
Java JIT Testing with Template Extraction

ZHIQIANG ZANG, The University of Texas at Austin, USA

FU-YAO YU, The University of Texas at Austin, USA

ADITYA THIMMAIAH, The University of Texas at Austin, USA

AUGUST SHI, The University of Texas at Austin, USA

MILOS GLIGORIC, The University of Texas at Austin, USA

We present LeJit, a template-based framework for testing Java just-in-time (JIT) compilers. Like recent

template-based frameworks, LeJit executes a templateÐa program with holes to be filledÐto generate concrete

programs given as inputs to Java JIT compilers. LeJit automatically generates template programs from existing

Java code by converting expressions to holes, as well as generating necessary glue code (i.e., code that generates

instances of non-primitive types) to make generated templates executable. We have successfully used LeJit

to test a range of popular Java JIT compilers, revealing five bugs in HotSpot, nine bugs in OpenJ9, and one

bug in GraalVM. All of these bugs have been confirmed by Oracle and IBM developers, and 11 of these bugs

were previously unknown, including two CVEs (Common Vulnerabilities and Exposures). Our comparison

with several existing approaches shows that LeJit is complementary to them and is a powerful technique for

ensuring Java JIT compiler correctness.

CCS Concepts: · Software and its engineering→ Just-in-time compilers; Software testing and debug-

ging.

Additional Key Words and Phrases: Testing, test generation, compiler, templates, template generation

ACM Reference Format:

Zhiqiang Zang, Fu-Yao Yu, Aditya Thimmaiah, August Shi, and Milos Gligoric. 2024. Java JIT Testing with

Template Extraction. Proc. ACM Softw. Eng. 1, FSE, Article 51 (July 2024), 23 pages. https://doi.org/10.1145/

3643777

1 INTRODUCTION

Compilers are the cornerstone of software development, and their correctness is of utmost impor-
tance. For years, the compiler testing community has primarily focused on static compilers, such
as GCC, LLVM, and javac. Tools like Csmith [46] and Hephaestus [5] have been shown effective in
discovering bugs in static compilers [47, 48]. However, these tools are ineffective in discovering
bugs in just-in-time (JIT) compilers. JIT compilers, or JIT for short, dynamically (i.e., at runtime)
rewrite parts of programs to optimize program execution based on profiling data. Testing such
compilers requires carefully crafted inputs that trigger JIT compilation and provide challenging
code snippets for the optimizing compilers.
Recently, there has been substantial work on testing JIT compilers, which can be organized in

three main categories: grammar-based, mutation-based, and template-based techniques. The first
group [1, 35, 50] generates test inputs based on language grammars. The second group [7, 8, 43, 53]

Authors’ addresses: Zhiqiang Zang, The University of Texas at Austin, Austin, USA, zhiqiang.zang@utexas.edu; Fu-Yao

Yu, The University of Texas at Austin, Austin, USA, fu.yao.yu@utexas.edu; Aditya Thimmaiah, The University of Texas at

Austin, Austin, USA, auditt@utexas.edu; August Shi, The University of Texas at Austin, Austin, USA, august@utexas.edu;

Milos Gligoric, The University of Texas at Austin, Austin, USA, gligoric@utexas.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2994-970X/2024/7-ART51

https://doi.org/10.1145/3643777

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

51:2 Zhiqiang Zang, Fu-Yao Yu, Aditya Thimmaiah, August Shi, and Milos Gligoric

commonly starts with a set of seed programs that are evolved with a predefined set of mutation
operators. The third group [9, 51, 52] combines manual testing (writing templates) with fuzzing,
i.e., filling holes in templates based on a set of manually predefined choices that can be different for
each hole.

These three groups are complementary and each group provides some benefits over the others.
Consider JAttack [51], a template-based technique that recently discovered two CVEs (Common
Vulnerabilities and Exposures) in Oracle’s JIT. Each template program is a valid Java program with
holes, and each hole is written in an embedded domain-specific language that specifies the set of
expressions that can potentially fill the hole. JAttack generates programs by fuzzing holes during
the execution of a given template. The advantage of this technique is that developers have full
control of the space that should be tested and the way programs should be modified. At the same
time, JAttack requires substantial developers’ engagement, as both template program design and
hole values are written manually.

In this paper, we present a novel framework, dubbed LeJit, for automatically generating template
programs from existing code. LeJit generates templates by rewriting existing expressions to holes,
as well as generating necessary glue code (e.g., code that creates instances of non-primitive types
on which methods can be invoked) to make those templates executable. Execution of generated
templates, which randomly fills the holes, creates concrete programs that are used as inputs for
Java JIT testing. As a result, LeJit sits in between mutation-based techniques and template-based
techniques. Unlike existing template-based techniques, templates are automatically extracted from
any existing code. Unlike mutation-based techniques, each hole has its own set of values and can
be filled dynamically (rather than statically), and multiple holes are filled simultaneously during
the execution of the template. Subsequently, LeJit is in a way similar to higher order mutation [21],
but holes are filled dynamically through executing templates.

LeJit is designed to enable generation of a program template from any existing method. One of
the key challenges was to enable templates for methods that accept instances of complex types
as arguments, including an instance on which an instance method is to be invoked. Our key
insight in this direction is to capture instances of various types during testing of methods from
which templates are to be extracted; tests used can be either existing manually-written tests or
automatically-generated tests.

Unlike several existing tools for testing Java runtime environments [18], LeJit generates source
code rather than bytecode. Some advantages of focusing on source code rather than bytecode
include: 1) eliminating the need to worry about invalid classfiles, as those obtained from source
files always pass the early check of the class format performed by bytecode verifiers, allowing
for łdeeperž testing; 2) simplifying every step during the bug reporting phase: a bug reported as a
source code snippet instead of bytecode is easier to understand, minimize, and report, and it also
facilitates confirmation, fixing, and integrating in test suites by compiler developers; 3) decreasing
the likelihood of revealed bugs resulting in false positives, since these programs result in valid
bytecode generated via a Java compiler as opposed to random sequences of bytecode instructions.

We used LeJit to test several JIT compilers: Oracle HotSpot, IBMOpenJ9, and Oracle GraalVM.We
used differential testing [26] to detect crash and inconsistency between JIT compilers. We extracted
templates from ten open-source Java projects available on GitHub, although our technique can
extract templates from any other code. Our runs discovered five bugs in HotSpot, nine bugs in
OpenJ9, and one bug in GraalVM. 11 out of the 15 bugs were previously unknown, including two
CVEs. All bugs have been confirmed by compiler developers.
We further compared LeJit with JITfuzz [44] and JavaTailor [53], the state-of-the-art testing

tools for Java JIT and JVMs, respectively. Our experiments show that LeJit increased code coverage
of C1 compiler by 8.0% and C2 compiler by 8.2% [28] compared to JITfuzz, and increased by 3.3%

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

Java JIT Testing with Template Extraction 51:3

1 package org.apache.commons.text;...

2 public class StrBuilder implements ... { ...

3 static final int CAPACITY = 32;

4 char[] buffer; private int size;

5 private String newLine, nullText;

6 public StrBuilder(final String str) {

7 if (str❶ == null) { buffer = new char[CAPACITY❷]; } ... }

8 public StrBuilder trim() {

9 if (size == 0❸) { return this; }

10 int len = size❹;

11 final char[] buf = buffer❺;

12 int pos = 0❻;

13 while (pos < len && buf[pos] <= ' '❼) { pos++; }

14 while (pos < len && buf[len - 1] <= ' '❽) { len--; } ...

15 return this; } }

Fig. 1. An existing program from the text project [40] used as a source for template extraction.

and 4.0% compared to JavaTailor, when testing OpenJDK HotSpot. Additionally, using JITfuzz and
JavaTailor we have not discovered any of the bugs found by LeJit.

The main contributions of this paper include:

• Framework. We designed and implemented a framework for extracting templates from existing
code by converting expressions into holes and capturing instances of complex types during test
execution. Captured instances enable execution of templates that produce concrete programs
used as inputs for compiler testing.

• Implementation. We have implemented LeJit for Java and built it around a recent publicly
available framework (JAttack). We have also developed several variants of LeJit to help us
understand the benefits of templates and captured instances used for arguments.

• Evaluation. We have performed extensive evaluation of LeJit. We have extracted 143,195
templates from ten open-source Java projects on GitHub. We then used JAttack to generate
886,178 concrete programs. We have used the generated programs to test three compilers ś Oracle
HotSpot, IBM OpenJ9, and Oracle GraalVM. Additionally, we compare LeJit with JITfuzz and
JavaTailor the state-of-the-art tools for testing Java runtime environments.

• Analysis. We performed an in-depth analysis of templates and generated programs to understand
how the presence of various Java language features, e.g., arrays, conditional statements, loops,
etc., affect LeJit’s bug detection capabilities. We also studied the impact of various types of
templates on the result, and we find types of holes that play an important role in bug detection.

• Results. Our results show the effectiveness of LeJit. We have discovered 15 bugs, including five
bugs in HotSpot, nine bugs in OpenJ9, and one bug in GraalVM. 11 of the bugs are previously
unknown, including two CVEs. All bugs have been confirmed by compiler developers. Our results
also show that LeJit is complementary to the state-of-the-art techniques, which did not discover
any of the bugs found by LeJit.

Our tool is publicly available at https://github.com/EngineeringSoftware/lejit.

