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Abstract5

Mapper and Ball Mapper are Topological Data Analysis tools used for exploring high di-6

mensional point clouds and visualizing scalar–valued functions on those point clouds. Inspired7

by open questions in knot theory, new features are added to Ball Mapper that enable encoding8

of the structure, internal relations and symmetries of the point cloud. Moreover, the strengths9

of Mapper and Ball Mapper constructions are combined to create a tool for comparing high10

dimensional data descriptors of a single dataset. This new hybrid algorithm, Mapper on Ball11

Mapper, is applicable to high dimensional lens functions. As a proof of concept we include12

applications to knot and game theory.13
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1 Introduction16

Mapper (Singh et al., 2007) and Ball Mapper (D lotko, 2019) algorithms are Topological Data17

Analysis (TDA) tools for exploring and visualizing data. The Mapper algorithm was introduced in18

2007 and since then it has been used in a number of different applications, most notably medical19

data analysis (Nicolau et al., 2011; Li et al., 2015), and material science (Lee et al., 2017). Ball20

Mapper (D lotko, 2019) was introduced in 2019 as an easy-to-use effective alternative to the Mapper21

algorithm, see Qiu et al. (2020) for applications to data in economics.22

Both techniques take a point cloud X, possibly with a scalar–valued function f : X → R, as an23

input, and return an abstract graph G = (V,E), with a induced function f̂ : V → R. The “layout”24

of G resembles the multidimensional layout of the input set X. In addition, visualising f̂ over the25

vertices of G, typically using an appropriate color scale, provides insights into properties of the26

input function f . One of the first and most famous examples is the work of Nicolau et al. (2011),27

where the input point cloud consists of gene expression data for breast cancer patients, and the28

function f determines the survival rate. Mapper associated rare cancer to subtypes with 100%29

survival rate and allowed the authors to characterize its genetic profile.30

This research introduces novel techniques that broaden and improve the scope and applicability31

of mapper-type algorithms to utilize additional structure of data and visualize the maps between32

datasets. Main contributions include:33

1. Equivariant Ball Mapper EqBM : the most natural choice of mapper-type algorithms when34

the input data admits an action of a group of isometries or distance preserving bijection. The35

structure of the resulting Ball Mapper graph reflects the action of the input isometries.36

2. Mapper on Ball Mapper MoBM : Extension of the Mapper algorithm that allows the use of37

high dimensional lens functions f : X → Rn, with n � 1. In the proposed technique, a Ball38

Mapper graph of the range of f is built to obtain an adaptive cover which is then used to39

construct the final Mapper graph.40

3. MappingMappers : Mapper and Ball Mapper–based representations of high dimensional datasets41

X and Y can be used to visualize a given relation f : X → Y . For example, if X and Y are42

values of different descriptors of the object of interest, such as different knots, MappingMap-43

pers can be used to compare descriptors’ relevance and discover potential correlations or44
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dependencies.45

The main running and motivating example in this paper is an analysis of data coming from46

knot theory which has recently opened up to big data techniques such as machine learning (Hughes,47

2020; Jejjala et al., 2019; Levitt et al., 2019; Davies et al., 2021; Gukov et al., 2021, 2023). Knot48

theory point clouds created from polynomial knot invariants such as the Alexander, Jones and49

HOMFLYPT, are perfect for showcasing the strengths of the Equivariant, MappingMappers and50

Mapper on Ball Mapper algorithms. An additional example related to game theory is discussed to51

highlight the presented algorithms.52

Techniques developed in this work are accompanied with sample public-domain implementations53

and have wide applicability in different areas of science. The software implementing the discussed54

techniques and the interactive visualizations of all the plots in this paper are available at the55

webpage https://dioscuri-tda.org/BallMapperKnots.html and in D lotko et al. (2023).56

The paper is organized as follows. Section 2 provides the necessary background on the Mapper57

and Ball Mapper algorithms. Section 3 focuses on adaptations and new developments of Mapper58

algorithms that are applicable to any point cloud. In Section 3.1 we develop a version of Ball59

Mapper that takes into account symmetries (global or partial) of the data. Section 3.2 describes a60

way to construct Mapper graphs for lens functions with high dimensional domains and codomains.61

In Section 3.3 we discuss how to combine the strengths of the Mapper and Ball Mapper algorithms62

to analyze data, relations between high dimensional point clouds, and visualize maps between63

different datasets. Section 4.1 provides informal minimal background information about relevant64

knot invariants while Section 4.2 describes a way to turn knot invariants into point clouds so they can65

be analyzed by TDA techniques. Section 4.3 present the results of application of the the presented66

Mapper–type techniques to the space of knots and their invariants, while Sections 4.4 and 4.567

focuses on the comparison of knot invariants using techniques from Section 3.3 and shows how the68

presented technique can benefit theoretical mathematics. Finally, Section 5 provides additional69

examples of the use of the proposed techniques in game theory.70

2 Background71

In this section we present the Mapper algorithm (Singh et al., 2007), a standard tool of Topological72

Data Analysis, as well as the recently developed Ball Mapper (D lotko, 2019). Both tools serve73
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to represent a finite point cloud as an abstract graph that encapsulates the essential features of74

the point cloud. This graph is obtained from a given overlapping cover of the point cloud, a finite75

collection of sets such that each point belongs to at least one set. Each set (element of the cover)76

represents a vertex of this graph, and two vertices are connected by an undirected edge whenever77

the corresponding sets have a non-empty intersection. In the language of modern topology this78

construction amounts to taking the 1-skeleton of the nerve of the cover. The difference between79

the Mapper and Ball Mapper algorithms lies in the way such an overlapping cover is obtained.80
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Figure 1: The Mapper construction illustration. The input is the 2-dimensional point cloud X

in a shape of a circle shown on the left. The function f : X → R1 is a projection of a point to

its second coordinate. We cover the range of f with five intervals, enumerated from 1 to 5, then

compute the inverse image of each interval. In this example, the inverse images of intervals 1 and 5

contain one cluster, while inverse images of intervals 2, 3 and 4 contain two clusters each. Moreover

there are obvious connections between the clusters in the inverse image of intervals i and i+ 1 for

i ∈ 1, 2, 3, 4. They give rise to edges in the Mapper graph presented on the right. Note that the

(non-unique) enumeration of vertices comes from the enumeration of elements of the cover C.

