)

of (free) L ® Q,-modules.
There are other realizations which will not concern us in this paper. Thus, we define a category Mé
as follows. The objects in this category are collections

(V. Ve)

as ¢ varies over the primes, where V is an L-vector space equipped with an L-Hodge structure and V7 is
a free L ® Qg-module with a continuous (L ® Q,-linear) action of G, along with isomorphisms

ip:V®Qp=Vy.
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A morphism between two such objects (V, Vg, i) and (V’,V/,i}) is an L-linear map j : V — V’ that
is a morphism of L-Hodge structures such that the L ® Q,-linear maps j; : V, — V/ defined by the
commutative diagram below:

i ®1
VeQ -V eQ,

C

v, Je v

are Gx-equivariant.
If L = Q, we omit the superscript and simply write M. Note that to any proper smooth variety X
over k, we can attach objects

H'(X) = (H"(X(C). Q). HA(Xg. Qo).ic)

in the category M.
If L ¢ L’ c C, there is a natural functor ./\/lé — ./\/lf, sending (V,Vy) to (VL L', V, @ L' =
Ve ®Leq, (L' ® Qp)).

2.2. Shimura varieties and local systems

2.2.1. Shimura varieties

We recall some basic facts about Shimura varieties [14]. Let S = Resc/r Gy, denote the Deligne torus.
As usual, a Shimura datum is a pair (G, X) consisting of a reductive algebraic group G over Q and a
G (R)-conjugacy class X of homomorphisms 4 : S — Gy satisfying the following conditions:

(i) For hin X, the Hodge structure on the Lie algebra g of Gg given by Ado A is of type (0,0)+(—1, 1)+
(1, -1). (In particular, the restriction of such an 4 to G,, g C S has image in the center of Gr.)
(ii) For hin X, (Ad o h)(i) is a Cartan involution on G, where G is the adjoint group of G.
(iii) G has no factor defined over Q whose real points form a compact group.

These conditions imply that X has the natural structure of a disjoint union of Hermitian symmetric
domains. The group G (R) acts on X on the left by

(g-M(z)=g-h(z)-g".

Let A and Ay denote, respectively, the ring of adeles and finite adeles of Q. Let K be an open
compact subgroup of G(A ). The Shimura variety associated to (G, X, K) is the quotient

Shic(G.X) = G(Q\X x G(Af)/K.
For K small enough, this has the natural structure of a smooth variety over C. The inverse limit

Sh(G, X) = limx Sh(G, X)

is a proalgebraic variety that has a canonical model over a number field E(G, X), the reflex field of the
Shimura datum (G, X). In particular, each Shy- (G, X) has a canonical model over E (G, X). For brevity
of notation, we will often write simply Shg or Shg x since X will be understood from context.

We recall the definition of E(G, X). This field is defined to be the field of definition of the conjugacy
class of cocharacters

tn i Gnec — Sc — G,

where the first map is z — (z, 1) and the second is the one induced by #.
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Remark 2.1. The field E(G, X) is given as a subfield of C, and as such has by definition a canonical
embedding into C. When not specified below, any embedding of E(G, X) in C will always be this
canonical embedding. Indeed, we will not have use for any other embedding.

All Shimura varieties occurring in this paper will be compact, so we will assume this to be the case
in the rest of this chapter.

2.2.2. Local systems and cohomology

Let (p, V) be a finite-dimensional representation of G defined over a number field L ¢ C. We assume
that p factors through an action of G /Z, where Z; is the largest subtorus of the center of G which is split
over R but which has no subtorus split over Q. To the data (G, X, p), we can associate the following:

(i) A local system V of L-vector spaces on Shg.
(ii) For each prime ¢, an £-adic local system V, (of L ® Q,-vector spaces) on Shg.

Then H(Shg x(C),V) is an L-vector space (in fact, an L-Hodge structure) and there are natural
isomorphisms of free L ® Q¢-modules

H'(Shg x(C), V) ® Q¢ = H.(Shg x ®£(G.x) Q, Vo) 2.1

(see [73, Exposé XI]). Note that we are using the given embedding E (G, X) — Q c C on both sides
of the isomorphism above. The Hecke algebra H(G (A ), K) acts on both sides of equation (2.1) and
the isomorphism is Hecke equivariant. Taking the direct limit over X, we get an isomorphism,

H'(Shg(C), V) ®g Q¢ = H.(Shg ®E(G,x) Q, Vo).

Let I1 be an irreducible cohomological automorphic representation of G (A). The I1-isotypic com-
ponent of H (Shg(C), Vc) is defined to be

H'(Shg (C), Ve)n = Homyy (G s, ).x) (T, H (Shg (C), Vo))
= Homyy (G (4,).) (I}, H' (Shg i (C), Vo))

for K small enough, this being independent of the choice of L. By Matsushima’s formula [10],

H'(Sh x(0), Ve) = P m(m)H' (9, K 7o ® Vi) @ 7,
V.

where the sum is over automorphic representations 7 = 7., ® 7y of G(A) and m(x) is the multiplicity
of m in the discrete spectrum of G. It follows that

H'(ShG(C), Vo= @ m(mH (8,K; 7 ® Vo),

K11k
momy =l

where the sum is over those 7 such that 71'? o~ H}C as H(G(Ay), K)-modules.

2.2.3. Pullback and pushforward

Let f : (G, X1) — (H, X») be a morphism of Shimura data. We assume that the reflex fields of (G, X;)
and (H, X;) are the same subfield E of C. Let p be a finite-dimensional representation of H defined
over a number field L ¢ C (which we can also view as a representation of G via the map G — H) and
denote by V the associated local systems on Shg;, Shg. (Thus, the local system on Shg is just obtained
by pullback from Shg.) Then there are functorial maps

f*: H'(Shy,V) — H'(Shg, V),
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defined both in Betti and £-adic cohomology, which may be viewed as giving a morphism in the category
Mé Suppose in addition that:

(i) G — H is surjective with kernel Z contained in the center of G.
(ii) Z is cohomologically trivial so that G(A) — H(A) is surjective as well.

Then there is a bijection between automorphic representations ITy of H(A) and I of G(A) on which
Z acts trivially. Assuming that L contains the (common) field of definition of [Ty and I, the map f*
induces an isomorphism,

H'(Shy, Vi, = H' (Shg, Vg,

in MIE

We will also need to consider the case when the map G — H satisfies equation ((i)) but not
equation ((ii)). Typically, in such cases, we will be interested in maps in the opposite direction. Indeed,
there is a natural pushforward map:

f. : H(Shg,V) — H'(Shy, V).

If Ky and K5 are (small enough) open compact subgroups of G(Ay) and H(A ), respectively, the
induced map

ShG,;C] g ShH,;C2

is finite étale onto its image which is a union of components of Shy x,. Thus, f; can be defined by
taking the trace to the image and then extending by zero outside the image.

Remark 2.2. To make the definition of f; independent of the choice of K; and /C,, we need to normalize
it by multiplying by the factor vol(K1)/vol(K;) for some choice of Haar measures on G(Ay) and
H(Ap). In our application, we will implicitly make such a choice in §10.4 and §12, but the exact choice
is unimportant.

3. Quaternionic Shimura varieties and the main theorem
3.1. Quaternionic Shimura varieties

Let F be a totally real field and 2, the set of infinite places of F. Let B be a nonsplit quaternion algebra
over F and X the set of infinite places of F where B is split. Put n = [F : Q] and d = |Z|. We fix an
isomorphism,
B®r R ~M,(R)? x H" ¢,

which gives an identification

Gp(R) = GLy(R)! x (H)"™,
where G g := Resg /g B*. Let 7, denote the composite map

B ®F.o, R = My(R) — My(C)

forv € ¥ and

B ®F. o, R~ H < M,(C)
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forv € X, \ 2. Then 7, may be viewed as giving a two-dimensional complex representation of G 5. We
identify C* with a subgroup of GL,(R) via

2= a+birsi(z) = (_“b Z) (3.1)

Let X denote the G g (R)-conjugacy class of
hiS—Gpa h(2)= (@ 1.1, 1)

so that &y, (z) := h(z), = ¢(z) forv € E and hy(z) = 1 forv € T, \ . We write either Shg,, (or for
ease of notation, simply Shp) for the associated Shimura variety. The variety Shp admits a canonical
model over the reflex field Fx. The Hecke algebra H(G g(A ), K) acts on Shp x via correspondences.
Moreover, the inverse limit

Shp = 1%Cr_n5h3,,¢

admits a right Gg(Af)-action. We refer the reader to [30, §1] for a more detailed discussion of the
Shimura varieties Shg.

3.2. Local systems

Let r be an automorphic representation of GL, (A ) attached to a holomorphic Hilbert modular newform
of weight (k,r), where k = (ki,. .., kj,) is a collection of integers of the same parity and r is an integer
with k; = r mod 2. (We will often denote k; by k, if v is the ith place in the ordering and write
k = (ky)ves,,.) We suppose that 7 admits a Jacquet—Langlands transfer 75 to G g(A). We also assume
that k; > 2 for all i. This implies that the representation 7 o, is cohomological, namely 7 contributes
to the cohomology of a local system on Shp. The local system is attached to the representation TkVJ of

G5 (C), where
Tk,r = ®(0'v o V)(r_kV+2)/zsymkv_2(Tv)

= ®(det o1,) A 2gymAv2 (7).
v

Here, v denotes the reduced norm on B. If k; is even for all i, then by [66] (Proposition 1.3 and §I1.2),
the restriction of the representation 7y , to the group G g is defined over (any field L containing) Q(k),
where Q(k) is the fixed field of the subgroup

{0 € Aut(C/Q) | ok = k}

with ok = (k s-1,, )ves,,. More precisely, this representation contains an L-structure invariant by G g
and that is unique up to homothety.

Remark 3.1. In this paper, we are only concerned with the case when 7 has trivial central character up
to twisting by a power of the reduced norm. This implies that the weights k; must all be even. Then, by
twisting 7 by a power of the norm character, we may assume that » = 0. For simplicity, we will thus
make this assumption for the rest of the paper and drop r from the notation. Thus, we will just write 7
below. (For the more general case of nontrivial central characters, see §1.3.2.)

Let L = Q(r) be the field of rationality of m, as defined in [66], §1.8. By loc. cit. Corollary 1.8.3 and
Lemma 1.2.3, this field contains Q(k) and also agrees with the field generated by (all but finitely many,
in particular the unramified) Hecke eigenvalues of 7. Thus, we may view 7, as being defined over L,
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and then we get an associated local system of L-vector spaces V(L) on Shg(C) and for every finite
prime £, an étale L ® Q,-sheaf Vi (L), on Shp. (See also [13], §2.1.) Let

Vi (L) := H' (Shc(C), Vi (L)),

Vi (C) 1= H'(Shp x(C). Vi (C)),

Vi (L) := Hy(Shp.x ®r; Q. Vi)
so that there are canonical isomorphisms

VE(L) ®, C =~V (C)
and
Vi (L) ® Q¢ = Vg (L)e.
We fix an isomorphism
B® A} =~ My(A}),

where AISV denotes the adeles of F' outside a finite set of places S containing X, and all finite places
where B is ramified. This gives an isomorphism

B*(AY) ~ GLy(A}). (3.2)

We assume that 7 transfers to B*(Ap), that is, there exists an automorphic representation 7 = 7 B,m®ﬂ£
of B*(AF) (necessarily unique by strong multiplicity one) such that ng ~ 75 via the identification (3.2)
above.

For the cohomology with complex coefficients, we can define the 7 g-isotypic component by

V.np (C) := Homy (G 41,00 (), VE (C)),

for IC small enough. This is concentrated in degree 2d and is independent of the choice of K. To work
over the field of rationality, we note that by [66, Lemma 1.2.2 and §II.1], the Hecke module (7r};)’C is

also defined over L. More precisely, it contains an L-structure (ng )X (L) that is invariant by the Hecke
algebra with Q-coefficients, Ho(Gp(Af),K), and that is unique up to homothety. This allows us to
define the mg-isotypic components
VB, s = Homyy, (G, (Af),IC)((”g)’C(L), Vi (L)),
VB, np.c = Homyy, (G, (Af),IC)((”J;))C(L)» Vi (L)),

for I small enough, these being independent of the choice of K. Moreover, there are canonical isomor-
phisms of free L ® Q,-modules

VB, np ®0 Qr = VB ap.c.

3.3. The main theorem in the general case

‘We can now state the main theorem in the case of general local systems. Let B; and B; be two quaternion
algebras that are split at the same set of Archimedean places £ C X, such that r transfers to both
BY(Ar) and B3 (AF). For ease of notation, we write the transfers as 71 and r instead of 7, and 7p,,
respectively.
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Theorem 3.2. Suppose that there is at least one infinite place of F at which By and B, are ramified.
(i) Let L be the coefficient field of n. Then there is an isomorphism of L-Hodge structures
L VB],nl = VBZJTZ'

(i) Assume Kottwitz’s conjecture for Shimura varieties attached to unitary similitude groups. Then the
isomorphism ¢ of part (i) can be chosen such that, for all finite primes €, the maps ¢, defined by
requiring the diagram

1
VB, m ®q Q¢ —Es VB, 7 ®g Q¢ 3.3)

\L '« \L
VBl,ﬂl,f > VBz,ﬂz,f

be commutative, are Gal(Q/ Fx)-isomorphisms.

This theorem will be proved in §12.

4. Unitary and quaternionic unitary Shimura varieties

The proof of the main theorem will require working with several different auxiliary Shimura varieties,
some that are associated with unitary groups and some with quaternionic unitary groups. In this section,
we introduce the main actors and the relations between them. Many of the claims below will only be
justified in the following section; however, we believe it is more transparent to introduce all the different
groups up front and relegate the details of various isomorphisms and maps to §5. The reader may want
to read these sections in parallel.

4.1. Unitary and quaternionic unitary groups

Let F be a totally real field. Let By and B, be two quaternion algebras that are split at the same set
of infinite places of F. Let E be a CM extension of F that embeds in both B; and B,. We fix such
embeddings E <— B, E — B, and write

By =E+Ej, By=E+Ej

for some trace zero elements j; € le, jo € B;. We write pr; for the projection B; — E onto the ‘first
coordinate’ and #; for the main involution on B;. Then V; := B; is a right Hermitian E-space, the form
being given by

(x,y)i = pr;(x™y).
Ifx=a+j;b,y=c+j;d, then
(¢, y)i = (a+jib,c+jid)i = a’c - J;b"d,
where p is the nontrivial Galois automorphism of E/F and J; = j? € F*. This form satisfies the relations

(xa, yﬁ)l = a'p(x’ y)lﬂ

fora, B € E and

(x, )i = (3, 0)7 .
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Then
G :=GUg(V)) = (B x EX)/F*, G, :=GUg(V,) = (B5 x EX)/F*,
where the (inverses of these) isomorphisms are given by (8, @) — (x — Bxa™!). Let
G =G(Ug (V1) xUg(V2)/E* =G ((Bf X EX)/F* x (B5 x EX)/F*) |E*,

where EX embeds as @ — ([1,a], [1, @]). We define groups G and G that are closely related to G as
follows:

G =G(Ug(V1) X Ug(V2)), Go=B/F*xB5/F*.

Let V =V @ V;,, which is a four-dimensional E-Hermitian space. Also, let V= A2 (V). In §5.2, we
will show that V is naturally equipped with the structure of a right B-space, where B := B; - B, is the
quaternion algebra over F' whose class in the Brauer group of F equals the product of the classes of By
and B,. (Note that B is split at all the infinite places of F.) When we want to think of V as a B-space, we
will write instead V for it. Moreover, we show that V is equipped with a B-skew-Hermitian form such
that there is a canonical isomorphism

GUE(V)/E* = PGUE(V) =~ PGUg (V)" = GUs(V)"/F*.
There is also a canonical decomposition V = V# & Vg of B-skew-Hermitian spaces. Let

g =GUEg(V),
4 =GUE(V)/E%,
Gp = GUg (V) /F*,
Jg = GUR(V)",
Gp = G(Up(VF) x Up(VH)/ F*
G = G(Up(VF) x Up(VE))".

We regard these as algebraic groups over Q by restriction of scalars. We then have the following diagram,
which we also write out in gory detail below. (Here, the dual notation in the right-most column indicates
also the notation used (locally) in §10.)

G

— gB gB

Gp ~

Up

N

(BXx B})|F*=G

I >

G

GB1 X G32
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Here, the maps pr, p and g are the obvious projection maps. We write down formulas for some of the
maps as well:

F* c (Bf X EX), t (1),
EX € G((B} x EX)/F* x (B x EX)/F¥), aw ([Lal,[L al),
F*c (BfxBY), t (t,t7h),
F* c G((Bi< ><B§<)/F>< x EX), tw— ([t,1],1) = ([1,1],1),
£([[b1, a1, [b2, a2]]) = [[b1, b2l v(by)ay @),

where the map £ is given in the diagram and v denotes the reduced norm.

4.2. Shimura data

All the groups in the diagram have associated Shimura varieties, defined such that the maps in the
diagram induce morphisms of Shimura data. It suffices to describe the Shimura datum for G and Gp
since the Shimura data for all the other groups are defined by composing with the maps above. For G,
this is given by

hy(2) = ([1(2), 1], [1(2), 1])
at the infinite places v € X and
hy(z) = ([1,1], [1,1])
at the other infinite places. For G, this is given by
hy (2) = ([1(2), ((2)]. 22)
at the infinite places v € X and
hy(z) = ([1,1],1)

at the other infinite places. In §12.2.2, we will write out the Shimura data more explicitly for some of
the other groups in the diagram.

4.3. Components

Later (in §12), we will need to use the structure of the components of Shg,. Let Gy = Gp and
G, := (B} x B})/F*. We may consider the canonical sequences

1 -G -G —T — 1,

where G?er denotes the derived group and 7; the maximal commutative quotient of G;. The map p
induces a map of exact sequences as below:

,v].id
1 — (B x BIV) {21} —= G (B x BX)/F* x EX) LG ((F* x FX) JF* x EX) —— 1

| lp

1 — (B x B{") /{1} ———— (B} x BY)/F* (F* X F¥)JFX —— 1.
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The set of components of Shg~B is in bijection with the Shimura variety attached to (7}, k1), where
T\ =G((F*xF*)/F*xE*), hi(z) =([zZ,2Z], 22).
Now,
Z(Gy) = {(t,a) e F*x E*: 1* =N(a)},

the inverse of this isomorphism being given by (t,a@) — ([t,1],a) = ([1,¢], @). The natural map
Z(G) — T is given by

(t,@) = ([, 1],@) = ([1, 1], @) = ([1,#],@)

and induces an isomorphism
Z(G)/{(=1,1)) =Th.

Note that any finite order character n of T1(Q)\7(A) gives rise to a class in HO(Sth, Q(n)), where
Q(7) is the field generated by the values of . We will denote this class c¢,,. Of particular interest to
us are the characters obtained as follows: We fix a finite order character n of E m\Ag) and define a
character of 7} by

([t 12], @) = n((t112) "' ).
The pullback of this character to Z(G) is given by

1

n(t,a) =n(t" a).

4.4. Automorphic forms and cohomology of local systems

Recall that we have the following relation between unitary and quaternionic unitary groups given by the
top line of the diagram above:

& =GUg(V) - GUE(V)/E* =9 ~ 45 = GUR (V) /F* «— GUg(V)" = 4.

Since EX and F* are cohomologically trivial, the maps ¥5(A) — %3(A) and Y(A) — Z(A) are
surjective. Hence, the isomorphism in the middle induces a natural bijection between automorphic
representations of E?B with trivial central character and those of ¢ with trivial central character. Thus,
if IT is an automorphic representation of any of the groups at the ends with trivial central character,
it may be viewed as an automorphic representation of any of the other groups above; we denote all
such representations by the same symbol I1. Moreover, if (p, V) is a finite-dimensional representation
(again of one of the groups at the end but trivial on the center) defined over a field L containing the
reflex field Fy and II is defined over L, then we get a local system also denoted by V,, on each of the
associated Shimura varieties and there are natural isomorphisms

H'(Shy, V)i = H' (Shy, V) = H' (Shey,, V)i = H' (Shy, . V)i

in the category Mlﬁz. Note that in general, the field of definition of IT contains the field of rationality,
but it is not clear if these are equal. See [12] and [62] for a discussion of these issues, which are not so
important for us, since we will need instead a version of the above isomorphism for eigenvectors of the
unramified Hecke algebra at finite level.

Let K be an open compact subgroup of G(Af) for G each of the end groups such that the images
of the two /C under the quotient map are identified by the isomorphism in the middle; we write /C for
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this image, which is an open compact subgroup of (G/Z)(Af) = G(Af)/Z(Ay). (There will be no
confusion since we will always identify what the ambient group is.) Let S be a finite set of rational
primes such that for all the groups G = ¥,9,9p,9p above and for all p ¢ S:

e G is unramified over Qp;
e [C, is a hyperspecial maximal compact subgroup of G ;
o II, has a nonzero Kp,-fixed vector.

Let #35 = #(G(AS),K%) be the Hecke algebra of compactly supported KS-bi-invariant functions
on G(AS), where AS = H;,“Q,, and KOS = [1,¢s Kp- Then %”GS acts on Hi(ShG,;C,Vp). Put I1S =

®;¢S I1,, and
H'(Shg, i, V,)[1°] = {x € H (Shg i, V,) | Tx = x(T)x forall T € 3},

where y is the character of ijS associated to IT. Let L be a number field such that (p, V,) is defined
over L and such that L contains the values of y. Then there are canonical isomorphisms

H'(Shy i, V) [T%] = H'(Shy i, V) [I1°] = H' (Shy, k. Vo) [TT°] = H' (Shy, ., V) [1T5]

; L
in the category M .

5. The global exceptional isomorphism

In this section, we construct the global exceptional isomorphism between a (projectivized) unitary group
attached to a Hermitian (or skew-Hermitian) space V and the identity component of a (projectivized)
quaternionic unitary group attached to a quaternionic skew-Hermitian space V. Moreover, we study the
restriction of this isomorphism to certain natural subgroups corresponding to the decomposition of V
into the direct sum of two subspaces.

5.1. Hermitian spaces and unitary groups

Let E/F be a quadratic extension of number fields and p the nontrivial Galois automorphism of E/F.
Write E = F + Fi for some trace zero element i € E*. Let V be an E-Hermitian space. Thus, V is
equipped with a nondegenerate form
(,)v: VXV S E
satisfying
(va, wBy = a”(v,wlvB,  (v,w)y = (W, V).
We denote by GUE (V) the unitary similitude group of V:
GUE(V) ={g e GLg(V) | (gv,gw)v =v(g) - (v,w)y forall v,w € V},

where v : GUg (V) — F* is the similitude character.

Proposition 5.1. Let V be a Hermitian space over E of dimension n, and let g € GUg (V). Then

N(det(g)) = v(g)",

where N denotes the norm map E* — F*.
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Proof. This is obviously well known, but the proof will serve to establish some notation. Let V* be the
E-linear dual of V. First, the form (-, -)y induces an E-conjugate linear isomorphism

@:VxV,
given by
e(x)(y) = (x,y)v.
Then for a positive integer r,
AN : NV o ATV 5.1
is also E-conjugate linear. Let ¢ be the E-linear isomorphism
t: A"(VH) = (A"V)F, 5.2)
induced by the multilinear map
(V)" XV = E, (A1,...,4:,V1,...,V,) = det(2;(v;)). (5.3)

Now, any g € GLg (V) acts on V* via gA(v) = A(g~'v) and ¢ is equivariant for this action since equation
(5.3) is equivariant for the diagonal action of GLg (V). The composite

toAN p: ANV = (ATV)*

is an E-conjugate linear isomorphism and may be viewed as giving a Hermitian form on A"V, denoted
by (-,-)ary. (That this form is conjugate symmetric follows for instance by computing it in matrix
form in terms of the matrix of the form on V with respect to an orthogonal basis. If the matrix of the
original form is the diagonal matrix with entries ay, ..., a,, then the entries a; lie in F and the form
on A"V is represented by the diagonal matrix whose entries are products of the form q;, - - - a;. with
1<ij<---<i, <n)

Now, suppose g € GUg (V). Then

P(gv)(W) = (gv, Wy = v(g) - (v,g ' Wlv = v(g) - (g¢) (V) (W)
so that
pog=v(g)-goy
and
Npog=v(g) -gon g
Thus, for X,y € A"V, we have
(8%, 8Y)Arv = v(8)" (X, ¥)arv.

Now, take r = n. Then g acts on A"V as the scalar det(g) so that (gx, gy)any = N(det(g)) (X, y)anv,
from which it follows that N(det(g)) = v(g)". O

5.2. Construction of the (global) exceptional isomorphism

Let V be a four-dimensional (right) E-Hermitian space. Such a V is classified by a collection of its
determinant §, € F,/NEY for all places v, which equals its discriminant (see [30, §2.1.1] for our
convention) since dim'V = 4, together with its signature at ramified Archimedean places. (For a split
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place, 8, is always trivial. For a ramified Archimedean place, J, is trivial if the signature is either
(4,0), (2,2) or (0,4) and is nontrivial if the signature is (3, 1) or (1, 3).) Let B be the unique quaternion
algebra over F which is ramified exactly at those places v of F at which ¢, is nontrivial. Let * be the
main involution on B. Then we will construct

e a three-dimensional right B-space V,
e a skew-Hermitian B-form (-, -) on V, that is, a nondegenerate sesquilinear form (-,-) : VxV — B
satisfying

va,wB) = a*(v,w)B, (v,w)=—(w,v)"

such that there is a natural isogeny

GSUE(V) — GUs(V)",
as well as a natural isomorphism

PGUE (V) = PGUg(V)".
Here, we denote by GUg (V)" the identity component of the unitary similitude group of V:

GUg(V) ={g € GLg(V) | (gv,gw) =v(g) - (v,w) for all v, w € V},

where v : GUg (V) — F* is the similitude character, and put

GSUE(V) = {g € GUE(V)| det(g) = v(g)*},
PGUE (V) = GUg(V)/E™,
PGUg(V)? = GUg(V)?/F>.

Let V = A%V. This is a right E-space, and we will extend the E-action to a right B-action. To do so,
we must construct an element L € Endg (V) which is conjugate linear for the E-action:

L(xa) = (Lx)a”

forx € \7, a€E.
The map L will be a composite of three maps:

(i) The map
A2 APV — AX(VY)

obtained by specializing equation (5.1) to » = 2, which is an E-conjugate linear isomorphism.
(i) The map

L AZ(VF) = (APV)

obtained by specializing equation (5.2) to » = 2, which is an E-linear isomorphism.
(iii) Here, we use that dimV = 4. Fix an isomorphism

d: AV =E.
This is well defined up to scaling. The natural map

AV XAV 5 AV = E (5.4)
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is symmetric and induces an E-linear isomorphism
¥ APV = (APV)"
Let
L:l//‘l OLo/\zgo.

Clearly, L depends on the choice of d. If d is scaled by «, then ¢ is scaled by « as well and L is scaled
by a~'. However, L? changes to

(¢ 'L)(@”'L) = (@) 'L? =N(a)"'L°.

Thus, L? is well defined up to norms from E* to F*. In fact, L? turns out to be a scalar operator. To
identify this scalar, we recall the following invariant attached to a Hermitian space V of dimension n
and an isomorphism d : A"V ~ E.

Definition 5.2. Let V be a Hermitian space of dimension n with form H, and let d : A"V =~ E be an
isomorphism. The form H induces a map

VX VY =S E, (Vi,..., Vo, Wi, ..., Wy) = det[H(v;, w;)],
which factors through A"V X A"V and gives a Hermitian form
h:AN"VXA'"V > E.
Let v € A"V be such that d(v) = 1. Then define
vol(H,d) = h(v,v).

Note that 4 is a Hermitian form, so vol(H, d) lies in F* and its class in F*/NE> equals the class of the
determinant of H.

Proposition 5.3. The map L? is multiplication by vol((-, )y, d).

Proof. We will pick a suitable basis and compute. Since L? and vol((-, -)y, d) scale in exactly the same

way as a function of d, we can choose any convenient d as well. Let vy, ..., v4 be a basis of V with
respect to which the form (-, -)y is diagonal with entries aj,...,a4 € F. Letey, ..., e4 be the dual basis
of V*. Then

e(vi) = a;e;
and

2
A (@) (Vi AVj) = a;aje; Ae;.

For 1 <i < j <4, letv;; denote the element v; A v; € A2V. This collection gives a basis of A2V. We
let {e;;} C (A*V)* be the dual basis. Then

t(e; A ej) =€j.

For any pair (i, j) as above, let (i’, j”) be the unique pair of elements such that {7, j,i’, j'} = {1, 2, 3,4}
and such that i’ < j’. Define sign(i, j) = £1 by

Vij Ay po=sign(i, j)Vi A Vo A V3 A vy
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Now, choose d such that
d(Vi AVy AV3AVy) =—1. (5.5)
(This choice may seem surprising, but it is made so as to agree with some conventions in [30].) Then
v~ (ei)) = —sign(i, j) - Viryr-

(The — sign here occurs because of the choice made in equation (5.5).) Now, we can write down L
explicitly in the basis v;;. It is given by

Vi2 > —a1azV34,

Vi3 > ajazvag,

Vig > —aj1a4vas,

V23 > —azasviy,

Vo4 > a2a4V13,

V34 > —aszaqvi.
The proposition follows from this explicit description. O

Now, let us define a quaternion algebra B as follows. Let

J = vol((, v, d),

and define B by
B:=E+Ej, j*=J, aj=jo*

for all @ € E. Then we can define a right action of B on V by

x-j=L(x).

We will denote this space by V when we want to regard it as a B-space rather than an E-space.
As in the proof of Proposition 5.1, the composite map ¢ o A% is a conjugate linear isomorphism

A2V = (A’V)*

that gives rise to a Hermitian form (-, -}y on V = A?V. Multiplying this form by the trace zero element
i gives a skew-Hermitian form on V, which we denote simply by (-, -).

Lemma 5.4. The form (-,-) on V satisfies: Forall x,y € V,

i) (xj,y) = (vj, x).
(i) (xj, i)’ = =J(x,).