2 EXAMPLE

We demonstrate the capabilities of LeJit, using an example program that involves a bug we detected
in the OpenJ9 JIT compiler. Figure 1 shows a snippet of the example program.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

51:4 Zhiqiang Zang, Fu-Yao Yu, Aditya Thimmaiah, August Shi, and Milos Gligoric

1 package org.apache.commons.text;...

2 import jattack.annotation.*;

3 import static jattack.Boom.*;

4 public class StrBuilder implements ... { ...

5 static final int CAPACITY = 32;

6 char[] buffer; private int size;

7 private String newLine, nullText;

8 public StrBuilder(final String str) {

9 if (refId(String.class).eval()❶ == null) {

10 buffer = new char[intId().eval()❷]; } ... }

12 @Entry

13 public StrBuilder trim() {

14 if (relation(intId(), intVal()).eval()❸) {

15 return this; }

16 int len = intId().eval()❹;

17 final char[] buf = refId(char[].class).eval()❺;

18 int pos = intVal().eval()❻;

19 int _lim1 = 0;

20 while (logic(

21 relation(intId(), intId()),

22 relation(charArrAcc(

23 refId(char[].class),

24 intId()),

25 charVal()))

26 .eval()❼ && _lim1++ < 1000) {

27 pos++; }

28 int _lim2 = 0;

29 while (logic(

30 relation(intId(), intId()),

31 relation(charArrAcc(

32 refId(char[].class),

33 arithmetic(intId(),

34 intVal())),

35 charVal()))

36 .eval()❽ && _lim2++ < 1000) {

37 len--; } ...

38 return this; }

40 @Argument(0)

41 public static StrBuilder _arg0() {

42 StrBuilder sb1 = new StrBuilder("date");

43 sb1.append((Object) 10.0);

44 sb1.appendSeparator("d");

45 Object[] arr = new Object[] { 1.0 };

46 return sb1.append("resourceBundle", arr); } }

(a)

1 package org.apache.commons.text;...

2 import jattack.annotation.*;

3 import jattack.csutil.Helper;

4 import jattack.csutil.checksum.WrappedChecksum;

5 import jattack.exception.UnfilledHoleException;

6 import static jattack.Boom.*;

7 public class StrBuilder implements ... { ...

8 static final int CAPACITY = 32;

9 char[] buffer; private int size;

10 private String newLine, nullText;

11 public StrBuilder(final String str) {

12 if (nullText❶ == null) {

13 buffer = new char[CAPACITY❷]; } ... }

15 public StrBuilder trim() {

16 if (size <= -1838784853❸) { return this; }

17 int len = CAPACITY❹;

18 final char[] buf = buffer❺;

19 int pos = 809931165❻;

20 int _lim1 = 0;

21 while ((len > _lim1 && buf[size] != 'Z')❼

22 && _lim1++ < 1000) { pos++; }

23 int _lim2 = 0;

24 while ((pos <= _lim2

25 || buf[size - 1312433786] > '0')❽

26 && _lim2++ < 1000) { len--; } ...

27 return this; }

29 public static StrBuilder _arg0() {

30 StrBuilder sb1 = new StrBuilder("date");

31 sb1.append((Object) 10.0);

32 sb1.appendSeparator("d");

33 Object[] arr = new Object[] { 1.0 };

34 return sb1.append("resourceBundle", arr); }

36 public static void main(String[] args) {

37 WrappedChecksum cs = new WrappedChecksum();

38 StrBuilder rcvr = _arg0();

39 cs.update(rcvr);

40 for (int i = 0; i < 100_000; ++i) {

41 try {

42 cs.update(rcvr.trim());

43 } catch (UnfilledHoleException e) {

44 throw e;

45 } catch(Throwable e) {

46 cs.update(e.getClass().getName()); } }

47 cs.update(StrBuilder.class);

48 Helper.write(cs.getValue()); } }

(b)

Fig. 2. An example (a) template extracted from the program in Figure 1, and (b) a concrete program generated

from the template by filling in the holes, which crashed OpenJ9 JIT compiler.

LeJit extracts a template from this program by replacing expressions with holes, as shown in
Figure 2a. A hole is a placeholder to be filled with concrete expressions during program generation.
Each hole is expressed as an API call, which defines the type and range of values that can be used to
fill the hole, e.g., the first hole refId(String.class) (line 9) in the template represents any available
variable with type String at this execution point [51].

There are eight holes displayed in the template, two in the constructor and six in the method trim.
Each hole, labeled with a circled number, is converted from the expression in the original program

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

Java JIT Testing with Template Extraction 51:5

with the same number. For example, the first hole refId(String.class) is converted from the local
variable str (line 7) in Figure 1. The next hole intId() (line 10) in Figure 2a, which represents any
available int variable, is converted from the int field CAPACITY (line 7) in Figure 1. The third hole
(line 14) in Figure 2a, represents a relational expression that connects an integer variable and an
integer literal (between Integer.MIN_VALUE and Integer.MAX_VALUE) using a relational operator (<,
<=, >, >=, ==, !=). This hole is converted from the if condition size == 0 (line 9) in Figure 1. Similarly,
the next three holes: an integer variable hole (line 16), a char array variable hole (line 17), and an
integer literal hole (line 18) in Figure 2a, are converted from size (line 10), buffer (line 11), and 0

(line 12) in Figure 1, respectively. The last two holes are converted from the while condition pos <

len && buf[pos] <= ' ' and pos < len && buf[len - 1] <= ' ', respectively. The hole 7 (line 26) in
Figure 2a represents a logical relational expression that connects two relational expressions using a
logical operator (&&, ||). The first relational expression connects two integer variables using one of
the relational operators. The second relational expression connects a char array access expression
and an integer variable. The char array access expression selects an available variable of type
char[] as the array and utilizes an integer variable as the index value to retrieve the corresponding
element from the array. The last hole (line 36) in Figure 2a represents a similar expression but
it uses an arithmetic expression as the index of the char array access expression. The arithmetic
expression applies one of the arithmetic operators (+, -, *, /, %) on an integer variable and an integer
literal (i.e., constant).

A template must have an entry method that is the start of the execution, annotated with @Entry

as shown in the template (method trim). One of the key challenges is to obtain an argument for the
method trim, i.e., an instance on which the method is to be invoked, so that the template can be
executed. In our example, since the entry method trim is an instance method, the only required
input is an instance of the template class StrBuilder that declares the method. To provide inputs to
the entry method, LeJit inserts a public static argument method, annotated with @Argument (method
_arg0). Thus, the argument method _arg0 instantiates a StrBuilder and returns the instance after
invoking a sequence of methods (line 42ś46) in Figure 2a. Our key insight in this direction is
to capture the sequence of methods during testing of the entry method trim; tests used can be
either existing manually-written tests or automatically-generated tests. The sequence of methods
to return an instance of class StrBuilder (line 42ś46) in Figure 2a is obtained from a generated test.

Following JAttack, LeJit generates programs by executing the template from the entry method
defined in the template. When LeJit reaches an unfilled hole the first time, it randomly picks a
valid expression within the bounded search space defined by the hole. Once LeJit has filled all
reachable holes, it outputs a generated program. Figure 2b shows an example generated program
from the template in Figure 2a. In the figure, the hole API and the concrete expression generated to
fill it share the same circled number, indicating a match between them. The generated program can
be executed directly, as LeJit also generates a main method (line 36) in Figure 2b, that invokes the
entry method using an instantiation of the template class returned from _arg0 (line 38) in Figure 2b.
The main method repeatedly invokes the entry method in a for loop (line 40ś46) in Figure 2b. The
large number of iterations is necessary to trigger JIT optimizations in Java since the JIT compiler
triggers and starts to optimize code only when a method becomes łhotž, i.e., frequently executed.
To encode the program behavior during execution, the mainmethod hashes and saves the argument
values, return values, or any thrown exceptions from each iteration, and the final class state (i.e.,
static fields) of the template. These hashes are used to generate a checksum, which is the final
output of the execution.

To perform differential testing [26], LeJit executes every generated program using JIT compilers
in various JVM implementations and compare their outputs. The program in Figure 2b gave the same
output using HotSpot and GraalVM, but it crashed the OpenJ9 JIT compiler. The IBM developers

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

51:6 Zhiqiang Zang, Fu-Yao Yu, Aditya Thimmaiah, August Shi, and Milos Gligoric

Extended
JAttack

Expressions
→ Holes

ArgumentsTest
Finder

Project HotSpot

OpenJ9

GraalVM

Reference
JVM

Bugs

All Methods

Unit Tests

Input 𝐿

Pool 𝐼

Generated
Programs

Diff /
CrashTemplates

ExtractionCollection Generation Testing Pruning

Static

Dynamic

Fig. 3. The overview of LeJit. Dotted-dashed lines: test-based approach; dashed lines: pool-based approach.

confirmed that the crash is due to a bug in the OpenJ9 JIT compiler on handling array index
out-of-bounds.

3 LEJIT FRAMEWORK

The LeJit framework has five key phases: (a) collection, (b) extraction, (c) generation, (d) testing, and
(e) pruning, as illustrated in Figure 3. First (Section 3.1), LeJit collects a list of methods from the
given code and obtains tests that can be used to create meaningful inputs to these methods. Then
(Section 3.2), treating each method in the list as an entry method, LeJit selects the input that can
be used to invoke the method, and extracts a template from the Java class that defines the method.
Next (Section 3.3), LeJit executes each template with the selected inputs to the entry method to
generate concrete Java programs. After that (Section 3.4), LeJit executes the generated programs
through the entry method with the same selected inputs, using different Java JIT compilers for
differential testing [26]. Finally (Section 3.5), LeJit prunes the detected crash and/or consistency as
to minimize false positives, and then reports detected bugs.