2.1 Mapper81

The Mapper algorithm, introduced in 2007 by Singh et al. (2007), is one of the most recogniz-82

able tools of Topological Data Analysis. It can be considered a discrete approximation of a Reeb83

graph (Reeb, 1946; Munch and Wang, 2016). An input for Mapper is a collection of points X,84

often embedded in some high dimensional space, and a function f : X → Rn, referred to as the85
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lens function. Typically, the range of the lens function is 1-dimensional. Next, construct the cover86

of the range f(X) ⊂ Rn by a collection of overlapping cubes C. For n = 1, C consists of k inter-87

vals covering f(X) such that two constitutive intervals overlap on p percent of their length. The88

number of intervals k and the overlapping percentage p, often refereed to as resolution and gain,89

are additional input parameters of the Mapper algorithm.90

For each element I ∈ C, consider f−1(I) ⊂ X and search for the clusters therein. The clustering91

algorithm used for that purpose is yet another parameter of the Mapper construction. For I ∈ C92

let CI indicate the collection of clusters found in f−1(I). Each cluster in
⋃
I∈C CI corresponds to93

a vertex of an abstract graph G = (V,E). Given a cluster A ∈ CI , the vertex corresponding to A94

is denoted by v(A). An undirected graph G is constructed using the following rule: for any two95

vertices v(A) and v(B) corresponding to clusters A ∈ CI and B ∈ CJ , an undirected edge is placed96

between v(A) and v(B) if and only if A∩B 6= ∅. The resulting graph G = (V,E) is called a Mapper97

graph. An illustration of the Mapper construction on a input point cloud embedded in R2 is shown98

in Figure 1.99

While Mapper is a well established tool for data analysis, its stability with respect to pertur-100

bation of input parameters is still open for explorations. Main results in this direction focus on101

convergence of Mapper graphs to the Reeb graph (Reeb, 1946) of the manifold from which the102

points are sampled from, when the number of sampled points goes to infinity (Brown et al., 2021;103

Carrière et al., 2018). However, the practical scope of those results is limited, especially when104

dealing with finite noisy samples.105

2.2 Ball Mapper106

The Ball Mapper Algorithm introduced in (D lotko, 2019; Qiu et al., 2020), provides a conceptually107

different and simpler way to obtain a cover of the input cloud X than the original Mapper. Starting108

from a point cloud X, and a constant ε > 0, a subset L ⊂ X is selected having the property that109

for every x ∈ X, there exists l ∈ L such that d(x, l) ≤ ε. Such a subset L is called an ε–net of X110

and its points are referred to as “landmarks”. Algorithm 1 is an example of a greedy algorithm111

to compute an ε–net. Other algorithms can also be used to compute ε–nets (Haussler and Welzl,112
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1987).113

Data: Point cloud X, ε > 0

Result: L ⊂ X, an ε-net

L = ∅ ;

for x ∈ X do

if x is farther than ε from every point in L then

L = L ∪ {x} ;

end

end

return L
Algorithm 1: Greedy ε–net (D lotko, 2019).

114

Note that X ⊂
⋃
l∈LB(l, ε). The Ball Mapper graph consists of a vertex v(l) for each ball115

B(l, ε) (hence one vertex for each landmark point in the ε-net), and an edge is placed between any116

two vertices when their corresponding balls jointly cover points from X. An illustration of the Ball117

Mapper algorithm, for the dataset from Figure 1, is shown in Figure 2.118

2.3 Mapper and Ball Mapper: plotting scalar-valued functions119

Let G be a Mapper or Ball Mapper graph. Its vertices cover collections of points of the input point120

cloud X. Therefore, given a function g : X → R we define an induced function ĝ : G → R, on G.121

The value of the induced function ĝ on a vertex v(a) ∈ G covering A ⊂ X is an average value of122

g over all points in A: ĝ(v(a)) =
∑

x∈A g(x)

|A| . Since the structure of Mapper or Ball Mapper graph123

G reflects the shape of the input data, visualizing the induced function on G using a color scale124

provides an insight into the variation of a scalar–valued function g on X. This procedure can be125

seen as a generalization to high dimensional samples of standards techniques, such as heatmaps,126

which allow for visualization of a scalar function on a compact subset of R2 by means of a color127

scale. To confirm that the induced function ĝ is a good approximation of the original function128

g one should check that the standard deviation of the values of g on each element of the cover is129

small enough compared to the value of the induced function. If this is the case, ĝ can be used for130

further data analysis.131

Mapper and Ball Mapper are data visualization tools that offer the initial understanding of132

the data and provide a way to state various hypotheses (see examples in Section 4.5). Due to133
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Figure 2: Ball Mapper construction illustration. Using the point cloud X in the Figure 1 we first

select an ε–net (red points in the left figure). Construct balls of radius ε centered in all the points

of the net (green). The union of those balls provides a cover of our data space. Ball Mapper gives a

one dimensional nerve of the obtained cover. In more detail, to each ball B(A, ε) we assign a vertex

v(a) in the abstract graph G = (V,E). Two balls B(N, ε) and B(K, ε) that jointly cover some

points from X give rise to an edge between v(N) and v(K). The Ball Mapper graph of this cover

is shown on the right with the corresponding balls and vertices labeled with the same number.

the stability issues, the Mapper and Ball Mapper graphs should be computed for a range of pa-134

rameters and permutation of the input data, for example see Figure 7 and 8 and compared using135