Proof. Firstly,

(xj.y) =i~ [to A2(p) (x)](7)
=i-[WoLoL@](y)
= Ji [ (0]

Since equation (5.4) is symmetric, we have

[y () ](y) = [¥(N](x),

from which it follows that (xj, y) = (vj, x).
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Secondly, we have

(xj, yj) = Ji- [¥ ()] (¥))
=Ji [l//(yJ)] (x)

=Ji-[yoy~ oo AP (9)(1)](x)
=J- (y’x)
so that
(xj,yj)p:]-(y,_x)p:—](x’y). o

Remark 5.5. In fact, (ii) above follows from (i). Indeed, assuming (i), we have
(xd, yi) = (-3, x) =J (3, x) = =J(x,y)".

Now, we can define a B-skew-Hermitian form on V by

() = (60 = 5 0 (). (56
Proposition 5.6. The map
GLE(V) = GLe(V), g+ A%
induces an isogeny
&: GSUE(V) — GUg(V)"

with kernel {+1}.
Proof. Let g € GUg (V). We first compute the commutator of L and A”g. Recall that

L:l//‘l OLo/\zgo.
Now, for any g € GLg(V), we have
Lo /\2g = /\2g ot 6.7
and
Yo A’g =det(g) A>gou. (5.8)
If further g € GUg (V), then
(8x,8y)v =v(g)(x, y)v
which implies that (gx, y)y = v(g)(x, g”'y)v and
pog=v(g)goe.
Thus,
A2go A’g =v(g)? A2 go Al 5.9
It follows from equations (5.7), (5.8) and (5.9) that

Lon?g=v(g)tdet(g) ' A2goL (5.10)
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for g € GUg (V). Thus, for g € GSUg(V), the endomorphism AZg lies in GUg (V). This gives a map
GSUE (V) — GUg(V)
whose kernel is easily checked to be {£1}. On the other hand, we have

dimGSUE (V) = dimGUEg (V) — 1 = dimUg (V) = 4% = 16,
dimGUg(V) =dimUg(V)+1=3(2-3-1)+1=16.

Since GSU (V) is connected, this shows that the image of the above map is GUg(V)". O
Proposition 5.7. There is a natural isomorphism
& :PGUE (V) — PGUg(V)°,
where
PGUg (V) = GUg(V)/EX, PGU(V)? = GUR(V)°/F*.
Proof. Let g € GUg (V). Put f = A’g and a = v(g)?/det g. By equation (5.10), we have
Lf=afL.

By Proposition 5.1, we have N(det g) = v(g)*, so N() = 1 and we can choose 8 € E* (unique up to
multiplication by F*) such that @ = 8/8°. Then

LBf =p°Lf =p’afL=BfL
so that 8f € GUg(V). The assignment g +— Sf gives a homomorphism
GUE(V) — GUg(V)/F*.

It is easy to see that its kernel is the center of GUg (V). Indeed, if Ag is a scalar multiplication on V,
then since dimV > 2, g has to be semisimple and hence is a scalar multiplication on V. On the other
hand, as in the proof of Proposition 5.6, we have dim PGUg (V) = dim PGUg (V). Since GUg (V) is
connected, this shows that the image of the above map is the identity component of GUg(V)/F*. O

Remark 5.8. The reader may note that the notation is mildly confusing here. Namely, 8 f is the map
given by Bf(x) := f(x)p since the action of E is on the right.

Remark 5.9. For g € GSUE(V), we have @ = 1, so we may take 8 = 1 as well. This implies that the
maps constructed in the previous two propositions fit into the commutative diagram below, where the
vertical maps are the natural homomorphisms

GSUL (V) ——> GUg(V)°

|

GUE(V)

|

PGU (V) ——> PGUg(V)".
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5.3. Subgroups

In this section, we discuss the effect of the isogeny/isomorphism of the previous section on certain
natural subgroups of the unitary group obtained from a decomposition of the Hermitian space into a
sum of two Hermitian spaces.

5.3.1. The sum of two two-dimensional spaces
We first discuss the case when V is an orthogonal direct sum of the form V = V| @ V, with dimg V| =
dimg V, = 2. Then

V=nA2(Via V) =A2(V) & A} (V1) & (VI ® V>), (5.11)

where we identify V| ® V, with its image under the natural map to A’V (which sends v ® w to v A w).
We may assume that the basis (v, Vo, v3,v4) of V is chosen such that (v, v;) forms a basis of V|
and (3, v4) a basis of V;. From the explicit formulas for L, it is clear that L preserves the subspaces

Vg = A2(V)) ® A’(V,) and Vi=V,®V,,

so these are B-spaces that we denote by Vg and V¥, respectively. Since the collection (v; Hl<i<j<4)
forms an orthogonal basis for the form (-, -), the decomposition V=Vto Vg is one of skew-Hermitian

E-spaces. Moreover, the formula (5.6) shows that the decomposition V = %K) Vg is one of skew-
Hermitian B-spaces.

Proposition 5.10. Let H be the subgroup of GSUEg (V) given by
H = GSUE(V) NG(Ug (V1) x Ug(V2)).
Then .f restricts to an isogeny
H — G(Ug(V¥) x Up(V))", (5.12)

with kernel {+1}.

Proof. Let g € GUE(V)), g2 € GUg(V3) be such that g = (g1,g2) € H. Then A%g acts as right
multiplication by det(g;) on A>V; and by g; ® g on V| ® V,. Since H is connected, this shows that £

maps H into the subgroup G(Ug (V#) x UB(Vg))O of GUg (V). On the other hand, we have

dim H = dim G(Ug (V1) xUg(Vy)) -1
=dimUg (V) +dimUg (V)
=22422=38,
dimG(Ug(V#) x Ug(V¥)) = dim Ug(V¥) + dim Ug (V}) + 1
=202 2-D)+1(2-1-1)+1=8.
Hence, the image of H under & is G(Ug(V#) x UB(V(?))O. O

Likewise, one has an analogous result for subgroups in the context of Proposition 5.7.

Proposition 5.11. The map & restricts to an isomorphism

G(Ug(V1) x Ug(V2))/EX =~ G(Ug(V¥) x Ug (V) /FX. (5.13)
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Proof. Let g = (g1,g2) € G(Ug (V) x Ug(V3)). As in the previous proposition, the map A”g clearly
preserves the decomposition V = Vie Vg, hence so does 8 - A%g. Since 8 - A2g lies in GUg(V), it

must in fact lie in G(UB(V”) X UB(VOIi )). This gives the map (5.13), which must be injective since ¢ is
injective. From dimension considerations, it must be an isomorphism. O

It is useful to write down explicitly the maps in equations (5.12) and (5.13). First for i = 1,2, we
define a quaternion algebra B; such that V; is naturally a right B;-module and is equipped with a
B;-Hermitian form whose projection to E recovers the Hermitian form. Let us outline for i = 1, the case
i = 2 being exactly similar. The Hermitian form on V| gives an E-conjugate linear isomorphism

o1: Vi =V,
where V7 as usual is the E-linear dual of V. Let us fix an isomorphism
dp: /\2V1 ~F.
For definiteness, we let d;(v] A vp) = 1. This gives a bilinear pairing
VixVi—E,  (x,y)>di(xAy)
and thus gives an E-linear isomorphism
Y1:Vi= Vi, yi(x)(y) =di(x Ay).
Define L; € Endg (V) by

Li =y ogr.
Explicitly, we see that L acts on V| by
V| > —a;vy, (5.14)
Vo > arVy (5.15)

so that L? = —aja; = — vol(Vy, d)). Let
Ji1 =—=vol(Vy,dy),
and define B| by
Bi=E+Ej, ji=Ji, aji=ja’
for all @ € E. Then the right E-action on V; extends to a right Bj-action defined by
x - ji = Li(x).

When we want to think of V; as a By-space, we simply denote it V.

Lemma 5.12. For x,y € Vi, we have

(1) ('lesy) = _(yjlv-x)'
(i) (xji,yj)* =-Ji(x,y).

Proof. We have for x,y € Vy,

(xj1, ) = @1 (xj1) (¥) = 1 L1 (xj1) (9) = v1 L3 (x0) () = Jig1 (x) (9) = J1dy (x A y),
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and likewise (yji,x) = J1d1(y A x). It follows from this that (xj;, y) = —(yji,x) which proves (i). Now,
(ii) follows from (i) since
(i yi) = =01 -dnx) = =L, x) = =Ji(x, »)P. o
Using the lemma, we find that
1. .
. y) = () = g1, y)

1

defines a By-Hermitian form on V) such that pro(-,-) = (-, -). Thus, there is a natural embedding
GUg, (V1) = GUE(V1)

which we can make explicit as follows. Pick a B-basis x; for V;. Then V| = x;B; and for g € GUg, (V1),
let B, be defined by

8X1 =X1,3g.

The assignment g — S, gives an identification GUp, (V1) = BY. Indeed, this map is injective; it is also
surjective since for any 8 € B} and @, @’ € By, we have

(x1Ba,x18a’) = (Ba)’(x1,x1)Ba’ = o B (x1,x1)pa’ = v(B)a (xi,x1)a’ = v(B)(x1a, x12").
Here we have used that (x;,x) lies in F, the form (-, -) being B-Hermitian. Then
GUE(V1) = (Bf X EX)/F*,

where the B corresponds to the GUg, (V1) action described above, the E*-action is given by @
(right)-multiplication by @' for @ € E* and the embedding of F* in B} x E* is just the diagonal
embedding ¢ — (z,¢). All of the above discussion carries over verbatim to the case i = 2 so that after
picking a Bj-basis x, of V,, the map GUg, (V2) = GUg(V>) is identified with the embedding

B — (B3 X EX)/F*.
Next, we explicate the groups on the right of the map (5.12). First, we note that
GUR(VH ~ E*.
Indeed, let x be any nonzero vector in A2V, so that Vg = xB. Then for a € E*, the map
Xxp — xaf
gives an element of GUB(V(‘)1 ). By dimension considerations, this gives an isomorphism E* =
GUp (Véi ). More precisely, it is easy to see that for any g € GUp (V(gi ), we have g - X = Xy, for a unique

Y¢ € B* and the assignment g — vy, gives an isomorphism of GUB(VOji ) with the semidirect product

E* > (j), where j acts on E* by conjugation in B*. Note that the induced isomorphism GUg (Vg )0~ EX
is independent of the choice of x € A2V].
As for V¥, we have the following proposition.

Proposition 5.13. There is an isomorphism
GUp(VH" ~ (B} x BY)/F*,

depending on the choice of a basis vector for Vi (as Bi-space) and for V, (as Ba-space).

https://doi.org/10.1017/fmp.2023.20 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.20

Forum of Mathematics, Pi 35

Proof. First, note that the restriction of the Hermitian form (-, -)y to Vi ® V> is just the tensor product
of the Hermitian forms on V| and V,. Also, from equations (5.14) and (5.15), right multiplication by j
and j, on V| and V; is given explicitly by

Viji =—aiva, V2j1 =axvi, V3jo = —a3V4, Vajo = a4vi.

From this and the explicit formula for the action of L = j on V, we see that (right)-multiplication by j
on V| ® V; is the same as (right)-multiplication by j; ® jo.

Choose a B;-basis x; for V| and a B>-basis x, for V,. Then there is an action of BT X B; onV;®g V,
which on pure tensors is given by

(B1,B2) - (X121 ® Xoa2) =X B1a1 @ X202,

for any @y € By, ap € Bj. This action is clearly E-linear and also j-linear since j acts as right
multiplication by j; ® j», hence is in fact B-linear.
Now,

(x1B81a1 @ X202, X1810] ® X2003) =i (X111, X1 8101V, (X2202, %2820V,
=i-v(B)v(B) - (X1a1, X102 )v, (X202, X020,
=v(B1)v(B2) (X101 ® X2, X1 ] ® X20)),

which shows that (81, 82) gives an element in GUg (V*). Since the action of (81, 82) commutes with j,
we see from the formula (5.6) that it in fact defines an element of GUg(V*). This gives a map

B} x BY — GUg (V¥

whose kernel is the diagonal F* in BT X B;, embedded as ¢ +— (t, t‘l). By dimension considerations,
we see that this gives an isomorphism (B x BY)/F* ~ GUg(VHO. O

Now, we can write down the map (5.12) explicitly. Let & = (hy, hy) € H with h; € GUg (V) and
h; € GUg(V3). Then

v(hy) = v(hy)
and
det(hy) det(hy) = v(h1)? = v(hn)?.

Moreover, N(det ;) = v(h;)? by Proposition 5.1 so that det(/,) = det(h;)?. Now, A%h acts as (right)-
multiplication by det(41) on A>V; and by det(h) on A>V, = A%V - j, and thus acts on Vg as the

element det(h;) € E* = GUB(VOﬁ)O.
Fix a basis vector x; for V| and x; for V, as above. This gives identifications

GUg(Vy) = (Bf X EX)/F*, GUg(Vy) = (B} X EX)/F*.
Let g1 = [b1,a1] € GUE(V)) and g3 = [b2, @2] € GUE(V;). Then
v(g) =v(b)N(a)™",  det(gr) =v(bi) - aj?,
and

v(g2) = v(b2)N(2) ™", det(g2) = v(b2) - a5°.
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Let g = (g1,82) € G(Ug (V) x Ug(V,)) viewed as an element in GUg (V). Then
v(g) = v(g1) = v(g2) = v(b1)N(a1) ™" = v(b)N(az)™!
while
det(g) = v(by) - ay? - v(by) - 3.
Thus,

g € GSUE (V) & det(g) = v(g)?
= v(b1)-a;? - v(by) - 5% =v(b)N(ar) ™" - v(b2)N(az) ™
— aiap = a‘i’afz’

= aa, € F*.
We conclude that
H = {([b1, 1], [b2,@2]) | v(b1)N(a1)™" = v(b2)N(e2) ™", 1z € F*} .
The action of & = ([by, @], [b2, a2]) on V| @ V3 is then given by
XiB1 ® X2y > Xibi1fray! @ Xobofray’ =x1b11a7 @y @ Xobofy = Xib1(@1@2) ™ B ® X2b2f
so that the map (5.12) is given explicitly by
hs ([br(@a) ™. ba). v(bi)ar?) € GU(BY x BS)/F) x EX).

Likewise, we can make equation (5.13) explicit. Let g = (g1,82) € G(Ug (V1) X Ug(V3)), with
g1 = [b1,a1] and g = [b2, a2]. Then
v(g)? _ v(b1)N(a1) v(b2)N(ap)™ __mim
det(g) v(bl)v(bz)r;yl‘za/z‘2 (araz)P’

so we may take 8 = @ a; in the definition of £(g). Then the map (5.13) is given by

g+ ([b1, 3], det(g1)a12) .

Example 5.14. This is the case that is of most interest to us. Instead of starting with the spaces V or V
or V;, we start with two quaternion algebras By and B, over F containing E. Suppose that

31=E+Ej1’ BQ=E+Ej2,

with j% =J; and j% = J,. Let V; = B; considered as a (right)-E-Hermitian space with the same form as
in [30, §2.2], that is,

(a+jib,c+jid); =a’c—J;b"d.
We specialize the setup above to the case
V=V, eV,
with Hermitian form (-, -)y given by the direct sum of (-, ); and (-, -);. In the basis

vi = (1,0), v2 = (j1,0), v3 =(0,1), v4 = (0, ]2),

https://doi.org/10.1017/fmp.2023.20 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.20

Forum of Mathematics, Pi 37

this form is diagonal with matrix

al 1
an —J1
as 1
ay —Jz

Let us pick d : A*V ~ E such that
d(Vi Avy AV AVy) =—1

as in the proof of Proposition 5.3. Then J = vol((-, -}y, d) is equal to JJ,.
With respect to the bases (V] A va, v3 A v4) of Vg and (V] ® V3, V2 ® V3,V] @ V4, V2 ® Vy) of VE, the
matrices of these Hermitian forms are given by

1

-Ji -Ji
( —Jz) and s ,

J

respectively. Thus, V# is the tensor product of V| and V; as Hermitian spaces. The action of j on \'L
can be read off from the formulas in the proof of Proposition 5.3 and is given by

(Vi®Vv3) - j=v2® vy,

(V2®Vv3) - j=J1 - VI ®Va,
(Vi®Va) - j=J2-V2®V3,
(Vva®vy)-j=J v ®V;.

This shows that V# with its B-action and B-skew-Hermitian form is exactly the same as the space V
occurring in [30, §2.2].

5.3.2. The sum of a three-dimensional and a one-dimensional space
In this section (which is not used in this paper), we suppose that V is an orthogonal direct sum of the
form V = V3 & V4 with dimg V3 = 3 and dimg V4 = 1. Then there is an inclusion

G(Ug(V3) x Ug(V4)) = GUE(V),

and so we can ask for a description of how this relates to the maps £, &.
Note that

A2V = A’V3 @ (V38 Vy)
as a sum of (skew)-Hermitian spaces. We may assume that the basis vectors v; are chosen such that
(v1, V2, v3) forms a basis for V3 while vy is a basis for V4. The explicit formula for L shows that L
interchanges A%V3 and V3 ® V4. Thus, letting W := V3 ® V4, we have

V =W ®g B, (5.16)

at least as B-spaces. The formula (5.6) shows that the restriction of the B-skew-Hermitian form (-, -)
to W is the same as the restriction of the E-skew-Hermitian form (-, -) (from V) to W, from which it
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follows that the form (-, -) on V is just the B-linear extension of (-, -) via the isomorphism (5.16). Thus,
there is a canonical inclusion

GUg (W) — GUg(V),

which must land inside GUg (V) since GUg (W) is connected.

Proposition 5.15. The map ¢ restricts to an isomorphism
G(Ug(V3) X Ug(V4))/E* ~ GUE(W)/F*.

Proof. 1t is clear that £ restricts to an injective map between the given source and target. That it is an
isomorphism follows from dimension considerations and since the target is connected. O

6. The local exceptional isomorphism

In this section, we study the local exceptional isomorphism between the (projectivized) unitary group
attached to the four-dimensional Hermitian space V and the identity component of the (projectivized)
quaternionic unitary group attached to the three-dimensional quaternionic skew-Hermitian space V. For
later use, we need to consider the localizations at almost all (finite) places and at real places.

6.1. Setup

Let F be a local field of characteristic zero and E an étale quadratic algebra over F. We denote by p the
nontrivial automorphism of E over F' and by N = Ng,r the norm map from E to F. Fix a trace zero
element i € EX, and put u = i> € F*.

We recall the construction in §5. Let V be a four-dimensional E-space equipped with a Hermitian
form (-, -)y. (We considered a right E-space V earlier but regard it as a left E-space by setting av = va
for @ € E and v € V.) Fix an E-linear isomorphism d : A*V — E. Then we have a six-dimensional
E-space V = A2V equipped with a skew-Hermitian form

(x,yov (x1,y2)v
(x2, yv (x2,y2)v

(x1 AX2,y1 A yz) =1i-det
and a conjugate E-linear automorphism
L:lp_l oLo/\ch,

where

e ¢ :V — V¥ is the conjugate E-linear isomorphism induced by (-, -)v;
o 1 : A’>(V*) = (A2V)* is the natural E-linear isomorphism;
e i : A2V — (A%ZV)* is the E-linear isomorphism relative to d.

Note that L? is the scalar multiplication by some J € F*. This gives rise to a quaternion F-algebra
B = E + Ej with a trace zero element j € B* such that j> = J and a three-dimensional right B-space
V =V equipped with a skew-Hermitian form

(yy =6y =i (L(x),y).
Moreover, we have a natural isomorphism
& :PGUE(V) — PGU (V)"

by Proposition 5.7. Since B and V do not depend on the choice of d, we can make a convenient choice
in the following computation.

https://doi.org/10.1017/fmp.2023.20 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.20

Forum of Mathematics, Pi 39

6.2. The split case

In this section, we assume that V is split. Fix a basis vy, ..., v4 of V such that

1 if (4,7) =(1,3),(2,4),(3,1),(4,2),
0 otherwise.

(vi,vj)v = {

Letey,...,e4 be its dual basis of V*. We take an isomorphism d : A*V = E such that
dVi AV3AV3IAVy) =1,
Let T be the maximal torus of GUg (V) consisting of elements ¢ such that

v =1V, V) = 1y, tvs =v(t]) v, vy =v(5) vy

for some ; € EX and v € FX. We identify T with (EX)?> x F* via the map ¢ + (t1,1,,v). Then the
center of GUg (V) is equal to E* embedded into T by z — (z,z, N(2)).

We take a basis {v;; |1 <i < j <4} ongivenbyVij =v;Avj. Let{e;; |1 <i < j <4} beits
dual basis of V*. Since

p(vy) = e3, ©(v2) = ey, o(v3) = ey, ©(v4) = e,

we have
(Lo A29)(V12) = e3a, (Lo A%p) (Vi) = eq2,
(Lo /\290)(V13) = -e13, (to /\Zcp)(vz4) = —eyq,
(Lo A@)(Via) = —ex, (Lo A%@)(Va3) = —eya.
Also, we have
(vi2) = e, W (v34) = eq2,
W(vi3) = —eoy, W (vas) = —ey3,
(Vi) = e, Y(va3) = eqy.
Hence, we have
L(vi2) = V12, L(v34) = V34,
L(vi3) = Vo4, L(v24) = V13,
L(Vi4) = —V14, L(vy3) = —Vp3.

In particular, J = 1. Moreover, (v;;, vi7j») and (v;;, vy j») are given by the following tables:

(.9 Vi2 Va4 Vi3 Vo4 Vig V23
Vi2 0 i 0 0 0 0
V34 i 0 0 0 0 0
Vi3 0 0 - O 0 0
Vo4 0 0 0O - O 0
Vi4 0 0 0 0 0 —i
V23 0 0 0 0 —i 0
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(D) Vi Va4 Vi3 Va4 Vi Vo3

Vi2 0 i+ij O 0 0 0

V34 i+ij O 0 0 0 0

Vi3 0 0 —-i —ij 0 0

Vo4 0 0 —ij -i 0 0

Vig 0 0 0 0 0 —i+ij

V23 0 0 0 0 —i+ij 0

We take a basis 71, 75, #3 of V over B given by

Vi =V +Vig, Vo = V34 + Vo3, V3=vp3

so that
0 2ij 0
(7)) =25 0 0.
0 0 —i
Leti: B — M (F) be an isomorphism defined by
. . . . [a+c b-d
i(a + bi+cj+dij) = ((b+d)u a—c)'
Put
1 1 1 1
625(1+j), e’:z(i—ij), e"=ﬂ(i+ij), e*=§(l—j)

so that

i(e) = ((1) 8) i(e’) = (8 (1)) i(e”) = ((1) 8) i(e’) = (8 (1)) .

Put V' = Ve. Then, by Morita theory (see [30, §C.2] for details), V' is a six-dimensional F-space
equipped with a symmetric bilinear form (-, -)* determined by

1 T 77
§<x,)’> = (x,)’>' 4

for x,y € V' such that the restriction to V' induces an isomorphism GUg(V)? ~ GSO(VT) (see [30,
Lemma C.2.1]). We take a basis v1, ..., v of V' over F given by
Vi =Vie = Vi, vy = Ve’ = — - v,

v3 = Ve = Vi, V4 =Vre = — V3,

S| e | e

- 1 i
vs = P3e = = (V13 + Va4), ve = V3e” = — (Vi3 — V24)
2 2u

so that

00u0O O

0001 O

« w000 0
((Vi,Vj>)— 0100 O
0000 -4

0000 O

N—-O OO OO
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Let T be the maximal torus of GSO(V) consisting of elements 7 such that

vy =fivy, fvy = vy,
ij, = 1751_1\13, fV4 = 17272_1\)4,
fvs = avs + buve, fve = bvs + avg

for some 7; € F* and a, b € F such that ¥ = a®> — b?u # 0. We identify T with (F*)? x E* via the map
7+ (1,12, a + bi). Then the center of GSO(VT) is equal to F* embedded into 7 by z > (z, z, 2).

Lemma 6.1. The isomorphism ¢ restricts to an isomorphism
T/EX — T/F*,
given by
(t1,12,v) ¥ (N(t112), YN(11), v11 15).
Proof. Lett = (t1,t,v) € T ~ (EX)? x F*. Since

Vit v(1)? t'lotg
v(t) =, detr = ——-, —_— ==,
1, dett nh

the image of # under the homomorphism GUg (V) — PGUg (V) in the proof of Proposition 5.7 is equal
to the image of

= _ P 2
f=tt) - Nt
in PGUg (V). Put

f1 =N(I1l2), fQZVN(l‘l), a+bi=vt1t§, 17=a2—b2u=v2N(t1t2).

Then
fvy =iviy = N(t1t2)vip = f1vy,
- i i -
tvy = —-fvig = — - VN(t1) V14 = [rv2,
u u
vy =fvay = V2V34 = 17;1_1\/3,
- i i o]
fvg = —-fvp3 = — - VN(t2) Va3 = V1, va,
u u
R R DA
fvs = z(fvw +1vyy) = E(W1l‘2V13 + v 1v24)
a i
= §(V13 +Vo4) + E(VB —Va4) = avs + buvg,
I T i,
ve = = (fviz — Ivay) = — (viihviz — vt 1pv4)
2u 2u
b ai
= = (Vi3 +vaq) + — (V13 — V24) = bvs +ave.
2 2u
Hence, the assertion follows. ]
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6.3. The real case

In this section, we assume that F = R and £ = C. Write
i= up - i

with ug € R* so that u = —u(z). We further assume that the signature of V is either (2, 2) or (4,0). Fix a
basis vy, ..., v4 of V such that

1 if(i,j) =(1,1),(2,2),
(vi,vj)V = g if (l’ .]) = (3’3)’ (4’ 4)’
0 otherwise,

where { = +1. Letey,.. ., e4 be its dual basis of V*. We take an isomorphism d : A*V = E such that
d(ViAVyAV3 AV =1.
Let T be the maximal torus of GUg (V) consisting of elements ¢ such that
vy =rz1vy, vy =rzpvo, tV3 = rz3vs, 1V4 =rZ74Vy

for some r € R and z; € C!. We identify 7 with (C')* x R via the map ¢ +— (z1, 22, 23,24, 7). Then
the center of GUg (V) is equal to

{((z.2.2.2,7) |z € C!, r e R} =~ C*.

We take a basis {v;; |1 <i < j <4} of Vgivenby v;; = v; Av;. Let {e;; |1 <i < j <4} beits
dual basis of V*. Since

e(vi) =ey, p(v2) = e, @(v3) = es, @(va) = ey,
we have
(Lo /\280)(V12) = ey, (to /\2<p)(V34) = ez,
(Lo A%p)(vi3) = e, (Lo A%@)(Vas) = Lens,
(Lo A%@) (Vi) = Ley, (Lo A%@)(va3) = Lexs.
Also, we have
W (vi2) = e, W (vaa) = ey,
W (vi3) = —eoy, (V) = —eg3,
W(vis) = e, W (va3) = es.
Hence, we have
L(v12) = V34, L(v34) = V12,
L(vi3) = ={ v, L(va) = ={vi3,
L(vi4) = {V23, L(v23) = {Via.
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In particular, J = 1. Moreover, (v;;, vi7j») and (v;;, vy j») are given by the following tables:

(") Vi Vi34 Vi3 Vaq V4 Vo3
Vi i 0 0 0 0 0
V34 0 i 0 0 0 0
Vi3 0O 0 ¢ 0 O 0
Vou 0 0 0 ¢i o0 0
Via 0 0 0 0 ¢i o0
V23 0 0 0 0 0 {i
(,) Vio Va4 Vi3 Vo4 V4 V3
vi2 1 ij 0 0 0 0
V34 ij i 0 0 0 0
Vi3 0 0 i - o0 0
Vo4 0 0 —j ¢ O 0
Vi 0 0 0 0 i ij
Vo3 0 0 0 0 i «d
We take a basis ¥, 72, 73 of V over B given by
V1 = Vi3, Vy =V, V3=V
so that
Zioo
(Wi, 7)) =0 £i0].
00 i
Leti: B — My (F) be an isomorphism defined by
. . . . [ a+c b-d
i(a+bi+cj+dij) = ((b+d)u a_c).
Put
1 . , 1 P « 1 .
6—5(1+J), e —5(1 ij), e —2u(1+u), e —2(1 i)
so that

i0=(y0) 1 =(00) e=(To) wer=[o1).

Put V' = Ve. Then, by Morita theory (see [30, §C.2] for details), V' is a six-dimensional F-space
equipped with a symmetric bilinear form (-, -)* determined by

1 144
366y = (x, »e

for x,y € VT such that the restriction to VT induces an isomorphism, GUg(V)? ~ GSO(VY) (see [30,
Lemma C.2.1]). We take a basis vy, ..., vg of VT over F given by

V2 1 - i
vi=— Vie= (V13 = {va4), va=V2-91e" = - (V13 +{Vv24),

uo N \/Zug \/§u0
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V2

V3= — Ve = (Via + {v23), vy = V2 e’ = - (Vi4 = {v23),
uo 2ug Uo
V2 1 i
Vs = — -V3ze= (V12 + v34), ve= V2 T3¢ = - (V12 = V34)
ug V2u V2ug
so that
200000
0-20 000
. 1o o-c00 0
o\ —
(ivid) =10 0 0 -z 0 0
0O 0 0 0 -10
0O 0 0 0 0 -1

Let T be the maximal torus of GSO(V) consisting of elements 7 such that

=7(aivi — biva),

=7 (azvs — bavy),

N‘1 Nl Nl
N‘1 N‘l Nl

= F(azvs — b3ve),

for some # € RY and a;, b; € R such that Z; = a; + b;i € C'. We identify T with (C')3 x R via the map
7+ (%1, %, 73, 7). Then the center of GSO(VT) is equal to

{(3,,2,7) | 2= %1, F e R} = RX.
Lemma 6.2. The isomorphism & restricts to an isomorphism
T/C* = T/RX,
given by

(21, 22,23, 24,7) V> M,M,M’ﬂ ,
y2Y4 Y2Y3 Y34

2

where we choose y; € C! such that z; = yi-

Proof. Lett = (z21,22,23,24,7) € T =~ (CH)* x R’ and choose y; € C! such that z; = y%. Since

v(1)? a 1
dett 212273274

v(t) = r2, dett = r*zi1z22324,

the image of ¢ under the homomorphism GUg (V) — PGUg (V) in the proof of Proposition 5.7 is equal
to the image of

- 1 2
f=— At
Y1Y2Y3y4
in PGUg (V). Put v/ = V2ug - v;, and write
M=(,11+bll, M=az+b2l, w=a3+b3l
y2y4 2)3 34
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with a;, b; € R. Then

| 1 . - yiy3 Y2y4
— =5 (Vi3 = {ivae) = ——= Vi3 = ==— - (Vo4
r r y2 y1y3
=ay(viz — {Va4) + b1i(Vi3 + {vag) = apv| — bvj,
r _, i . yiys . 24,
— vy === (Vi3 + {Ivoy) = ——— - ivi3 - AL {ivoy
r r Y2y y1y3
=b1(Vi3 — {Va4) —a1i(Viz + {Va) = biv] + apv),
| 1. . Y1Y4 y2y3
— vy = (Ve +{iv3) = T - Via + == - {3
r r y2y3 YiY4
= ay(Vig + {v3) + bai(Vig — {V3) = aavy — byv),
| i . - yiys . y2y3s .
— vy === (Vg = {fva3) = ——— -ivig + == - {iv3
r r y2y3 Y1Y4

by (Vig + {v23) — a2i(Vig — {V23) = bovi + asvy,
1 1 yiy2 Y34
S v+

-, - -
— s = —2(1V12 +1vyy) = — V34
r r yiy2
. 7 ’
= a3 (V12 + Va4) + b3i(Vi2 — v34) = azvs — b3vg,
L. i - yiya . y3va .
) -tvé =——2(tV12—tV34) =——"1V2 + +1V34
r r Y3ya yiy2
. ’ 7
= b3(Vi2 + V34) — a3i(Vi2 — V34) = b3vs + azvg.
Hence, the assertion follows. O

Let X*(T/C*) and X* (T /R*) be the weight lattices of T/C* and T /R*, respectively. Then we have

X(T/C¥) = {(k, ka, k3, ka) € Z* [ Ky + ko + k3 + k4 = 0},
X*(T/RX) = {(I1,1r,13) € Z2 |1} + I + I3 = 0 mod 2},
where (k1, ko, k3, k4) and (1, [, I3) on the right-hand sides correspond to the characters
(21,22.23,24,7) V> 2} 22202 and (31,22, 5. F) > 21222,
respectively. As an immediate consequence of Lemma 6.2, we have:
Corollary 6.3. The isomorphism & induces an isomorphism
X*(T/RX) — X" (T/C),
given by

l1+lz+l3 —11—12+l3 11—12—13 —ll+lz—l3
2 ’ 2 ’ 2 ’ 2

(l1, 02, 13) —

under the above identifications.