3.1 Collection

In the collection phase, LeJit collects a list of methods from the given code to be used as template
entry methods. LeJit then obtains tests for each of the methods, which will be used to obtain
objects that can be used as arguments to the entry method.
We developed two approaches to collect a list of entry methods and to obtain code sequences

that create arguments for entry methods.

Test-based. We use automated test generation to generate a large number of unit tests for all the
classes in the given code. We utilize the last method call in the unit test as the entry method. As
such, we can save the code sequence leading up to the method call as a way to construct arguments
for that method. This approach ideally results in the same number of entry methods as the number
of unit tests generated, and each entry method is associated with the saved code sequence as the
input to the method.

Pool-based. Instead of using generated unit tests as in the previous approach, we save all prefixes
of generated tests in the pool-based approach; each prefix creates an object that we add to an object
pool. This object pool stores all code sequences produced during a test generation run, where
each code sequence ultimately returns an instance of a class defined within the project (the object
returned by the final method call in the sequence). We organize the pool using a mapping that
associates each class with all the code sequences that can instantiate that class. This approach
parses all the Java classes in the given project and obtains all the methods from these classes, and
then uses all of the methods as entry methods.

Note that the pool-based approach creates a superset of objects created by the test-based approach,
but the entry methods are different (as described above). We compare these two approaches in

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

Java JIT Testing with Template Extraction 51:7

1: Input:𝑀 : the entry method

2: Input: 𝐿: the collected input to the entry method (test-based only)

3: Input: 𝐼 : the pool of inputs to all methods (pool-based only)

4: Output: the extracted template

5: function Extract(𝑀 , 𝐿, 𝐼)

6: 𝐶 ← GetClassDeclaring(𝑀)

7: 𝑡 ← Clone(𝐶)

8: for all 𝑒 in GetAllExprs(𝑡) do

9: 𝑒′← Convert(𝑒 , 0)

10: Replace(𝑒 , 𝑒′)

11: for all 𝑙 in GetAllLoops(𝑡) do

12: InsertLoopLimiter(𝑙)

13: if 𝐿 then

14: 𝑚← CreateArgumentsMethod(𝐿)

15: InsertMethod(𝑚, 𝑡)

16: if 𝐼 then

17: for all 𝑝 in GetAllParams(𝑀) do ⊲ including the receiver

18: 𝜏 ← ResolveType(𝑝)

19: if IsPrimitive(𝜏) then

20: 𝑖 ← ł<𝜏>Val()ž

21: else if 𝐼 .contains(𝜏) then

22: 𝑖 ← RandomInputOfTypeFromPool(𝜏 , 𝐼)

23: else

24: 𝑖 ← łnullž

25: 𝑚← CreateArgumentMethod(𝑝 , 𝑖)

26: InsertMethod(𝑚, 𝑡)

27: return 𝑡

28: Input: 𝑒 : the original expression

29: Input: 𝑑 : the depth of 𝑒

30: Output: the hole API

31: function Convert(𝑒 , 𝑑)

32: 𝜏 ← ResolveType(𝑒)

33: switch GetCategoryOfExpr(𝑒) do

34: case Identifier:

35: ℎ← ł<𝜏>Id()ž

36: case Literal:

37: ℎ← ł<𝜏>Val()ž

38: case Relation:

39: 𝑙 ← Convert(𝑒 .left, 𝑑 + 1)

40: 𝑟 ← Convert(𝑒 .right, 𝑑 + 1)

41: ℎ← łrelation(<𝑙>, <𝑟>)ž

42: . . .

43: if 𝑑 = 0 then

44: return ł<ℎ>.eval()ž

45: else

46: return ł<ℎ>ž

Fig. 4. Template extraction algorithm.

our evaluation to discover if they are complementary and if each leads to valuable inputs during
compiler testing.

3.2 Extraction

For every entry method in the list provided by the collection phase, LeJit creates a template from
the class that declares the method. Figure 4 shows the overall algorithm for LeJit to extract a
template from a given entry method. The input to the function Extract is the entry method 𝑀 ,
and either the collected inputs to𝑀 , if using the test-based approach, or the pool of inputs for all
methods, if using the pool-based approach, is represented by 𝐿 or 𝐼 , respectively. The output is the
extracted template 𝑡 .

The function Extract starts by finding the original class 𝐶 that declares the entry method in the
given Java code (line 6) and initializes template 𝑡 as a clone of 𝐶 (line 7). Next, for the class, LeJit
recursively converts every expression in every method (obtained from GetAllExprs(𝑡)) into a hole.
Next, Extract replaces each expression 𝑒 in 𝑡 with a hole API call (i.e., Java method that represents
a hole) by calling the function Convert (line 9) and then replacing the expression into the hole in
place (line 10). Rather than convert each expression into a hole, LeJit can also selectively create
holes for some types of holes. Although we empirically evaluate impact of various types of holes,
we assume in this algorithm that we convert each expression into a hole w.l.o.g.

The function Convert takes an expression 𝑒 and its depth 𝑑 as input and returns a hole API.
It resolves the type of 𝑒 as 𝜏 , then converts 𝑒 into a hole API by recursively replacing each sub-
expression of 𝑒 with the proper hole API call. If 𝑒 is an identifier, it is converted into a <𝜏>Id hole
API call.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

51:8 Zhiqiang Zang, Fu-Yao Yu, Aditya Thimmaiah, August Shi, and Milos Gligoric

Example. The variable str of String type in the class from Figure 1 (line 7) is converted into
refId(String.class) in the template from Figure 2a (line 9). Another int variable size (line 10) is
converted into intId() in the same template (line 16).

If 𝑒 is a literal, it is converted into a <𝜏>Val hole API call.

Example. The integer number 0 in the class from Figure 1 (line 12) is converted into intVal() in
the template from Figure 2a (line 18).

If 𝑒 is not a terminal, its sub-expressions are recursively converted into hole API calls. For a relational

expression 𝑒 , the left and right sub-expressions are converted into the hole API call 𝑙 (line 39 in

Figure 4) and 𝑟 (line 40), respectively, before 𝑙 and 𝑟 are combined using the relation hole API
(line 41). The operator of the relational expression is ignored because a hole API uses all available
operators by default if no operator argument is provided.

Example. Consider the relational expression size == 0 in the class from Figure 1 (line 9). The
left sub-expression size is converted into intId(), and the right sub-expression is converted into
intVal(). Then the two results are combined as relation(intId(), intVal()) in the template from
Figure 2a (line 14).

Other expressions that are non-terminals, e.g., arithmetic, logical, array access, etc., are converted
in a similar way as a relational expression; we do not list all of them in the algorithm. Once the
given expression 𝑒 is converted into a hole API call, Convert checks if the current depth is 0. If so,
it appends the eval() call to the hole API call and returns the resulting call as the output of the
function (line 43ś46). Note that eval() first triggers the hole API call, which returns an expression
that fills the hole. Then eval() is called on the returned expression that evaluates to the type that
the hole represents (e.g., int). Thus, there is only one eval() for the outermost hole API call.
A hole as a loop condition might introduce an infinite loop in the template class 𝑡 if the hole is

filled in with some expression that is always evaluated to true at the generation phase. Therefore,
Extract inserts a loop limiter to restrict the maximum iterations that one loop can be executed
(line 11ś12 in Figure 4).

Example. Consider hole 7 in the template from Figure 2a (line 36), which is a loop condition. To
prevent the infinite loop that may occur due to filling in random values, a loop limiter _lim2++ <

1000 is appended to the logic hole to restrict the maximum iterations to one thousand times.

Once the holes are created, Extract then creates and inserts argument methods into 𝑡 , according
to the selected approach in the collection phase.

Test-based. A public static @Arguments method is added to the template class 𝑡 (line 14ś15 in
Figure 4). The method returns an array of all the inputs to the entry method in the order of method
parameters. Consider the entry method with signature:

static Quaternion multiply(Quaternion q1, Quaternion q2)

in the class org.apache.commons.math4.complex.Quaternion from open-source project math [39].
The following @Arguments method is generated:

@Arguments

public static Object[] _args() throws Throwable {

Quaternion quaternion = new Quaternion(

35.0, (double) 0, 57.29577951308232, -1.0);

return new Object[] { quaternion, (double) 17 };

}

where quaternion and 17 are the inputs collected in the collection phase, i.e., extracted from a
generated unit test with the entry method multiply as the last method call.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

Java JIT Testing with Template Extraction 51:9

Pool-based. A public static @Argument method is created to provide an input for each parameter
(including the receiver) of the entry method according to the type 𝜏 of the parameter (line 17ś26 in
Figure 4). If a primitive input is required, then a <𝜏>Val hole API will be used (line 20); otherwise
a reference input with the required type is randomly picked from the object pool provided from
the collection phase (line 22). If the pool does not contain the type, null is used (line 24). Consider
the entry method trim in the template from Figure 2a, since it is an instance method without any
parameter, only a single @Argument method _arg0 (line 42ś46) is created. The method _arg0 uses a
randomly picked code sequence from the object pool and returns an instance of StrBuilder that
can be used to invoke the instance entry method trim.