MappingMappers or Mapper on Ball Mapper construction.136

3 New developments of Mapper algorithms137

3.1 Equivariant Ball Mapper138

In this section we adapt the Ball Mapper algorithm to take into account the action of a finite139

automorphism group acting on our data (X, d) that lives in some metric space. Ideally, the sample140

contains the whole orbit of any of its points i.e. for every h ∈ H, h(x) ∈ X. If that is not the case,141

the data should be augmented to ensure that the sample reflects all the symmetries imposed by142

the group action.143

Since H is an automorphism group, for every x, y ∈ X and every h ∈ H, d(x, y) = d(h(x), h(y)).144
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For every point x ∈ X, and isometry g ∈ H the orbit Ωg(x) of x contains the sequence of points145

x, h(x), h2(x), . . . , hn(x) ∈ X, where hn+1(x) = x for some n ∈ N. The relation (Eqn. 1) for Jones146

polynomial data provides a dataset with a simple automorphism group generated by a permutation147

of the coordinates given by the exchange matrix.148

Given a point cloud X and an automorphism group H acting on it, we modify the Ball Mapper149

algorithm in such a way that there is an induced action of H on the Ball Mapper graph G. The150

induced action is described in the following way: given a vertex v(l) ∈ G consider B(l, ε) ∩X, i.e.151

all the points in X covered by a ball corresponding to v(l) ∈ G. For every isometry h ∈ H we152

require the “covering” condition:153

• all the points in h(B(l, ε) ∩X) are covered by the ball B(h(l), ε) and154

• there are no other points in this ball.155

The vertex in G corresponding to the ball B(h(l), ε) is therefore denoted by ĥ(v(l)). Note that such156

ĥ, induced by h, is acting on an abstract graph, and therefore certain properties of h will not be157

reflected in ĥ. An example of this construction is given in Figure 3.158

To ensure the “covering” condition described above is satisfied, the procedure of selection of159

ε-net L ⊂ X is adjusted. In the Ball Mapper implementations L is chosen in the greedy way160

presented in Algorithm 1. The main idea is to add the whole orbit Ω(x) = {h(x)}h∈H to the161

constructed set of landmark points together with the any added point x. This idea is formalized162

in the Algorithm 2, which adjusts Algorithm 1 so that the obtained ε-net L is invariant under the163

action of H. We refer to it as an H-equivariant ε-net.164

Data: Point cloud X, ε > 0, group H acting on X

Result: L ⊂ X, a H-equivariant ε-net

L = ∅

for x ∈ X do

if x is farther than ε from every point in L then

L = L ∪ Ω(x) ;

end

end

return L
Algorithm 2: Equivariant greedy ε-net.

165
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Figure 3: Example of the Equivariant Ball Mapper construction on a point cloud X sampled from a

wedge of two circles (a) with a symmetry group determined by the reflections on the horizontal and

vertical axis. The point cloud enriched by each point’s orbit is shown in (b). Selected landmarks

A,C,E and G, and all the points in their orbits that are selected as well are shown in (c) with a

covering consisting of 16 balls. The resulting equivariant Ball Mapper graph is depicted in (d).
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Since each h ∈ H is an isometry, for every l ∈ L, if y ∈ B(l, ε) ∩X, then h(y) ∈ B(h(l), ε) ∩X.166

As each B(l, ε) ∩ X corresponds to a vertex in the Ball Mapper graph, the action of H on X is167

induced to the vertices of the Ball Mapper graph as described above.168

In Algorithm 2, the for loop iterates once through the points in X. The time needed to locate169

all points at a distance less than or equal to ε to a given point is bounded by |X|, hence the overall170

complexity of the presented procedure is bounded by |X|2.171

This equivariant construction is Ball Mapper specific and it is not clear that the analogous172

construction for Mapper is possible. For example, the equivariant Mapper construction requires173

the lens function to be either invariant with respect to the group action (i.e. points in the same174

orbit should obtain the same value of the function), or to map points from the input point cloud to175

different cover elements in such a way that there is an induced group acting on the cover. Adjusting176

the lens function to satisfy either of these requirements is non-trivial and also requires the clustering177

algorithm to be performed in such a way that there is an appropriate group action induced on the178

obtained clusters. These obstacles to obtaining equivariant Mapper emphasize the advantage of179

Ball Mapper with respect to equivariance and justify our choice.180

3.2 Mapper on Ball Mapper181

This section provides a new construction and practical generalization of the Mapper graph, as182

described in Section 2.1. Recall that the Mapper construction is based on a interval cover of the183

range of the lens function f : X → Rn. Typically n = 1 or another small positive integer, as184

the range of f needs to be covered with a collection of overlapping cubes, defined as a product185

of intervals. There is tension between wanting large n when the lens function is more likely to186

preserve essential information about the point cloud, and the fact that having k intervals in each187

of n directions requires kn cover elements which is not computationally feasible for large values of188

n.189

To overcome this obstacle we propose the following Mapper on Ball Mapper (MoBM) construc-190

tion to leverage the overlapping, adaptive cover of the point cloud obtained from Ball Mapper.191

This algorithm applies to the more general setting with two point clouds X, Y and a relation192

p ⊂ X × Y . MoBM is formalized by the following pseudocode:193
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194

Data: Point clouds X,Y , a relation p ⊂ X × Y , ε > 0, a clustering algorithm C

Result: MoBM graph for X,Y, p

Compute Ball Mapper G(Y, ε) ;

CX = ∅ ;

for each vertex v(l) in G(Y, ε) do

Xv = {x ∈ X | y ∈ B(l, ε) AND (x, y) ∈ p} ;

CX = CX ∪ C(Xv) ;

end

MoBM = 1-dimensional nerve of such CX ;

return MoBM
Algorithm 3: Mapper on Ball Mapper.