7. Cohomological representations

In this section, we recall various facts about cohomological representations for real groups, with the
goal of constructing cohomology classes on the Shimura variety attached to the group ¥ = GUg (V)
of the previous section. Since
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Gy (R) ~ ]_[ GSO(4,2) x ]_[ GSO(0, 6),
vex vex

we will be particularly interested in the orthogonal groups O(4,2) and O(0, 6).

7.1. Cohomological representations

Let G be a connected real reductive group and K a maximal compact subgroup of G. We assume that
rank G = rank K and that G/K is a Hermitian symmetric domain. Let g9 and ¥y be the Lie algebras
of G and K, respectively. Let 8 be the Cartan involution of G associated to K. Then we have a Cartan
decomposition

go = To @ po,

where py is the (—1)-eigenspace of 6. Let J be the complex structure on py, that is, the automorphism of
Po given by the multiplication by i on the tangent space of G /K at the origin. Fix a Cartan subalgebra t;
of fy. Let g, T, p, t be the complexifications of gy, fy, o, to, respectively. Let p* be the (+i)-eigenspace
of J in p so that

g=foptop.

For any subspace f of g stable under the adjoint action of t, we denote by A(f) the set of roots of t in {.
We consider an irreducible unitary (g, K)-module 7 such that the relative Lie algebra cohomology

H*(g,K;n ® F)

is nonzero for some irreducible finite-dimensional representation F of G. Such (g, K)-modules are
called cohomological and classified by Vogan—Zuckerman [65]. We also consider each piece of the
Hodge decomposition

H'(g.K;n®F) = @ H”9(g,K;n ® F).
pHq=i

Let g be a #-stable parabolic subalgebra of g, that is, q is the sum of nonnegative eigenspaces of
ad(x) for some x € ity. Then we have a Levi decomposition

g=1®u,
where [ is the centralizer of x and u is the unipotent radical of q. Note that [ is the complexification of
Ip = g N go and contains t. Fix a positive system A*(I N f) of A(I N {), and choose a positive system
A*(1) of A(T) containing A*(I N f). Then
A*E) =ATINHUAmNE) and A*(g) =A* (1) UA(u)

are positive systems of A (¥) and A(g), respectively. Put
-5 > wow=3
p=3 a, P p)=3 a.
acA*(g) a€A(unp)

Let L be the centralizer of x in G so that its Lie algebra is ly. Let A € [* be the differential of a unitary
character of L such that («, A};) > 0 for all @ € A(u). Then, by [65, Theorem 5.3] (see also [36]), there
exists a unique irreducible unitary (g, K)-module A4 (1) such that
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o A4(A) has infinitesimal character Af; + p;
o Ag4(1) contains the K-type with highest weight At + 2p(u N p);
e any K-type contained in A4 (1) has highest weight of the form

Ay +2p(unp) + Z N
aeA (unp)

for some nonnegative integers n,.

Let F be an irreducible finite-dimensional representation of G with highest weight y. Then
H'(g,K;Aq() ® F*) ~ Homg (A'p, Aq(1) ® F*)
if y = Ay and
H'(g,K; Aq(1) ® F*) =0
otherwise (see [10]). Now, suppose that y = A|;. Then, by [65, Proposition 6.19], we have
H*RVR (g, K Ag(4) ® F*) = Hompak (A (1N p), C),
where R* = dim(u N p*), and
HP (g, K; Aq(A) @ F") =0
ifp-q#R"—R".
7.2. Local theta lifts

Let the notation be as in §8 below. In particular, G ~ O(p, ¢) and G’ ~ SL,(R). Let G° be the topological
identity component of G. Let w be the Weil representation of G X G’ (relative to the character x > ¢27*
of R). For any irreducible (g’, K’)-module x, the maximal 7¥-isotypic quotient of w is of the form

O(r)r

for some admissible (g, K)-module ©(x). If ®(xr) is nonzero, then it has a unique irreducible quotient
0 () by the Howe duality [28].

Now, suppose that 7 is a holomorphic discrete series representation of G of weight k + 1 (i.e., with
Harish-Chandra parameter k), where k is an integer with

k>2.
For our applications, we consider the theta lifts () and 8(x") when
(p,q) = (4,2) or (0,6).

7.2.1. The case (p,q) = (4,2)
In this case, by the result of J.-S. Li [48, Theorem 6.2], we have

0(m)|go = Aqy (o), 6(n¥)|go = Ag, (1),
where g; = [; @ 1; is the 6-stable parabolic subalgebra of g with
Ip ~ s0(4) ® s0(2), Uy =CX_g1e OCX gyhe, ® CXppiey ® CXppis,y,

[} ~s0(2) ®s0(2,2), U =CXg—p, ®CXg g, ® CXg hs, D CXg gy
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(where X, ¢+, is aroot vector for +&; + &;), and
A9 =(0,0,k —2), A1 =(k=2,0,0).
Since Iy = f and up = p*, Aq,(Ao) is a holomorphic discrete series representation of GO. Also, we have
W NPT =CXphp, W NP =CXgp,
so that 2p(11; N p) = 2¢;. Hence, the minimal K%-type of A, (1;) has highest weight
(k,0,0).
Moreover, since [} N f ~ s0(2) & s0(2) @ s0(2) and
LNPp=CXgpr; OCX_)is; ® CXgpiey ®CX gy g,
we have

1 if (i, /) = (1,1),(3,3),
dim H (g, K% Aq, (1) ® F) =432 if (i, j) = (2,2),

0 otherwise,

where F is the irreducible finite-dimensional representation of G° with highest weight A;. Note that F
is self-dual.

7.2.2. The case (p,q) = (0,6)
In this case, 6(rr)|go is the irreducible finite-dimensional representation of G° with highest weight

A= (k-2,0,0)

and O(n") is zero (see, e.g., [1, Proposition 6.5]).

8. Kudla-Millson theory

In the previous section, we studied certain cohomological representations for G = O(p, g) with (p, g) =
(4,2) or (0, 6). In this section, we recall the explicit construction of (g, K)-cohomology classes attached
to these representations using the Weil representation a la Kudla—Millson. While the original papers of
Kudla and Millson considered the case of the trivial local system, the case of more general local systems
was discussed in Funke-Millson. We also study the restriction of these explicit (g, K)-cohomology
classes to the subgroup O(2,2) x O(2,0) and O(0,4) x O(0,2) of O(4,2) and O(0, 6), respectively.

8.1. Groups and Lie algebras

Let V be an m-dimensional quadratic space over R of signature (p, ¢), where p and g are nonnegative
integers such that p + g = m. Namely, V is equipped with a nondegenerate symmetric bilinear form
(-,+) : VXV — R and an orthogonal basis {e; | | <i < m} such that

+1 ifl1<i<p,
(ei,e;) = . .
-1 ifp+l1<i<m.

We assume that p and ¢ are even. Let G = O(V) =~ O(p, q) be the orthogonal group of V. Put

Vi=Rei+---+Rep, V_=Reps1 +---+Rep,
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so that V =V, @ V_. We define a Cartan involution 6 of G by
0(g)=1v-g-1v,

where Iy = idy, @ (—idy ). Let K be the maximal compact subgroup of G with respect to 6. Then
K =0(V,) xO(V_) =~ O(p) x O(g). We define a maximal torus 7 of G by

T =SO(V}) x -+ x SO(V,) ~ SO(2)",

where V; = Rep;—| + Rey; and r = .
Let gy be the Lie algebra of G. Then we have a G-equivariant isomorphism p : A2V — g given by

p(u Av)(w) = (u,w)v — (v, whu.

We take a basis {X;; |1 <i < j <m} of go givenby X;; = p(e; Aej). Let {w;; |1 <i < j < m}beits
dual basis of g;. We have a Cartan decomposition

go = To @ po,

where fy and pg are the (+1)-eigenspace and (—1)-eigenspace of 6, respectively. Note that fj is the Lie
algebra of K. Via the isomorphism p, we have

fo = A2V, ® A2V, po=V,®V_.

Let to be the Lie algebra of T Let g, £, p, t be the complexifications of gy, ¥y, Po, to, respectively. If g = 2,
then we have a complex structure idy, ® Jy_ on pp and hence a decomposition

g=tep @y,
where Jy,_ is defined by
Jv_(em-1) = —em, Jv_(em) = em-1,
and p* and p~ are the (+i)-eigenspace and (—i)-eigenspace of idy, ® Jy_ in p, respectively.

Let W be a two-dimensional symplectic space over R. Namely, W is equipped with a nondegenerate
skew-symmetric bilinear form (-,-) : W X W — R and a basis {e, f} such that

<€,€‘>=<f,f>=0, <€,f>:1,

Let G’ = Sp(W) =~ SL;(R) be the symplectic group of W. Let K’ ~ U(1) be the standard maximal
compact subgroup of G’, where U(1) is embedded into SLy(R) by a + bi — (% ). Let g, be the Lie
algebra of G’ and g’ its complexification.

8.2. Finite-dimensional representations of G

Let {&; | 1 <i < r} be the basis of t; given by &;(¢) = t; for

()

We identify t* with C” via this basis. Under this identification, the weight lattice is given by Z". We take

{ei—em |1 <i<riU{e_+e&}
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as a set of simple roots. Then A = (41,...,4,) € Z" is dominant if and only if
A= 2 Ay 2 A,
Now, assume that » > 2. We only consider dominant weights A of the form
A1=((,0,...,0)

for some nonnegative integer £. In particular, we have S,V = Sym‘V, where S, is the Schur functor
associated to A. Put S’V = Sym‘V ® C and equip it with a nondegenerate G-invariant bilinear pairing
(-,-) : S’V x S’V — C given by

Vi ve, Wi we) = Z VLWwemy) Ve Wa(e)s

oeGp

where S, is the symmetric group of degree £. We denote by #‘V the kernel of the contraction
SV — S=2V given by

vl...vl;}—)Z<vi’vj>.vl...ﬁi...ﬁj...‘}['
i<j

Then, by [18, §19.5], Z‘V is the irreducible finite-dimensional representation of G with highest weight
A, whose highest weight vector is given by

(e1 + iez)f.
Also, the pairing (-, -) induces a G-equivariant orthogonal projection

Stv —s v, 8.1)

8.3. Weil representations

We recall the Schrodinger model S(V) of the Weil representation w of G X G’ (relative to the character
x > e2™¥ of R), where S(V) is the space of Schwartz functions on V. By [40, §5], the action of G is
given by
w(g)p(x) = p(g™'x),
and the action of G’ is given by
a m
w ( al) o(x) = a¥ plax).

1b mib(x,x

“’(1 _1)<p(x)=iq;P/ch(y)e‘z”“x’”dy-

Let xy, ..., x,, be the coordinates on V with respect to the basis {ey, ..., e, }. We denote by S(V) the
subspace of S(V) consisting of functions of the form p - ¢, where p is a polynomial function and ¢ is
the Gaussian defined by

Q01 ) = € T,
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We also recall the Fock model 9(C™) of the Weil representation w of g X g’ (relative to A = 27i),
where 2 (C™) is the space of polynomial functions on C™. We refer the reader to [42, §71, [19, Appendix
A] for details. Let zj, . . ., 2, be the coordinates on C™. Then, by [19, Lemma A.3], we have a g X ¢’-
equivariant isomorphism ¢ : S(V) =~ 9 (C™) such that ¢(¢g) = 1 and such that

1 0\ _; 1 1 0\ .0
tfxg—=——|¢ =%za, an+—ﬂ—t =2i—,

(8.2)

forl<a<pandp+1<pu<m.

8.4. Schwartz forms

We now recall the Schwartz forms constructed by Kudla—Millson [41] in the case of trivial coefficients
and Funke—Millson [19] in general. Let £ be a nonnegative integer. Recall that the signature of V is
(p,q).If p > 1, then as in [19, §6.2], we define

@q.c € P(C™) @ Ap* ® STV

by
1 l+q
Pq,t = (E) ;;ZQZ[;@LUQ@@ﬁ,
where the sums run over & = (ay,...,aq) € {1,...,p}9and B = (B1,...,B¢) € {1,...,p}, and
Za/:Z(yl"'Zaqs Z,BZZIBI"'Z/;{,
Wa = Wap+l N N Waypigs e =¢€p rrép-

(Note that we scale the Schwartz form given in [19, §6.2] by 2-% and take its image under the projection
Vel @ C — S’V.) Then we define

¢l e PC NP @IV
as the image of ¢, ¢ under the G-equivariant projection SV — %'V as in equation (8.1). Via the

isomorphism ¢, we also regard t,D ¢ as an element in S(V) ® Ap* ® %'V. By [19, Theorem 5.6], go y
is invariant under the diagonal actlon of K and

(w18 1)y, ,= t“%cp;’[

for r € K’ =~ U(1). By [19, Theorem 5.7], ‘p:] ¢ defines a closed differential form on G /K. Namely,
dSO/q,g =0, where

d: (PC) @ NP @ ZI'V)K — (P(C™) @ N p* @ I V)K

is the differential as in [19, §5.1].
Similarly, if p = 0, then we define

@r € P(C™) @ STV
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by

4
1
@ = (E) ;Z'B ®€'3,

where the sum runs over 8 = (81, ...,8¢) € {1,...,m}. Then we define
¢, e P(CM XV

as the image of ¢, under the G-equivariant projection S'V — %V as in equation (8.1). Via the
isomorphism ¢, we also regard ¢}, as an element in S(V) ® # ‘V.Then ¢, is invariant under the diagonal
action of G and

¢

(W ® ), =172 ¢

fort € K’ ~U(1).

8.5. Restrictions and contractions
For our applications, we consider a six-dimensional quadratic space V over R of signature (p, g), where
(p.q) = (4,2) or (0,6).
Let G = O(V) be the orthogonal group of V. As in §8.1, we take a basis {e1, ..., es} of V and define a
Cartan involution 6 of G. Let K be the maximal compact subgroup of G with respectto 6. Let§ =t & p
be the complexified Lie algebra of G, where f and p are (+1)-eigenspace and (—1)-eigenspace of 6,
respectively.
Put
V =Re; + Rey + Res + Reg, Vo = Res + Rey

sothat V =V @ V. Let G = O(V) be the orthogonal group of V, and regard it as a subgroup of G. The
natural inclusion V < V induces a commutative diagram

SV ———= SV

L

Sf—2v s S(—ZV,

(where the horizontal maps are the inclusions and the vertical maps are the contractions) and hence a
G-equivariant inclusion

7V FV.

Also, the natural projection V —» V induces a projection S‘V —» SV. Composing this with the inclusion
#'V —s S’V and the projection S¢V —» Z‘V, we obtain a G-equivariant projection

HV > HV, (8.3)
which restricts to the identity on Z¢V.
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8.5.1. The case (p,q) = (4,2)

In this case, p* is equipped with a basis {w;; |1 <i < 4,5 < j < 6} asin §8.1. Let p* - p* be the
K-equivariant projection induced by the natural inclusion p < p. This together with equation (8.3)
gives rise to a K X G’-equivariant map

Res: S(V) @ Ap* @ 'V — S(V) @ A2p* @ V.

Here, K acts diagonally on all three factors, while G’ acts only on the first factor. Choose an isomorphism
A%p* = C so that wis A was A wig A wae — 1. This induces a nondegenerate K-invariant bilinear pairing
A AZPF X AZp* — A%p* = C. For w € A*p* and v € SYV, we define a contraction

Cow : S(V)® A%p* @ SV — S(V)
by Cpy =1® ('f\‘”) ®(v).
Let goé’g € S(V) ® A?p* @ Z'V be the Schwartz form as in §8.4. We shall compute C,, ,, (Res(%,[))

for w and v given as follows. Put

wt = w15+ iwos +iwie — Woe,
W = wis +iwrs — iwie + Wos,
Wt = wis — iwrs +iwie + Wos,

w = w15 — iw25 - iU)l() — W76.
Then for t = (t1,1,) € T =~ U(1)? (where we identify U(1) with SO(2) by a + bi — ( 4 ©)), we have
1w =117 02,
In particular,
(»P")* = Cw*t + Cw™™, P ) =Cw™™ +Cw™ .

Hence, we obtain a basis of A%p* given by

Wt AW e A2(pH), Wt AW, 0w AT e () A (),

Wt Aw T e A2(pD)Y, oA, 0T AT e (DA (D)

Note that in the context of the introduction, the above elements in A2(p*)*, (p*)* A (p7)*, AZ(p7)*
correspond to those in

H*(X; x X2),  H''(X; xX2),  H™(X) x X2),

respectively, where X and X, are quaternionic Shimura varieties. Also, the elements in (p*)* A (p7)*
in the first row correspond to those in

HY' (X)) @ H*'(Xy),  H*°(X)) ® H"'(X),

respectively, whereas the elements in (p*)* A (p~)* in the second row (which are the most relevant for
us) correspond to those in

HYY (X)) @ H'(Xy),  H™'(X)) @ H'(Xa),

respectively. From the representation-theoretic viewpoint, the former corresponds to the contribution
of the trivial representation, whereas the latter corresponds to the contribution of holomorphic and
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antiholomorphic vectors in the discrete series representation. Put

1

ot = —; ottt AT = (w15 +iwrs) A (wie +iwg),
l
_ 1 _ . . .
=-5 @ TAWT = (w15 —iwas) A (w1 — iwa),
and
1 1
+_ . . 4 -— . o l
vV = 71 (e1 +iez)", 4 7 (e1 —iep)".

Proposition 8.1. For € = +, we have
Care e (Res(9) ) (x) = (x1 + €ix2) ™ - 0o (x).
Proof. Consider the diagram
StV ——=S'v |
x'v — a'v
where p, g, r, s are the projections. By [18, §19.5], we have

SV = 1000 ® T(0-200) ® - ®T(r-2%00) SV =T(00) ®T(t-20) @ D T(¢-2k.0)5
TV =100 TV =100,

where 7, denotes the irreducible representation with highest weight 2 and k = [%]. Also, by [18, §25.3],
we have

j+1
T(j,(),O)lG =~ 73,0 D Tf.;%l’o) G- D T(%{g) .

Hence, if p(x) = 0 forx € S‘V, then (gor)(x) = 0. This implies that the above diagram is commutative.
Since ¢ is the orthogonal projection and v€ € #‘V, we have

((sop)(x),v) ={(gor)(x),ve) = (r(x),v)

and hence
Corewe (Res( ) = Coe v (Res(¢2,0)),
where
Res: S(V) ® A%p* ® SEV — S(V) ® A%p* @ STV

is the natural projection. By definition, we have

+2

— 1

Coe,ve (Res(pa,0)) = (4_711') E g Zazg(Wa A W) {eg,ve)
@ B
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in 2(C®), where the sums run over @ = (a1, @) € {1,2}>and 8 = (B1,...,B8¢) € {1,2}¢. It is easy to

see that
Z Za(We NW) = (21 + Eizz)z, Z 7p{ep,ve) = (21 + eizZ)[
a B
so that
. £+2
Cuwe ve(Res(pa,r)) = (—) (21 +€iz2) ™2
4dri
This combined with equation (8.2) gives the desired formula. ]

8.5.2. The case (p,q) = (0,6)
In this case, we have G = K and p* = {0}. As above, equation (8.3) gives rise to a G X G’-equivariant
map,

Res: S(V) @ #V — S(V) o V.

Here, G acts diagonally on both factors, while G” acts only on the first factor. For v € SV, we define a
contraction

Cy :S(V) @SV — S(V)
by C, = 1® (-, v).
Let g, € S(V) ® %V be the Schwartz form as in §8.4. Then, as in Proposition 8.1, we have:

Proposition 8.2. For € = +, we have
Cye (Res(pp)) (x) = (1) - (1 + i) - go (),

where v€ = é,l, -(e1 + eiez)f.

9. Theta lifting

In this section, we study global theta lifts for some quaternionic dual pairs. The material in this section
will be needed in §10 to globalize the construction of the Kudla—Millson cohomology classes from the
previous section to the group &g = GUg(V)? and to show the nonvanishing of their restriction to a
suitable subgroup. Moreover, we will also use it in § 11 to study their associated Galois representations
and to show that they lie in the C-span of the Hodge classes.

9.1. Setup

Let F be a number field and A = Ap the ring of adeles of F. Let B be a quaternion division algebra
over F and * the main involution on B. Let E be a quadratic extension of F which embeds into B. Fix a
trace zero element i € E* and write N = Ng,p for the norm map from E to F. Let £ be the quadratic
character of A*/F* associated to E/F by class field theory.

Let V be an m-dimensional right B-space equipped with a skew-Hermitian form ¢:,-) : V. xV — B.
Let W = B be a one-dimensional left B-space equipped with a Hermitian form (-,-) : Wx W — B
given by

(e, y)y=x-y".
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Then GU(W) ~ B*. Put

G = GU(V)°, G =U(V)",
H=GUW), H, = U(W),

and
R={(g.h) e GXH|v(g) =v(h)},

where v denotes the similitude character. Let Zg ~ F* and Zg ~ F* be the centers of GU(V) and
GU(W), respectively. Put

(A)" =v(G(A)) Nv(H(A))
and

G(A)" ={geG(A)|v(g) € (A)"}, G(F)"=G(F)nG(A)",
H(A) = {h € H(A) | v(h) € (A¥)"}, H(F)* = H(F) n H(A)*.

Let V=V ®p W be a 4m-dimensional F-space equipped with a symplectic form
1 *
)= 5 trp/F ({5 ® (¢ )").
Let Mp(V)4 be the metaplectic group
I — €' — Mp(V)x — Sp(V)(4) — L

Fix a complete polarization V = X @ Y. Then we can realize the Weil representation w, of Mp(V)a
(relative to a nontrivial additive character ¢ of A/F) on the Schwartz space S(X(A)). Assume that
there exists a homomorphism 7 : R(A) — Mp(V)4 such that the diagram

R(F)——= R(A)
Sp(V)(F) —-= Mp(V)a

is commutative, where i is the canonical splitting. Then for any ¢ € S(X(A)), we may form a theta
function on R(A):

Op(g,h) = )" wy (i, )g(x).

xeX
9.2. Theta lifts from E* to B*
Let V = B be a one-dimensional right B-space equipped with a skew-Hermitian form
(ry)=x"-ki-y
for some k € F*. Then GU(V)? ~ EX so that (A*)* = N(A%) and G(A)* = G(A). In Appendix A,

we define a splitting 7 : R(A) — Mp(V)a as above. Let i be a character of A% /E*. We regard n as an
automorphic character of G(A). For ¢ € S(X(A)) and h € H(A)*, put

6,(n) () = / 0, (g19. Wn(g1g) dg1.
G (F)\Gi(A)
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where we choose g € G(A) such that v(g) = v(h). Since F*NN(A%) = N(E) and hence v(H(F)*) =
v(G(F)), this integral defines an automorphic form 6, () on H(A)*. Since [H(A) : H(F)H(A)*] =
[A* 1 F*N(A%)] = 2, we may extend 6, (1) to an automorphic form on H(A) by the natural embedding

H(F)"\H(A)" < H(F)\H(A)

and extension by zero. Let 6(57) be the automorphic representation of H(A) generated by 6, () for all
v € S(X(A)).

Lemma 9.1. Assume that:

e B, is split for all Archimedean places v of F;
e 1, does not factor through the norm map for any place v of F such that B, is ramified.

Then we have

6(n) = n(n)s,

where m(n) is the automorphic induction of n from GL1(Ag) to GLy(A) and n(n)p is its Jacquet—
Langlands transfer to B*(A).

Proof. Suppose that 6(n) is nonzero. Let v be a place of F. If B, is split, then by §A.13, the splitting
i: R(F,) » Mp(V,) agrees with the standard one for symplectic-orthogonal dual pairs. Hence, it
follows from the local theta correspondence for unramified representations that for any irreducible
component 7 of 6(n7), we have r,, ~ n(n, ) for almost all v, where 7 (7, ) is the automorphic induction
of i, from GL{(E,) to GLy(F,). By the strong multiplicity one theorem, 6(n) is irreducible and
0(n) = n(n)s-

Thus, it remains to show that 6(7) is nonzero. Let V and W be the one-dimensional Hermitian E-space
and the two-dimensional skew-Hermitian E-space, respectively, as in §A.4. Then GU(V)? = GU(V)
and GU(W) — GU(W). By §A.9, the splitting 7 : R(A) — Mp(V), agrees with the restriction of
the standard one G(U(V) x U(W))(A) — Mp(V), for unitary dual pairs. Hence, it suffices to show
that the global theta lift of y := 7| AL (regarded as an automorphic character of U(V)(A)) to U(W)(A)
is nonzero. By assumption, we have y # 1 so that the standard L-function L(s, x) is holomorphic
and nonzero at s = 1. This together with the Rallis inner product formula [29, 21, 71] implies that the
nonvanishing of the global theta lift (y) to U(W)(A) is equivalent to the nonvanishing of the local theta
lift 6(y,,) to U(W,,) for all v. If B,, is split, then 6( y,,) is nonzero since the dual pair (U(V,), U(W,))
is in the stable range [47]. Suppose that B, is ramified so that v is non-Archimedean. Let r*(y,) and
r~(xv) be the first occurrence indices

r*(xv) = min{r | the theta lift of y, to UHZ") is nonzero},
r~(xv) = min{r | the theta lift of y, to UW, ® H®"~!) is nonzero},

where H,, is the hyperbolic plane over E,,. Since y, # 1 by assumption, we have r*(y,) = 1. On the
other hand, we have

r+(/\/v) +r (xy) =2
by the conservation relation [63]. Hence, we have r~(y,) = 1 so that 8(y, ) is nonzero. This completes

the proof. o

9.3. Theta lifts from B x B to B*

LetV = B; ®¢ B> be the two-dimensional skew-Hermitian right B-space as in [30, §2.2], where B; and
B, are quaternion algebras over F such that E embeds into By and B; and such that By - B, = B in the
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Brauer group. Then GU(V)? ~ (B} x BY)/F* so that (A*)* consists of elements a € A* with a,, > 0
for all infinite places v such that B; ,, or By, or B, is ramified. In [30, Appendix C], we have defined
a splitting 7 : R(A) — Mp(V), as above. Let o and o be irreducible unitary cuspidal automorphic
representations of B7'(A) and B} (A), respectively. We assume that they have the same central character
so that we may regard o] Ko7 as an automorphic representation of G(A). For ¢ € S(X(A)), f € o R0,
and h € H(A)*, put

0. = [ Ou(818. 1) (518) dg1.
Gi(F)\Gi (&)

where we choose g € G(A)* such that v(g) = v(h). Since v(H(F)*) = F* n (A*)" = v(G(F)*%)

by Eichler’s norm theorem, this integral defines an automorphic form 6,(f) on H(A)*. Since

H(F)H(A)* = H(A), we may extend 6,(f) to an automorphic form on H(A). Let 6(o ® o) be

the automorphic representation of H(A) generated by 6, ( f) for all ¢ € S(X(A)) and f € o ® 0.

Lemma 9.2. Let nt; be the Jacquet—Langlands transfer of o; to GL,(A).

(i) If my # 7, then (o] R 03) = 0.

(ii) If my = mp, then 6(o R 0) is the Jacquet—Langlands transfer of ; to B*(A) (which exists).
Proof. Let o be an irreducible unitary cuspidal automorphic representation of B*(A) and r its Jacquet—
Langlands transfer to GL;(A). For ¢ € S(X(A)), f € 01 R0, and f’ € o (where & is the complex
conjugate of o), we have a seesaw identity

0,(F)(h) - f'(h) dh = / F(8) - 0,(f)(g) dg.

'/ZH (AYH (F)\H (A) ZG(A)G(F\G(A)

where 6, (f’) is the theta lift of f” to G(A) as in [30, §4]. Since the theta lift of & to G(A) is 7p, R 7Tp,
by [30, Proposition 4.2.3], where 7 p, is the Jacquet-Langlands transfer of 7 to B} (A) (if it exists), this
integral vanishes unless o; = np,. In particular, (i) follows. Moreover, if o; = 7p,, then we can find ¢,
f, and f”’ such that the integral is nonzero. This implies that

(o Roy) =0

so that (ii) follows. O

9.4. Theta lifts from B* to an inner form of GSO(4,2)

Let V be the three-dimensional skew-Hermitian right B-space as in §5.2. Then (A*)* = N(A%) and
G(A)* = G(A). In Appendix A, we define a splitting 7 : R(A) — Mp(V), as above. Let T be an
irreducible unitary automorphic representation of H(A)*. For ¢ € S(X(A)), ¢ € ,and g € G(A), put

6,(9)(g) = / O, (g. hih)d(hih) diy,
H{(F)\H(A)

where we choose 2 € H(A)* such that v(h) = v(g). This integral defines an automorphic form 6, (¢)
on G(A). Let 6(7) be the automorphic representation of G (A) generated by 0,(¢) for all ¢ € S(X(A))
and ¢ € 7.