Finally, Extract returns the template 𝑡 (line 27 in Figure 4). LeJit repeats the procedure to extract
a template for every entry method provided in the list from the collection phase.

3.3 Generation

In the generation phase, LeJit obtains concrete programs from every template extracted from the
previous phase. LeJit generates programs through an execution-based model. Given a template
𝑡 , the initial global state is captured first. Then, the entry method of the template is repeatedly
executed, stopping when all holes are filled or the maximum iterations 𝑁 has been reached. Next,
the technique outputs a generated program by filling every hole with corresponding concrete code.
This process repeats 𝑀 times to generate 𝑀 programs, with the template state reset after each
program generation. LeJit builds on JAttack to support the generation phase.

Extending template support. LeJit enhances JAttack in several aspects. (1) JAttack allows only
a static method as the entry method. On the other hand, LeJit introduces the receiver object for the
entry method, which allows an instance method as the entry method via passing the receiver’s value
from @Argument or @Arguments methods. (2) JAttack does not support non-primitive static fields in
templates, as it resets a static field by saving and recovering the value. To resolve this, LeJit resets
states of template classes by re-invoking static initializers (clinit) [2], thus allowing non-primitive
static fields to be reset in templates. (3) JAttack crashes due to UnfilledHoleException immediately
when encountering holes in static initializers, while LeJit adds extra logic to handle those exceptions
when loading (including re-initializing) template classes. (4) Certain holes in constructors are not
supported well by JAttack. For a <𝜏>Id hole inside super() or this() calls from a constructor,
JAttack can fill the hole with a field accessed from uninitializedThis, which fails bytecode
verification. LeJit overcomes the limitation by tracking at which execution point in a constructor
(when all INVOKESPECIAL and NEW bytecode instructions are paired up) uninitializedThis gets
initialized and can be used. (5) LeJit introduces a number of new hole APIs for type casting and
improves the checksum utility of JAttack to avoid hash collisions when hashing an object graph.

Improving generation procedure. LeJit makes two changes to the original generation proce-
dure of JAttack. (1) One of the advantages of JAttack’s execution-based generation over static
generation is that it knows exactly what gets executed in a generated program and such information
can help generate better programs. However, JAttack does not leverage the information in its
implementation. It simply outputs any generated program as long as the program compiles. Instead,
LeJit skips certain generated programs that are less likely to trigger JIT optimizations. For instance,
LeJit will skip a generated program if the execution stops even before entering the entry method
due to an exception thrown from argument methods. (2) JAttack renames the class with a unique
suffix in every generated program, e.g., Gen1, Gen2, etc. However, such renaming breaks circular
dependencies between the template class and other classes in the same project, which makes many
generated programs not compilable. LeJit disables renaming and keeps the original class name of
the template for all generated programs. When executing a generated program in the testing phase,

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

51:10 Zhiqiang Zang, Fu-Yao Yu, Aditya Thimmaiah, August Shi, and Milos Gligoric

LeJit ensures that the compiled classfile of the generated program appears in the classpath before
all the other classes of the original Java source, such that the generated program, rather than the
original class with the same name in the project, will be used.

3.4 Testing

For differential testing, LeJit executes each generated program with various implementations
and levels of JIT, i.e., different JIT configurations. We define a JIT configuration as a tuple (ven-
dor name, compiler name, version number, JVM options), for example: (Oracle, HotSpot, 20,
-XX:TieredStopAtLevel=1) and (IBM, OpenJ9, 17.0.6, -Xjit:optlevel=hot). Each generated program
is executed repeatedly with a large number of iterations (to trigger JIT compilation) and outputs a
checksum value in the end. This checksum value is calculated by hashing the arguments provided
to the entry method, the output of the return value from the entry method in each iteration, and
the final state (i.e., static fields) of the entire class [51]. Then, LeJit compares the checksum values
from different JIT configurations and reports a failure if it observes any difference. Additionally,
LeJit reports a failure if the program crashes on some JIT configurations.

3.5 Pruning

Not every failure indicates a real issue with JIT. During our experiments, we find that most of
the failures reported due to observed inconsistent checksum values across JIT configurations
were caused by either (1) non-deterministic features of the generated program itself, e.g., random
numbers, current timestamps, hashcode, etc., (2) the inconsistency between JIT configurations
themselves, e.g., system property java.vm.name and java.vm.info, which contain the JVM’s version
information and Java options used, or (3) discrepancies between JVM implementations from different
vendors, such as HotSpot and OpenJ9, which disagree on the maximum array size. To alleviate this
problem, JAttack reruns the failing program twice using the interpreter mode (-Xint) of a single
JIT configuration, while keeping the rest of the JIT configuration intact, and reports the failure only
when the two reruns using interpreter mode give the exact same outputs. However, this solution
can only filter out false positive JIT bugs caused by (1) but not (2) or (3). LeJit improves the filtering
by a) using various JVMs (e.g., HotSpot and OpenJ9) and b) increasing the number of reruns of the
failing program from one to three times. If any of the reruns using interpreter mode still shows
inconsistent checksum values across various JVMs, LeJit considers the failure to be not related to
JIT and thus ignore it as a false positive.

When a generated program crashes while being executed using a particular JIT configuration,
JAttack always labels it as a bug. However, not all crashes are caused by issues with the JVM
and therefore not all are worth reporting to developers. Some crashes are UnfilledHoleException,
which occur due to unfilled holes in the program, which are left as API method calls during the
generation phase but are reached during execution in the testing phase (due to non-determinism).
Such cases may be caused by incorrect JIT compilation that leads to a mismatch in program behavior
between the generation and testing phases, which we want to report as a bug. However, many of
these cases result from the aforementioned three reasons that cause inconsistent checksum values
between JIT configurations. For example, non-deterministic features such as current timestamps
may have inconsistent values between the generation phase and testing phase. This inconsistency
can cause disagreement in code paths taken between the generation phase and the testing phase,
e.g., when evaluating if conditions on timestamps, which can result in unfilled holes that were
not reached during generation but were reached during testing. To address this issue, LeJit reruns
the generated program with various JVMs using interpreter mode if the program reports a crash
due to UnfilledHoleException. If the program does not crash during the rerun, then LeJit reports

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

Java JIT Testing with Template Extraction 51:11

a bug. However, if the program still crashes during the rerun, then LeJit considers the crash as a
false positive and skips reporting the failure.

While the pruning approach is simple, with manual inspection on a number of cases, we found
it sufficiently useful. We also compared our pruning with original JAttack’s pruning. Our pruning
filtered around 96%, while JAttack filters out around 60%, out of total failures.

3.6 Implementation

We implement collection of entry methods, extraction, and pruning as standalone tools. We extend
Randoop [33] to obtain objects used as arguments for non-primitive types. Finally, we extend
JAttack [51] to support generation and testing phases.

4 EVALUATION

We assess the value of LeJit by answering the following research questions:

RQ1: What are the contributions of the major components of LeJit?
RQ2: How effective is LeJit compared with the state-of-the-art techniques?
RQ3: What is the impact of holes in various Java language features on LeJit’s bug detection?
RQ4: What is the impact of different types of templates on LeJit’s bug detection?
RQ5: What critical bugs does LeJit detect in Java JIT compilers?

We first describe the experiment setup (Section 4.1) and then answer each of the research questions
(sections 4.2-4.6).

4.1 Setup

Collection. We use open-source projects as the main input to LeJit for extracting templates. An
alternative was to generate Java programs using one of the techniques for testing traditional Java
compilers [11, 17], but open-source projects cover a much broader range of Java features. We search
GitHub [16] for 1,000 Java open-source projects with the most stars, and we also include projects
with at least 20 stars that belong to several popular organizations, e.g., Apache, Google, etc. In total,
we collected 1,793 projects. We further filter by keeping the projects that (1) use the Maven [41]
build system; (2) have a license that permits our use; and (3) have tests. After this step, there
were 161 projects. Then, we attempt to build each project from its source and create a fat jar [34]
for each project. We filter out any projects that cannot be packaged this way. Lastly, we exclude
some projects that are not compatible with LeJit’s toolchain, e.g., ASM [32], JavaParser [19], and
Randoop [33]. Eventually, there are 62 projects for use.
We run LeJit once using the pool-based approach with all the 62 projects but stop LeJit early,

before the generation phase, in order to extract templates and collect holes. We next select the
top ten projects with the most holes and loop limiters (used to avoid introducing infinite loops;
see Section 3.2) in the extracted templates. Table 1 shows the ten open-source Java projects and
associated numbers of holes and loop limiters; we show the number of holes for each hole type.
In the test-based approach, we configure the test generation to obtain 5,000 unit tests for each

project or for 30 minutes, whichever comes earlier. In the pool-based approach, we always run test
generation for 30 minutes. Lastly, we use Eclipse Temurin 11.0.18 (Adoptium OpenJDK build) in
the collection phase, including building open-source projects, test generation, and running LeJit
itself. We select this lower version of Java in order to maximize compatibility with open-source
projects and LeJit’s toolchain such as Randoop, i.e., being able to compile most projects into fat
jars and to run Randoop with the projects, with a Java version.

Generation. We generate ten programs from each template, with a three-minute timeout. We
also set a one-minute timeout in the testing phase for executing each generated program. (We

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

51:12 Zhiqiang Zang, Fu-Yao Yu, Aditya Thimmaiah, August Shi, and Milos Gligoric

Table 1. Project information and number of holes per hole type. PrimitiveId contains all the <𝜏>Id holes,

and PrimitiveVal contains all the <𝜏>Val holes, where 𝜏 is one of the primitive types in Java. # Loops is the

number of loop limiters.