195

This construction, illustrated in Figure 4, requires only two parameters: the radius ε and196

the choice of the clustering algorithm. There is no need to define the number of intervals or the197

overlapping percentage as in the conventional Mapper algorithm; the covering of Y , being the range198

of the lens, is completely determined by the Ball Mapper graph. However, varying the selection199

of landmark points can lead to potentially different Ball Mapper graphs. Selection of different200

landmarks can be obtained by permuting the points of Y and re-running the algorithm. The time201

complexity of MoBM is bounded by the time required to run both Mapper and Ball Mapper.202

3.3 MappingMappers203

The standard construction of Mapper or Ball Mapper for a point cloud X with a metric d :204

X × X → R≥0 provides a model of the point cloud X. If the point cloud X is equipped with a205

function f : X → R, an induced function f̂ can be defined on the Mapper or Ball Mapper graph206

G as explained in Sections 2.1 and 2.2. This way, Mapper and Ball Mapper graphs can be used to207

visualize functions f : Rn → R, where f is defined on X ⊂ Rn.208

Consider a more general question of using Mapper and Ball Mapper to visualize functions209

f : Rn → Rm for larger values of m and n. Assume that we are given X ⊂ Rn and Y ⊂ Rm and a210

relation f ⊂ X × Y (note that a function is a particular case of such a relation). In this instance211

we focus on the Ball Mapper–based construction. A construction for Mapper is analogous. In the212

first step, let us build Ball Mapper graphs G(X) and G(Y ) corresponding to point clouds X and213

Y and denote with V (X) and V (Y ) the corresponding vertex sets. Given a relation f ⊂ X × Y214
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Figure 4: The Mapper on Ball Mapper construction: an illustration. The point cloud X is mapped

via p to the point cloud Y (a) where the map is indicated by corresponding colors. The Ball Mapper

graph for Y (b) is used to obtain a cover of Y (C, left). Such cover is then pulled-back to obtain

a covering of X (C, right). The resulting Mapper on Ball Mapper graph for X is shown in (d),

where, similarly to Figure 1, node labels indicate the originating covering ball in Y .

assigning points from X to the points from Y , define a map f̃ : V (X)→ [0, 1]V (Y ) in the following215

way. For every v in V (X), corresponding to a ball B(lX , εX) compute f(B(lX , εX) ∩X) ⊂ Y . For216

every vertex w in V (Y ) corresponding to a ball B(lY , εY ), compute |(B(lY ,εY )∩Y )∩ f(B(lX ,εX)∩X)|
|B(lY ,εY )∩Y | .217

This fraction indicate the percentage of points in B(lY , εY )∩ Y that are in the image of the points218

covered by the vertex v in G(X). When computed for every vertex in G(X), this fraction gives us219

|V (X)| different coloring functions on G(Y ) indicating where the image of each vertex v is mapped.220

This construction works analogously for arbitrarily large unions of vertices of the graph G(X).221

The procedure described above is automatized and a reliable interface can be found in (D lotko222

et al., 2023). It provides a way to relate regions of G(Y ) to a chosen region of G(X). By doing223

so, a visualization of the map f : X → Y is obtainticed. A simplified example of the procedure is224

given in Figure 5.225
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(a)
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A 1 0 0

B 0 1 0

C 0 0 1

D 1 1 1

(b)
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Figure 5: Consider a relation f between X ⊂ Rn located on the x-axis and Y ⊂ Rm on the y-axis,

represented by the black dots in the plane, see (a). Next, create Ball Mapper graphs on both

domain X and co-domain Y . Set X is covered by four balls corresponding to the red vertices in

the Ball Mapper graph, while Y , with the three balls corresponding to the blue vertices in the Ball

Mapper graph. Based on the relation, the points in X covered by A are mapped into points covered

by J in Y . Similarly, B into K, C into L. Lastly, the points in D in X are mapped to points in J ,

K and L. In addition, when we track the proportions of points in each of the ball J , K and L that

are reached by points in A, B, C or D. Such proportions are indicated in the matrix (b). Each

row in this matrix provides a coloring function on the image Ball Mapper graph (c). This idea

generalizes and provides a way to visualize maps between point clouds in high dimensional spaces.

4 Applications: knot theory226

Analyzing and visualizing data from knot theory is the main motivation and inspiration for the227

development of algorithms presented in Sections 3.1, 3.3 and 3.2. This section discusses the basics of228

knot theory and the data used in the our analysis, followed by the results obtained using Equivariant229

Ball Mapper, Mapper on Ball Mapper, and MappingMappers.230
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4.1 Knot theory: a brief introduction231

A knot is a class of embeddings of S1 into R3 up to ambient isotopy (Livingston, 1993; Lickorish,232

2012; Jablan and Sazdanovic, 2007). Knots are hard to distinguish and their classification and233

tabulation (Hoste et al., 1998; Hoste, 2005; Bar-Natan and Morrison, 2011–2019; Livingston and234

Moore, 2022; Burton, 2018) solicits techniques from a range of mathematical disciplines. Conse-235

quently, a number of knot invariants have been introduced in an attempt to compare and classify236

knots. A knot invariant should be thought of as a quantity assigned to each knot such that if two237

knots are the same (isotopic), the values assigned to them are the same. The most common knot238

invariants are integers, one- or two-variable polynomials, groups, etc. In this paper we focus on the239

following knot invariants and their relations:240

• Polynomial: Alexander ∆(K)(t) (Alexander, 1928), Jones J(K)(q) (Jones, 1985), HOM-241

FLYPT P (K)(a, z)) (Freyd et al., 1985).242

• Numerical: minimal crossing number, signature σ(K) (Kauffman and Taylor, 1976) defined243

as a signature of a matrix obtained using a Seifert surface, determinant of a knot det(K) =244

|∆(K)(−1)| = |J(K)(−1)|.245

Since knot invariants often rely on advanced algebraic, geometric, and combinatorial topology,246

in lieu of definitions we provide references (Livingston, 1993; Rolfsen, 2003; Lickorish, 2012; Jablan247

and Sazdanovic, 2007), and key insights sufficient for analyzing these knot invariants and their248

relations. Note that Alexander and Jones polynomials are 1-variable polynomials, while HOM-249

FLYPT polynomial is of two variables. Moreover, HOMFLYPT is more general than both the250