In the rest of this section, we assume that (1) is nonzero and cuspidal. Note that 6(7) is automatically
cuspidal if U(V) is anisotropic. Then:

Lemma 9.3. The global theta lift 6(7) is irreducible and
(1) ~ ®,0(1y),

where 0(7,) is the local theta lift of T, (see the proof for its definition).
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Proof. As in [44, Corollary 7.1.3], the assertion follows from the Howe duality, which we describe
below. For this, we fix a place v of F' and suppress the subscript v from the notation. Also, we work with
the category of Harish-Chandra modules if F is Archimedean.

Consider the compact induction

. +
Q= 1nngH w,

where w is the Weil representation of R (relative to a fixed nontrivial character of F and a fixed splitting
over R). For any irreducible representation T of H*, the maximal 7" -isotypic quotient of Q is of the form

(CICa N Fad

for some representation ®(7) of G. Then the Howe duality asserts that

(i) O(r) is of finite length;
(ii) O(7) is zero or has a unique irreducible quotient 6(7);
(iii) for any irreducible representations T and v/ of H* which occur as quotients of Q, we have

0(t)=0(t") = 1t=1.

This can be deduced from the Howe duality [28, 68, 23, 22] for (U(V), U(W)) as follows.

We first show that the Howe duality for (U(V)?, U(W)) follows from the Howe duality for
(U(V),U(W)). If B is ramified, then there is nothing to prove since U(V)?(F) = U(V)(F). If B is
split, then we have U(V) ~ O(V") and U(W) =~ Sp(W'), where V' and W are the six-dimensional
quadratic F-space and the two-dimensional symplectic F-space, respectively, associated to V and W by
Morita theory. For brevity, we write G = O(V') and G° = SO(V). Let o) be an irreducible represen-
tation of G°. Then o7 is an irreducible component of o-|g for some irreducible representation o of G.
Note that o is not necessarily uniquely determined. Namely, oy is also an irreducible component of
(0 ® sgn)|go, Where sgn denotes the unique nontrivial character of G trivial on G°. Fix ¢ € G\ G°, and
put o (g) = oo(ege™") for g € GO. We have

00 = 0y & 0 # 0 ®sgn,

and

e if o # 0 ® sgn, then
olgo = 00, Indg0 o0 =0 @ (0 ®sgn);
e if o ~ o ® sgn, then
Olgo = 00 ® 0, Indg0 op=0.

Then, by the conservation relation [63], we have

e if o # 0 ® sgn, then at most one of o~ and o ® sgn occurs as a quotient of w;
e if o = o ® sgn, then o does not occur as a quotient of w.

This reduces the Howe duality for (U(V)?, U(W)) to the Howe duality for (U(V), U(W)).

Finally, as in [61], [24, §3] (noting that the projections R — G and R — H™* are surjective), the Howe
duality for (GU(V)?, GU(W)*) follows from the Howe duality for (U(V)?, U(W)). This completes the
proof. O

Now, we explicate the local theta lift 8(t,) in the unramified case. Fix a non-Archimedean place v
of F such that:

e F, is of odd residual characteristic;
e F, is unramified over F);
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B, is split over F,;

V:f has a self-dual O, -lattice;
¥, is of order zero;

T, is unramified.

Here, VvT is the six-dimensional quadratic F,-space associated to V,,. For the moment, we suppress the
subscript v from the notation. We may take a trace zero element i € EX such that u = i’ € O% and
identify G with the group

{g € GLo(F) |'gQg = v(g) - Q, detg = v(g)*},

where

Let B be a Borel subgroup of G and T a maximal torus of G given by

koko ok o3k
* 3k %k
* 3k

Bg =

* ok

* % % % ¥
® % % % % %
U
ﬂ
Il

Then we have an isomorphism T =~ (F*)? x E* defined by

(l‘],[z,a + bi) —
vtl‘l

where v = a® — b?u. Also, we may identify H with GL,(F) so that
H* = {h € GLy(F) | deth € N(E¥)}.

Let By be the Borel subgroup of H consisting of upper triangular matrices. Recall that 7 is an irreducible
unramified representation of H*. Then 7 is an irreducible component of

Ind} (x1 ® x2)lu+

for some unramified characters y1, y» of F*. Note that y1, y» are not necessarily uniquely determined.
Namely, 7 is also an irreducible component of IndgH (x1€E ® x2¢E)|m+. Then:

Lemma 9.4. The local theta lift 0(t) is an irreducible component of

_ _1
Ind§_ (xix;'ée @1 1® (xal - [72) o N).
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Proof. By §A.13, the splitting 7 : R — Mp(V) agrees with the standard one for symplectic-orthogonal
dual pairs. Hence, the assertion follows from the standard unramified computation. We omit the
details. O

Suppose again that F is a number field. We further assume that B, is split for all Archimedean
places v of F and that U(V) is anisotropic over F. Then we show that the near equivalence class of 6(7)
consists of automorphic representations 6(7’), where 7’ runs over automorphic representations in the
near equivalence class of 7. Namely, we have:

Proposition 9.5. Let 7 be an irreducible unitary automorphic representation of G(A) such that n, =~
0(ty) for almost all v. Then there exists an irreducible automorphic representation v’ of H(A)* such
that T, = 1, for almost all v and such that

7 =0(7).

To prove this proposition, we consider the theta lift in the opposite direction. For ¢ € S(X(A)),
fenand h € H(A)*, put

0,(F)(h) = / 0, (518 1) (@18 dg1.

G (F)\G1(A)

where we choose g € G(A) such that v(g) = v(h). This integral defines an automorphic form 6, ( f) on
H(A)*. Let 6(7) be the automorphic representation of H(A)* generated by 6, (f) forall ¢ € S(X(A))
and f € .

Lemma 9.6. We have
0(x) # 0.

Now, Proposition 9.5 is an immediate consequence of Lemma 9.6. Indeed, as in Lemma 9.3, it follows
from the Howe duality that 6(7) is irreducible and 6(7) ~ ®,6(7, ), where 6(7,) is the local theta lift
of &, Since m,, ~ 6(,) for almost all v by assumption, we have

0(xy) =1,

for almost all v. Hence, v’ = 0(7) satisfies the desired condition.
Lemma 9.6 can be deduced from the Rallis inner product formula as follows.

9.5. Proof of Lemma 9.6

9.5.1. Doubled spaces
LetVP=Va®Vand V" = V@V = VP ®g W be the doubled spaces as in §A.3. Let ¢ : U(V) xU(V) —
U(V") be the natural embedding. Let VP = X" @ Y™ = V¥ @ V2 be complete polarizations defined by

XP=XeoX, VV=V'e®zW, VY ={(v,-v)|v eV},
Y°=YeY, VA =V-eeg W, VA ={(v,v)|v eV}

Let wi be the Weil representation of U(V™)(A) x U(W)(A) relative to ¢ realized on the Schwartz

space S(VY(A)) as in [40, §5]. Then for any ¢ € S(VV(A)), we may form a theta function on
U(VT)(A) x UW)(A):

g = Y whghex).
x€eVV(F)
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We define a partial Fourier transform,
F: S(XP(A) = S(X(A) ® S(X(A)) — S(VY(4)),

as in [30, §4.1.1]. It follows from the definition of 7, combined with the analog of [27, Proposition 2.2]
for (U(V), U(W)), that .# induces an isomorphism

(wy o1) ® (Wy o) = wy 0o (t®id)
as representations of G (A) X G{(A) X H{(A). Hence, we have
QE(L(glsg2), h) = G)(P] (81,]’1)@:,02(82, h) (9])
for o = 7 (1 ® ¢2) with o1, 2 € S(X(A)), g1,82 € G1(A) and h € H(A).

9.5.2. Degenerate principal series representations
Write

v ={gecLed g, B)er=( "
-13 -1z
as in §A.3, and put
GT =Uu(v9)°.
Let P be the Siegel parabolic subgroup of G{ stabilizing V*:
a *
P={(" e

For s € C, let Z(s) be the degenerate principal series representation of G} (A) consisting of smooth
functions F on GID(A) which satisfy

ae€ GL3(B)} .

f((“ (,a’:)l) g) = (@) - F(g).

For a holomorphic section 7 = F (-, s) of Z(s), we define an Eisenstein series E (s, F) on G} (A) by
(the meromorphic continuation of)

E(g.s,F)= Y. Flygs).
YeP(F)\GT(F)

For each place v of F, let Z, (s) be the degenerate principal series representation of G given
similarly as above. We define an intertwining operator

M, (s) : Z,,(s) — Z,(=s)

by (the meromorphic continuation of)
~1;
1,079 = [ F((y, 7w an
Uy 3
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where U is the unipotent radical of P. Let

by (s)
ay(s)

M (s) = 222 M, (s)

be the normalized intertwining operator, where

ay(s) =4v(25)0 (25 —2), (25 — 4),
by(s)=¢,2s+ 1), (2s+3)0, (25 +5).

By [70, Proposition 4.11(2)], M;; (s) is holomorphic for Re s > 0.

Recall the Weil representation wgv of U(VD) x U(W,) relative to ¢, realized on the Schwartz space

S(VY). For ¢ € S(V), we define F, € IV(—%) by
Fo(g) = wy, (8)9(0).
We denote by R(W,) the subspace of Z, (—3) spanned by F,, for all ¢ € S(V7).
Lemma 9.7. We have
Tm M;,(3) = R(W,).
Proof. If B,, is ramified (so that v is non-Archimedean by assumption and U(VZ) = U(VT)?), then the

assertion is proved in [69, Theorem 1.3]. Assume that B, is split. Let W, be the unique four-dimensional
Hermitian left B, -space and define the subspace R(W,,) of Z,, (%) similarly as above. Then we have

RW)=T,(3),  M;(3)RW,) =R(W,)
by [69, Theorem 1.6], [50, Appendix A], [70, Proposition 4.11(3)]. We remark that, in these references,
the results are stated for the degenerate principal series representation of U(V'), but the above equalities

can be deduced by restriction to U(VZ)?. This completes the proof. O

9.5.3. The doubling method
We denote by ResgI () the restriction of 7 to G1(A) as functions. Fix an irreducible component o~ of

Resgl (7). Note that o, is the irreducible unramified component of
G _
Iy (vivxo,ée, ® 1 b @) 9.2)

for almost all v, where Bg, ,, is a Borel subgroup of G1,,, with Levi component F} X F} X El. Let(,-)
be the Petersson inner product on o given by

i fo) = / £1(8)F5(8) dg.
G (F)\Gi(A)

where dg is the Tamagawa measure on G (A). Fix decompositions (-, -) = [, (-, -)» and dg =[], dg,,
where (-, -),, is an invariant Hermitian inner product on o, and dg, is a Haar measure on G .
We now consider the doubling zeta integral of Piatetski-Shapiro and Rallis [57, 49, 46, 33] given by

Z(s. Fo fi. o) = /

/ E(g1.22). 5 F) Fi(gD) f(g2) dg1 dg
G (F)\G1(A) JG(F)\G(A)
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for a holomorphic section F = ®,F, of Z(s) and fi = ®, fi.v, f» = ®, f2., € 0. Recalling equation
(9.2), we have

LS(s+3,adt x &) S (s + %){S(s + %){S(s -1

)
2
T B E 315) 1206 Fs fivs B0), 93)

veS

Z(s’]:’flan) =

where S is a sufficiently large finite set of places of F and Z, (s, Fy, fi.v, f2.v) is the local zeta integral
given by

Z0 (5. Foo fis fon) = /G Fo(gee 10,80 (80) Fros Fonds de.

Moreover, as in [43, Theorem 3.2.2], [44, Proposition 7.2.1], we can prove the following.

Lemma 9.8. There exist a holomorphic section F, of I,(s) and fi,fo., € o, such that
Z, (s, Fv, fivs o) is holomorphic and nonzero at s = %

9.5.4. The Rallis inner product formula
By equation (9.3) and Lemma 9.8, there exist a holomorphic section F = ®,.F, of Z(s) and f| =
®y f1,v,> 2 = ®, f2,» € o such that

Res,_; Z(s. F. fi. f3) #0.

In fact, E(s, F) has a simple pole at s = % by [70, Theorem 3.1] and its residue can be described as
follows. By Lemma 9.7, we have Mj(%)}"v = F,, forsome ¢, € S(V)).Put ¢ = ®,¢, € S(V(A)).
We define an automorphic form /(¢) on G7(A) by

o) = [ 05 (¢, h) dh.
H\(F)\H\(A)
Then, by the Siegel-Weil formula [70, Theorem 7.11], we have
Ressz% E(s, F)=1(y)

up to a nonzero constant. Hence, we have

/ / 1(1.82), € Fi (@D fo(g2) gy dga # 0.
G1(F)\G1(A) JG(F)\G(A)

We may further assume that ¢ = .7 (¢ ® @) for some ¢1, ¢ € S(X(A)). Then, by equation (9.1), the
left-hand side is equal to

/ / / 0Oy, (g1, 1)Oy, (g2, h) f1(g1) f2(g2) dh dg: dg>
G (F)\G1(A) JG1(F)\G1(A) JH (F)\H; (A)

- / 0, (7)) (1), () (1) .
H|(F)\H;(A)

where we choose f; € 7 such that ﬁ-lGl( &) = fi. Hence, we have 6, fz,-) # 0. This completes the proof
of Lemma 9.6 and hence of Proposition 9.5.
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10. Construction of the cohomology class and nonvanishing of its restriction
Notation

For any reductive algebraic group G over a number field F, we denote by .27 (G) the space of automorphic
forms on G(A).

10.1. Groups

Let F be a totally real number field. We denote by A = Ar and Ay = Ap  the rings of adeles and finite
adeles of F, respectively. Let B be a quaternion division algebra over F. We assume that B, is split for
all real places v of F. Let E be a totally imaginary quadratic extension of F' which embeds into B. We
write E = F + Fiand B = E + Ej for some trace zero elements i € EX and j € BX. Putu = i* € F* and

J=jFeF  LetV=Vlo Vg be the three-dimensional skew-Hermitian right B-space as in §5.2, where
V¥ and Vg are the two- and one-dimensional subspaces as in §5.3.1, respectively. To ease notation, we

write V = V# and Vo = Vg. Recall from Example 5.14 and [30, §2.2] that we may write V = B; Qg B>
for some quaternion algebras B and B; over F such that By - B, = B in the Brauer group and such that
E embeds into B and Bj. In particular, B; and B, act on V by left multiplication. Put

G =GU(V)°, G =GU(V)" = (BY x BY)/F*, Go=GU(Vy)? ~ EX,
Let Z ~ F* and Z ~ F* be the centers of G and G, respectively. We define a subgroup G of G x G by
G = G(U(V) x U(V))’ = {(g,@) | v(g) = N(a)},

where v is the similitude character and N = Ng,r is the norm map. We also regard G as a subgroup of
G via the natural embedding. Let Z C Z X G be the center of G:

Z=~{(z.0)|z" =N()}.
Then we have a natural embedding Z < Z and an exact sequence
|l —7Z —7Z LN E' — 1,

where p(z, @) = 77 la.

Let W be the one-dimensional Hermitian left B-space as in §9.1. Put
H =GU(W) =~ B*.

Let Zy ~ F* be the center of H.

10.2. Weil representations

Let V = V @ V) be the 12-dimensional symplectic F-space given by
V=VesW, V=VegW, Vo=VyezW.
As in §A.1, we take complete polarizations
V=XKe¥, V=XeY,  Vi=XoYo
such that

X=X X, Y=YeY,.
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By Appendix A and [30, Appendix C], we may define Weil representations w (relative to the standard
additive character ¢ of A/F) of

GUW) xUW)°(A),  GUWV)x UMW) (A),  G(UV) x UW))°(A)
on
S(X(A)),  SX(A),  S(Xo(A)),

respectively, satisfying various compatibilities.

10.3. Real groups

Let X, be the set of real places of F' and X the subset of v € X, such that B; ,, and B, are split. We
assume that X # Y. Put d = |Z|. For any v € X, we may write J = t‘z, for some t, € F since B, is
split. We define an isomorphism i, : B, — M;(F, ) of quaternion F)-algebras by

a+ct, b-dt,

i, (a + bi+cj+dij) = (b+dty)u a—ct,]

Put
1+tv. , 1i Iy ’ i+ tvi. . 1 1,
= — B — = —-1- — e. = — _— = - — —
I VL S D YAk I gy T o))
so that
, (10 N (VN . (00 . 4y _(00
lv(ev) - (0 O) s IV(e\;) - (0 0) ’ Iv(ev) - (1 0) > Iv(ev) - (O 1) .
Note that
ev-x| . lev
ESREER W
forx € B,,.

Letv € . Let VVT = V: GBVOT , be the six-dimensional quadratic F,-space as in [30, §C.2] associated
to the B, -space V,, = V, @ Vp.,.. By §6.3, the signature of V, is equal to

(4,2) ifvex;
(0,6) ifveZe\ 2.

As in §8.1, we take a basis of V‘f so that we have identifications

G, = GS0(4,2), G, =GS0O(2,2), Go,» = GSO(2,0)
if v e X and

G, = GSO(0,6), G, = GS0(0,4), Go,» = GSO(0,2)
if v e o \ Z. Here,

GSO(p.q) ={g € GLpsq(R) | gl g8 = v(g) - Ip,q, detg = v(g) ")
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with

1
fpa = ( ’ _lq)

if p + g is even. Let~§v =f @ py and g, = f, ® p, be the complexified Lie algebra of G, and G,,
respectively, where f, and f, (resp. P, and p,) are the (+1)-eigenspaces (resp. the (—1)-eigenspaces)
of the Cartan involutions as in §8.1. Put

~=1_[ﬁv’ pzl—[pv-

vex vex

Let
v 1O X C* = Ey X Ey — (BY, X B} ))/F) =
be a map induced by the isomorphism E,, =~ C given by a + bi — a + b|u|F ifora,b e F, =R and

the fixed embeddings ¢; : E < B and ¢; : E — B,. We explicate ¢, below. Recall from Example 5.
that V = e; B + e, B is equipped with a skew-Hermitian form

<01X1 +exx, ey +e2y2) ZXT ~i'y1 —x; ‘J]i'yz,

wheree; = 1 ® 1 and e; = j; ® 1. We take a basis

_1 1

ery=V2- luilg’ - e2ev, ey =V2- [Jilp2 - e2ey,
_1

e v:\/§-|u|FV2 -ejey, €4y =V2 e

of VJ so that

+ 12’2 ifv e 2
(<ei,v’ej,v> ) = .
10’4 ifve Zoo \ >.

Since
ti(i)er = eji, ti(i)er = —eoi,
n()er = eii, n(i)e; = eoi
and
ie, = uey, ie] = ey,
we have
ti(Dery = ey, ti(i)ea,y = —e1y, ti(i)esy = —e4y, ti(i)esy = e3,y, (10.1)
n(ier,, = —ea,y, ©(i)es,y =e1y, r(i)es,, = —es,y, ©(i)es,y = ez, )

_1
where i = |u|,.” - i. Hence,
v

ay —b; ax by

by a by a>
ap by ay by’
by a; by a

Lv(al +byi,ar + bzi) =
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Also, let WZ be the two-dimensional symplectic F, -space as in [30, §C.2] associated to the B, -space
W,. Using a basis e,, e/, of W, we identify H, with GL,(R). We embed C* into H,, = GL,(R) by

a+bi+—>(_ab Z)

Since ¥, = VVT ®F, WI, etc., we have identifications

X, =V, X =V, Xo,=V],.

\4

For any v € X, and any nonnegative integer £, we put S‘V,, = Sym’V; ®¢ F, and denote by #V,
the kernel of the contraction S¢V,, — S{~2V, (see §3.2). We define S¢V,, and ZV, similarly.

10.4. Construction

Forv € X, let k, > 2 be a positive even integer and put ¢, = k, —2. Put £ = ({, ), ex,, and

#LV = ® xov,,  wiv= @ xHV,.

Ve, veSe
We consider a Schwartz form
g =0,¢ € S(X(A) ® NI5" @ IV
such that

L, iV EE;
o= @y ifveXo\Z

(see §8.4; note that ®vez /\zﬁi c A24p*). Then we have a theta form

Op@ = ), (W@hele gk,
xeX(F)

on G(U(V) x U(W))?(A), where we regard @ as a A?¢p* @ #LV-valued function on X(A). Let 7 be an
irreducible unitary automorphic representation of H(A)* with central character &g such that:

e 7, is the antiholomorphic discrete series representation of GL,(R)* of weight —k, — 1 if v € X;
e 7, is the holomorphic discrete series representation of GL;(R)* of weight k,, + 1 if v € £, \ Z,

where

H(A)" ={h e H(A)|v(h) e N(A)},
GL2(R)* = {h € GLy(R) | deth > 0}.

Let ¢ = ®, ¢, € T be a nonzero vector such that

7hlig, ifvey;

w(2)dy = {Zkv+1 gy ifveEZ,\Z

for z € C!, where we embed C* into GL;(R) as in §10.3. We define a theta lift

05(9) € o (G) ® N9 @ HV
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by
05(0)(2) = / Og (g, hih)¢(hih) dh
U(W) (F)\UW)(A)
for § € G(A), where we choose i € H(A)* such that v(h) = v(g) but the integral is independent of the

choice of 4. By Proposition A.1, 8 5(¢) has trivial central character.
Next, we take the image = := res(65(¢)) of 65(¢) under the map

res : 7 (G) ® N2p* @ LV — o7 (G) ® A¥p* @ HLV

induced by the restriction .7 (G) — <7 (G) and the projections A24p* — A24p* and FLV — FLV
(see §8.5). For any character 7 of A% /E* such that n|sx = 1, we define the -component

g, € 7(G) ® N¥p* @ #LV

of 2 by
E(zg) - (70 p)(2) dz,

[1]

2 (8) = /
Z(A)Z(F)\Z(A)

where the Haar measure dz is normalized so that vol(Z(A)Z(F)\Z(A)) = 1. Furthermore, we define

its pushforward
pr.(E,) € #(G) ® A*p* @ LV

by the first projection pr : G(A) — G(A) as follows. Let G(A)* be the image of pr, that is,
G(A)" ={g € G(A)|v(g) e N(A})}.
Note that Z(A) ¢ G(A)* and [G(A) : G(F)G(A)*] = [A*: F*N(A%)] = 2. For g € G(A)™, choose

ag € A% such that v(g) = N(ag) and put
pr*(é,l)(g) = én(g, Olg) : U(ag)v

which is independent of the choice of @,. Then we extend pr, (£,,) to a A??p* @£V -valued automorphic

form on G (A) by the natural embedding
G(F)"\G(A)" = G(F)\G(A)

G(F) N G(A)*. Note that pr*(é,,) has trivial central character.

and extension by zero, where G (F)*
Finally, for any open compact subgroup K of Z(A ¢ )\G (A ), we define the K-invariant projection

e € Z(G) @ Np* @ Hty

of E := pr,(E,) by
Zx(e) = [ =(h)d.
K

where the Haar measure dk is normalized so that vol(K) = 1.
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10.5. Nonvanishing

Let  be an irreducible unitary cuspidal automorphic representation of GL,(A) with trivial central
character such that:

e 1, is the discrete series representation of GL;(R) of even weight k,, if v € .

We assume that 7 has the Jacquet-Langlands transfers 75, and 7, to By (A) and B (A), respectively.
We regard 75, R mp, as an irreducible unitary automorphic representation of G (A) with trivial central
character.

For € = (€y)yex,, With €, = =, let

f]E = ( ® fle,‘v) ® ( ® fl,v) € 7y, fze = ( ® f;j,) ® ( ® fl,v) € 7,
VEX VEZeo VEZe VEZeo
be nonzero vectors such that:

e if v € X, then
vkv — » &Ry
ﬂB],v(Z)ffX, =2z ! ]e,\;’ ﬂ'Bz,V(Z)fQE,‘:, =z ¢ o 2&;\:} (10.2)

for z € C! (such ff; is unique up to scalars);
e ifveX,\Z, then

mp (D fS = 2O g, W =D e (10.3)

for z € C! (such ff; is unique up to scalars);
o ifv ¢ 2, then f; , does not depend on e.

Here, for v € X, we embed C* into Bf,v via the isomorphism C =~ E,, as in §10.3 and the fixed
embedding E < B;. We regard f€ := f° ® £ as an automorphic form on G(A) with trivial central
character. Put

fE=f @w v e d(G)o A @ XV
with

€ _ €, € _ €
v =@ur. v =@t

vex VEXH

where £ = (£,)yex,, With €, = k, — 2, and w§® € A%p} and v € #V, are as in §8.5.
Finally, let (-, -) be the nondegenerate bilinear pairing on A??p* ® LV induced by

e the bilinear pairing - A - : A%p% X A%p% — A%*p? ~ C asin §8.5;
o the bilinear pairing (-, -) : S®V, x SV, — C as in §8.2.

Proposition 10.1. Suppose that f and f as above are given. Let K = [],, K\, be an open compact
subgroup of Z(Ay)\G(Ay) such that fi, R f> , is K, -fixed for all v & YXco. Assume further that there
exists a finite place vy of F such that

(i) E,/F\, is ramified;
(ii) B1,y, and By, are split;
(iii) ICy, is a hyperspecial maximal compact subgroup of Z,)\G y,.
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Then there exist ¢, 7, ¢,n as in §10.4 such that
Ees = [ (2xc(9), F<(8)) dg # 0
Z(A)G(F)\G(A)

Jor all €, where B = pr*(in) with 2 = res(0g(p)) and f€ = f€ @ W€ @ v with f€ = f B fF.

The rest of this section is devoted to the proof of Proposition 10.1.

10.6. Reduction to triple product integrals

Let ¢ = ®,, be a Schwartz form as in §10.4. For any finite place v of F, we assume that ¢, € S(X,)
is a Schwartz function of the form

Gy =@y B o,y

for some ¢, € S(X,) and ¢g,, € S(Xo,,). For any real place v of F, we define Schwartz functions
QO\GJV € S(Xv) and Yo,v € S(XO,V) by

2 2 2 2
(x1 + €yix)ky - @ TOTHHXSHX) ifvex;
& (x1,x2, X5, = 104
v (w1, %2,%5. %) {()q + Evixz)kv—z . e—n(xlz+x§+x§+xé) ifveXy\Z, ( )
00w (x3,x4) = € T, (10.5)
where x1, . . ., x¢ are the coordinates on X,, = V, as in §8.5. Put
o = (R )o@ e) ese@),  wo=R) . eSEo(4)
VEZeo V€T v
so that ¢€ ® @y € S(X(A)).
Lemma 10.2. We have
:’C7 = N PER®Yo : n s .
Ex, f9) 0 (¢)(g) - (f mn)(g) dg (10.6)
Z(A)G(F)\G(A)

where 0 pe g, (¢) is the theta lift as defined in §9.4 and f€ Ry is regarded as an automorphic form on
G(A).

Proof. If v € X, then by Proposition 8.1, we have
C, we ver (Res, (60)) = @3 ® wo.v,
where
Res, : S(X,) ® A% @ #V, — S(X,) @ A% @ 'V,
Cy oo ye 2 S(Xy) ® APp;, @ STV, — S(X,)

are the restriction and the contraction as in §8.5.1. Also, if v € Z \ X, then by Proposition 8.2, we have
Cv,vs" (ReSV(()EV)) = 905‘/ ® ©0,v»
where

Res, : S(X,) @ 'V, — S(X,) @ Z'V,,
C,,o 1 S(X,) @8V, — 5(X,)
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are the restriction and the contraction as in §8.5.2. This implies that
(Res(0g(2. 1), 0 @) = Opepy (8. h),
where
Res : A2p* @ LV — N2p* @ L
is the projection. Hence, we have

(Res(05(4)(2)), @ ® V) = Oyeap(4)(8)

so that the right-hand side of equation (10.6) is equal to

[ (E(g). 0 ®7v) - (/< mn)(g) d.
Z(A)G(F)\G(A)

This integral is equal to

/ / (E(zg). 0" ®vE) - (f€ my)(zg) dzdg
Z(A)G(F)\G(A) JZ(A)Z(F)\Z(A)

- / (&, (). 0 8v°) - (f m7)(g) dg
Z(A)G(F)\G(A)

/ (pr. (B, (8). € ® ) - £<(g) dg
Z(A)G(F)"\G(A)*

(pr*(élj)(g)’wé ®v6) : fe(g) dg

-/Z(A)G(F)\G(A)

- / (E(9). £<(9)) dg
Z(A)G(F)\G(A)

(Ex(g). f(g)) dg,

L(A)G(F)\G(A)
noting that pr, (Z,) is supported in G(F)G(A)* and f€ is K-fixed. O

We now consider the seesaw diagram

GU(V)? G(UW) x U(W)) .

el

G(U(V) x U(Vp))° GU(W)

Then the seesaw identity (combined with Lemma 10.2) says that

(. f€) = / B o (#)(8) - (F€ B1)(8) d
Z(A)G(F)\G(A) (10.7)
- /z (AYH (F)*\H (A)* Ope (f)(h) - O () (h) - $(h) .

where H(F)* = H(F) N H(A)*, and 0, (f€) and 0, (17) are the theta lifts as defined in §9.3 and §9.2,
respectively. Hence, to prove Proposition 10.1, it suffices to find ¢€, ¢g, 17, T, ¢ such that the right-hand
side of equation (10.7) is nonzero for all €.
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10.7. Choosing ¢€

Let mp be the Jacquet-Langlands transfer of 7 to B*(A) (which exists since 7p, and 7p, exist by
assumption and B - B = B in the Brauer group). Note that:

e 7 has trivial central character;
e 1p, is the discrete series representation of GL,(R) of weight &, if v € Zc..

By Lemma 9.2, we have a nonzero equivariant map
0:S(X(A)) ® (ng, R7tp,) — 7B
given by ¢ ® f +— 0,(f).