Project
Holes

Loops
∑

PrimitiveId PrimitiveVal Array Arithmetic Shift Relation Logic

vectorz 1,585,341 498,470 187,333 468,965 3,115 207,971 7,960 112,319 2,959,155

math 969,150 391,390 83,093 275,034 6,392 114,672 10,547 67,306 1,850,278

lang 984,373 464,883 73,260 93,359 1,318 190,413 15,680 77,790 1,823,286

text 246,909 86,419 8,648 34,378 0 48,976 3,462 11,943 428,792

compress 178,754 89,706 9,296 17,012 2,668 25,710 3,325 10,163 326,471

zxing 93,637 74,610 10,368 23,204 1,282 17,740 3,364 6,937 224,205

codec 35,414 36,528 5,420 8,103 1,597 3,831 373 1,335 91,266

statistics 31,753 7,271 141 7,825 0 5,110 507 235 52,607

jfreechart 6,253 2,920 287 1,190 12 539 78 182 11,279

numbers 6,441 2,082 22 891 140 1,065 154 123 10,795
∑

4,138,025 1,654,279 377,868 929,961 16,524 616,027 45,450 288,333 7,778,134

change the value to 50 seconds when later comparing against JITfuzz for fair comparison.) We use
Oracle JDK 17.0.6 to execute templates in the generation phase. We select a different JDK version
for additional differential testing between the generation and testing phases.

Testing. We test a wide range of JDKs with different vendors and versions during our experiments.
When evaluating LeJit alone including its variants, we use Oracle JDK 20 (HotSpot default and
level 1), IBM Semeru 17.0.6.0 (OpenJ9 default and hot level), and GraalVM Enterprise Edition 22.3.1
(GraalVM default) for differential testing. When comparing LeJit with JITfuzz and JavaTailor, we
also include a custom build of OpenJDK jdk-17.0.6+10 (HotSpot default and level 1) (see Section 4.3).
We collect code coverage over the JVM code using the custom build of OpenJDK. We separately
re-run generated programs to collect code coverage when evaluating LeJit alone including its
variants. We collect code coverage on the fly when comparing LeJit with JITfuzz and JavaTailor.
JITfuzz uses coverage, so we use the same setup for all the tools.

Pruning. We use reference JIT configurations to rerun three times every failing program, i.e., a
generated program that either has different outputs or has crashed JVM in the testing phase. We
report such a failing program as a bug if the rerun using reference JIT configurations does not
show any difference or crash (see Section 3.5). We use HotSpot with -XX:TieredStopAtLevel=0 and
OpenJ9 with -Xnojit as reference JIT configurations when pruning failures.

Machine. We run all experiments on a 64-bit Ubuntu 18.04.1 desktop with an Intel(R) Core(TM)
i7-8700 CPU @3.20GHz and 64GB RAM.

4.2 Contribution of Major Components

We evaluate LeJit using both test-based and pool-based approaches (Section 3), named LeJit𝑡 and
LeJit𝑝 , respectively. Additionally, we define two baselines (LeJitNoTmpl and LeJitNoPool) to help us
understand the benefit of using templates and creating instances for entry methods.

The variant LeJitNoTmpl follows the same collection phase as LeJit𝑡 that collects the last method
call as the entry method from every unit test generated. However, LeJitNoTmpl does not extract any
templates, and thus not generate any programs from templates. Instead, it uses exiting code and
directly goes to the testing phase and executes the entry method a large number of times, using just
the arguments in the test. This baseline (indirectly) shows the power of automatically generated
tests, obtained on a randomly selected set of projects, for discovering Java JIT compiler bugs.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

Java JIT Testing with Template Extraction 51:13

Table 2. Comparison of LeJit variants. # Tmpl. is the number of templates, # Gen. is the number of generated

programs, # Fail. is the number of failures. All the numbers are averages.

Tmpl. # Gen. # Fail.
Avg.

Bugs

Coverage (%)

C1 C2 HotSpot

LeJit𝑡 10,714 90,916 66 3.3 83.8 79.0 49.5

LeJitNoTmpl 14,854 14,854 24 0.7 83.6 78.4 47.9

LeJit𝑝 11,921 99,644 129 5.3 84.4 79.6 50.0

LeJitNoPool 10,185 89,977 56 4.0 84.0 78.7 49.2

We design the variant LeJitNoPool, which extracts a template for every method in a given project.
The only difference (compared to LeJit𝑝) is that LeJitNoPool does not collect the object pool, when
extracting templates, but it rather searches for public constructors, or static methods without
parameters or with only primitive parameters, or null to construct reference arguments. LeJitNoPool
is a superset of the original template extraction technique presented in JAttack [51]; LeJitNoPool
supports more types of holes and more entry methods than JAttack. LeJitNoPool shares the same
generation and testing phases with LeJit𝑝 .

LeJitp

LeJitNoPool

LeJitNoTmplLeJitt

2

1

1

5

1

Fig. 5. The overlap of bugs de-

tected by LeJit variants. LeJitNoTmpl:

no templates/generated programs;

LeJit𝑡 : LeJit with Test-based ap-

proach; LeJit𝑝 : LeJit with Pool-

based approach; LeJitNoPool: en-

hanced JAttack.

Table 2 compares the numbers of generated programs, failures,
and unique bugs reported. Note that all the numbers in the table
represent averages from three runs. The various LeJit variants
exhibit differences in their running times. Specifically, the slow-
est variant (LeJit𝑝) required around six days for a single run,
on average. The first two rows compare LeJit𝑡 and LeJitNoTmpl.
LeJit𝑡 executes much more programs than LeJitNoTmpl, since
LeJitNoTmpl does not extract templates to generate programs.
LeJit𝑡 also slightly increases code coverage in C1 and C2 (sepa-
rate optimizing compilers within HotSpot), as well as in the
entire HotSpot. However, it was interesting to observe that
LeJitNoTmpl can even find an average of 0.7 bugs per run. As
seen from the second two rows, LeJit𝑝 and LeJitNoPool execute
a comparable number of programs and both find a few bugs.
LeJit𝑝 achieves both higher coverage and higher number of
bugs on average.

Figure 5 shows all the bugs we found from the variants and the
overlap of different variants. We do not include two bugs found

in our preliminary experiments and three bugs found during experimenting with various template
types (Section 4.5). We can see that both automated generation of instances and template extraction
contribute to detecting the bugs. LeJit𝑡 and LeJit𝑝 together miss two bugs that LeJitNoTmpl and
LeJitNoPool find. Interestingly, LeJitNoTmpl without any template or holes finds two bugs, which
shows the effectiveness of traditional automated test generation even for domain that is not
originally targeted.

4.3 Comparison with State-of-the-art

We compare LeJit with JITfuzz [44] (version 3dc8f91), a state-of-the-art technique for automated
Java JIT testing. Additionally, we compare LeJit with JavaTailor [53] (version bf9421f), a history-
driven test program synthesis for testing JVMs. Although JavaTailor does not target JIT per se, it is
worth learning about the relation and potential overlap between LeJit and JavaTailor.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

51:14 Zhiqiang Zang, Fu-Yao Yu, Aditya Thimmaiah, August Shi, and Milos Gligoric

Table 3. Comparison of JITfuzz and LeJit. *The bug was already found before using JITfuzz so we did not

report it again.

Programs # Fail. # Bugs

Coverage (%)

C1 C2 HotSpot

Func. Line Func. Line Func. Line

JITfuzz 45,352 2,115 *1 70.8 69.7 67.2 64.3 36.6 44.6

LeJit𝑡 96,626 97 0 78.9 77.7 74.6 72.5 39.4 48.0

JITfuzz vs. LeJit. To compare against JITfuzz, for a given project, we need to provide JITfuzz an
initial class as the seed, as well as a test class as a starting point to execute the mutated programs
from those seeds. Following the same methodology as in the previous work [44], we first identify
ten classes in the given project with the highest cyclomatic complexity, and we pick the initial
class randomly from these ten classes. Since the original work did not mention how the test class
should be selected, we randomly pick a test class that imports and instantiates the initial class.
To ensure a fair comparison, we run JITfuzz with the same ten projects (Section 4.1). During our
preliminary experiment, we found that JITfuzz does not support tests using JUnit 5 [42], so we
manually migrated the picked test classes to JUnit 4 [22] in five projects (other projects already
used JUnit 4).
We use LeJit𝑡 , i.e., with the test-based approach, in order to better control end-to-end running

time by specifying the number of generated tests. (The pool-based approach uses all the available
methods in the projects, which makes it hard to estimate the time needed.) We run both tools for
the same length of time, around six days, which is longer than used in the JITfuzz evaluation [44]
and in recommended practice [23], while also matching the end-to-end running time of LeJit𝑡 .
We use the same timeout, 50 seconds, which is the default setting of JITfuzz, for executing each
single generated program. JITfuzz requires custom debug builds of OpenJDK with AFL++ toolchain
to work, because it needs to collect runtime coverage of JIT source code [44]. Thus, we build
OpenJDK jdk-17.0.6+10 from source [31] with –enable-debug and –enable-native-coverage and
use the debug build as JIT under test. Note that LeJit works on both debug and release builds.
We use a debug build for fair comparison (we already ran LeJit on multiple released binaries in
Section 4.2). Also, JITfuzz does not use differential testing but detects only crashes, so we do not
use OpenJ9 and GraalVM for LeJit for a fair comparison; instead we use only default level and
level 1 of HotSpot from the custom debug build of OpenJDK for differential testing required by
LeJit. We collect code coverage of C1 (src/hotspot/share/c1/*), C2 (src/hotspot/share/opto/*),
and the entire HotSpot (src/hotspot/*).
Table 3 compares the results from both tools. Note that all the numbers in the table represent

averages from three runs. JITfuzz reports 2,115 failures out of 45,352 programs that have been
generated and executed. On the other hand, LeJit executes 96,626 programs and reports 97 failures.
We then analyze and inspect the failures from both tools. Both tools do not detect new bugs. All
the 2,115 failures reported by JITfuzz are assertion failures (which are checked on debug builds
only). We group the assertion failures by stack traces and error lines in source code within HotSpot,
and there are only two unique failures. Both are duplicates of an existing bug JDK-8280126 [29] on
optimizing irreducible loops. We do not find any bug from LeJit’s failures. We believe the reason for
this finding is that we collect code coverage on the fly for the debug build, which impacts the way
JIT optimizes generated programs. LeJit detects a number of HotSpot bugs in other experiments
we perform using non-debug builds (Section 4.2). LeJit increases line coverage of C1 by 8.0%, C2
by 8.2%, and HotSpot by 3.4% compared to JITfuzz.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