Alexander and Jones polynomial. HOMFLYPT specializes to the Jones polynomial (Jones, 1985)251

by substituting a = t−1 and z =
√
t− 1√

t
, and to the Alexander polynomial (Alexander, 1928) by252

substituting a = 1 and z =
√
t− 1√

t
.253

Note that it is common for knot tables to contain only one knot from each mirror pair (K,mir(K)),254

where the mirror of a knot K is the knot mir(K) whose diagram is obtained by changing all the255

crossings in a diagram of K. A knot K is achiral if it coincides with its mirror mir(K), and many256

invariants either do not distinguish between mirrors or have a straightforward relation between257

the two values. For example, the Alexander polynomial does not distinguish then while the Jones258
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Invariant Unknot Trefoil Data vector

Alexander 1 t−1 − 1 + t (0,1,-1,1,0)

Jones 1 q + q3 − q4 (0,0,0,0,0,1,0,1,-1)

HOMFLYPT 1 −a4 + 2a2 + a2z2 (0,0,0,0,0,0,2,0,-1,0,0,0,0,0,0,1,0,0)

Table 1: Values of several knot polynomials for the unknot and the trefoil, and the corresponding

data vector. Note that for the 2-variable HOMFLYPT polynomial the coefficient matrix is flattened

into a vector: the variable z corresponding to rows, a to columns.

polynomial of a knot and its mirror (Lickorish, 2012; Jones, 1985) satisfies the following relation:259

J(mir(K))(q) = J(K)(q−1). (1)

The signature of a knot and its mirror have opposite signs (Lickorish, 2012),260

σ(mir(K)) = −σ(K). (2)

and for the HOMFLYPT polynomials of mirror knots the following relation holds:261

P (mir(K))(a, z) = P (K)(a−1, z) (3)

4.2 Knot invariants as point clouds262

The use of big data techniques (Hughes, 2020; Jejjala et al., 2019; Levitt et al., 2019; Gukov et al.,263

2021, 2023) is warranted by the result of Ernst and Sumners (1987) showing that the number of264

knots with a given number of crossings grows exponentially. The point clouds are obtained in the265

way introduced and described in Levitt et al. (2019), where each knot is represented by a vector266

of coefficients of a knot polynomial such as the Alexander, Jones or HOMFLYPT polynomial. The267

datasets we consider were created by Levitt et al. (2019), and preprocessed by D. Gurnari. The data268

is freely available at D lotko et al. (2023) and includes Alexander and Jones polynomials, together269

with numerical knot invariants like minimal crossing number and signature for all 9755329 knots270

up to 17 crossings. HOMFLYPT polynomials are provided for all 313231 knots up to 15 crossings.271

Following Levitt et al. (2019), given a finite collection of knots K, we construct a point cloud272

I(K) corresponding to the coefficients of the one-variable polynomial invariant I, in the following273

way:274
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Step 1 Given a knot K ∈ K and its single variable polynomial I(K), extract a vector of the coeffi-275

cients.276

Step 2 Compute the minimal and maximal powers mint, maxt of the variable denoted by t among277

all knots in K. Then the maximal length of all considered vectors is d = maxt −mint + 1.278

Step 3 Add zeros on both sides of each vector of coefficients to obtain a vector I(K)v ∈ Rd to ensure279

a correct alignment of corresponding powers.280

Note that in this way all vectors are of the same length determined by the overall minimum281

and maximum exponent, and the coefficients of a given power are in the same position in the282

vector for all the considered knots. In case of a two-variable polynomial, such as the HOMFLYPT283

polynomial, we apply Steps 1-3, as described above in the case of one-variable polynomial, to both284

variables. In this way we first obtain a matrix padded with zeros, and then create a corresponding285

vector by linearizing this matrix (concatenating its rows). HOMFLYPT data belongs to Rd where286

d = (maxa − mina + 1)(maxz − minz + 1) where a and z stand for the two variables in the287

corresponding polynomial. Examples of the coefficient vectors obtained from both the unknot and288

the trefoil are presented in Table 1.289

Unlike some databases, we choose to consider knots and their mirrors although that increases the290

dimension of the coefficient point cloud or the size of the coefficient vectors. The Jones coefficient291

vector of its mirror is obtained by reversing the original vector, see relation (1), and therefore the292

point cloud admits a symmetry given by the exchange matrix. The HOMFLYPT coefficient matrix293

of the mirror knot can be obtained by reversing the columns of the original matrix (3). Hence, in the294

case of the Jones polynomial mint(mir(K)) = −maxt(K) andmaxt(mir(K)) = −mint(mir(K)) as295

a consequence of relation (1) and the point cloud belongs to Rd where d = 2max(|maxt|, |mint|)+1.296

The size of the obtained tables of polynomial coefficients are the following: 9755329 rows × 17297

columns for Alexander, 19510658 rows × 51 columns for Jones and 626462 rows × 152 columns for298

HOMFLYPT. Note that the number of rows in Jones and HOMFLYPT data is double the number299

of prime knots since mirrors are also included.300
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(a) (b) (c)

Figure 6: Ball Mapper applied to Jones polynomial data of knots up to 17 crossings with (a) just

one choice of a mirror, (b) knots and their mirrors with standard Ball Mapper, and (c) Equivariant

Ball Mapper. Color reflects the average signature of knots in each cluster. Note that the graph in

(c) is symmetric, although this fact is not accurately represented in this image due to the chosen

graph plotting subroutine.

4.3 Ball Mapper: structure of knot polynomial data301

In this section we apply standard and Equivariant Ball Mapper to data obtained from Jones,302

Alexander and HOMFLYPT polynomials for all knots up to 17 crossings. The choice to use Ball303

Mapper is natural, as there is no obvious lens function for the Mapper construction.304

(a) (b) (c)

Figure 7: Stability of Equivariant Ball Mapper for Jones polynomial data with respect to the

crossing number filtration: (a) EqBM graphs of knots up to 15 crossings ε = 30 with 826 nodes,

(b) 16 with ε = 50 with 1008 nodes, and (c) 17 crossings with ε = 100 with 890 nodes.