Lemma 10.3. Let o€ = (®ve2m <P5v) ® (®v¢2m va) € S(X(A)) be a Schwartz function such that
@y is as in equation (10.4) for all v € Zo,. Then

2 (D) (£) = {z’jk : 9¢e(ffz ifv e 108)
TR 0,e(f€) ifvETL\T
for z € CL. Moreover, O, (f€) is nonzero for some such ¢€.
Proof. We have
o tf”k“ AR ifveX;
wy (1, 2) @y = {tlev(k‘,—Z) R o8 ify e T\ X (10.9)

fort = (t1,12) € U(V,)? with#; € SO(2) ~ C' and z € U(W,,) with z € C'. This proves equation (10.8).
By the Howe duality for (GU(V,,)°, GU(W,)*) (see the proof of Lemma 9.3), we have a decompo-

sition
=R
v

where
0, : S(Xv) ® (ﬂBl,v X ﬂBz,v) —> 7B,y

is the unique (up to scalars) nonzero G(U(V,) x U(W,))-equivariant map. Since 7B,y BB, , is
irreducible, we may choose ¢, so that 8, (¢, ® (fiv R f2,,)) # 0 forv ¢ Z..
It remains to show that 6, (¢}" ® (f,” ® f,")) # 0for v € Xo,, where @} is as in equation (10.4). Let

0, : S(Xy)@my, — (np,,» B7p,.)"

be the G(U(V,) x U(W,,))-equivariant map induced by 6,,. Let w, € my , be the unique (up to scalars)
nonzero vector such that

_kv

. ifveX;
ﬂé’v(z)wvz{zk Wy BV (10.10)

2w, ifveZo\Z

for z € C'. Then, by equation (10.9), 70, (¢5" ® w,) is a scalar multiple of the unique (up to scalars)
nonzero vector & € (g, v R7p,,)" such that
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ok ge iy e
g,y BT MOLNERS Y ’ 10.11
( By,v Bz,v) ( )%v {tlgv(kvz) i 8’5‘} ify e ZDO \ > ( )

fort = (t1,1,) € U(V,)? with t; € SO(2) ~ C!. Since
0v (o3 @ (fi B ), wo) = (5 8 £, 100 (g @ wy))

and (flf”v ® £, Fs") # 0 by equations (10.2), (10.3) and (10.11), where {-,-) denotes the natural

2,v?
pairing, it suffices to show that '8, (¢35’ ® w,,) # 0.
For this, we realize ’0,, explicitly as follows. Recall that we write J = t% for some #,, € F} in §10.3.
We define an isomorphism i}, : By, — Bj, of quaternion F,-algebras by
i (a+bi+cj+diji) =a+Dbi+cj+dijs,

where

. -1, . -1, . -1 i

0= ulg? i, Jr=1lgl - =0t - Vilg, - J2

with

+1 ifvez;
&= {—1 ifveTe\ 2.
Since jie, = Jiey, joex = e1j and jel = —t, e}/, we have
J1ez,y =dveay, J2e2,y = —dveay.
From this and equation (10.1), we deduce that
xtery =i (x)ery

for all x € By, where * is the main involution on By . In particular, if we define a subgroup 4, of
G, = (Bf’v X B;"v)/Fff by

Ay = {(()7L 1)) | x € BY M/ FY,

then ey, is 4, -fixed. We now realize nlvg , on the Whittaker model )/V(ﬂlv9 v) with respect to the character
(1Y) > e72m4~ and define a map

B, : S(X,) @ W(ry ,) — C

B@ew - [ w0y (®(N2e )W (h) dh,
Ny\SLy (Fy)

where N, is the group of unipotent upper triangular matrices in H, = GL,(F,) and the integral is
absolutely convergent by [67, Lemme 5]. For § € (75,,, ® nBZ,V)V, put

B, (8’) = Bv (Cg),
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where we choose § € S(X,) ® W(r}, ) such that '8, (&) = §. Then, by [67, Lemme 6], this does not
depend on the choice of & and defines a 4, -invariant map B, : (7, v B7p,,)" — C so that

B, =B,0'0,.

Note that the representation x +— g, ,((x*)!) is isomorphic to 7er3] o+ Thus, it suffices to show that
B, (g8 ®w,) #0. By equation (10.10), we may normalize w,, so that

a k, —2na?
w _1]=a"ve .

If v € X, then

Bv(905” ®w,) = / 612905” (a\/EeZ,v) *Wy (a a—l) ca*d*a
0
= (e,iV2)k / a2kv g=4ma® g
0
= (evi\/z)kv - (4m) kv 27! / ak e @ d*a
0

= (&iV2)* - (4m)™ . 271 . D(k,),

where d*a = da/a. Similarly, if v € 2, \ Z, then
B, (09 ®@wy) = (6,iV2)* 2. (4m) ™o+ 271 Dk, - 1).

This completes the proof. m}

By Lemma 10.3, we may choose ¢€ so that 6, (f€) is nonzero. Moreover, by replacing f€ by its
scalar multiple if necessary, we may assume that 6 ,¢ (f€) does not depend on €.

Lemma 10.4. There exists an element (go, ho) € G(U(V,,) X U(Wy,))? such that the restriction of
0 w(go.ho) o< (f€) to H(A)* is nonzero.

Proof. Since H(F)H(A)* is the kernel of é¢ ov and E,, is a ramified quadratic extension of F,,,, we have
H(A) = H(F)H(A)* u H(F)H(A)"h

for some hg € H,, such that v(hg) € OF \ N(O% ). Then there exists an element g € G, such that
Yo Y0
v(go) = v(hop) and such that the image of g¢ in Z,,\G, belongs to K,,. Since f€ is K,,-fixed, we have

6c (<) (hho) = / .- (21920, hho) F< (g1850) dg:
U(V)O(F)\U(V)0(A)

= / O (81880, hho) f€(g18) dgi
U(V)O(FO\U(V)O(A)
= 9(,()(g(),h())‘,0E (ff)(h)

for h € H(A)*, where we choose g € G(A) such that v(g) = v(h). Hence, 6,¢(f€)(h) or
6w (g0.h0) o< (f €) (h) is nonzero for some h € H(A)*. O

By Lemma 10.4, we may assume that the restriction of 6,¢ (f€) to H(A)" is nonzero.
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10.8. Choosing n and ¢y
We choose 7 satisfying the conditions of the following lemma.
Lemma 10.5. There exists a character n of A%, | E* such that:

o nax=1;
e 1, = 1for all real places v of F;
e 1, does not factor through the norm map if B, is ramified.

Proof. By Hilbert 90, the map x +— x/x” induces an isomorphism EX/F* ~ E'. Hence, it suffices to
find a character y of A}E /E! such that:

e y, = 1 for all real places v of F;
e x2 # lif B, is ramified.

Since E, is nonsplit if either v is real or B,, is ramified, it remains to show the following: if S is a finite
set of places of F such that E,, is nonsplit for all v € § and yg is a character of Eé = [1,es E!, then
there exists a character y of A}s /E" such that y/| EL = XS- But this assertion follows from the fact that

E ; is compact and hence the image of the natural continuous injective homomorphism
Ef — Ap — AL/E'
is closed. |

Let (1) be the automorphic induction of n to GL,(A) and 7(n)p its Jacquet-Langlands transfer to
B*(A) (which exists since 77,, does not factor through the norm map if B,, is ramified). Note that:

e 7(n)p has central character &g ;
o 1(n)p,v is the limit of discrete series representation of GL,(R) of weight 1 if v € Z.

By Lemma 9.1, we have a nonzero equivariant map
6 : S(Xo(A) — n(n)s

given by ¢g > 64, (7).

Lemma 10.6. Let ¢y = ), o,v € S(Xo(A)) be a Schwartz function such that ¢, is as in equation
(10.5) forall v € Zo. Then

z 9%(77) ifvex;

» ’ (10.12)
0y, (n) ifv € B\ T

m(mB,v(2)0g, (1) = {
for z € C'. Moreover, 0 4, (17) is nonzero for some such @o.
Proof. We have

Z %o,y ifveZ;

wy, (1, v =
(.2, {z‘l o, ifVEZL\E
for t € U(Vj,,)? and z € U(W,) with z € C!. This proves equation (10.12).

As explained in the proof of Lemma 9.1, we may regard 6,,(n7) as the theta lift of n (regarded
as an automorphic character of GU(V)(A)) to GU(W)(A), where V and W are the one-dimensional

Hermitian E-space and the two-dimensional skew-Hermitian E-space, respectively, as in §A.4. Hence,
by the Howe duality for (GU(V,,), GU(W,,)*), we have a decomposition

9:®9V,
v
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where
0, : S(XO,V) — w(1)B,v

is the unique (up to scalars) nonzero G(U(V,) x U(W,))-equivariant map. Here, (g, [h,a]) €
G(U(V,) x U(W,)) with h € B} and @ € E} acts as w, (g, [h, @]) ® 1, (g) on the left-hand side and
as (1)g.y (h) ® 17, (@) ™! on the right-hand side. For v ¢ %, we may choose ¢y, so that 6,, (¢, ,) # 0.

It remains to show that 6, (¢g_,,) # 0 for v € X, where ¢g , is as in equation (10.5). Since n,, = 1,
0, can be realized by

0v(®) = Fo,  Folh) =w, (g, h)P(0)

for ® € S(Xo,,) and h € H}, where we choose g € Gy, such that v(g) = v(h) and regard 7 (1)p,, as
a subrepresentation of some unitary principal series representation. Then, noting that ¢ ,, (0) = 1, we
have 6, (¢0,v) # 0. O

By Lemma 10.6, we may choose ¢g so that 6,,(57) is nonzero. Since 6,(1) is supported in
H(F)H(A)* by definition, its restriction to H(A)™ is also nonzero.

10.9. Choosing v and ¢

Lemma 10.7. Let  be the restriction of 0,e(f€) - 04,(n) to H(A)*. For v € X, let o, be the
representation of GL, (R)* generated by . Then

Kty ifves;

Ry ifveZ o\ 2 (10.13)

ov (Y = {

for z € C'. Moreover, if  is nonzero, then

e o, is the holomorphic discrete series representation of GL(R)* of weight k,, + 1 if v € Z;

e o, is the antiholomorphic discrete series representation of GLy (R)* of weight —k,, — 1 if v € X \ 2.
Proof. We only consider the case v € X; the other case is similar. Let ¢’ and /"’ be the restrictions of
O (f€) and 64, (n) to H(A)*, respectively. Since yy = " -y", equation (10.13) follows from equations
(10.8) and (10.12).

Let o7, and o/ be the representations of GL,(R)* generated by ¢’ and ¢”, respectively. Then
o, =~ HDSy, and o’ ~ HDS, where for any positive integer k, HDS denotes the (limit of ) holomorphic
discrete series representation of GL(R)* of weight k with central character trivial on RX. Since
Y =y’ -y, o, is a subquotient of o, ® o,’. However, we have

HDS,;, ® HDS; =~ @ HDS( 4142i
i=0

by [60, Theorem 8&.1]. Hence, if ¢ is nonzero, then equation (10.13) forces o, =~ HDSi +1. This
completes the proof. O

Lemma 10.8. There exists an element (gg, ho) € G(U(Vy) x UW))°(A £ ) such that the restriction of
O () 0o(g0.h0) o (1) to H(A) is nonzero.

Proof. Let ¢’ and ¢’ be the restrictions of 6, (f€) and 0, (1) to H(A)", respectively. Choose an
open compact subgroup K, of H(Ay)* so that " and ¢ are K7, -fixed. Since Zy (A)H(F)"\H(A)*
is compact, we have a finite decomposition

H(A)* = |_| H(F)*H(F) hiK3,
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for some h; € H(Ay)*, where Fo, = F ®q R. This gives rise to a natural identification
H(FY'\H (&) K K5y =| | TAD",
i

where K oo = [Iyes, R* - SO(2) is a maximal compact modulo center subgroup of H(F.)", b is
the upper half plane, n = [F : Q], and I'; = H(F)* N hiICth.’l. Hence, the restrictions of ¢ and "’
to H(Fw)*h; descend to analytic functions ¥/ and ¥!” on §" (regarded as a real analytic manifold),
respectively, satisfying some equivariance properties relative to the action of I'; on §”. Since " and "’
are nonzero, so are ‘Pl' and ‘PJ’.’ for some 7 and j. Then the product ‘I‘l' . ‘I‘;.' is also nonzero. Namely, if

we put hg = h;'h; € H(Ay)*, then
¥’ (h) -y (hho) # 0

for some i € H(Fs)*h;. Choose go € Go(A ) such that v(go) = v(ho). Then

04 (1) (hho) = / O, (81880, hho)n(g1880) dgi
U (V)2 (F)\U (Vo) (A)

=n(go) - / O, (81880, hho)n(g18) dgi
U(V)? (F)\U(Vp)?(A)
= T](g()) ° ga)(g(),ho)k,ao (U)(h)

for h € H(A)*, where we choose g € Go(A) such that v(g) = v(h). Hence,

O (F)R) - Ouo(go.io) o (M) (1) = 1(g0) ™" - W () - " (hho) # O
for some h € H(A)*. O

By Lemma 10.8, we may assume that the restriction of 6, (f€) - 8, (17) to H(A)* is nonzero. Then,
noting that Zgy (A)H(F)*\H(A)* is compact, we deduce from the spectral decomposition together with
Lemma 10.7 that

/ Opc (f)(h) - Oy () () - $(h) dh # 0
Zey (A)VH (F)\H (A)*

for some nonzero vector ¢ in some irreducible automorphic representation 7 of H(A)* asin §10.4. This
completes the proof of Proposition 10.1.

11. Arthur packets, Galois representations and Hodge classes
11.1. Classification

Let F be a totally real number field and E a totally imaginary quadratic extension of F. Let V be an
n-dimensional Hermitian E-space and G = U(V) the unitary group of V. In this section, we recall the
classification of automorphic representations of G (A ), which has been established by Mok [52] in the
quasi-split case, following Arthur’s book [4], and has been extended to the general case by Kaletha—
Minguez—Shin—White [34].

More precisely, let Lﬁisc(G) be the discrete spectrum of the unitary representation of G(Af) on the
Hilbert space L>(G (F)\G(Ar)). Then the decomposition of LﬁiSC(G) into near equivalence classes is
described as follows. We say that an irreducible cuspidal automorphic representation 7 of GL,,,(Ag) is
conjugate-self-dual if 7 ~ 7V, where 7° and n" are the Galois conjugate and the contragredient of r,
respectively. In this case, exactly one of the Asai L-functions L(s,m, As*) and L(s, w, As™) has a pole
at s = 1 (see [20, §7] for the definition of the Asai representations As*). For € = +, we say that 7 has
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sign € if L(s,m, As€) has a pole at s = 1. We also say that 7 is conjugate-orthogonal (resp. conjugate-
symplectic) if it is conjugate-self-dual with sign + (resp. —). Consider a formal unordered finite direct
sum

Y= @ﬂ'i b Symd"_l,

where

e 7; is an irreducible cuspidal automorphic representation of GL,,,, (Ag);
e Sym%~! is the irreducible representation of SL;(C) of dimension d;.

Then ¢ is called an elliptic A-parameter for G if

2imid; = n;

if d; is odd, then n; is conjugate-self-dual with sign (—1)""";
if d; is even, then 7; is conjugate-self-dual with sign (—1)";
if (n;,d;) = (nj,d;), theni = j.

We attach to ¢ an automorphic representation
7y = H, (7rl~|det| — maldet| T B ma|det|” > )

of GL, (Ag), where B denotes the isobaric sum. Then the result of Kaletha—Minguez—Shin—White [34,
Theorem* 1.7.1] (which is proved in [34] partially and will be completed in its sequels) says that

L} (G) = P L6,
W

where ¢ runs over elliptic A-parameters for G and le#(G) is the near equivalence class of irreducible
subrepresentations 7 of Lﬁisc (G) such that for almost all places v of F, the base change of «,, to GL,,(E,,)
is isomorphic to 7y .
We next describe this decomposition in terms of L-groups. Recall that the L-group of G = U(V) is
given by
LG = GL,(C) = Gal(Q/F),

where Gal(Q/E) acts trivially on GL, (C) and the nontrivial element in Gal(E /F) acts as the automor-
phism 6,, defined by

On(8) =Ju-"g" T = .
S
Put G = Resg,r GL,, so that its L-group is given by
G = (GL,(C) X GL,(0)) = Gal(Q/F),

where Gal(Q/E) acts trivially on GL,,(C) x GL, (C) and the nontrivial element in Gal(E /F) acts as the
automorphism (g1, g2) — (g2, g1). Then the base change L-homomorphism BC : “G — LG is given by

BC(g»0) =(g,0.(g)) = 0.
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Lety be an elliptic A-parameter for G. Then the local Langlands correspondence induces an (equivalence
class of) A-parameter ¢, : L, X SL,(C) — LG for any place v of F, where

L, =

v

the Weil group of F), if v is real;
the Weil-Deligne group of F, if v is finite.

Moreover, by [20, Theorem 8.1], there exists a unique (equivalence class of) A-parameter ¢, : Lr, X
SL,(C) — G such that i, = BC o y,,. We associate to ¢, an L-parameter by, : LF, — LG by

by, (W) =¥, (W, ('lez _1)) .
lwl,?

2
disc

Then L?ﬁ(G) consists of irreducible subrepresentations 7 of L5, (G) such that the L-parameter of «,,

is ¢, for almost all v.
For our applications, we will consider elliptic A-parameters with n = 4 of the form
Y =g 8 Sym!, (11.1)
where

e 7 is an irreducible cuspidal automorphic representation of GL, (Ar) with central character &g ;
e 1 is the base change of 7 to GL,(Ag).

We note the following:
Lemma 11.1.

(i) If mg is cuspidal, then ng is conjugate-orthogonal.
(ii) If ng is not cuspidal, then ng = y B x~' for some conjugate-orthogonal character y of A% /E*
such that x> # 1.

Proof. First, assume that 7 is not cuspidal. Then r is the automorphic induction of some character y
of A% /E* so that 7 = y @8 x*. Since 7 is cuspidal, we have ¥ # y. Also, since the central character
of is &g, we have /| ax = 1, that is, y is conjugate-orthogonal. Hence, the assertion follows.

Next, assume that 7z is cuspidal. Put H = GL, and A = Resg /F GL so that
LH = GLy(C) x Gal(Q/F), ~ “H = (GL,(C) x GLy(C)) = Gal(Q/F).
Then the base change L-homomorphism BC : “H — LH is given by
BC(hxo)=(h,h)~o.

Recall that As™ is the representation of “H on C?> ® C? defined by
As*((h1,h2) = ) (x ® y) = hix ® hay,

x®y ifo € Gal(Q/E);

Ast((1,D) <o) (x®y) = {y ®x ifo ¢ Gal(@/E).

Then we have
As* o BC =~ Sym® ® (A% ® £k)
as representations of LH. Since the central character of 7 is &g, it follows that
L(s, 7, As*) = L(s,m,Sym?) - {r ().

This implies the assertion. O
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11.2. Local A-packets

Let ¢ be an elliptic A-parameter for G = U(V) and LIZ//(G) the near equivalence class associated to .
Then the result of Kaletha—Minguez—Shin—White [34, Theorem* 1.7.1] also describes the local-global
structure of lep (G) with a multiplicity formula. In particular, if 7 is an irreducible summand of L%ﬂ (G),
then for any place v of F, the local component r,, is an irreducible summand of some representation in
Ty, . Here, Iy, is the local A-packet associated to ¢, consisting of certain semisimple representations
of G, of finite length.

Suppose that v is real. If G, is quasi-split and ¢, is ‘cohomological’, then it follows from the result
of Arancibia—Moeglin—Renard [3] (the unitary group case had already been treated by Johnson [32])
that I, agrees with the packet constructed by Adams—Johnson [2], which we recall below. From now
on, we suppress the subscript v from the notation.

Let V be an n-dimensional Hermitian space over C of signature (p, g). Choosing a basis of V, we
may identify the unitary group G = U(V) with

_ 1
U(p,q) ={g € GLu(C) |'81p,8 = Ip.q}» Tp.a= ( ’ —lq) .

We define a Cartan involution 6 of G by 6(g) = g~'. Let K ~ U(p) x U(q) be the maximal compact
subgroup of G with respect to § and T =~ U(1)" the maximal torus of G consisting of diagonal matrices.
Let Bg, be the Borel subgroup of G¢ ~ GL,(C) (which is not defined over R) consisting of upper
triangular matrices.

Let go, fo, to be the Lie algebras of G, K, T, respectively. We have a Cartan decomposition go = fo ®po,
where py is the (—1)-eigenspace of 6. Let g, £, p, t be the complexifications of gy, Ty, o, to, respectively.
Let p* be the (+i)-eigenspace of the complex structure on p defined by

Xeouxst,  u=
e 41,
More explicitly, we have g = T @ p* @ p~ with

fo {(6‘ g)'AeM,,(C), D qu(C)},

o o

e com].

The packet constructed by Adams—Johnson [2] consists of certain unitary representations r such that
H*(g,K;m ® F) # 0 for some irreducible finite-dimensional representation F of G. Let A € t* ~ C" be
the highest weight of F* relative to Bg.. We may write

A= (/11,...,/11,/12,...,ﬁz,...,/lr,...,/lr) eZ"
S—— —— S———
ni np n,

with 4] > A > - -+ > A,.. Then we consider the A-parameter i : Lg X SL,(C) — LG whose restriction
to C* x SL,(C) is equal to

()(,11+p1 X Sym”‘_l) ® @ ()(,1r+pr X Sym""_l) ,
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where

© i = F(—np— - ni R )
ey, is the character of C* defined by x«(z) = (z/2)%;
e Sym“~! is the irreducible d-dimensional representation of SL, (C).

This defines a parabolic subgroup Q of G¢ (which is not defined over R) containing Bg, with Levi
component L (which is defined over R) such that

Yy=Eoyy,

where ¢ : 'L — LG is the canonical embedding and ;. : Lz x SL,(C) — LL is an A-parameter such
that the A-packet Iy, consists of a single one-dimensional representation of L. Note that

L=Gn(GL, (C)x---xGL,, (C)).
Put
S=W(LD\W(G,T)/Wr(G,T) = (S, X+ x Gy, ) \G/(S)p X Sy) ,

where W and Wg denote the absolute and relative Weyl groups, respectively. As a set of representatives
for S, we can take the set of w € S,, such that

. w’l(i)<w’](j)forn1+---+nk_1+1 <i<j<n+---+ngforl <k <r,;
o w(i)<w(j)forl<i<j<pandforp+1<i<j<n.

For any w € S, we have a #-stable parabolic subgroup Q,, = w™!Qw of G with Levi component
L, =w~'Lw. Let q,, be the Lie algebra of Q,,. Then the Adams—Johnson packet H:?J is given by

H@J = {Aqw W) |we S} .
We now explicate the A-packet I1, when G = U(2,2) and ¢ is the localization of a global A-
parameter as in equation (11.1). More precisely, we start with the discrete series representation of

GL,(R) of weight k£ + 1 with an even integer k > 2. Since its base change to GL,(C) is the principal
series representation Ind(y 9 ® x_ & ), the associated A-parameter i is given by

W= (/\(% = Sym') ® (X—§ = Sym')

so that we need to take

In this case, we have S = {wg, wi, wyp} with
wo =1, wi = (23), wy = (13)(24).
Then
My =T’ = {A,, (w;') |0 <i <2},
where q; = qy,.
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Proposition 11.2. We have

if (p.q) = (4,0),

1
dim HP9(g, K; Ag, (Wi' ) ® F) =
(s w (o ) ) {0 otherwise,

1 if(p.q)=(1,1),(3,3),
dim H”9(8, K3 A, (W' ) ® F) =12 if (p,q) = (2,2),
0 otherwise,

if (p.q) = (0,4),

1
dim HP9(g, K; Ay, (w5' 1) ® F) =
(s w(wy ) ) {O otherwise,

where F is the irreducible finite-dimensional representation of G with highest weight A.

Proof. First, note that F is self-dual, that is, F* has highest weight 1. Also, if we write q; = [; & u; with
Levi component [; and unipotent radical u;, then

* %00 00 % =
I = %00 _J[00 = =
01100 % «|[° Yo=1oo000][
00 % = 0000
0 %0 00 =%
I = 00 = _J{0000
1= *0*0 s u = 0*0* 5
00 = 0000
* %00 0000
[ = *%x00 _J|0000
2= Vo0« [ 2300
00 * = * % 00
Hence, the assertion follows from [65, Proposition 6.19]. O

We also note the following:

Lemma 11.3. Let
1
0= e GU(2,2).
1,

Then we have

Ago(wp'2) 0 Ad(6) = Ag, (W51 ),
Aq, (w7l ) 0 Ad(6) = Ag, (W' ).

Proof. The lemma immediately follows from the characterization of the cohomological representation
as described in §7.1. ]

11.3. The Hodge structure

Suppose again that F is a totally real number field and E is a totally imaginary quadratic extension of
F. Let V be a four-dimensional Hermitian E-space. We now change notation and write G = GU(V)
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and G’ = U(V) for the unitary similitude and unitary groups of V, respectively. We assume that
discV ¢ N(E*) but discV, € N(EY) for all v € .. Then we may identify G,, with the group

{g € GL4(C)|"gl,g =v(g) - I},
where
1
2 ifveX;
I, = -1,
14 ifveXy \ z

for some subset X of . We further assume that £ # X, so that G’ is anisotropic. For v € X, we
define a maximal compact subgroup K7, of G/, by

a,de U(Z)}

ifveXand K| =G} ifv e 2, \ X. Put K, = F} - K|, where we regard F,’ ~ R* as a subgroup of G,,
via the map z — zl4. Then K, is a maximal connected compact modulo center subgroup of G, . Put

Geo = HGV, Kooznl(v,

VETH VEZH
’ 7 7 ’
Goozl_[Gv, Koozl_]Kv.
VEXeo VEZy

Let g and g’ be the complexified Lie algebras of G., and G, respectively. Let S = Resc/r G,, and
Go = Resp/g G. We define a homomorphism /& : S — Gor by h(z) = (h,(2))vex,, With

1
o2 _ ifveZ;
hv(z) = 1,

14 ifVEZLX,\Z.

Let X be the Go(R)-conjugacy class of homomorphisms S — G containing 4. Then we have an
identification

X = Goo/Keo.

For any v € X, and any even integer k > 2, let (p, x, Vy x) be the irreducible algebraic representation
of G,, such that

e p, i has trivial central character;
° p:)’ « = Pv.klg; is the irreducible finite-dimensional representation of G, with highest weight

Let k = (k, )z, be a tuple of even integers k, > 2, and put

Pk = ® Pv.ky > Vi = ® Vo k-

VEZ VEZY
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For any open compact subgroup /C of G(Ar r) (where Ar r denotes the ring of finite adéles of F), let
Shi be the Shimura variety associated to (G, X, K):

Shy = G(F)\X X G(AF,f)/IC.

Then (py, Vi) gives rise to a local system Vi on Shx.. We have the Hodge decomposition
H'(Shic, Vi) = @D HP(Shk, V).
p+q=i

In §5.2, we have associated to V a quaternion F-algebra B and a three-dimensional skew-Hermitian
right B-space V such that PGUg (V) ~ PGUg(V)". By the above assumption on V, B is division
but B, is split for all v € 2. Let W be the one-dimensional Hermitian left B-space as in §9.1. Then
GU(W) =~ B*. Let 7 be an irreducible unitary automorphic representation of GU(W) (A g )* with central
character £ such that:

e 7, is the antiholomorphic discrete series representation of GL, (R)* of weight —k, — 1 if v € X;
e 7, is the holomorphic discrete series representation of GL;(R)* of weight k,, + 1 if v € X, \ Z.

Let IT = 6(7) be the global theta lift of 7 to GU(V)(AF) relative to the standard additive character y of
Ar /F (i.e., the additive character ¢ such that ¢, (x) = ¢>™** for v € X,,). We assume that IT is nonzero.
Then:

e I1 is irreducible by Lemma 9.3;
o II has trivial central character by Proposition A.1.

Hence, we may regard IT as an irreducible unitary automorphic representation of G (A ) with trivial
central character. Let S be a finite set of rational primes such that for all p ¢ S and all places v of F
above p:

e G, is unramified over F),;
e C, is a hyperspecial maximal compact subgroup of G ;
e II, has a nonzero K, -fixed vector.

Let 5 = #(G(AY.), K) be the Hecke algebra of compactly supported kS -bi-invariant functions on
G(AISV), where Ai = H;aes [1.p Fv and S = [1p¢s I1,p Kv. Then S5 acts on Hi(Sh;C,VK). Put

s = ®;¢S ®V|p I1, and
H'(Shic, Vi) [TT5] = {x € H(Shyc, V) | Tx = x(T)x for all T € 55},

where y is the character of 575 associated to ITS. We define H”*9(Shyc, V) [IT5] similarly.

Proposition 11.4. We have
H* (S, Vi) [I1°] = H (She, Vi) [I1°],
where d = |Z|.

Proof. By Matsushima’s formula [10, VIL.5.2], we have

sz(Sh;C,V&) ~ @ m(m)H* (g, Koo Moo ® PK) ® JTI;»:,
/9

where 7 = 7., ® ¢ runs over equivalence classes of irreducible admissible representations of (g, Kw) X
G(Af,r), m(r) is the multiplicity of 7 in the space of automorphic forms on G(Ar) and n? is the
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space of K-fixed vectors in 7. Since this isomorphism is compatible with the Hodge decompositions,
it suffices to prove the following: If m(x) > 0 and 7, ~ I1,, for almost all v, then

H* (9, Keo3 oo ® p1) = HE(, Koo oo ® pi)- (11.2)

Under this assumption, ,, has trivial central character for almost all v, and hence so is  since it is
automorphic. Since 7o, and py have trivial central character, we have

H?(g, Koo} oo ® i) = H* (8", K3 7ty ® p}),
H (g, Kooy oo ® pi) = H (8", KLo3 7l ® ),

where 71}, = Teo|(y,x2,) and p,’( = pklc:,. Note that 7, and p,’( remain irreducible.

Fix a realization # of r in the space of automorphic forms on G(Af). Let ¥ |G’ () be the restriction
of ¥ to G’ (Ar) as functions so that #'|: (4, is anonzero subspace of the space of automorphic forms on
G’(Ar). Fix an irreducible component 71" of #'|G/(a,). Since the natural surjective map ¥ — ¥'|g/(ap)
is (¢, K.,) X G’ (AF, s )-equivariant, 7}, is an irreducible component of 7, |G/, (resp. 7}, = 7, (g, k7)) if
v is finite (resp. if v is real).