Java JIT Testing with Template Extraction 51:15

Table 4. Number of cases of each group reported from JavaTailor.

Group NoRep. NonDet. DiffText VerifyError DiffException NoException Misc.

Number 5 18 39 2 24 7 7

JavaTailor vs. LeJit. JavaTailor [53] performs history-driven test program synthesis to test JVM
implementations. More precisely, JavaTailor uses previously reported bugs as seeds to synthesize
diverse test programs by combining ingredients from historical bug-revealing programs. JavaTailor
was shown efficient for testing JVM implementations and here we explore if it can also discover
JIT-related bugs.

We ran JavaTailor three times in the default configuration until completion (∼8h each run). We
inspected the three runs in detail and concluded that findings are similar across runs, thus no
further runs were warranted. We used two versions of Java, as JavaTailor also performs differential
testing: IBM Semeru 17.0.6.0 (OpenJ9 default level) and a custom build of OpenJDK jdk-17.0.6+10
(HotSpot default level) like in the previous section. We pick these two versions because HotSpot
and OpenJ9 were used by JavaTailor’s authors in their evaluation, and we use the custom build of
OpenJDK because we need to collect code coverage of JIT compilers and compare with LeJit.
As a result of each run, JavaTailor outputs a diff log. We could not find any existing scripts for

processing the diff logs, so we wrote our own to help us classify failures and perform inspection.
Additionally, we wrote scripts to help us try to reproduce each of the reported failures.

JavaTailor reported 102 differences in the diff log (and each diff corresponds to one class file
that is executed with two JVMs and produces different results). We semi-automatically classified
the reported cases into 7 groups. Table 4 shows number of cases of each group. NoRep. includes
cases that show no differences when we tried to reproduce the difference. NonDet. includes cases
that non-deterministically pass or fail (e.g., due to elapsed time being in the output) and are not
revealing any bug. DiffText includes cases that are only reported with different text across JVMs,
but the reported issue is actually the same. VerifyError includes cases when bytecode verification
failed in both JVMs, but the messages were different. DiffException includes cases when exceptions
are printed in a different order across JVMs. NoException includes cases when only one of the
JVMs throws an exception, but our further inspection showed that these cases were caused by flags
that have different default values across JVMs. Misc. includes single instance failures that do not fit
into any other group we defined; we found one bug in this group, but the same bug was previously
reported [13].

Regarding code coverage, LeJit increases code coverage of C1 by 3.3%, C2 by 4.0%, and the entire
HotSpot by 0.4%, compared to JavaTailor.
In conclusion, JavaTailor can discover JVM bugs, but none were related to JIT. We also found

that the default reporting has many false positives. We find LeJit and JavaTailor complementary,
and each could potentially benefit from the other; we leave the combination of the two for future
work.

4.4 Impact of Holes in Various Language Features on LeJit’s Bug Detection

In order to understand how holes in different language features contribute to bug detection of LeJit,
we perform in-depth analysis on the features within extracted templates and generated programs.

We analyze three language constructs, i.e., arrays, conditional statements, and loops, and one
other language feature, i.e., reference arguments. If a filled hole is inside a language construct (e.g.,
a hole is inside a loop), then we say the generated program that contains the filled hole has the
language construct, and we also say the associated template from which the generated program
is generated has the language construct. Similarly, we also measure how many templates and

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

51:16 Zhiqiang Zang, Fu-Yao Yu, Aditya Thimmaiah, August Shi, and Milos Gligoric

Table 5. Number of templates and programs with different language features. Cond. is Conditional Statements.

R.A. is Reference Arguments.

Project
Template # Generated Programs

Total Arrays Cond. Loops R.A. Total Arrays Cond. Loops R.A.

codec 11,098 2,476 2,719 4,102 10,414 43,147 19,760 23,244 23,474 39,529

compress 8,269 1,036 4,133 1,818 7,794 62,431 7,585 35,774 15,713 58,578

jfreechart 11,041 215 2,073 554 10,656 61,883 1,894 13,294 4,117 59,587

lang 18,602 3,491 9,156 6,050 16,136 117,061 28,995 78,002 53,117 100,349

math 20,692 3,964 10,116 5,311 18,097 153,912 33,044 84,054 43,810 139,857

numbers 18,021 826 6,473 2,449 1,971 98,218 8,260 63,496 15,599 9,322

statistics 10,010 11 4,396 159 9,188 44,181 37 34,634 810 38,622

text 11,532 2,423 5,105 3,506 10,752 66,395 18,975 46,965 31,068 61,473

vectorz 23,005 6,031 11,277 6,904 21,718 175,814 49,594 94,726 58,759 165,803

zxing 10,925 1,660 3,767 2,375 10,145 63,136 13,440 30,993 19,417 57,703
∑

143,195 22,133 59,215 33,228 116,871 886,178 181,584 505,182 265,884 730,823

Table 6. Impact of Java language features on bugs. Cond. is Conditional Statements. R.A. is Reference

Arguments. *Bugs may repeat across projects, and we show the number of unique bugs across all projects.

Project
Failures due to Bugs # Bugs (Unique)

Total Arrays Cond. Loops R.A. Total Arrays Cond. Loops R.A.

codec 5 1 3 1 5 3 1 2 1 3

compress 6 1 5 1 6 2 1 1 1 2

jfreechart 0 0 0 0 0 0 0 0 0 0

lang 24 6 18 14 23 2 1 2 2 2

math 21 11 19 10 13 6 4 6 4 4

numbers 0 0 0 0 0 0 0 0 0 0

statistics 1 0 0 0 0 1 0 0 0 0

text 2 1 2 2 2 2 1 2 2 2

vectorz 107 42 95 91 93 5 3 5 5 5

zxing 8 8 2 8 0 1 1 1 1 0
∑

174 70 144 127 142 10* 7* 8* 8* 9*

generated programs use an entry method that needs an argument of non-primitive (reference) type,
which means the arguments are obtained by generated tests. We say such templates and generated
programs have reference arguments. Table 5 shows the numbers of templates and generated
programs that use the four language features. We can see that a substantial number of templates
and programs need non-primitive arguments.
Similarly, we say a bug has a language feature if any generated program that exposes the bug

(i.e., failure due to bug) has the language feature. Note that we do not claim that the presence of
a feature implies that the bug is related to the feature or the feature is the root cause of the bug.
Table 6 shows the numbers of failures due to bugs and unique bugs that use various language
features. In conclusion, LeJit well explores the four language features and holes in each of these
features contribute to the unique bugs discovered.

4.5 Impact of Template Types on LeJit’s Bug Detection

To explore how different types of templates affect LeJit’s bug detection, we extract different sets of
templates from the same ten projects (Section 4.1). We modified the template extraction algorithm
(Figure 4) so that each extracted set of templates contains a single set of specific types of holes out
of (1) <𝜏>Id, (2) <𝜏>Val, (3) arithmetic() and shift(), (4) <𝜏>relation and <𝜏>logic. We also extract

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

Java JIT Testing with Template Extraction 51:17

Table 7. Results when using a specific set of types of holes.

<𝜏>Id() <𝜏>Val()
arithmetic()

& shift()

relation()

& logic()
All

#Templates 13,090 12,139 13,606 13,682 12,061

#Programs 105,759 87,230 59,917 64,906 102,670

#Failures 106 29 39 70 131

#Bugs 3 1 3 4 4

Table 8. Detected bugs in HotSpot, OpenJ9 and GraalVM using LeJit; 11 bugs were previously unknown.