Since our data contains knots and their mirror images, the Jones polynomial data cloud admits a305

symmetry generated by the permutation of the coordinates for those knots which are not identical to306

their mirrors (see Eqn.(1)). Figure 6 shows Ball Mapper graphs with just one of the mirrors included307
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6a, knots and their mirrors with the standard Ball Mapper 6b and the equivariant Ball Mapper308

construction from Section 3.1 in 6c. The symmetry of the data is preserved by the equivariant309

Ball Mapper: for each flare there is an identical one with opposite signature, as a consequence of310

relation (2).311

The structure of the BM graph is stable with respect to the filtration by the number of crossings,312

as illustrated in Figure 7, in addition to stability across the choice of parameter/radius shown as313

shown in Figure 8. This observation is important since sampling knot data is a hard problem and314

it is known that knots with lower crossing number do not provide a sample representative of the315

space of knots (Levitt et al., 2019).316

(a) (b) (c)

Figure 8: Stability of Equivariant Ball Mapper with respect to the choice of parameter/radius ε:

(a) EqBM graphs of knots up to 17 crossings ε = 50 with 3840 nodes, (b) ε = 100 with 890 nodes,

and (c) ε = 200 with 254 nodes. Color is determined by the average signature of knots in that

node/cluser.

The Ball Mapper graph for the Alexander polynomial data has linear structure, see Figure317

9b. The two flares contain clusters of knots whose signature modulo 4 is equal to zero or two,318

respectively. Similarly, the Ball Mapper graphs for HOMFLYPT data exhibit a star-like structure319

whose flares contain knots with the same signature, Figure 9c. As in the case of the Jones polynomial320

data, all Ball Mapper graphs are stable with respect to the crossing number filtration and the choice321

of Ball Mapper parameter ε.322

4.4 MappingMappers and Mapper on Ball Mapper: comparing knot invariants323

In this section, we further investigate data corresponding to the Jones, Alexander, and HOMFLYPT324

polynomials whose Ball Mapper graphs are provided in Section 4.3. The main goal is to compare325
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(a) (b) (c)

Figure 9: Equivariant Ball Mapper graphs for the (a) Jones, (b) Alexander, and (c) HOMFLYPT

polynomial data of knots up to 17 crossings colored by the average signature of knots in each cluster

(a), (c) or signature mod 4 in (b).

these spaces using Ball Mapper based tools developed in Sections 3.3 and 3.2, in order to, implicitly,326

compare the invariants. First, spaces of two invariants can be compared by constructing their Ball327

Mapper graphs and visualizing the maps between them as described in Section 3.3. Next, Mapper on328

Ball Mapper construction from Section 3.2 is used to emphasize relative strengths of two invariants329

with respect to distinguishing knots. To be more specific, given two invariants A and B, in general330

data descriptors, of a dataset K we can think of them as maps A : K → MA and B : K → MB,331

where MA and MB are metric spaces. Most commonly, MA and MB are finite point clouds in332

Euclidean spaces of different dimensions. Inspired by comparison of knot invariants, that invariant333

A is considered to be stronger than invariant B if the elements covered by a single vertex or several334

closely-connected vertices in the Mapper on Ball Mapper graph of MB are spread across different335

regions of the Mapper on Ball Mapper graph of MA. MappingMappers and Mapper on Ball Mapper336

can be used for this type of analysis.337

MappingMappers, defined in Section 3.3, uses two point clouds X ⊂ Rn and Y ⊂ Rm and a338

relation f ⊂ X×Y as inputs. To illustrate this technique we use the collection K of knots up to 17339

crossings along with the Jones J(K) ⊂ R51 and the Alexander A(K) ⊂ R17 point clouds obtained340

in Section 4.2.341

Using the set of knots K as the common indexing set, we define the relation f ⊂ A(K)× J(K)342

in the following way: for a given knot K ∈ K its Alexander polynomial A(K) in A(K) is related343

to its Jones polynomial J(K) in J(K). Note that this is a relation rather than a function, since344

some knots from K may have the same Alexander polynomial, but different Jones polynomials,345
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(a) (b)

Figure 10: MappingMappers: Representation of a map from the space of the Alexander (a) and

the space of the Jones polynomials of knots up to 17 crossings (b). Rainbow coloring of consecutive

clusters of the linear embedding of the Equivariant Ball Mapper graph for the Alexander data and

used to color the corresponding regions of the Equivariant Ball Mapper graph for the Jones data.

(a) (b)

Figure 11: MappingMappers: Visualizing the map from the space of Jones polynomials to the space

of HOMFLYPT polynomials of knots up to 15 crossings using the Ball Mapper graph (containing

326 nodes) of Jones polynomial with ε = 50 (a) and the Ball Mapper graph (containing 258 nodes) of

HOMFLYPT polynomial of with ε = 50 shown in (b). All clusters containing knots with signature

equal to zero in both Ball Mapper graphs are shown as a shade of red.

and vice versa. In this case, a single point from A(K) can be related to multiple points of J(K) or346

the other way around. Figure 10 illustrates this relation: colors indicate matching regions in the347

Alexander and Jones Ball Mapper graphs. Roughly speaking, the linear structure of the Alexander348
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Ball Mapper induces the linear structure among the flares in the star-like Ball Mapper graph of349

the Jones data. In the opposite direction, flares of the Jones Ball Mapper merge according to the350

signature modulo 4 which is consistent with the fact that one end of the Alexander Ball Mapper351

contains knots whose signature mod 4 is zero and the other one is two. Figure 11 illustrates the352

analogous relation between the Jones and HOMFLYPT Ball Mapper graphs, respectively. The353

non-linear nature of the Jones Ball Mapper graph prohibits using a gradient-like coloring; instead,354

the cluster color in this graph reflects the percentage of knots with signature equal to zero and the355

corresponding clusters in the HOMFLYPT Ball Mapper graph.356

4.5 New insights into relations between knot invariants357

The following section features applications of methods introduced in this paper to knot theory:358

exploratory analysis and hypothesis formulation.359

4.5.1 Jones polynomial, determinant and signature of a knot360

(a) (b) (c)

Figure 12: Equivariant Ball Mapper graphs for the Jones polynomial data of (a) all, (b) alternating

and (c) non-alternating knots up to 17 crossings colored by the average determinant of knots in

each cluster.