We now compute the A-parameter iy of 7’. Choose an irreducible unitary cuspidal automorphic
representation 7 of GLy(Ap) so that 7 is an irreducible component of fB| BX(Ap)*, Where 7B is the
Jacquet-Langlands transfer of ¥ to B*(Af). Let 7g be the base change of ¥ to GL;(Ag). Note
that 7g does not depend on the choice of 7. For almost all v, 7, is a principal series representation
Ind(y, ® x;'€E,) of GLy(F,) for some unramified character y, of F. Hence,

e, = Ind(, ® 1"

for almost all v, where 77, = x,, o Ng, /F, . On the other hand, by Lemmas 6.1 and 9.4, 7, is the unique
irreducible unramified subquotient of

1 1
G, 7 -3 -
Il‘ldB S (nvl : |év ®77V| : |E‘2 ®Xv2)

G

for almost all v, where Bg, is the standard Borel subgroup of G, containing the maximal torus
T, =~ (EX)? x FX as in §9.4. Hence, n/, is the unique irreducible unramified subquotient of

1

G, 1 _1
IndBG’V (77v| : |é‘v ®77v| : |Ei)

for almost all v, where Bg;, = Bg, N G}, is the standard Borel subgroup of G/, containing the maximal
torus T, N G|, ~ (EX)?. Namely, we have

Y =1z ®Sym'.

Thus, by the classification of automorphic representations of G’(Ar), «, is an irreducible summand
of some representation in the local A-packet Ty, for all v. In particular, if v € X, then 7, is one of the
representations Ag, (wi_l/lv) asin §11.2, and hence we have

H'(g,.K}:7, ®p} ) =0

fori <2 and

H*(8),. K)im, @ pl, ) =H"' (8. K7, @ p), )
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by Proposition 11.2. From this, we deduce that

H (o, Kl ® pp) = R HA(a). Kiml @ pl, ) () HO(al, K}, @ pl, )

vex VEXL\Z
=R H" (ol Kyim, @p) ) X)) H(al.Kyiml, @p) )
vex VEZL\Z

= H™(g', Kl 7l ® pp).-
This completes the proof. O

Remark 11.5. The classification of automorphic representations is used in the proof of Proposition
11.4, but in fact, we can avoid appealing to the result of Kaletha—Minguez—Shin—White [34] as follows.
Let 7 be an irreducible automorphic representation of G (Af) such that 77, ~ IT,, for almost all v. Then,
by Proposition 9.5, we may write  as a global theta lift. Hence, if 7}, is an irreducible component of
7vl(g, k) for v € X, then it follows from the description of local theta lifts [48] (see also §7.2 and
Lemma 11.3) that ], = A,, (wl.‘l/lv) for some i. This implies equation (11.2).

Proposition 11.6. The Hodge structure H*?(Shy, Vi) [T15] is purely of type (d, d).

Proof. From the proof of Proposition 1 1.4, we need to compute the Hodge structure on

H (o' KLinl @ pp) = QR H " (0. Kin, @p), ) (X) HOal. Kim, @p), ).
Ve VEZ\T

The term Ho(g; LK, ®p;’kv) (forv € X \ X) is clearly of type (0, 0), so we are reduced to showing
that H"!(g),K/; 7/, ® P, .) (forv € X)is of type (1, 1). The Hodge type can be computed using [72],
keeping in mind that loc. cit. gives the Hodge numbers in the standard normalization; they need to
be twisted appropriately to get the Hodge type in the automorphic (unitary) normalization that we are
using. For ease of comparison with [72], we temporarily change notation to match that reference. (See
also [16], [25].)

Fix v € X for the rest of the proof. Let W ~ &4 and W, ~ S, xS, be the Weyl groups of g;, = gl(4,C)
and ¥/, = gl(2,C) @ gl(2, C), respectively. Let W! be the set of representatives for W.\W given by

{weW|w™ (A1) c A",
where A¥ and A* are the sets of positive roots in ], and g/, respectively. Put
Wh(p) = {we W' [e(w) = p},
where £(w) is the length of w. Then we can enumerate the elements in W' as follows:

plo 1 2 2 3 4
w1 (23) (243) (123) (1243) (13)(24).

Recall that &, is a positive even integer and put
A=L(ky =2,k =2,k +2,—k, +2).
Let p be half the sum of positive roots in g/,:
p=13,1,-1,-3).

LetZ = {t, = (o,a”!) e U(1)xU(1)} c U(2)xU(2). Asin [72], §1 and §4, let u and A denote the
highest characters of Z appearing in the adjoint representation of U(2, 2) and in the representation p , .
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Then p is just the action on (p;,)* and is explicitly given by
u(te) = o’

As for 4, it agrees with the action of Z on the 1rredu01ble representation of U(2) x U(2) with highest

ky
weight A; since this representation is just det? ~! ®det™ 2 *!, we see that
kv kv _
/l(l‘(,) — ((12)7—1(&,—2)— > +1 — Clzk" 4.

Since p, K, 18 self-dual, the lowest character of Z appearing in p, &, 18 simply A~!; thus, m = 2k,
where m is defined as in loc. cit. equation (4.8). Here, m is the total weight of the Hodge structure on
the fiber of the local system. (To convert to our normalization, where p,, x, has trivial central character
and hence the total weight on the fiber is zero, we must therefore twist the Hodge numbers below by
(2—ky,2 = ky).)

For completeness, we consider not just H"! but all the nonzero H”-4 (a,,K;7m, ® pv k. ), where 7/,

is chosen such that H?>? # 0. This space is then the sum of components of multldegree ( p,q); (r, s)
where (7, s) with r + s = m is the bidegree coming from the Hodge structure on the fiber. By [72], §5,
the (p, q); (k — p,m + p — k) component can only be nonzero if the action 7z of Z on the irreducible
representation 7 of U(2) x U(2) with highest weight w(A + p) — p is A — ky for some w € W!(p). Thus,
we just need to run through the different choices of (p, g) and w € W'(p).

o If (p,q) = (0,4) and w™! = 1, then

w(A+p)=3(ky + 1k, =1, =k, +1,—k, — 1),
w(A+p)—p=13(k, =2k, —2,—ky +2,-k, +2)

so that
7= (Sym’ ® detkTv_l) ® (Sym’ ® det_kTV”),
Ty b (az)%—l(a—z)—%ul — 24
Then k = 0, so the Hodge type is
(0,4) + (0,2k, —4) = (0,2k,).
o If (p,g) = (1,1) and w™! = (23), then

w(A+p) =3k, +1,-k, +1,k, — 1, -k, - 1),
W(A+p) —p= %(kv - 2, _kv’ k\M_kV +2)

so that
7=(Sym* e det_kTv) R (Sym" ' ® det_%”),
Tz i fo akv—l(az)—%(a—l)kv—l(a—z)—%vﬂ — a2
Then k = k,, — 1, so the Hodge type is

(LD +(ky=1=1,2ky, —4+1—=(ky = 1) =(ky, = 1,k, = 1).

o If (p,q) = (2,2) and w™! = (243), then

w(A+p) =3k, +1,-ky - Lk, — 1, -k, +1),
w(A+p)—p =1k, —2,-ky = 2,ky,—k, +4)
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so that
7= (Sym* ® det_kTv_l) ® (Sym 2 ® det_kTv+2),
Ty ity o (az) @)k 2(0—2) 2 _ g4
Then k = k,,, so the Hodge type is
(2,2) + (ky = 2,2k, —4+2—ky) = (ky, ky).
o If (p,q) = (2,2) and w=! = (123), then

w(A+p) = 3(ky = 1, =k, + 1 ky + 1, -k, — 1),
W(A+p) —-p= %(kv -4,~ky, ky, +2,-k, +2)

so that

7 = (Sym* 2 @ det™ 2)m(Sym ® det” 2+1)

Tz itg akv_z(a/z)_T(a_l)kV (cy_z)_T+1 =a*
Then k = k,,, so the Hodge type is
(2,2) + (ky = 2,2k, —4+2—ky) = (ky, ky).
o If (p,q) = (3,3) and w™! = (1243), then

w(A+p) =3k, = 1,—ky = Lk, + 1, -k, + 1),
w(A+p)—p=13(ky—4,—ky, =2k, +2,—k, +4)

so that
7 = (Sym*~ @ det™F 1) 1 (Sym*v~ 1®det 2+2)
1y @k 1(a2) 1@~k 1(072) 2 _ 06
Then k = k, + 1, so the Hodge type is
(3,3)+ (ky +1-=3,2k, —4+3—(ky,+1)) = (ky, + 1k, + 1).
o If (p,q) = (4,0) and w™! = (13)(24), then

w(A+p) = 3(=ky + 1, -k, — 1k, + 1k, = 1),
w(A+p)—p=3(=ky—2,-ky = 2.k, +2,k, +2)

so that

7=(Sym’ ® det™ ¥ > Hm (Sym’ ® det¥ >+,
> (a?) ——1( -2y Bl _ 2k

Then k = 2k, so the Hodge type is

(4,0) + 2k, — 4,2k, —4 +4 - 2k,) = (2k,,0).
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The relevant case for us is the case (p, ¢) = (1, 1) in which case the overall Hodge type (k, —1, k,, —1);
twisting it by (2—k,,2—k, ), we see that H! (g’ , K/ ; n/ ®p,, ,.) has Hodge type (1, 1) as expected. O

v v

_ Finally, we note that by §4.4, we may regard IT as an automorphic representation of any of the groups
G(A),9(A), 95 (A), Yp(A). Let S and K be as in §4.4 as well. Then we get:

Corollary 11.7. The Hodge structure on sz(Sh% o+ Vi) [I15] is purely of type (d, d).

11.4. Galois representations

Finally, we state the main result we need on Galois representations.
Proposition 11.8. Assume Kottwitz’s conjecture for Shimura varieties attached to unitary similitude
groups. Then the action of Gal(Q/Fy) on

H*(Shy ., Vio) [T15](d)

is trivial.
The proposition above encodes the expected relation between the automorphic form IT and the

cohomology of the Shimura variety Shy ;- and is consistent with Corollary 11.7. As such, it is an
immediate consequence of the following special case of Kottwitz’s conjecture [37, §10]:

Proposition 11.9. Assume Kottwitz’s conjecture for Shimura varieties attached to unitary similitude
groups. Then the action of Gal(Q/ Fx) on the semisimplification of
H* (Shy i, Vi) [1°](d)

is trivial.

Remark 11.10. Proposition 11.8 follows directly from Proposition 11.9 by a standard argument us-
ing the finiteness of the class number of Fy (as in [54, §5.13]). For convenience of the reader,
we include the argument here. Recall that any subquotient of the representation of Gal(Q/Fx) on
HZd(Shg-, o Vo) [T15](d) (regarded as a Q,-vector space) is unramified at almost all places and is de
Rham at all places dividing ¢. Thus, it suffices to show that H i (k,Q¢) = 0 for any number field k. Here,
Hé(k, Qp) is the Bloch—-Kato Selmer group [8] consisting of elements x € H'(k, Q) such that

e x, € H} (ky,Qp) for almost all v;
e x, € Hg,(kv, Qy) for all v dividing ¢,
where for any finite place v of k, x, denotes the restriction of x to H' (k,,, Q;). By class field theory, we
identify
H' (k\u Qf) = Homcont(Gal(E/kv)> Qf) = Homcont(k;(’ Qf)

Under this identification, we have Hlf (ky,Qp) = H' (k,, Q) = Hom(k3 /0%, Qp) if v does not divide £,

and Hél,(kv, Q¢) = Hom(k} /oy, Qp) if v divides ¢ by [8, Example 3.9]. Here, o, is the ring of integers
of k,,. From this, we deduce that

Hy(k,Q¢) = Hom(AZ/K*k%0%, Qr)

with ke = k ®y R and 0 = [], 0,. But since A /k*kX0* is finite, we have H1 (k,Qp) =0

Remark 11.11. We remark that Kottwitz’s conjecture for Shy - should follow from the stable trace
formula for Shimura varieties of abelian type established by Kisin—Shin—Zhu [35] but is conditional
on the classification of automorphic representations on unitary similitude groups and the equality [35,
(9.2.2.1)] of certain stable distributions. This is explained in more detail in Remark 1.4 in the introduction.

In the next section, we explain how to deduce Proposition 11.9 from Kottwitz’s conjecture.
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11.5. Kottwitz’s conjecture

Put I’y = Gal(Q/k) for a number field k. Then 2 (regarded as the set of embeddings of /" in C) admits
a natural action of I'g induced by the inclusion Q < C. We identify X, with I'g/I'r so that the fixed

embedding F — Q corresponds to the trivial coset I'r. Choose a set of representatives {07, ...,0,}
for I'q/T'r sothat X = {oI'F,...,04F}, where n = [F : Q] and d = |XZ|. Define an action of I'g on
{1,...,n} so that

voil'r =0yinlF
for y € I'g. We denote by Fx the fixed field of the subgroup
{oelg|lcZ =X}
Recall that G = GU(V) with

_jeu@,2) ifvex;
" lGUM@)  ifveZo\Z

and Gy = Resg g G. (Note that G = & with the notation of §4.1 .) Then we have
LG =G ~Tp, G = GL4(C) x C*,

where I'g acts trivially on G and the nontrivial element in Gal(E/F) acts as the automorphism 0
defined by

0(g,v) = (6a(g), v - detg).
Also, by [9, §5], we have
LGy =Gy~ T, Go=(G)",
where y € Ty acts on G as the automorphism
(815--58n) = (V1 8y1(1)s -+ Yn " &y 1(m)
with
Vi = o'i_lyay_l(i) elr.

To describe the Galois representation on the cohomology of the Shimura variety Shg; -, we need
to introduce some representation of the L-group. Following [7, §5.1], we recall its definition. Let
u Gy c — Sc¢ — Go ¢ be the cocharacter associated to the homomorphism # : S — Gor asin §11.3.
More explicitly, we have u(z) = (uy (2))yvex,, With

1
w2 xz ifvelZ;
ﬂv(Z)Z 12

1, x 1 ifveTy\ 2.

From this, we see that the reflex field of the Shimura datum (G, X) is Fx. We also identify p with a
character of the standard maximal torus of Go. Let r( be the irreducible algebraic representation of Go
with extreme weight —u, which can be explicated as follows. Let A2C* be the exterior square of the
standard representation of GL4(C) and regard it as a representation of G by letting v € C* act as the
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scalar v. We denote by r its contragredient on V = (A*C*)*. Then ry is the representation of G on
Vo = V®4 given by

ro(g1,--.,8n) =7(g1) ® - ®1(ga).

On the other hand, since (A>C*)* ® det ~ A>C* as representations of GL4(C), there exists a unique
automorphism A of V such that

r(8(g)oA=Aor(g)

for all g € G and such that A fixes the highest weight vector (unique up to scalars) in } with respect to
the standard Borel subgroup of G. Then we can extend r to “G by setting

V(1><O')={ld ifoelg;

A otherwise

and hence r to Go = I'p, by setting
ro(1y)(x1 ® -+ ®xg) =r(L=y)xy 1y @+ ®r(1=ya)x,14)-

We also need to introduce the expected classification of automorphic representations of G(Ap).
Let LgiSC(G) be the discrete spectrum of the unitary representation of G(Ar) on the Hilbert space

L?(AG(Fw)’G(F)\G(AF)), where Ag is the split component of the center of G and F, = F ®g R.
We say that a pair (¢, x) is an elliptic A-parameter for G if

e  is an elliptic A-parameter for G’;
e ) is acharacter of A% /E™ such that y”/y is equal to the central character of 7.

Then one expects the decomposition
Lo (6) = P L3, 6,
4

where ¢ = (', x) runs over elliptic A-parameters for G and L?p(G) is the near equivalence class of

irreducible subrepresentations 7 of LgiSC(G) such that for almost all places v of F, the base change of

7y to GL4(E, ) X E} is isomorphic to 7y ,, ® x,.

To compute the Galois representation, it is convenient to introduce the hypothetical Langlands group
Ly of a number field k equipped with a surjective homomorphism pr : L —» I'x. Let ¢ be an elliptic
A-parameter for G and regard it as an L-homomorphism  : L X SLo(C) — LG. Let ¢, : L — LG
be the L-parameter associated to , that is,

By () = w(w, ('W'Z ))
[w|™2

Then we have a representation () = (ro ¢y) ® | - |72 of L on V equipped with a decomposition

v=pV.,
where

Vi={veV|roy) (L (",1))v=t"viorallt e C*}.
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Similarly, if o : Lg X SL»(C) — LGy is the A-parameter induced by i, then we have a representation
r(Yo) = (ro © dy,) ® | - |72 of L, on Vy equipped with a decomposition

Vo =P Vi
i
More explicitly, we have

woly,h) = (g(y1,h),...,8g(va, h)) =pr(y),

where we write (o, h) = g(o, h) = pr(o) and y; € LF is defined similarly as above, and

Vi= p Vie-evi

=i+ +ig

We write r?(dro) for the ¢-adic representation of I'r, which should correspond to the representation of
L on Vé. Finally, let 75 be the irreducible unramified representation of G (Ai) associated to ¢, where
S is a sufficiently large finite set of rational primes. Then it follows from Kottwitz’s conjecture [37, §10]
that the {-adic representation of I', on the semisimplification of

H'(Shy s, Vi.o) [7°]

is isomorphic to a subrepresentation of ré“‘d (o) ®™ for some integer m.

To deduce Proposition 11.9 from Kottwitz’s conjecture, we now suppose that ¢ = (¢, y) with
¥’ = np ® Sym! as in equation (11.1) and y = 1. It suffices to show that r;z‘l (¥0)(d) is trivial. Let p
be the two-dimensional representation of Lr (conjecturally) associated to 7 and put pg = plz,.. (We
can justify the formal computation by using the ¢-adic representation of I'r associated to m, but we
omit the details.) Since 7g has trivial central character, pg is self-dual. Let W be the four-dimensional

representation of £ induced by ¢y |, so that W = W' @ W~! with W*! = pi ® | - |*2. Then, noting
that WV is self-dual, we have

V=(AWyel|-[?=APWel| |?=VeVWeV?
as representations of Lp, where
Vi=aWle |- [2=]-|7,
W=wew el [P=as(op) el [P =] [Fa(symp) & 7),
V2=apAWile | =L

(Note that in the context of §1.2.8 when F = Q and d = 1, V' corresponds to the £-adic representation
on H**)) Hence,

VO—Zd ® | . |d — (V_2)®d ® | 3 |d
is the trivial representation of L, as desired.
12. Hodge-Tate classes and the proof of the main theorem

12.1. Hodge-Tate classes
We make the following definition. Recall that the category Mi that is used below was defined in §2.1.
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Definition 12.1. Let (V, V;, i,) denote a (pure) object in Mf . A class ¢ € V is said to be a Hodge—Tate
class (HT in brief) if ¢ is a Hodge class in V and i, (c) is a Tate class in V; for all £. Thus, c is required
to lie in V%9 and i/ (c) is required to be G -invariant for all £.

We let HT (V) denote the L-subspace of HT-classes in V and H7T (V)¢ its C-span. (This notation is
slightly ambiguous since it does not keep track of the isomorphisms i,; this will typically not cause a
problem since the maps i, will be understood from the context.) Clearly, any morphism from (V, Vg, i¢)
to (V’,V/,i}) induces maps HT (V) — HT (V') and HT (V)c — HT (V')c.

If L c L’ c C, the natural functor Mi — Mf carries H7 (V) into H7T (Vy), where we write V.
forVep L.

12.2. The construction of a cohomology class

While some aspects of the construction have been described previously at various points in the paper,
we now collect in a single place the entire construction, which also makes clear the dependence on
various auxiliary choices.

12.2.1. Spaces and groups

Choose a CM quadratic extension E/F that embeds in both B and B,. (Later, we will be more careful
about the choice of E.) Fix embeddings E — Bj and E — B;. Let V| = By and V, = B», viewed as
Hermitian E-spaces with the canonical Hermitian form, as in [30, §2.2], and let V = V| & V; be their
direct sum, viewed as a four-dimensional Hermitian E-space. To the space V, we can associate the skew-
Hermitian B-space V as in §5.2. Further, as in §5.3.1, the decomposition V = V| @ V; of E-Hermitian
spaces induces a decomposition V = V & V; as the sum of skew-Hermitian B-spaces of dimensions two
and one, respectively. We then get a collection of groups and maps between them as described in §4,
and the reader is referred especially to the diagrams of groups in that section, which will be used often
in the construction below.

12.2.2. Shimura data
Fix isomorphisms

Bi ®F, o, R=My(R) forveZX; B;®f o, R=H forveZ,\X.

For concreteness, we can fix isomorphisms as follows:

. o 1 . (Yo 0
'”(o-vww)’ g ( 0 W) ve R

where for v € X \ Z, the notation /o, (J;) stands for /|, (J;)|i. We will use these isomorphisms to
identify

GB[(R):HGLz(R)x ]_[ HX.

veX VEZL\Z

Define Shimura data associated to B and B as in §3. Namely, take the G p, (R)-conjugacy class of the
homomorphisms

hi:S— Gp,(R), (hi(z))y =u(z)forveX; (hi(z))y=1forveZ,\Z,

where ¢ : C* — GL,(R) is defined as in equation (3.1). Note that for v € X, h; ,, is (B; ®F o, R)*-
conjugate to the embedding ¢, : C* =~ (E QF,+, R)* C (B ®F,», R)*, where the first of these
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isomorphisms is induced from the map E ®f ,, R ~ C sending i — +/|o, (u)|i. We denote this latter
isomorphism by o, as well.

Let Xp, and Xp, denote the associated Shimura varieties. The Shimura data for the other groups are
defined as follows. For (B} x EX)/F* ~ GUg(V;) with (8,a) — (x — Bxa™),

(hi(2)y = ((z), 1) forv e Z;  (hi(z))y =1forv e Xy \ 2.
In the basis (1p,,j;) of V;, the map (B} X EX)/F* — GUEg(V;) is given by

a

(a+Bji,6) — ¢! (ﬁ Jé_f) € GLy(E), a,B.6€E.

In the basis (w;1,w;2) = (1p,, iv = Vi ®, &, C, the Hermitian form is diagonal,

I Y
«/\avumj’) of vV

given by the matrix with the sign being —1 (resp. +1) if v € X (resp. v € o, \ X).

+1
Let v € X. The map (B x EX)/F* — GUEg(V;)(R), is given by

. -1 O-V(a,) Vo-v(Ji)a—v(:B)
(a + Bji, 6) = 0y (0) (x/mov(ﬁ_) (@) e GU(1,1), a,B,6€E.

0z
For G = G(Ug (V) x Ug(V>)), let h be defined by h(z) = (h1(z), ha(z)). For & = GUE(V), leth
be defined by composing the map h for G with the inclusion i : G < . In the basis

In particular, the map 4; , : C* — GU(1, 1) is GU(1, 1)-conjugate to the map z > (Z O).

1 ; 1 ;
1s 2
\/O'V (J1) \/O'v (J2)

)

(W11, Wa1, Wiz, W) = (1p,, 15,,

of V, = V®g +, C, the Hermitian foEm is diag(1, 1, £1, +1) with the sign being —1 (resp. +1) if v €
(resp. v € 2 \ X). Forv € X, h,, is 4 (R), -conjugate to the map

le
while for v € 2o, \ 2, h, is trivial.
For Gp = G(Up (V) x Up (Vo)) = G((BY x BY)/F* x E*), we take

h(z)y = ((((z), 1(z)), 22)

for v € X and h(z), = 1 otherwise. For “p, we take h to be the map obtained by composing /
for Gg with the inclusion Gg — ¥g. Thus, for v € X, the action of i(z), on \7B =V,e W, =
(Viy ®c Vo) @ (/\éVLV &) /\éVz,v) is given by ¢(z) ® t(z) @ zZ. To compute the 45 (R), -conjugacy

class, we may replace ¢(z) by ¢/, (z). The action of ¢/, (z) on V; ,, is diagonalizable, given by (Z Z) in the

basis (W;1, W;2), that is,
(Wi =wiaz, ()W = WinZ.
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Now, (W11 ® Wa1, W12 ® Wa1, Wi A Wy2) is a B ®F,,, R-basis of Vv and in this basis, the action of
h(z), is diagonal, given by diag(z?, zZ, zZ). From this description, it is clear that under the canonical
isomorphism

fé/E>< =9 ~ %B = gB/FX,
the chosen Shimura data are identified.

12.2.3. Local systems

We consider a local system ¥, on Shg, associated with a finite-dimensional representation p of Jp. To
construct this local system, we first fix isomorphisms B ®f F, =~ M(R) for all infinite places v of F.
Then to each infinite place v, as in §6 (and [30, §C.2]), we can associate orthogonal spaces va = VVT ®VJ,V
such that

GUs, (V,)° = GSO(V)), GUg, (V,)° = GSO(VJ), GUg, (Vo.)* = GSO(V; ).
Recall that

%(R):HGsom,z)x ]_[ GSO(0,6),

ves VETL\Z

where for p + g even,

GSO(p, q) = {8 € GLp+q(R) |[g1p,qg =v(g) - Ipgq, detg = V(8)¥}

1
fpa = ( ’ _14)'

The local system is then associated to the algebraic representation Vp,c =Xk _2(\7: ) of Y5 (R),
where for £ even, we have

with

¢ :=ker(Sym’ — Sym‘?) ® v(-)~2.

Note that by §8.2 (for £ = k — 2) the restriction of this representation to SO(4, 2) is irreducible with
highest weight (k —2, 0, 0). Via the isomorphism given by Corollary 6.3, this corresponds (for £ = k —2)
to the irreducible representation of U(2,2) with highest weight
k k k k
(5—1,5—1,—7+1,—§+1).

A similar statement holds for the places v € X, \ Z, and for the pair (SO(0, 6), U(4, 0)). Thus, the local
system Vp,c is isomorphic to the local system V. ¢ considered in §11.3.

Proposition 12.2. The C-vector space Vp,c contains a Q(k)-subspace Vp that is stable by the action
of 95(Q) and such that V,, ®qk) C= Vp,c. Moreover, such a subspace is unique up to homothety.

Proof. Fix an infinite place v of F. Then the representation #*v~2(V}}) is defined over o, (F) by [64],
Théoreme 3.3, since the highest weight is both invariant by Gal(Q/o, (F)) and lies in the root lattice.
Taking the tensor induction over all places v € X, yields a Q(k)-structure on Vp,c. The uniqueness up
to homothety follows from the irreducibility of V, c. O

12.2.4. Auxiliary modular form

Let ¥ be an irreducible automorphic representation of B*(A) corresponding to a holomorphic Hilbert
modular form of weights (k + 1,r) (with some odd integer r) and central character £. Let B*(A)*
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denote the subgroup of B*(A) consisting of elements with positive reduced norm at every infinite
place. The restriction of 7 to BX(A)* splits up as a sum of 2[7:Ql representations, characterized by the
local component at the [F : Q] infinite places being either holomorphic or antiholomorphic discrete
series. We let 7 be the irreducible summand whose local component is antiholomorphic for v € ¥ and
holomorphic for v ¢ X, twisted by a (half-integer power of)) the norm character to make it unitary.

12.2.5. Theta lift to Jp

Let 64 (¢) denote the element in & (D) ® N4%* @ Vp,c constructed in §10.4, with an element ¢ in the
space T and a Schwartz form @. (Note that in that section, the group &5 is simply denoted by G. Then
63 (¢) corresponds to a class

ér € H(Shy, . ¥,y 0)
via the isomorphism

H* (Shy ¥, c) =~ H* (3, K; o/ (9p) ® ¥, 0).

12.2.6. Pull back to Gp

Pull back &; to a class 4+ in H*¥(Shg,,V, ). Decompose V, ¢ into a sum of irreducibles (as
a representation of Gz (R)), and project to the irreducible component Voo = X kv=2(v,), as in
equation (8.3). Thus, i*£; can be viewed as an element of H>¢ (Shg,,, V,c). Note that the Q(k)-rational
structure on V, ¢ can be chosen such that the projection map carries it into the Q(k)-rational structure
onV,c.

12.2.7. Auxiliary character
For a finite order Hecke character 17 of T1(A) (see §4.3), we take the class c;, € HO(Sth, Q(n)) and
cup it with i*¢,, to get

Ery =i Ucy € H(Shg, .V, ).

12.2.8. Push forward to Shg and /C-invariant projection
Push forward the class £; ,, to Shg. Pick an open compact K of Z(A ¢ )\G(A ), and take the K-invariant
projection g?T,n,,C.

12.2.9. Pull back to Shg, x Shp,
Take an open compact subgroup Ky X K5 € Bi(Af) x B2(Ay) whose image under the natural map to
Z(Af)\G(Ay) is contained in K. Then pull back to Shp, x, X Shp, i, to get the class

Ern = JP1sEr i € H*(Shp, i, X Sha, ks, Yy 0).

12.2.10. Project to [, 72]-component
On Shp, X Shp,, we have

V, = Vi 8 V.
Thus
H**(Xp, 10, X XB,.12s Vo) = EB chcf,,gz [71, /2],
1,2
where

2d L. K K 2d
H’ClJCz (71, 72] = (ﬂl,lf ® ”2,;) ®H (XBIJCI X XBzJCz’ VK,C X Vk,C)irlxirz
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and 71, T, range over automorphic representations of Bf (A) and B;‘ (A) such that 7; ® > contributes
to the cohomology of the local system V,, c. Then

2d
€x(éry) € H}c,,)cz [y, 72]
is defined to be the projection to the [}, 12]-component. Note that
H**(Xp, 10, X XBy.1rs Vic 8 Vi o) mam = HY (X, k1 Viee)m ® HY(Xp, 10y Vi) -

12.2.11. Contraction with v; ® v,

Though we are assuming that 7V ~ 7, below we distinguish between them for purposes of clarity. Pick
nonzero elements v; € (7)/ %1, v, € (7y)/*2 such that v; ® v, is K-invariant. Then contracting
v1 ® v2 with €, (£;,) gives an element

g = <E7r(§T,T])7 Vl ® V2> € Hd(ShBl,Vk,C)ﬂl ® Hd(ShBQ7VE,C)7r2~

12.3. The construction of a Hodge-Tate class
Note that ¢ induces a map (for the moment of C-vector spaces!)
I : HY(Shp,, Vo) ~ H(Shp, . Vic)l —> HY(Sha,, Vio)n,-
Note also that & depends on the choices of the following data:
Y :=(E,7,¢.¢,0, K, K1, K2, v1,v2).
Proposition 12.3. There exists a choice of data X such that 1 ¢ is an isomorphism of C-vector spaces:
HY(Shg,, Vi,c)ry = HY(Sha,, Vi.0)r,-
Proof. By Matsushima’s formula, there are canonical isomorphisms:

Hd(gl,Kl;ﬂ'é]’w ®p£) ~ Hd(ShBI,V&)ﬂ.IV,
Hd(QZsKZsﬂ-Bz,OO ®p£) = Hd(Sthsvk)ﬂ'Z’

and so we just need to check that the data Y can be picked so that the induced map
I Hd(gl,Kl;n}/glvoo ® pr)” — H (82, K2, 7B, .0 ® p)

is an isomorphism. But this is exactly the content of Proposition 10.1. The only point to note is that one
can in fact pick a CM extension E/F satisfying the conditions (i) through (iii) in the statement of the
proposition. But equations (ii) and (iii) hold for all but a finite number of finite places, so it is obvious
that there exists E satisfying the needed conditions. O

We now come to the proof of the main theorem (Theorem | of the introduction and its generalization,
Theorem 3.2.)