JVM Bug ID Type JDK Versions Status CVE Duplicates

GraalVM GR-45498 Diff 17, 20 Fixed - -

HotSpot

JDK-8301663 Diff 18, 19, 19.0.2 Fixed - JDK-8288064

JDK-8303946 Diff 8, 11, 17, 19, 20, 21 Confirmed - -

JDK-8304336 Diff 17, 19, 20, 21 Fixed CVE-2023-22044 -

JDK-8305946 Crash 17, 19, 20, 21 Fixed CVE-2023-22045 -

JDK-8325216 Crash 17, 18, 19, 20, 21 Fixed - JDK-8319793

OpenJ9

17066 Crash 8, 11, 17, 18 Fixed - -

17129 Diff 8, 11, 17, 18 Fixed - -

17139 Diff 8, 11, 17, 18 Fixed - -

17171 Crash 11, 17, 18 Fixed - -

17212 Crash 8, 11, 17, 18 Fixed - 15363

17249 Diff 8, 11, 17, 18 Fixed - -

17250 Diff 17, 18 Fixed - -

18802 Crash 8, 11, 17, 21 Fixed - 17045

18803 Crash 11, 17, 21 Fixed - -

a set of templates with all types of holes, which is the default setting. Other than the extraction
phase, we use the same methodology and configuration as described in Section 4.1 to run LeJitwith
the five sets of templates. Table 7 shows the numbers of templates, generated programs, reported
failures and bugs from all five sets of templates. The set of templates with all types of holes reports
the most number of bugs. Out of the other four sets of templates with only a single set of holes,
the relation() and logic() holes reports the most number of bugs, but even the simplest set of
holes, i.e., constant replacement (<𝜏>Val), plays an important role. Furthermore, we discovered
three additional JIT bugs using these various sets of templates.

4.6 Detected Bugs

Table 8 lists the bugs that LeJit detected. So far, we have discovered and reported 15 bugs, 11 of
which are previously unknown, including two CVEs. We show (in Figure 6) and describe four bugs
that encompass a variety of JIT issues.

Arithmetic mis-compilation. A mis-compilation occurred when the OpenJ9 JIT performed a
modular operation with parameter passing (Figure 6a). We discovered the bug using a template
created from math [39]. The issue lies in an incorrect reuse of a register whose value changes after
a floating-point remainder operation.

Incorrect elimination of range checks. From a template extracted frommath [38], we discovered
a HotSpot JIT mis-compilation bug where the range check for array accesses was incorrectly
eliminated, which missed throwing exceptions and produced incorrect results (Figure 6b). Upon
reporting the bug, Oracle developers promptly confirmed the issue. They classified the bug as a
CVE and rolled out the fix in the next Critical Patch Update.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

51:18 Zhiqiang Zang, Fu-Yao Yu, Aditya Thimmaiah, August Shi, and Milos Gligoric

1 public class C {

2 double q0, q1, q2, q3;

3 C(double a0, double a1, double a2, double a3) {

4 q0 = a3; q1 = a1; q2 = 0; q3 = 0; }

5 static double m(double d) {

6 C c = new C(0, 1.0, 0, d % d);

7 return c.q1; }

8 public static void main(String[] args) {

9 double sum = 0;

10 for (int i = 0; i < 100_000; ++i) {

11 // m(1.0) expected to be 1.0 returns 0.0

12 sum += m(1.0); }

13 // expected 100000.0

14 System.out.println(sum); } }

(a) Arithmetic mis-compilation.

1 public class C {

2 static void m(int n) {

3 int[] a = new int[n];

4 for (int i = 0; i < 1; i++) {

5 int x = a[i % -1]; } }

6 public static void main(String[] args) {

7 int count = 0;

8 for (int i = 0; i < 1000; ++i) {

9 try { m(0);

10 } catch (ArrayIndexOutOfBoundsException e) {

11 count += 1; } }

12 System.out.println(count); } } // expect 1000

(b) Incorrect elimination of range checks.

1 public class C {

2 static int m(int len) {

3 int[] arr = new int[8];

4 for (int i = 10000000, j = 0;

5 (boolean) (i >= 1) && j < 100; i--, j++) {

6 // should not enter inner loop.

7 for (int k = 0; len < arr.length; ++k) {

8 int x = 1 / 0; }

9 } return 0; }

10 public static void main(String[] args) {

11 int sum = 0;

12 for (int i = 0; i < 100_000; ++i) {

13 try { m(13);

14 } catch (ArithmeticException e) { sum += 1; }

15 } System.out.println(sum); } } // expected 0

(c) Erroneous loop condition evaluation.

1 static import java.nio.charset.StandardCharsets;

2 public class C {

3 static int m(String s) {

4 byte[] arr = s.getBytes(ISO_8859_1);

5 return arr[2]; }

6 public static void main(String[] args) {

7 long sum = 0;

8 for (int i = 0; i < 10_000_000; ++i) {

9 sum += m("\u8020\000\000\020"); }

10 System.out.println(sum); } } // expected 0

(d) Standard library mis-compilation.

Fig. 6. Examples of minimized programs of detected bugs.

Erroneous loop condition evaluation. Execution of OpenJ9 JIT-compiled code faced a situation
where a loop condition was incorrectly evaluated as true, enabling the loop body to run (Figure 6c).
However, the loop body should never execute, and this correct behavior was observed in non-JIT
executions. LeJit flagged this issue as a bug using a template from codec [36]. IBM developers
confirmed the bug within a day.

Standard library mis-compilation. An incorrect output occurred when using GraalVM JIT
compilation with the String getBytesmethod (Figure 6d). The generated program by LeJit emerged
from a template based off code from codec [37]. The developers confirmed the bug within one day.

Bugs detected with LeJit are presented in an easily digestible manner. Generated programs are
easy to minimize and understand, because LeJit extracts templates from real-world Java programs
and the minimum example programs we submitted are Java source code. Developers were able to
quickly understand our reports and reproduce or further minimize source code as needed. Many
reports were confirmed by the first 48 hours. In contrast, bytecode files generated by some tools
require substantial effort to understand by compiler developers [30].

5 LIMITATIONS AND FUTURE WORK

When we compared LeJit with JITfuzz, we used only the test-based approach, and we were unable
to successfully run another tool: JOpFuzzer [20]. Also, when we evaluated LeJit variants, we did
not attempt to match end-to-end duration of LeJitNoTmpl, or LeJitNoPool, and end-to-end duration of

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

Java JIT Testing with Template Extraction 51:19

LeJit𝑡 , or LeJit𝑝 . The randomness could impact the experiment results, so we run each experiment
three times, as we already described.

Our current implementation of the LeJit test-based approach collects arguments to templates by
extending one tool for test generation. The same methodology can also work for manually-written
tests or other tools [14], which we plan to explore in the future. Also, it will be easy to migrate
LeJit to test other software systems that also take Java programs as input, such as refactoring tools.

LeJit has enhanced JAttack to support non-primitive static fields in templates by re-initializing
the template class, but LeJit is limited on re-initializing other classes in dependencies. While
JAttack’s exception handling has been enhanced to handle exceptions thrown from class loading
and initializing, LeJit does not handle errors directly thrown from JVM in the generation and
testing phase, e.g., StackOverflowError, OutOfMemoryError, etc. These shortcomings sometimes left
unfilled holes that were supposed to be filled, leading to false positives in the testing phase. We
will further explore re-initializing all classes in dependencies and better handling of JVM errors.

Ethical considerations. To avoid łspammingž open-source community, we submit a bug report
only when we can reproduce the bug on the latest release of the affected JDKs. We also tried our
best to detect duplicates and minimize the programs that reproduce the bugs.

6 RELATED WORK

We describe closely related work on compiler testing [6] using grammar-based, mutation-based
and template-based approaches, and test input generation in general.

Grammar-based. These tools use the grammar production rules of the language to generate test
programs. Csmith [46], Orange [27] and YARPGen [25] are grammar-based tools for generating
C/C++ test programs. Lava [35] uses grammar production rules to generate Java bytecode test
programs for testing the JVM. Java* Fuzzer [1] is a grammar-based tool that generates random
Java programs for testing JIT compilers. Yoshikawa et al. [50] proposed an approach for generating
test programs following grammar for testing Java JIT compilers. Unlike all these techniques, LeJit
generates Java programs by utilizing the structures of real-world Java programs and explores
possibilities of expressions by inserting and refilling holes.

Mutation-based. A tool that implements a mutation-based approach generates new test programs
by mutating existing programs, with several techniques and tools specifically for Java [5, 7, 8,
15, 43, 53]. Classfuzz [8] and Classming [7] are coverage-guided fuzzers that mutate seeds by
modifying their syntactic structures and control/data flows. VECT [15] improves JavaTailor [53] via
grouping by code vectorization code ingredients, which are collected from history bug-revealing
programs in OpenJDK tests, to insert into seed programs. JOpFuzzer [20] uses JIT optimization
options as a new dimension for test input in conjunction with profile data of JIT compilers for
guiding the fuzzing process. It relies on Java* Fuzzer to generate seed programs. ComFuzz [49]
is a recent compiler fuzzing framework that leverages existing test cases that have generated
compiler bugs and deep learning to learn language features that are more likely to generate such
bugs. SJFuzz [45] is a JVM fuzzer that aims to address the lack of guidance in fuzzing due to
the absence of well-designed seeds and mutator scheduling. It aims to automate the process of
JVM differential testing via mutating class files using control flow mutators to identify inter-JVM
discrepancies. Artemis [24] explores various JIT compilation traces as differential testing, via
diverse combinations of optimized/de-optimized method invocations. Although LeJit is similar
in nature to concepts in mutation testing [12], via extracting templates and then using them to
generate concrete programs, LeJit has several differences. (1) Mutation testing uses a predefined
set of mutation operators. However, each hole in a template has its own set of values (and the set
can be dynamically determined; see the next point). (2) LeJit fills holes dynamically (rather than

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

51:20 Zhiqiang Zang, Fu-Yao Yu, Aditya Thimmaiah, August Shi, and Milos Gligoric

statically), which brings unique advantages: (a) uses meaningful variables to fill holes; (b) allows
hole construction with runtime information, e.g. length of array; (c) allows LeJit to establish which
holes are in dead code and, in the generation phase, focus on exploring the reachable holes. (3) LeJit
can fill multiple holes simultaneously, which is more similar to higher-order mutation [21], during
the execution of the template. (4) LeJit introduces an approach for obtaining objects necessary for
running templates.