The star-like embedding of the Ball Mapper graph of the Jones polynomial data in Figure 8361

suggests that the flares tend to be monochromatic when colored by values of knot signature. On362

the other hand, Figure 12 indicates that the values of the determinant (as well as the norm of the363

Jones polynomial) increases along the flares as one moves away from the center. Consequently,364

we consider the hypothesis that for knots with sufficiently large determinant (or the norm of its365
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Figure 13: Distribution of the absolute value of the determinant knots with 14, 15, 16 and 17

crossings for all (blue), alternating (orange), and non-alternating (pink) knots.

Jones polynomial), the coefficients of the Jones polynomial determine the knot’s signature. This366

assumption is necessary, since for 385822 out of 19510658 (1.97%) knots up to 17 crossings there367

exists at least one other knot with identical Jones polynomial but different signature.368

Since there exist non-trivial non-alternating knots whose whose determinant equals 1, the de-369

terminant of the unknot, but which are not unknots e.g. torus knots T(p,q) with prime p and q,370

we restrict this hypothesis to alternating knots. Restricting the hypothesis to alternating knots371

is further supported by the distribution of determinants and norms of the Jones polynomial, as372

shown in Figure 13. For alternating knots it resembles a normal distribution while the one for373

non-alternating is concentrated at smaller values and then tapers off Levitt et al. (2019).374

To confirm the hypothesis for alternating knots with minimal crossing number n ∈ {12, 13, . . . , 17}375

we are looking for rn > 0, n ∈ {12, 13, . . . , 17} such that after removal of all the n-crossing knots376

of determinant smaller than rn, linear Support Vector Machine (Bishop and Nasrabadi, 2006) (a377

technique known to be resistant to overfitting) is capable to predict the knot’s signature from the378

coefficients of its Jones polynomial with 100% accuracy. Our results together with the information379

about the distribution of determinants of n-crossing alternating knots are summarized in Figure 14.380

The stars indicate the minimal value of the knot determinant above which 100% accuracy in pre-381

dicting the signature from the coefficients of Jones polynomial is achieved.382

To provide a further evidence for our hypothesis we normalize the coefficients of the Jones383

polynomials of the n–crossing knots with determinant larger than rn. Next, we apply the principal384

component analysis to the normalized data and project it to the two principal directions, see385

Figure 15b. The obtained projection suggests existence of conical regions in the ambient space386

consisting solely of knots with equal signature which correspond to monochromatic arcs in the387
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Figure 14: (a) Fraction of alternating n–crossing knots for n ∈ {12, . . . , 17} with determinant above

a certain threshold. The stars indicate the minimal value of the determinant for which the knot’s

signature can be determined from its Jones polynomial with 100% accuracy using a linear SVM

classifier. (b) Accuracy of the linear SVM classifier in predicting the knot’s signature from its Jones

polynomial as a function of the fraction of considered knots. The minimal determinant for each

fraction can be extracted from (a).

PCA projection.388

4.5.2 Knot signature mod 4389

In this section we illustrate the potential of the tools introduced in this paper and big data analysis390

approach in theoretical mathematics in general and formulating or (re)discovering theorems. Let us391

reconsider the Ball Mapper graph in Figure 9b. The distribution of signature values suggests that392

signature mod 4 can be determined as a function of the coefficients of the Alexander polynomial.393

This hypothesis was tested by training a linear Support Vector Machine classifier (Bishop and394

Nasrabadi, 2006). According to it, the perfect separation between two classes of knots, those whose395

signature mod 4 is zero and those with it equal to 2, is achieved with an “anti-diagonal” hyperplane396

with normal vector [1,−1, 1,−1, . . .]. This observation indicates that the sign of the alternating397

sum of the coefficients of the Alexander polynomial determines the signature mod 4 , which is the398

well-known Theorem 6.4.7 in Murasugi (2008). This Theorem also applies to the Jones polynomial399

but the SVM fails to converge to an optimal solution on the Jones data. However, combining the400
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Figure 15: (left) 2-dimensional PCA projection of the coefficients of Jones polynomials for al-

ternating knots with 15 crossing with determinant greater than 553. (right) 2-dimensional PCA

projection for the normalized Jones coefficients of the same set of knots.

SVM on Alexander and the MappingMappers correspondence between Alexander and Jones data401

(see Figure 10) recovers the Theorem for the Jones polynomial. Our approach provides a new way402

of obtaining such a Theorem and paves the way for using mapper-type algorithms to aid discovery403

in knot theory in particular, and theoretical mathematics and sciences in general.404

4.5.3 Relation between HOMFLYPT and Jones polynomials405

In this section we apply MoBM to the algebraic relation between the HOMFLYPT polynomial406

and both the Alexander and Jones polynomials, see Section 4.1. These specializations tie in with407

the framework introduced in Section 3.2 as they can be used as lenses for Mapper algorithm408

when using the Mapper on Ball Mapper, or MoBM, construction. As a clustering method in the409

MoBM construction, we use the DBSCAN algorithm (Ester et al., 1996). DBSCAN requires a410

new parameter εDB in addition to the ε denoting the radius of balls used in the Ball Mapper411

construction.412

The MoBM construction using knots data is illustrated in Figure 16: Ball Mapper on Jones data413

Figure 16a is used as the input covering to the MoBM graph 16b the HOMFLYPT data whose Ball414

Mapper is in Figure 11b. The coloring in Figure 16a represents the number of clusters into which415

the points in each node split when they are pulled back from the space of Jones to HOMFLYPT.416

This pullback is not trivial (clusters split into more than one cluster in the pre-image) both in the417

center region and in between the flares. The obtained MoBM graph thus achieves better separation418
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in those regions. Unlike Ball Mapper graph for HOMFLYPT data, this MoBM graph has two419

flares that consist of knots with the same s-invariant and different signature. This observation420

touches on the open question when s-invariant and signature differ as we know that they coincide421

for alternating knots but not much more is known.422

(a) (b) (c)

Figure 16: The Mapper on Ball Mapper graph on Jones-HOMFLYPT data pair. Image (a) shows

the Ball Mapper graph for Jones data for knots up to 15 crossings at εBM = 50 with a total of

326 nodes colored by the number of clusters found in each node. The Mapper on Ball Mapper

construction in (b) is obtained from the Jones Ball Mapper (a) and the HOMFLYPT data for the

DBSCAN clustering algorithm parameter equal εDB = 40 with 644 nodes, and colored by signature.