Theorem 12.4.
(i) There exists a Hodge class &y € VB, .x, ® VB, x,(d) such that the induced map

-0
VBl,ﬂl = Vgl,m (_d) - VBz,ﬂz

is an isomorphism of L-Hodge structures.
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(ii) Assume Kottwitz’s conjecture for Shimura varieties attached to unitary similitude groups. Then the
Hodge class & can be chosen such that it belongs to HT (Vp,,x, ® VB,,x,(d)) so that the induced
map

-&o
VB.m ®Qr = (Vo x ® Qr)*(=d) — Vi, 2, ® Q¢
is an isomorphism of G g, -modules for all rational primes {.

Proof. The construction outlined in §12.2.1 to §12.2.11 above gives a map (for any open compact
subgroup K of ¥g(Ay))

Res : H**(Shy, . Vp)(d) = Vp,.x, ® Vi, x,(d) ~ Hom(Va, x,, Vi,.x,)
such that Resc sends
Eo(d) = &(d) — Ig(ay-
Let I be the kernel of the unramified part of the Hecke algebra (at level K) acting on T so that

H* (Shy, ¢, V,0)[1(d) = P H* (Shy, . ¥,.0) [17](d),

[on

where o ranges over a set of automorphisms of C/Q such that the I17 are the distinct conjugates of II.
Since Vp is defined over Q(k), we may consider the Q(k)-Hodge structure

H*(Shy, . V,)[11(d) c H* (Shy, ¢ V,.0)[11(d).

Now, &7 € H*(Shy, .V, c)[I] and Resc(£:(d)) is an isomorphism; hence, there exists an element
E, € sz(sh%’,g, Vp) (1] suc~h that Res(E;(d)) is an isomorphism. Indeed, if we pick a Q(k)-basis
(x1,...,x,) for H2d(Shg;B’,€, Vo) (1], then this is also a C-basis for sz(Sth’,C, Vo,c)[1]. Expanding
& in this basis:

Er=aix1+ -+ apx,

we see that the (ay,...,a,) € C" satisfies det(Iy, 4,x, (d)) # 0. Since this is a polynomial function in
the a;, it follows that there exist b; € Q(k) with det(Iy, p,x,(d)) # 0. Taking E; = 3 b;x;, we see
that Res(E.(d)) is an isomorphism. By a similar argument using a determinant, we can replace the
class ¢, in the original construction by some Q-linear combination ¢ of the fundamental classes of the
components of Shg .. (We note that since the action of Gal(@/ Fy) on the components of Shg is trivial,
the class ¢ is Gal(Q/Fs)-invariant.) The class Res(Z2.(d)) then has coefficients in L. (The only step
where the coefficients might be enlarged is the projection to the 7| ® m-component, and the coefficient
field L of 7 contains Q(k).) By Corollary 11.7, the class E-(d) is a Q(k)-rational Hodge class; hence,
&o = Res(E;(d)) is an L-rational Hodge class. Assuming Kottwitz’s conjecture, by Proposition 11.8,
the action of Gal(Q/Fx) on E;(d) is trivial and so the same is true for &g. |

A. Splittings
A.l. Setup

Let F be a number field and B a quaternion division algebra over F. Let E be a quadratic extension of
F which embeds into B. Let = be the main involution on B and p the nontrivial Galois automorphism
of E over F. We write E = F + Fi and B = E + Ej for some trace zero elements i € E* and j € B*.
Let pr : B — E be the associated projection. Put u = i*> € F* and J = j> € F*. Fix a nontrivial

https://doi.org/10.1017/fmp.2023.20 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.20

100 A. Ichino and K. Prasanna

additive character ¢ of A/F and a character y of A% /E such that y|sx = g, where & is the quadratic
character of A*/F* associated to E/F by class field theory.
We consider an m-dimensional right B-space V equipped with a skew-Hermitian form (-, -) : VXV —
B given by
(e1X1+ - +emXme Y1+ +emYm) =X] K- Y1+ +X, Kyl Y (A.1)

for some basis ey, ..., e, of V and some k1, ..., k,, € F*. We denote by GU(V) the unitary similitude
group of V and by v : GU(V) — F* the similitude character

GU(V) = {g € GL(V) | {(gv,gv') = v(g) - (v,v') forall v,v' € V},
where GL(V) acts on V on the left. We have a natural embedding
E* — GU(V),

where we may regard @ € E* as an element in GU(V) given by e; > ¢;a for all i.
Let W = B be a left B-space equipped with a Hermitian form (-,-) : W x W — B given by

(x,yy =x-y".

We denote by GU(W) the unitary similitude group of W and by v : GU(W) — F* the similitude
character

GU(W) = {h € GL(W) | {wh,w'h) = v(h) - {w,w’) for all w,w’ € W},

where GL(W) acts on W on the right. Then we have GU(W) ~ B*.
Let V=V ®p W be a 4m-dimensional F-space equipped with a symplectic form

()= 5 (6 ) 8 ().
Then we have a natural homomorphism
G(U(V) x U(W)) — Sp(V), (A2)
where
G(U(V) x U(W)) = {(g. h) € GU(V) x GUW) | v(g) = v(h)}
and GL(V) x GL(W) acts on V on the right:
(vew)-(g,h) = g_lv ® wh.
Let G be a subgroup of G(U(V) x U(W)) defined by
G ={(g.h) € GU(V)’ x GU(W) | »(g) = v(h) € Ng/r (EX)}.
We take a complete polarization V = X @ Y defined by
X=F-e1®1+---+F-¢;,®1+F-¢1®j+---+F-¢,,®]j,

Y=F-¢1®i+---+F-¢, @i+ F-¢;®ij+---+F - e, Qij.
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A.2. Splitting over G

For each place v of F, let Mp(V,,) be the metaplectic group over F,:
1 — C' — Mp(V,) — Sp(V,) — 1.

Then Mp(V,) can be realized by a 2-cocycle zy, relative to Y,, and ¢, (see, e.g., [58], [30, §3.2.2]). For
almost all v, there exists a map sy, : K, — C!, where K, is the standard maximal compact subgroup
of Sp(V,), such that

sy, (kikz)

zy, (k1, k) = ——————
v, (k1 k2) sy, (k1)sy, (k2)
for k1, ky € K, (see, e.g., [30, §3.2.3]).

Proposition A.1. For all v, there exists a map s, : G, — C! satisfying the following conditions:

(1) For 21,8 € gv; we have

sy (g182)

v, (81 82) = oSS

Here, by abuse of notation, we write g; on the left-hand side for the image of g; in Sp(V,,) under
equation (A.2).
(ii) Forz = (z,z) withz € F} and g € G,,, we have

sv(28) = €E, (D)™ - 50(8).

(iii) For almost all v, we have

Svlgonk, = 87, lg,nk, -

(iv) Fory € G(F), we have

[[ss=1.

v

As in [30, §3.3], Proposition A.l enable us to define a Weil representation w, of G(A) on the
Schwartz space S(X(A)). Moreover, for any ¢ € S(X(A)), the associated theta function

Op(8) = ) wy(@)e(x)

xeX
on G(A) is left G(F)-invariant.
Remark A.2. Suppose that V is the three-dimensional skew-Hermitian right B-space as in §5.2. Then

V satisfies the condition (A.1) and we may apply the above construction. Note that v(GU(V,)?) =
Ng, /r, (EY) for all v so that

G(A) =G(U(V) x UW))°(A).

The proof of Proposition A.1 will be given in §A.3—-§A.6 below. From now on, we fix a place v of F
and suppress the subscript v from the notation.
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A.3. The doubling method for U(V)
We consider the doubled space V™ =V @ V equipped with a skew-Hermitian form:

((vi,v2), (v, v3)) = (vi,v]) — (va, v3).
Then we have a natural embedding
t: G(U(V) x U(V)) — GU(VD).

If V¥ =V @ V is the doubled space equipped with a symplectic form defined similarly as above, then
we have a natural embedding

L2 Sp(V) x Sp(V) —> Sp(V?)
and an identification
Vo=V ez W.
We take a complete polarization V2 = V¥ @ V# defined by
VY = {(x,—x) | x € V}, V4 = {(x,x)|x € V}.
Under the above identification, we have
VV=V'®g W, VA=Vieg W,

where V2 = VV @ V* is the complete polarization over B defined similarly as above.
Now, we recall Kudla’s splitting over U(V"), where we regard U(V") as a subgroup of Sp(V") via
the natural embedding. As in [30, §C.3], we regard V" as a left B-space and let GL(V") act on V" on

the right:

x-v:i=v-x", X €B,

vogi=g1v, g € GL(VD).
Similarly, we regard W as a right B-space and let GL(W) act on W on the left. Then we have an
identification

VP =W g V.
Put
Vi3 (ei,—ei), v; = (ei,e;)

so that (v;, V;.) = 6;;. Using a basis vi,...,Vp, V,...,V,, of V5, we identify U(V") with

e e, =, )

Let Py » be the maximal parabolic subgroup of U(V") stabilizing V*:

PVA = {(a (tajj)—l)
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We define a map
§:U(vP) — !

as follows:

o If B is split, then we set

51(9) =1

for g € U(VD).
e If B is ramified, then we set

$1(g) = (=1)/

for g € PyatjPy« with

1
_ -1;
Tj = lm—j
1;
By [40, Theorem 3.1, cases 1_and 2,], we have
51(8182)
zva(81,82) = 7~ (A.3)
51(81)51(82)
for g1, g2 € U(V7).
Lemma A.3. For « € E* and g € U(V"7), we have
Si(aga™") = 81(g).
Proof. Since apa~! € Py for p € Py» and crrja_l = 7}, the assertion follows. m]
Lemma A4. Let « € E'. Then we have
S1((a, 1)) =1

if B is split, and

. 1 ifa=1,

S1(ua, 1)) = mo

=™ ifa+l
if B is ramified.
Proof. We may assume that B is ramified and @ # 1. Then we have
Vi-L(a',l) — 4. Vi ’
vi-ua, 1) V;
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where
_ %(a+1) ﬁ»i(a_l)
ki(a—1) %(a/ +1)
1 1 1
_ [T witer—D sla+)) (-1} (1 2K,~;@—1) .
ki(a—1) 1 1
This implies the assertion. O

A.4. The doubling method for U(W)
We consider a two-dimensional left E-space W = B equipped with a skew-Hermitian form
(x,y) = —i-pr(x-y").
Then we have a natural embedding
GU(W) — GU(W)
and an isomorphism GU(W) =~ (B* x E*)/F*, where B* X E* acts on W by
x-(ha)=a ' x-h.

We write [, a] for the image of (&, @) in GU(W). Also, we consider the doubled space W™ = W & W
equipped with a skew-Hermitian form

((wi,wa), (Wi, w3)) = (wi, wi) — (w2, w)).
Then we have a natural embedding
t: G(U(W) x U(W)) — GU(W"?).
LetV=¢E +-:-+e,E be an m-dimensional right E-space equipped with a Hermitian form
(e1x1+ -+ emXm,e1y1+ -+ emym) :x’lo-/q YA X K Ve
Let f: Vg W — V ®p W be the natural isomorphism. Then we have
fv@w-[hal)=fvow): (a, h) (A.4)

for h € B* and @ € E*, and

Yo (F X ) =3 r((.) ® ().

Hence, we may identify V ® g W with V and omit f from the notation. Similarly, we identify V@ W©
with V&,

Now, we recall Kudla’s splitting over U(W"Y), where we regard U(W") as a subgroup of Sp(V") via
the natural embedding. We take a complete polarization W™ = WY @ W2 over E defined by

WY = {(w,-w)|w e W}, W2 = {(w,w)|w € W}

Put

| oL . o
Wi = _E ' (1’_1)3 Wy = 2_Ji : (.]? _J)’ w] - (19 1)’ w2 - (.]’.])
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so that (w;, wj.) = 6;;. Using a basis wy, wa, w}, w3 of W=, we identify U(W®) with

{h € GL4(E) ’h (_12 12),h,, _ (_12 12)}.

Let Pwa be the maximal parabolic subgroup of U(W") stabilizing W*:

Pwe = {(a (ta:)l)

We define a map

by setting

for h = pi7jp, with

a; %
.= _ EP A,
(" ) <o

where

a e GLQ(E)} .

$ : U(WP) — !

$2(h) = x(x(R)™ -y~

1,

Tj=

x(h) = det(ajaz) mod NE/F(EX)

and

Y= (u’ detV)F . YF(—M, %l!/)m . yF(_l’ %l!/)—m.

105

Here, (-, -)F is the quadratic Hilbert symbol of F and yg (-, %z,b) is the Weil index as in [58, Appendix],
[30, §3.1.1]. By [40, Theorem 3.1, cases 3.], we have

zya(hy, hy) =

for hy, hy € U(WD).

§2(hy1hy)
§2(h1)82(ha)

Lemma A.5. For « € E* and h € U(WP), we have

S\Z(L([a,a 1]’ [O.’, 1]) h- L( [(Y, 1]’ [(Y, 1])_1) = §2(h)

Proof. Put hy = ([, 1], [a, 1]). Since

R R

]

>

we have x(hophy') = x(p) for p € Pwe and ho7;hy! = 7. Hence, the assertion follows.
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Lemma A.6. For « € E*, we have

$2(u([a, al, [a,a])) = x (@)™

Proof. Put hy = ([, a], [a, a]). Since

R R
—
R

S
—

*
S S S S

@ a

and y(a®) = y(@)™', the assertion follows.

Lemma A.7. Let « € E!. Then we have

$([1,a], 1) = x ()™

if B is split, and

$2(([1, ], 1) = x (@)™ x {1

if B is ramified.

(=™

ifa=1,
ifa#1

Proof. We may assume that a # 1. Then we have trg/r(a) # 2 and hence @ — 1 € E*. As in the proof

of Lemma A .4, we have

wi-u([1,a], 1) Wi
wy - 1([1,a],1) w2
wu([1,el, 1) wi|’
w; ([1,a],1) w;
where
%(a/‘1 +1) —%(a/‘1 -1
A Lt +1) e =1)
B () La'+1)
Ji(e™!' = 1) %(a‘1 +1)
1
e D 1 * L=
- ~TJila-T) * Ty 1=
—i(a? - 1) 1
Ji(a® - 1) 1
Hence, we have
1 J J
x(u([1,a],1)) = T = TR =-- mod Ng/r(E™)

so that

x(x(([1,al, 1)) = x(@)™" - £x(=J)

— (@) e (1) x {il
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Also, we have

Y= (=L (=1, =D = (-Lu)p = ée(=1)".

This implies the assertion. O

A.5. Splitting over g“
Let G* be a subgroup of GU(V) x GU(W) x GU(V) x GU(W) defined by

G* = {(g. h,a,@) € GU(V)* x GU(W) x EX x E*| v(g) = v(h) = Ng/r(a)}.
Then we have a natural homomorphism
G* ¢ G(U(V) x U(W)) x G(U(V) x U(W)) —> Sp(V) x Sp(V) c Sp(VD). (A.6)
We define a map
ghigh — !
by setting
(g ha, ) = x(@)™ - 51((ge! 1)) - S2(u(ha™ 1) -z (e(ga 1), (ha ™ 1)).
Lemma A.8. For g, g € G* we have

$*(g1g2)
§4(g1)5%(g2)

Here, by abuse of notation, we write g; on the left-hand side for the image of g; in Sp(V®) under
equation (A.0).

zy2 (g1, 8) =

Proof. Write g; = (g, hi,a;, ;). If @) = ap = 1, then the assertion follows from equations (A.3)
and (A.5) and [51, Chapitre 2, IL5]. If @1 and a, are arbitrary, put h; = (g;e; "', ha;!,1,1) and
@; = (a;, a;, a;, @;). Let Pys be the maximal parabolic subgroup of Sp(V") stabilizing V. Then it
follows from [58, Theorem 4.1] that

zva(prop,p o’ p) = zys (0, 0) (A7)

for p1, p2, p € Py» and o, 0’ € Sp(V") (see also [30, §3.1.1]). Since g;g> = h; - alhzaI' -aja; and
the image of @; in Sp(V™) belongs to Py, we have

§% (hja1hya !
_ st(haia, )
zya (g1, = zya(hy, ajhha = .
va (g1, 82) = zva (hy, @1hya]’) )5 (a e )

On the other hand, by definition, we have

5% (g122) _ s (gigo () ™) :fﬁ(hla’lhﬂfl)
$H(g)sf(g)  SH(giaH§f(gay")  H(hy)§F(hy)

It follows from Lemmas A.3 and A.5, combined with equation (A.7), that

$*(@1hpatt) = §%(hy).

This completes the proof. O
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Lemma A.9. For a € E!, we have
$'(1L L v e) = $:(u(1, [a. a])).
Proof. Put

ga = t(a, 1) € U(VT),

he = ([a,1],1) € U(WT),

ke =t([1,a],1) € UWY),

mq = t([a,a], [a,a]) € UWD).

By definition, we have
(1L L ava) = x (@)™ 51851 - a(hg)) - zve (831 1)),

Since my = hg - ko - (1, [@,a]) and the image of m, in Sp(V") belongs to Pys, it follows from
equations (A.5) and (A.7) and Lemma A.6 that

S2(u(1, [, @) = $2 (kg hgh) - $2(ma) - zve (k5 B! ma)
= 83(kg' hg") - x (@)™
= x (@) 5a(k5) - $2(hg)) - ze (k5! G,
By Lemmas A.4 and A.7, we have
$2(kg") = x(@)™ - 31(ga").-
By equation (A.4), the image of k. in Sp(V") agrees with that of g, so that
zve (kg hg) = zva (85" hg)).

This completes the proof. O

A.6. Proof of Proposition A.l

Now, we take a complete polarization V® = X" @ Y defined by
X =XeoX Y°=YeY.
Asin [30, §D.3], we have
zve (o, 02), (0, 03)) = zy (o1, 0) - z¢ (02, 05) 7"
for o, o/ € Sp(V). Fix o € Sp(V") such that V¥ = X" - 0p and V* = Y" - 0. Put
u(o) = zye (o9, 0) ™" - zyo(coooy !, 00)
for o= € Sp(V"). Note that ¢ does not depend on the choice of oy. Then, by [40, Lemma 4.2], we have

zyo(o,0’) = zye (0, 0') - Moo (A.8)
p(o)pu(o’)

for o, o’ € Sp(V").
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Put s# = 5% . pand 5o = §> - u. By Lemma A.8 and equation (A.5), we have

A(
s*(g182)
zyo (g1, 8) = 57— —
s*(g1)s%(g2)
for g, g € G% and
s2(h1hy)
zya(hy, hy) = ———F—
o) = G ()
for hy, h, € U(W"P). We define a map
s:G— C!

by setting

3 st(g, h,a, @)
&M = 0 [ al)”

where we choose o € E* such that v(g) = v(h) = Ng/r(@).
Lemma A.10. The map s is well defined, that is, for (g, h, a,a) € Gt and B € E! we have
s¥(g, h, aB, ap) B st(g, h,a,a)
s2(e(1, [aB,aBl) 5201, [a,a]))

Proof. First, note that, by equation (A.4), the image of (@, @) € G(U(V) x U(W)) in Sp(V) agrees with
that of [, a] € U(W). We have

sﬁ(g’ h» aﬁ’ QIB) = sﬁ(g’ hva’ CY) : sﬂ(l’ Lﬁ’ﬁ) : ZYD((g’ h’ a, Cl), (1’ ]"ﬁ’ﬁ))
=st(g. has@) - s (11,8, B) - z¢((@, @), (B, 8)

and
s2(u(1, [ef, af])) = s2(u(1, [, @])) - s2(u(1, [B, B])) - 2vo (u(1, [, @]), (1, [B, B]))
= 52(u(1, [@,@))) - s2(«(1, [B, B))) - z¢ ([, @], [B, B "
By Lemma A.9, we have
sH(1L LB B) = s2(u(1, [B.B)).
This implies the assertion. O
Lemma A.11. The map s satisfies the condition (i) of Proposition A.1, that is, for g, g, € G, we have

s(g182)

<r(8182) = (g

Proof. Write g; = (g;, h;), and choose a; € E* such that v(g;) = v(h;) = Ng/r(a;). Then we have

s(gg) _ sSMgign i aian,@ia0)  sa(u(l [, an])sa(u(l, @2, a2]))
s(g1)s(g2)  st(g1, hi, a1, a1)st(g2, ho, a2, @2) s2(e(1, [z, @1a2]))
= zyo((g1, i, @1, @1), (g2, ha, @2, @2)) - 2o (1(1, [@1, a1 ]), u(1, [@2, @2])) ™!

= z7((g1, 1), (82, 1)) - zx (a1, @1), (@2, @2)) ™" - zw([e1, 1], [@2, @2])
=zv((g1, M), (82, h2)).

This completes the proof. O
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By definition, the map s also satisfies the other conditions of Proposition A.l. This completes the
proof of Proposition A.1.

A.7. Independence of the choice of x
To define the map s, we have used the fixed character y of E* such that y|rx = ég. However, we have:
Lemma A.12. The map s defined as above does not depend on the choice of x.

Proof. Let x| and > be two characters of E* such that y{|px = x2|px = ££. We will write s = s,,, and so
on, to indicate the dependence on y;. For (g, h) € G, choose @ € E* such that v(g) = v(h) = Ng/r ().
Then, by definition, we have

su(gh) _shi(ghaia) 5,00, [a,a])
s/vz(g’ h) siz(g,h,a’ ) $2.x1 (L(l’ [a/’ a]))

8 (g ha,@) 5y, (1, [ al))

& (ghava) S20G(L[aal)
$2,0 (t(ha™" 1)) 82,4, (u(1, [@, @]))
§2,/\/2(L(ha_l’ 1)) §2,)(1 (u(1, [a, a])) ’

=n(a)™ -

where = y1/x2. On the other hand, for k € U(W"), we have

§2,X1 (k) _

oK) n(x(k)™ = 7j(det k)™,

where 7 is the character of E! such that 7j(x/x”) = n(x) for x € EX. Since

deti(ha™', 1) = v(WNg/p(a) ' = 1,

detc(1, [@,@]) = Ng/F (@a?=ala”,
we have
Jh
0D ) ey =
st (g’ h)
This completes the proof. O

A.8. Compatibility with seesaws

We write V =V’ @ V"’ as an orthogonal direct sum of skew-Hermitian right B-spaces
Vi=ei\B®---®e,B, V"' =ew 1 BO - ®epB.

LetV' =V'@gWand V"’ = V" ®p W be the symplectic F-spaces asin §A.1. Then we have V = V' V",
which gives rise to a seesaw diagram

GU(V) G(U(W) x UW)) .

G(U(V') x U(V")) GU(W)
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Let G’ and G” be the subgroups of G(U(V’) x U(W)) and G(U(V"”) x U(W)), respectively, as in §A.1.
Put

G ={(g',g" h) € GU(V)® x GU(V")° x GUW) | v(g') = v(g") = v(h) € Ng/p(E™)}.

We regard G’ as subgroups of G and G’ X G”” via the above seesaw diagram. We take the complete
polarizations V' =X’ @ Y’ and V” = X" @ Y” as in §A.1 so that

X=X oX", Y=Y e&Y".

Lets’: G’ — Cland s” : G” — C! be the maps trivializing zy~ and zy~, respectively, defined similarly
as above. Then, by construction, we have

s=s5 ®s"

on g///.

A.9. Compatibility with [31]

In this section, we compare the splitting s with the standard one for unitary dual pairs when dimV = 1.
In this case, using the notation of §A.4, we have a seesaw diagram

EX =~ GUWV)? GU(W) =~ (BXxXEX)/F*.
>
E* =~ GU(V) GU(W) = B*
We define a map
s G(U(V) x U(W))? — ¢!
by setting

s*(a, h) = s2(u([, @], 1))

for (e, h) € G(U(V)xU(W))?, where [k, @] € U(W) and s, = §, - u. Then s% trivializes zy by equation
(A.4). This splitting will be used in [31].

Lemma A.13. We have
si(a, h) = s(a, h) - y(a)™".
Proof. Recall that

st (a,h,a,a)

s(a, h) = s2((1, [, a]))

We have

sﬁ(a/,h,a, a) = sﬁ(l,hafl, 1,1)- sﬂ(oz,a,a, a) -zyu((l,ha’l, L1),(a,a,a,a))
=s* (1, ha™',1,1) - s* (@, @, 0, @) - 29 ((1, ha ™), (@, @)).

https://doi.org/10.1017/fmp.2023.20 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.20

112 A. Ichino and K. Prasanna

By definition and Lemma A.6, we have
st ha™ 1, 1) = sa(u([ha™! 11, 1)
and

s, @, @,a) = x(@) - 2(u([a, @, [, @]))
= X(a,) : SZ(L([G‘,7 (Y], 1)) : SZ(L(I’ [G,’, (Y])) * ZYD(L([Q'7 CL’], 1)’L(17 [(Y, CY]))
= x(@) - s2(e([@, @], 1)) - s2(u(1, [@, ])).

Hence, we have

s(a,h) = x(@) - s2(e([ha™' 1], 1) - s2(e([e @], 1) - zv([ha ™" 1], [, @])
= X(Q) : SQ(L([ha_l’ 1]’ 1)) : SZ(L([O"’ (Y], 1)) * Yo (L([ha,_17 1]7 1)’ L([G‘,7 (l], 1))
= x (@) - s2(u([h, @], 1)). O

A.10. Compatibility with [30]

In this section, we compare the splitting s with the one defined in [30, Appendix C]. Suppose again that
F is a number field. Let V = B; ® B; be the two-dimensional skew-Hermitian right B-space as in [30,
§2.2], where B and B, are quaternion algebras over F such that E embeds into B; and B;, and such
that B - B, = B in the Brauer group. We write B; = E + Ej; for some trace zero element j; € B;‘ and
putJ; = ji2 € F*. We may assume that

Ji-Jy=J.
Then the skew-Hermitian form on V is given by equation (A.1) with

e1=1®1, Ky =1,
er=j1®1, Ky = —J.

Recall the exact sequence
1 — F*— Bfx B — GU(V)? — 1,
where F* embeds into B X B by z + (z, z71) and B x B} acts on V on the left by
(g1, 82) - (x1 ® x2) = g1X1 ® gox2.
We write [g1, g2] for the image of (g1, g2) in GU(V)?. If we put
G ={(g1.82.h) € B} x BY X B* | v(g1)v(g2) = v(h) € Ng/p(E)},

where v denotes the reduced norm, then we have a natural surjective map G —» G. We take the complete
polarization V = X @Y as in §A.1, which agrees with the one given in [30, §2.2]. For each place v of F,
let

5, : GU(V,)’ x GU(W,) — C!

be the map trivializing zy, defined in [30, Appendix C]. Since both §, and s, trivialize zy, , there exists
a continuous character y of G(A) such that

§v|gv =Sy Xy
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for all v. Since both §, and s, satisfy the product formula, y is trivial on G(F). We regard x as a
character of G(A).
Proposition A.14. Assume that

e Fis totally real;
e FE is totally imaginary;
e By, and B,,, are split for some real place v of F.

Then, for (g1, g2, h) € G(A), we have
x(81,82,h) = 1.
Namely, we have
Svlg, = sv
for all v.
Proof. We define a homomorphism 7 : G(A) — AX by
(81,82, h) = v(g1).

Then the image of ¥ consists of elements a € A* with a, > 0 for all infinite places v such that B; ,, or
B;, or B, is ramified. Also, putting G = Bil) X Bgl) x B we have

kerv =GV (A) - {(1,a,0) | @ € A%},
7 (Ng/p(AR) =kerv - {(a, @7, 1) | @ € A%},
7 I FX) =kerv - G(F),

where we have used Eichler’s norm theorem in the last equality. Since 7! (F*Ng/r (A%)) is the kernel
of é¢ o 7, it is a subgroup of G(A) of index 2 and does not contain any element (g1.v-82.v,hy) € G,
such that v(g; v) € Ng,/r, (EY).

Now, we show that y is trivial. Since y is automorphic, it is trivial on ¢ (A). Moreover, in §A.11
below, we will prove the following:

e For a € A%, we have
Y(La,a) =1. (A.9)

e For a € A%, we have
x(a, o' 1) =1. (A.10)

e Let v be areal place of F such that B} ,, and B»,, are split. Choose ¢; ,, € F} such that J; = tl.z,v. Then
we have

X (0 G g 1) = 1 (A.11)

Note that v(ti_’{) -ji) =-1¢Ng, /r, (EY).

This implies the assertion. m}

https://doi.org/10.1017/fmp.2023.20 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.20

114 A. Ichino and K. Prasanna

A.11. Computation of splittings

We retain the notation of §A.10. We fix a place v of F and suppress the subscript v from the notation.
Recall that y is a continuous character of G such that

5(g1,82,h)
X (81,82, h) = —""""",
s(g1,82,h)

where we regard § and s as maps on G. To compute y explicitly, we need to introduce more notation.
A.11.1. Notation

We denote by GSp,,,(F) the symplectic similitude group and by v : GSp,,,(F) — F* the similitude
character:

P2 () = {‘T € Glantl “7 (—1 1,,) ‘o =v(0): (—1 1,,) } '

Let Sp,,,(F) = kerv be the symplectic group and P the standard maximal parabolic subgroup of

Sp2n(F)
P ={m(a)n(b) |a € GL,(F),b € Sym, (F)},
where
m(a) = (a ,a_l), n(b) = (1" D ) |
Put
1,
d(v) = (ln .. ln) , e 1 -1;
1;

If o = p17jp2 € Sp,,(F) with p; = m(a;)n(b;) € P, put

x(0) = det(a;ay) mod (F*)2, j(o) =j.

Note that
x(d)-o-dv)y™) =vID x(e),  jd)-o-dv)T) = j(0). (A.12)
We define a map
v : Sp,, (F) x F* — C!
by setting

v(o,v) = (x(a), V)F -y (v, L) (@),

where (-, -)F is the quadratic Hilbert symbol of F and yF (-, %d/) is the Weil index as in [58, Appendix],
[30, §3.1.1]. Let z be the 2-cocycle on Sp,, (F) realizing the metaplectic group (see e.g. [58], [30,
§3.2.2]). By [58, Theorem 4.1 and Corollary 4.2], we have:

e z(o,07) =1for o € Sp,, (F);
o z(piop,plo'py) = z(o,0’) for p1, pa, p € Pand o, 0’ € Sp,,, (F);
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o z(1,7;) = 15
e 72(1ty,n(b)1,) = )’F(%l/’)" - yr(detb, %d/) - hp(b) for b € Sym, (F) N GL,, (F), where hg(b) is the
Hasse invariant of the nondegenerate symmetric bilinear form associated to b.

We may extend z to a 2-cocycle on GSp,,, (F) (see, e.g., [30, Appendix B]). Then, for o, o’ € GSp,,,(F)
with v(o) = v and v(c’) = v~!, we have

2o, 0) =z(0-d(v)™ ', d(v) - ') -v(o’ - d(v), V).

Recall that V = V ®p W is an eight-dimensional symplectic F-space. Let ey, ..., es,€],...,€, be
the basis of V given in [30, §2.2]. Then we have

X=Fe + -+ Fey, YZFCT+"'+FQZ, ((ei,e;))zéij.

Using this basis, we identify GSp(V) with GSpg(F). Under this identification, we write Py and zy for
P and z, respectively. We refer to [30, §C.1] for an explicit description of the image of B} x B} X B* in
GSp(V). Also, using a basis

(er,0),...,(es4,0),(0,e1),...,(0,e4), (e],0),...,(e;,0),(0,—€)),...,(0,—¢))

of V¥, we identify GSp(V") with GSp,¢(F). For 1 <i < 4, put

Xi:Fei’ X?=X,€BX1,
Y; = Fe}, Y=Y ®Y,,
V:i=X;®Y;, V?ZV,'@VI'.

Then we have a natural embedding
L Sp(V7) — Sp(VP).

Using a basis (e;,0), (0, ¢;), (e}, 0), (0, —€;) of V7, we identify GSp(V?}') with GSp4(F). Put

-4
114 114
= 274 2 %1 e Sp(V7).
1, 14
14 14
Then we have
%(8’ __é) (_é7 0) €] eT
1@, —e) (0,€) L e U
2\&5 —on-| D — _ |%2
(E*, é’*) g0 (e*’ 0) 5 € e s € e;
(_e9 _e) (09 - >|‘) €4 ez
sothat V¥V =XP - ggand V2 = Y - 0y.
A.11.2. Proof of equation (A.9)
In this section, we will show that
x(La,a)=1
2

for & € EX. We write & = a + bi with a, b € F and put v = a®> — b?u. Since y is continuous, we may

assume that

a #0, b#+0.
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Lemma A.15. We have
§(1,a,@) = yr(J1, 3¢) - (=2abJo, J))F.

Proof. Putg = [1,a] € GU(V)? and h = @ € GU(W). Then we have 5(1, «, @) = 5(g) - 5(h) - zv (g, h).
By [30, Proposition C.4.2], we have

§(g) = (=vJ2, J1)F, 5(h) = (J2, J1)F-

It remains to compute zy (g, h).
Recall that

zv(g,h) = zv(g - d(v),d(»)™" - h) -v(h-d(v)"' v,

We have

L. a-14 -bu-lJ» he a-14 bu-J
&= b3 a1 | “bJtay

in GSp(V), where

1 1
| -h | =h
—J J
Since
—b! -Ja vila- 14 ) 1
g§= - 1] - on(=ab™ - Jo),
( —v1p. le
_ b-J! a-1
h=n(ab1'J)'T4-( vb‘1-4J)’
we have
zv(g-d(v),d(v)™" - h) = zy (14 - n(=vab™" - o), n(vab™ - J) - 14) = zy (14, 0(b) - 74),
where
0
b=—vab~ Ty +vab~ - J=2vab-| ° )
J
If we put

b’ = 2vab~' - (_J2 J),
then we have
zz(t4.n(b)  74) = yr (39)* - yr (deth’, 3) - hp (V).
Hence, since detb’ = —J; mod (F*)? and

hip (') = (=2vab~'Jy, 2vab™' J)p = (=2vabJy, J))F,
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we have

2(g-d(v),d)™ - h) =yp(=1,39) " - yr (=], 39) - (=2vably, J1)F
=yr(J1, 59) - (2vabJy, J)F.

On the other hand, since x(% - d(v)™") = 1 mod (F*)? and j(h - d(v)™") = 4, we have
v(h-d(v)"', v =1
Thus, we obtain
zv(g.h) = yr(J1. 3¥) - 2vabdy, J))F.

This completes the proof. O

Now, we compute s(1,a,a). Note that [1,a] € GU(V)? is the image of @ under the embedding
E* — GU(V) as in §A.1. Hence, by definition, we have

sh (a,a,a,a)

s2(u(1, [e, a]))’

s(la,@) =
where [a, @] € U(W). Since

SZ(L([G‘,’ (1’], [O.’, Cl])) = SZ(L([G‘,’ (1’], 1)) : SQ(L(I’ [Cl, (l’])) : ZYD(L([(X’ CL’], 1)’L(1’ [(Y, a’]))
= SZ(L([Q5O',]5 1)) : SZ(L(I’ [av a]))a

we have

3 sﬂ(a,a,a,a/)
S(lch’ (I) - sz(t([a, O’], [(I, Q])) . SZ("([(}" a,]’ 1))

_ HMe,e00)
= H(aal [aa)y 20l D) puldle.al. D).

Hence, by definition and Lemma A.6, we have
s(1,a,0) = x(@)? - $2(u([@, @], 1)) - p(e([a, ], 1)).
Lemma A.16. We have
$2(u([, @), 1) = x (@)% - (u, J)F

Proof. Put h = ([a,a],1) € UW?) and 8 = e 'a® so that B — 1 € E*. As in the proof of Lemma
A.4, we have

wi-h Wi
Wz-h - A Wo
w-h| wil’
* *
w - h w3
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where

Aol ey Re-n
1

JiB-1)  3(B+1)

1
=| Vi) 7y -

Ji(B-1) 1

1

Hence, we have

$2(([a,al, 1) = x(Ji(B = 1)) -y,

where

y = (u,det V) - yr (—u, 29)? - yp (=1, 1y) ™2
= (ua_Jl)F ' (_1,_M)F : (_17_1)F
= (us‘ll)F-

Since B — 1 = a”'(a” — @) = —2bia!, we have y(Ji(B8 - 1))?> = y(=2buJa™")? = y(a)~2. This
completes the proof. O

Lemma A.17. We have
p(([a,al, 1) = yr(J1, 39) - (—2abuly, Ji)F.
Proof. We write @~ 'a® = ¢ + di with ¢, d € F so that

2,32

a-+b-u 2ab

= — # +1, d=——+ #0.
¢ a? — b%u

Recall that
p(i([a,al, 1)) = zyo (00, o) - zya(ooooy ', 09),
where o is the image of ([, @], 1) in Sp(V"). We have

4

4
ao=[Jum -m@)),  o=]]ulow,
i i=3

where

o
U

&
<

=

1
= 2 T
a] (_1 _1)7 O—l

T
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Since 71 - m(a;) € Pys -7 -m(az) and 0; € n(b; ;) - 7 - Py, where

-1
1 ck; 1 _ 1
32—(11), b11_7( 0)’ T= 1 s
1
we have
4
zyo(00,0) = HZY?(TI -m(ay), oy)
i=3
4
= HZYE(Tl,m(az) -n(by;) - 7).
i=3
If we put

_cki (11 _ck; (0
b2,i—7'(1 ), b3,i—7'( 1),

then we have m(az) - n(b; ;) =n(bz;) - n(bs ;) - m(a) and hence
4
zvo(00,0) = [ [ 2o (71 - m(bo),m(bs) -m(ar) - 7).
i=3

Since 71 - n(by;) € Pyo -7 and n(bs;) -m(ay)-ret- Py, we have

4
zyo (00, 0) = HZY?(TI,T) =1
i=3

On the other hand, we have

4
0'00'0'0_1 = l_lti(O'i’),
i=3
where
%(cd+1) 1 Hho 1 w1 ¢~ 1)
0'/— 2k Z(C+1) Ti(c_l) —?
= d
! o c—1 E(C + 1) ~
—c+1 —dku -4 Lc+1)

Since o7 € Pyo -1 n(by ;) - n(bs;), where

d 0 dku (1
R S , be = — . ,
b = = T, ( 1) YT 2(e-1) ( 0)

https://doi.org/10.1017/fmp.2023.20 Published online by Cambridge University Press

119


https://doi.org/10.1017/fmp.2023.20

120 A. Ichino and K. Prasanna
we have

4
-1
zro(ovoay ' o0) = [ [ zee(of 7 - m(a)

i=3
4

= HZY? (12,m(by ;) - m(bs ;) - 71).
i=3

Hence, since n(bs ;) - 71 € 71 - Pyo and
i

d _a
c—1" bu’
we have
4
zyo(o0oay ', 09) = HZY?(Tz,n(bA,,i) “T1)
i=3
4
=[] lrrGGw) - vr Qabkin, 3]
i=3
= yr (=1, 39) 7" yr (kska, 39) - (2abksu, 2abkyu)r
= yr (=k3kg, 31) - (=2abksu, —kska)F .
This completes the proof. O

By Lemmas A.16 and A.17, we have

s(La,a) = yr(J1, 3¥) - (=2abJy, J))F .

Now, equation (A.9) follows from this and Lemma A.15.

A.11.3. Proof of equation (A.10)
In this section, we will show that

X (a, a’l, =1

2

for @ € EX. We write & = a + bi with a, b € F and put v = a*> — bu. Since y is continuous, we may

assume that
a+0, b #0.
Lemma A.18. We have
Sa,a™ 1) = yp(J, 39) - (—2abJy, D)F.

Proof. Put g; = [, 1] € GU(V)? and g, = [1,a7!'] € GU(V)". Then we have §(a,a”!,1) =
5(g1) - 5(g2) - zv (g1, g2). By [30, Proposition C.4.2], we have

§(g1) = (=vJ1, 12)F, §(g2) = (=vJ2, J1)F.

‘We have

—V_1~ a~14 —bu~J1 _ a-14 bu-Jz
81 = _b'Jl_] Cl'14 5 82 = ng] Cl'14
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in GSp(V), where

Hence, as in the proof of Lemma A.15, we have

2v(81.82) = yr(J. 3¢) - (2vabJy, J)r.
This completes the proof. O
Now, we compute s(a, al, 1). By definition, we have
s(, ', 1) = s*([@,07'],1,1,1)

= ([ave 'L L LD - p(([a.a']1)

=81(([e,a'], 1) - p(([a,a7'], 1)),
where [a,a”!] € U(V)?.
Lemma A.19. We have

Si(([a, @', 1) = (u, D)r

Proof. Putg = 1([a,a™'],1) € U(V®) and 8 = a ' sothat B—1 € E*. Asin the proof of Lemma A 4,

we have
V-8 Vi
V2 -8 —A. \p)
vi-g vil’
V38 v
where
1
PO IV RS VR )
- 1
—Jii(B-1)  3(B+1)
1 1
1
YT TR 1 k
_| Ten * T -
1 1 T 1 .
-Li(B-1) 1
Hence, we have
() 1 if B is split,
Ky =
18 —1 if B is ramified.
This completes the proof. m}

Lemma A.20. We have

IU(L([Q'7 a‘,_l]’ 1)) =7YF (J’ %W) : (_Zabqu’J)F-
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Proof. Recall that
p(([a, a1, 1)) = zya (09, 0) ™" - zya (opoay ', o),

where o is the image of «([@, @™ '], 1) in Sp(V?). If we write @ "'a® = c+di with ¢, d € F, then we have

3
o= l_[ ;i (0y),
i=2

where

¢ dku
| {J1 ifi=2,

o = , ki =
N e T -n ifi=3.

Hence, as in the proof of Lemma A.17, we have zyo(0p,0) = 1 and
Zyo (0’00’0’0_1, 00) = yr(—kaks, %l,[/) - (=2abkyu, —kok3)F .
This completes the proof. O

By Lemmas A.19 and A.20, we have
s(a,a™' 1) = yp(J, 3¥) - (<2abJy, )F.

Now, equation (A.10) follows from this and Lemma A.18.

A.12. Proof of equation (A.11)

Assume that J;, J, € (F*)?. Choose 7; € F* such that J; = ¢7, and putj&1 =t;' - j;. In this section, we
will show that

X G =1.
Lemma A.21. We have
5GhE5 D = 1.

Proof. Putg; = [j’, 1] € GU(V) and g; = [1,j] € GU(V)?. Then we have 5(j%, j2, 1) = 5(g1)-5(g2) -

zy(g1, g2)- By [30, Proposition C.4.2], we have

5(g1) =3(g2) = 1.

It remains to compute zy (g1, £2).
Noting that v(g;) = v(g2) = —1, we have

zv(g1,82) = zv(g1 - d(=1),d(-1) - g2) - v(g2 - d(-1),-1).

We have

81 =m(al)-d(—1), g2=m(az) d(—l)
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in GSp(V), where

a; = L a = h
141 [2
1 5]

Hence, we have
zy(gr-d(=1),d(-1) - g2) = 1.
On the other hand, since x(g; - d(=1)) = 1 and j (g2 - d(=1)) = 0, we have
v(gy-d(-1),-1)=1.
Thus, we obtain zy (g1, g2) = 1. This completes the proof. O

Now, we compute s(j?, jg, 1). By definition, we have

sGhLEE D = sF( 0L 1,1, 1)
= SR L L) - (G555, 1)
= 51 (53R 1) - (G EEL 1),

where [§7,j9] € U(V)°.

Lemma A.22. We have

. B 1)) =

$1(u([i}> 3,1, D) = 1.
Proof. Since B is split, the assertion follows. O
Lemma A.23. We have

iniiL ) =1

u(e([jy- 51, D) = 1.

Proof. Recall that
(5,38, 1) = zve(00.0) " 2ye (o0 00),
where o is the image of L([jT,jg], 1) in Sp(V"). Since
o =m(ay),

where
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we have zyo (07, o) = 1. On the other hand, we have

3(14 +a) 1 1 1(14 - a)
-1 _ 5(1g+"a) —3(14-"a)
7077 —14+’a %(14+’a)
1,—a %(14 + a)

-1

Since ooy’ € Pys - 7-m(ay) and 0y € 74 - Pys, where

1 1
a (a' ) a’ ! a” !
2= K = t s = _u s
a —f 1 1 t; 1
—111y 1 ~nn 1
and
1,
0, -1,
1,
_ 0, -1,
T= L ,
1, 0,
1,
1, 0,
we have

zye (000 oy, 09) = zve (1, m(a2) - 14).
Hence, since m(ay) - 74 € 14 - Pyo, we have
zyo (oo, 00) = zyo(1,14) = L.
This completes the proof. O
By Lemmas A.22 and A.23, we have
s(jl,Jz, =1

Now, equation (A.11) follows from this and Lemma A.21.

A.13. Compatibility with [26]

Suppose that F is local. In this section, we compare the splitting s with the standard one for symplectic-
orthogonal dual pairs when B is split. In this case, we have J € Ng,r(E*) so that we may write
J = k? — 1?u for some k, [ € F. We define an isomorphism i : B — M, (F) of quaternion F-algebras by

I3 . . .. a b C d k _l
i(a + bi+cj+dij) = (bu a) + (du c) (lu —k) '

Put
1 k. 1. Ll ek
=—+—j- =i+ —j— —i
e=3*30" 350 N L YA Y A
PR . Lk
= —] - — = - - — —1i
=it g RNV YA

https://doi.org/10.1017/fmp.2023.20 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.20

Forum of Mathematics, Pi 125

so that

i(e) = ((1) 8) ’ i(e)) = (8 é) , i(e”) = ((1) g) , i(e") = (g (1)) .

In particular, we have

y 'f;] = i) - [ j]

for x € B.

Let V be an m-dimensional skew-Hermitian right B-space as in equation (A.1). We consider the
2m-dimensional quadratic F-space vi=Ve given by Morita theory (see [30, §C.2] for details). With
respect to a basis eje, eje’”, ..., ene, ey’ of VT, the symmetric bilinear form on VT is associated to

Kiu
—K]

| —

Kl

—Km

Similarly, we consider the two-dimensional symplectic F-space W := eW. Then, by [30, Lemma C.2.2],
we have an identification

V=vierw.
We take a complete polarization W' = X @ ¥ defined by
X =Fe, Y = Fe'.
This induces a complete polarization V = X’ @ Y’, where
X' =VierX, Y=Viery.
More explicitly, we have

X =F-¢e;®e+-+F - ¢, ¢e+F-¢;®e”’+---+F-¢,,0¢",
Y=F-e;®e'+--+F-e, e’ +F-e1®@e*+---+F-e,,®e".

Now, we recall the splitting defined in [26, §5.1]. Using a basis e, ¢’ of W', we identify GSp(W")
with GSp, (F) = GL,(F). We define a map

st Sp(W'y — ¢!
by setting
sT(h) = ép(x()™ -y~ ™,
where x(h) and j(h) are as in §A.11.1, and

Y =yr(3)*™ - yp(det Vi, Ly) - hp (V).
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We extend s' to a map
st G(O(VT) x Sp(W)) — C!
so that
s'(g) =s"(h-d(v(h)™)
for g = (g, h) € G(O(V") x Sp(W")).
Lemma A.24. For g1, 8, € G(O(V') x Sp(W")), we have

sT(g122)
sT(g1)sT(g)

Proof. If g1, € Sp(WT), then the assertion follows from [40, Theorem 3.1, cases 1.]. By [26, §5.1],
this implies the general case. Nevertheless, we include a direct argument for the convenience of the
reader.

Letg; = (gi, hi) € G(O(VT) x Sp(WT)). Recall that

2y (81,82) =

cr(g1.8) = (s oq(Y g Y - g5'g. Y),
where g denotes the Leray invariant (see, e.g., [58], [30, §3.1.2]). Put
vi = v(h;), B = hi-d(v;)™, By =d(vy) - hh-d(vi)™"
so that
hihy = hy-d(vi) - b} -d(v2) = h{h) - d(viva).

Since Y’ - (g,d(v)) = Y’ for g € GO(V') and v € F*, wehave Y’ - g =Y’ - b/ and Y - g;'g;! =
Y- hy~'h{™! so that

g(Y g7\ Y g ler L Y = q(Y - LY Ry R YY),

Hence, we have

o (e = 2 () = )
v 81,82) = 2y > Ny _sT(h;)sT(hé’)'

On the other hand, by definition, we have s (g;) = s"(h]) and s7(g;82) = s7(h}h}). By equation (A.12),
and noting that v(GO(V")) = Ng,r(EX) if mis odd, we have

' () = €6 ()™ - 5" (y) = 5" ().
This completes the proof. O
Fix ¢p € Sp(V) suchthat X =X" - ¢gpand Y = Y’ - ¢¢. Put
Ho(o) = zv/(s0,0) - 2w (S005 ", 50) ™!
for o € Sp(V). Note that o does not depend on the choice of ¢¢. Then, by [40, Lemma 4.2], we have

to(oa’)

(o, 0’) =zy (o, 0) - L1o() o (o)

for o, 0’ € Sp(V).
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Put 5o = s' - po. Via the canonical isomorphisms GU(V) =~ GO(V') and GU(W) =~ GSp(W?), we
regard sp as a map

50 : G(U(V) x U(W)) — C.

By Lemma A.24, we have

zy(g1,8) = %
for g1, g € G(U(V) x U(W)).
Proposition A.25. We have
solg = s.

The rest of this section is devoted to the proof of Proposition A.25.
As in §A.3, we define the doubled space W'® = W' @ W' and take the complete polarization
W8 = W @ W2, Then we have identifications

Ve=Vier W™,  VV=ViepW', VA=Viepw.
We also take complete polarizations Wi® = X7 @ Y and V° = X'® @ Y'7, where
X"=XeoX, X=X eX =V o X°,
Y'=vev, Y=Y oY =V e Y-
As in [30, §D.3], we have
zyn (o, o), (0], 03)) = 2 (01, 07) - 2 (02, 05) ™

for 0,0/ € Sp(V). Using a basis (e, 0), (0, ¢), (¢’,0), (0,—e’) of W%, we identify GSp(W'?) with

BI—
(Sl

1
2
-1

Il
p— D |

ho € Sp(W'D).
-1 -1
Then we have

ol | 6o
ey | T o)
(—e.—e) (0,-¢")
so that W'V = X® - hg and W2 = Y® - hy. Put hy = id ® hg € Sp(V?) and
' (o) = zyo(hg, o)™ - zym (hoohy ', hy)
for o € Sp(VP). Since V¥ = X’® - hg and V2 = Y'® - hy, we have
W (oo’)

_— A.13
() (@) (A13)

Zym (O-’ O'/) = qya (0-7 O',) .
for o, o’ € Sp(V").
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As in §A.6, we put s# = §# . 4/ and s5 = 8§ - u’ and define a map
s’ G —C!
by setting

sﬁ’(g, h,a,a)

s'(g,h) = s5(u(1, [, a]))’

where we choose @ € E* such that v(g) = v(h) = Ng/r(a). As in Lemma A.10, s” is well defined.
Moreover, as in Lemma A.11, we have

s'(g182)
Z ’( b ) = V., ~
BB S O s (82)
for g, g, €G.
Lemma A.26. We have
s=s" po.

Proof. Put go9 = t(g0, s0) € Sp(V™) and
Hoo(0) = 2 (500, ) + Zm (S000Sg0 » S00) ™
for o € Sp(V"). Since X" = X"V - g9 and Y™ = Y'P - g9, we have

Hoo(00’)

B e A A.14
oo (o) poo (o) ¢ )

zye(0,0') = zye (o, 0') -

for o7, o’ € Sp(V"). Then it follows from equations (A.8), (A.13) and (A.14) that

poo(oo’) —_ ploo’)  p(o)p’(o)
uoo(o)poo(o’)  u(o)u(o’)  p'(oo’)

for o, o’ € Sp(V"). Namely, uoo - 1’/ is a character of Sp(V®). Since [Sp(V"), Sp(V")] = Sp(V"),
this character must be trivial and hence

Moo = p/p’.
Since
Hoo(L(m, 1) =z (1(0, 50), t(0, 1)) -z (150065, 1), L(s0, 50))

= 77(50,0) - 77 (500755 50) !
= po(o)

for o € Sp(V), it suffices to show that

st __ s'(g)
u((g 1) p'(dg 1)

for g € G. Here, by abuse of notation, we write g in the denominator for the image of g in Sp(V) under
equation (A.2) so that (g, 1) € Sp(V"7).
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For g = (g,h) € G, choose a € E* such that v(g) = v(h) = Ng/r (). Put gl = (g, h,,a) € G
and @ = [, ] € U(W). Note that the image of g* in Sp(V?) agrees with «(g, 1) - (1, @). By definition,

we have
_sMEh  u(gh po_ SREh @
@ Loy wta) BT RuLe) FWLae)
Thus, it remains to show that
p(g?) w(gh)

p((g D) - p(l, @) (g ) - w @l e)
But the left-hand side is equal to

ZYD(L(g’ 1)’L(l’a’)) — 1
ZVA(L(g’ 1)’ L(]’ a)) lya (t(g’ ])’ L(lva’))

by equation (A.8), whereas the right-hand side is equal to

ZY’D(L(g9 l),L(l,a')) _ 1
zve (g, 1), (L @) zve(u(g, 1), (1, @)
by equation (A.13). This completes the proof. )

Thus, to finish the proof of Proposition A.25, it remains to prove the following.

Lemma A.27. We have
stlg ="
Proof. Since both s" and s’ trivialize zy-, there exists a continuous character X’ of G such that
sflg=s"- x'.

We will show that y” is trivial. Since [Sp(WT), Sp(WT)] = Sp(WT), x’ is trivial on U(W) =~ Sp(WT).
Letg = (g, 1) € G with g € U(V)? = SO(V"). By definition, we have s'(g) = 1 and

s'(8) =¥ (g, 1, LD = 8%(g, L, 1L 1) - 4/ (u(g, 1)) = 1’ (g, 1)).
Since ¢(g, 1) belongs to Py= and commutes with hg, we have
' (t(g 1)) = zys (ho, (g, 1)) ™" - 2y (1(g, 1), ho) = 1.

Hence, we have s’(g) = 1 so that y'(g) = 1.
Thus, it remains to show that

x'(g=1

for g = (@,a) € G with @ € EX. We write @ = a + bi with a, b € F and put v = a®> — b%u. Since y’ is

continuous, we may assume that
a#0, b +#0.

By definition, we have s'(g) = s7(h), where
a b 1
(el ()

https://doi.org/10.1017/fmp.2023.20 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.20

130 A. Ichino and K. Prasanna

Since
1 -1 1 -4
—(pu 4. . b
=) ()
we have
sT(h) = ég(bw)™ -y~ = (=bw)f -y
Recall that

Y =yrGe) " yp(detVE, 3y) T hp (V)
=yr (=L 30)™ - yp (=)™, L)™' - hp (V)
=yr (=L 30)™  yp (mu, 1) ™ - (mu, =) hp (V)
= yr (u, 39)™ - (=, =) O (V).

If we put Vt.T = Fe;je + Fe;e’”, then we have

hp (V) = 1_[ /’lF(V[-T) . l_[ (det Vf,det V}')F

i=1 1<i<j<m
m
= n(_zKivu)F : (_u7 _u)ém_l)m/z'
i=1

Hence, we have

m

s'(@) = yr(u, 30)" - | | @bxi, ).

i=1
On the other hand, by definition, we have

sﬁ’(oz, a, a,q)
s5(u(1, @))

sﬂ'(a/, a,a,q) Sé(t(a’, a))
i, @) 551, @)

#r
- % -5 (U@, 1) - zem (1@, 1), 1(1, @))

3 s (@, 0, 0,0)
T ey

o
@) o) e ),
5@, @)

s'(g) =

where @ = [, @] € U(W). By definition and Lemma A.6, we have

§ﬁ(a,a/,a/,a)_ (@)™
Hl@a) Y

Also, as in Lemma A.16, we have

S, 1) = x(i(B-1)" -y = x@2ba )™ -y,
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LoP and

where 8 = a~
y ' = (detV,u)p - yp(—u, 39)™™ - yr (-1, 1y)"

m
= y(u, 39" - | [ (is )
i=1
Hence, noting that the image of g in Sp(V) agrees with that of @, we have
s'(8) =y, 3™ - | | @bri,w)r - 1’ (g, 1))
i=1

Thus, we are reduced to showing that
M (g 1) =1

for g = (a,a) € G with @ = a + bi € E* such that a # 0 and b # 0. This is further reduced to the case
dimV = 1. Then we may identify V' with the F-space Fe+Fe” equipped with a symmetric bilinear form

r” r”
(x1e +x2e”,y1e + yre )T = KU X1y — K- X2Y2,

where k = k1 /2. We take a basis

1
x; = e ® (e,0), yi=—-e®(e,0),
Ku
1
x3 =€ ® (e,0), yo=——-¢"®(e’,0),
K
1
x3=e® (0,e), y3=—-e®(0,-¢),
KU
1
x=e’ ®(0e), ya=—r e ®(0,~¢)

of VO = VT @ WTT so that
X" =Fx+ - +Fxy, Y*" =Fy +---+Fyy, (xi,¥;) = 6.

Using this basis, we identify Sp(V") with Spg(F). Then we have

1 _1
ST
2 2 e u
2 K 2 K
_ -2 -2
hO— 1 _1 1)
1 -1
1 _1
I(ul Ku
ex) & 4 5=
4 e+ —X(c-1) L
1
ug, 1) = :
’ -2 —(c-1) e+l -4 ’
ﬁ(c—l) g—l‘: —% %(C+1)
1
1
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where

so that ¢2 — d%u = 1. Recall that

/J,(L(g, 1)) = 2ym® (hOa L(g7 1))_1 * Zyne (h() : L(g’ 1) : h(;l’ho)'

Since hy € Pyo - 75 - m(a;) and (g, 1) = n(by) - 7 - Pyo, where

1 —u -1,
1 dk 1 1,
a] - 1 1 9 b] - c— 1 O ” T= 12 9
1 1 0 1,
we have
zyn(hg, (g, 1)) = zyo(m2 - m(a;),n(by) - 7)
= zyo (12, m(ar) - n(by) - 7).
If we put
-u  -u 0
dk 1 1 dk 0
b2_c—1 —u , ba—c_l I
1 1

then we have m(a;) - n(b;) = n(b,) - n(b3) - m(a;) and hence
zyn (ho, (g, 1)) = zye (72 - n(b2), n(b3) - m(ay) - 7).
Since 15 - n(by) € Pyo - 7 and n(b3) - m(a;) - 7 € 7 - Pyn, we have
zyn(ho, (g, 1)) = zye (12, 7) = 1.
On the other hand, we have hy € 1, - Py=o and

ho - (g 1) - hy!

Hewd) d o deen) ol Keo1) me-n) de
47 hery —he-n -4 ge-n & d gy
— Sie=D) glerd) 4 ge-n e dee k(o)
| e-n d le+3)  dw _k(e-1) S(c-1) —da
- d 1 1 d 1 d d 1
L _ﬂgzcu_ D m(cd_ D A 1(6;3) 0l u 5 _Z(gu_ Y
Z—KI(C—l) % —L%—K —12—K(C—1) —dT Zl(C+3) —lz(C—l) Td
—m(c—l) 2 b m(c—l) T _E(C_l) Z(C+3) -7
% %(c—l) —ﬁ(c—l) —% —%(c—l) % —% %(c+3)

€ Pyo -7 -m(ay) - n(by),
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where

1 -1 0

Since 7 - n(by) € Pyo - T and n(by) ™' - m(ay) - n(by) - 72 € 2 - Pyo, we have

zye(ho - (g, 1) - hy' hg) = zye (T - m(ay) - n(bs), 72)
= zye (7 -n(bs),n(by) ™" -m(ay) - n(by) - 2)
= zyn(7,72)
=1.

This completes the proof. O
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