Analogous MoBM construction for εDB = 30 reveals a different structure on HOMFLYPT data (c):

the two long flares emerging in (c) consist knots with the same s-invariant (Rasmussen, 2010), but

different values of signature.

5 Equivariant Ball Mapper on Tic-Tac-Toe data423

Any dataset with a nontrivial isometric group action can be visualized with preservation of the424

action using Equivariant Ball Mapper. As an example we analyze the Tic-Tac-Toe endgame425

dataset (Dua and Graff, 2017) that consists of all possible board configurations at the end of426

Tic-Tac-Toe games. These configurations, 958 in total, are represented by 3 by 3 matrices (inter-427

preted as vectors in R9) since the game is played between two players on a 3 by 3 grid where the428

first player places crosses and the second places noughts. The winner is the first player who places429

three noughts or crosses in a vertical, horizontal or a diagonal line.430

The input for our analysis consists of 3 by 3 grids, interpreted as vectors with 9 entries, with431
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values −1 (corresponding to a nought), 0 (corresponding to an empty slot) or 1 (corresponding to432

a cross). Moreover, we use the l1 norm as distance function which sets the distance between an433

empty cell and a filled in cell to 1, and the distance between a cross and a nought in the same cell434

to 2. This is consistent with the rules of the game, as symbols can only be placed on empty cells435

and replacing the symbol in an already filled-in cell is not allowed. The symmetries of the 3 × 3436

configurations are given by a dihedral group consisting of four rotations and four reflections. It is437

straightforward to see that all configurations in one orbit are all wins, loses or ties, since rotation438

and reflection of the board does not change the outcome of the game. These symmetries induce439

relations between vectors in R9 and the Euclidean distance between any two configurations and440

their images via one of the actions will be the same. Hence, Equivariant Ball Mapper is the natural441

choice for this data; see the resulting Ball Mapper graph in the Figure 17a.442

(a) (b) (c)

Figure 17: The Equivariant Ball Mapper graph for the Tic-Tac-Toe dataset. Figure (a) shows the

game outcome: the wins clusters are colored white, the losses clusters red.

The sixteen isolated orange clusters correspond to all possible ties. The wins and losses clusters

are shown in (b) and (c) respectively, with color denoting orbits. Note that even if the same color

palette is used, there is no relation between the nodes in (b) and (c) as the dihedral symmetry

does not change the outcome of a game.

While our purpose is to showcase the technique rather than to draw a conclusion about the443

output, we include several observations. The Equivariant Ball Mapper graph for radius ε = 2.5444

(using l1 distance) provides a perfect separation between the configurations in which the first player445

wins the game (white), loses the game (red) or when there is a tie (orange), see Figure 17a. We446

attribute the clear separation of win-loss-tie clusters, as well as the symmetries of the win clusters447

(Figure 17b) and loss clusters (Figure 17c), to the combinatorial properties of the game. In panels448
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(b) and (c) nodes belonging to the same orbit are colored with the same color. Note that different449

orbits might have different lengths. A configuration with no rotation or reflection symmetry will450

lead to a length 8 orbit. On the other hand, a configuration that already has some symmetries451

will have a shorter orbit. The maximally symmetric configuration has an orbit of length 1. This452

corresponds to the only red node in the bottom right of Figure 17b. Intuition on the perfect win-453

loss-tie separation can be built by considering the smallest l1 distance between configurations. It454

is not difficult to show that the distance between winning and losing configurations is at least 3.455

Similarly, the minimum distance between two ties is 4 and the minimum distance between winning456

(resp. loosing) configuration and a tie is 4 (resp. 3). On the other hand, any pair of winning (resp.457

losing) configurations can be connected by a sequence of winning (resp. loosing) configurations458

spaced by at most 2. In lieu of the proof, consider a Ball Mapper graph with radius 2 < ε < 3, like459

the one depicted in Figure 17a, where all the winning (resp. losing) configurations are in the same460

connected component evidencing the existence of such a path.461

6 Discussion462

The main contributions of this paper consist of new Mapper-inspired algorithms that expands463

applicability and utility of standard TDA tools for exploring high-dimensional datasets. Equivariant464

Ball Mapper allows to encode the symmetries of the input point cloud, thus returning a more465

faithful graph representation. Mapper on Ball Mapper provides a new, flexible way of obtaining an466

overlapping cover of the lens function’s domain, overcoming the conventional Mapper’s limitation467

that excludes lens functions with high-dimensional ranges. Finally, MappingMappers is a new468

visualization tool that enables immediate and effective comparisons between Mapper graphs. In469

depth applications to knot theory underscore the potential of combining the introduced methods470

with quantitative statistical and machine learning methods to gain insights on complex datasets.471

Results are accompanied by Python implementations of all new algorithms, designed to ensure easy472

utilization by researchers and data science practitioners.473
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7 Supplementary Materials474

Dataset and Python code Jupyter notebooks containing code to perform the experiments de-475

scribed in the article. The same files can be retrieved from the following Zenodo record D lotko476

et al. (2023). The package also contains all datasets used as examples in the article. (knotsBM.zip,477

zipped file).478
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Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R.,498
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