Template-based. Ching andKatz [9] use templates constructed from existing code bases to generate
concrete programs for testing the APL-to-C compiler COMPC. Zhang et al. [52] statically mutate
int variable occurrences in existing programs for testing C/C++ compilers. The original JAttack
work presented an automated template extraction technique [51]. LeJit’s pool-based extraction
is similar to this previous approach, but contains several key differences. (1) JAttack converts
expressions with limited types, i.e., boolean, int, double, and skips expressions in constructors,
while LeJit converts all expressions to all holes supported; (2) JAttack converts only static methods
while LeJit can convert any method into a template; (3) JAttack searches in all classes of the
project for a public constructor or static method, with no parameter or only primitive parameters,
to create reference argument for the template, and uses null if it cannot find such a constructor or
static method. In contrast, LeJit uses test generation to generate method sequences that create
desired objects.

Test input generation. JUnit tests can be automatically generated using Randoop [33] and Evo-
Suite [14] for a given set of classes under test. In theory, the tests generated from such tools can be
directly used to test Java JIT, and we implemented such a prototype using Randoop and evaluated
its bug-discovery effectiveness within our evaluation of LeJit (see Section 4.2). Popularized by
QuickCheck [10], another approach is to allow developers to write generators from which valid
test inputs can be obtained. Several approaches [3, 4, 11, 17] use the generators to exhaustively
enumerate all possible paths through the generators up to a given bound. Theoretically, these tools
can be used to test Java JIT as well, but they would require developers to manually write generators
for Java programs that include various language features; writing those generators manually can
be a tedious process. In contrast, LeJit allows generating programs by concretizing templates
extracted from open-source projects without developer intervention.

7 CONCLUSION

We presented a framework, LeJit, which enables fully automated end-to-end template-based testing
of JIT compilers. LeJit can create a template from any Java method, and it automatically inserts
holes and generates necessary arguments for the template. To obtain instances of complex types
needed for extracted templates, LeJit uses novel techniques built on automated test generation.
We have extensively evaluated LeJit by generating 90,916 programs and discovered 15 bugs in
three popular and widely used compilers. Our findings show the power of automating template
extraction via LeJit and the power of scaling experiments without humans in the loop, as well as
complementary power compared to the state-of-the-art tools for JIT and JVM testing techniques. We
believe that LeJit should become an integral part of continuous testing for any Java JIT compiler.

ACKNOWLEDGMENTS

We thank Nader Al Awar, Yu Liu, Pengyu Nie, Jiyang Zhang, and the anonymous reviewers for their
comments and feedback. This work is partially supported by a Google Faculty Research Award,
a grant from the Army Research Office, and the US National Science Foundation under Grant
Nos. CCF-2107291, CCF-2217696, CCF-2313027.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

Java JIT Testing with Template Extraction 51:21

REFERENCES

[1] Azul Systems, Inc. 2018. AzulSystems/JavaFuzzer: Java* Fuzzer for Android*. https://github.com/AzulSystems/

JavaFuzzer.

[2] Jonathan Bell and Gail Kaiser. 2014. Unit Test Virtualization with VMVM. In International Conference on Software

Engineering. ACM, 550ś561. https://doi.org/10.1145/2568225.2568248

[3] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat: Automated Testing Based on Java

Predicates. In International Symposium on Software Testing and Analysis. ACM, 123ś133. https://doi.org/10.1145/

566171.566191

[4] Ahmet Celik, Sreepathi Pai, Sarfraz Khurshid, and Milos Gligoric. 2017. Bounded Exhaustive Test-Input Generation

on GPUs. In International Conference on Object-Oriented Programming, Systems, Languages, and Applications. ACM,

94:1ś94:25. https://doi.org/10.1145/3133918

[5] Stefanos Chaliasos, Thodoris Sotiropoulos, Diomidis Spinellis, Arthur Gervais, Benjamin Livshits, and Dimitris

Mitropoulos. 2022. Finding Typing Compiler Bugs. In Programming Language Design and Implementation. ACM,

183ś198. https://doi.org/10.1145/3519939.3523427

[6] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and Lu Zhang. 2020. A Survey of

Compiler Testing. Comput. Surveys 53, 1 (2020), 4:1ś4:36. https://doi.org/10.1145/3363562

[7] Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep Differential Testing of JVM Implementations. In International

Conference on Software Engineering. IEEE, 1257ś1268. https://doi.org/10.1109/ICSE.2019.00127

[8] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016. Coverage-Directed Differential Testing

of JVM Implementations. In Programming Language Design and Implementation. ACM, 85ś99. https://doi.org/10.1145/

2908080.2908095

[9] Wai-Mee Ching and Alex Katz. 1993. The Testing of an APL Compiler. In International Conference on APL. ACM, 55ś62.

https://doi.org/10.1145/166197.166205

[10] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. In

International Conference on Functional Programming. ACM, 268ś279. https://doi.org/10.1145/351240.351266

[11] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. 2007. Automated Testing of Refactoring Engines. In Joint

Meeting of the European Software Engineering Conference and the Symposium on the Foundations of Software Engineering.

ACM, 185ś194. https://doi.org/10.1145/1287624.1287651

[12] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. 1978. Hints on Test Data Selection: Help for the Practicing Programmer.

Computer 11, 4 (1978), 34ś41. https://doi.org/10.1109/C-M.1978.218136

[13] Eclipse Foundation, Inc. 2024. The order of super interface initialization in J9 is strange - Issue #13242 - eclipse-openj9/openj9.

https://github.com/eclipse-openj9/openj9/issues/13242.

[14] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Generation for Object-Oriented Software.

In Joint Meeting of the European Software Engineering Conference and the Symposium on the Foundations of Software

Engineering. ACM, 416ś419. https://doi.org/10.1145/2025113.2025179

[15] Tianchang Gao, Junjie Chen, Yingquan Zhao, Yuqun Zhang, and Lingming Zhang. 2023. Vectorizing Program

Ingredients for Better JVM Testing. In International Symposium on Software Testing and Analysis. ACM, 526ś537.

https://doi.org/10.1145/3597926.3598075

[16] GitHub, Inc. 2023. GitHub. https://github.com.

[17] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kuncak, and Darko Marinov. 2010. Test

Generation through Programming in UDITA. In International Conference on Software Engineering. ACM, 225ś234.

https://doi.org/10.1145/1806799.1806835

[18] James Gosling and Greg Bollella. 2000. The Real-Time Specification for Java. Addison-Wesley.

[19] JavaParser.org. 2024. JavaParser - Home. https://javaparser.org.

[20] Haoxiang Jia, Ming Wen, Zifan Xie, Xiaochen Guo, Rongxin Wu, Maolin Sun, Kang Chen, and Hai Jin. 2023. Detect-

ing JVM JIT Compiler Bugs via Exploring Two-Dimensional Input Spaces. In International Conference on Software

Engineering. IEEE, 43ś55. https://doi.org/10.1109/ICSE48619.2023.00016

[21] Yue Jia and Mark Harman. 2008. Constructing Subtle Faults Using Higher Order Mutation Testing. In IEEE International

Working Conference on Source Code Analysis and Manipulation. IEEE, 249ś258. https://doi.org/10.1109/SCAM.2008.36

[22] JUnit. 2022. JUnit - About. https://junit.org/junit4/.

[23] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018. Evaluating Fuzz Testing. In Conference

on Computer and Communications Security. ACM, 2123ś2138. https://doi.org/10.1145/3243734.3243804

[24] Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su. 2023. Validating JIT Compilers via Compilation Space Exploration.

In Symposium on Operating Systems Principles. ACM, 66ś79. https://doi.org/10.1145/3600006.3613140

[25] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random Testing for C and C++ Compilers with YARPGen.

In International Conference on Object-Oriented Programming, Systems, Languages, and Applications. ACM, 196:1ś196:25.

https://doi.org/10.1145/3428264

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

51:22 Zhiqiang Zang, Fu-Yao Yu, Aditya Thimmaiah, August Shi, and Milos Gligoric

[26] William M McKeeman. 1998. Differential Testing for Software. Digital Technical Journal 10, 1 (1998), 100ś107.

https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf.

[27] Kazuhiro Nakamura and Nagisa Ishiura. 2016. Random Testing of C Compilers Based on Test Program Generation by

Equivalence Transformation. In Asia Pacific Conference on Circuits and Systems. IEEE, 676ś679. https://doi.org/10.

1109/APCCAS.2016.7804063

[28] Oracle Corporation and/or its affiliates. 2021. The Java HotSpot Performance Engine Architecture. https://www.oracle.

com/java/technologies/whitepaper.html.

[29] Oracle Corporation and/or its affiliates. 2023. [JDK-8280126] C2: detect and remove dead irreducible loops - Java Bug

System. https://bugs.openjdk.java.net/browse/JDK-8280126.

[30] Oracle Corporation and/or its affiliates. 2023. [JDK-8280126] C2: detect and remove dead irreducible loops - Java Bug

System. https://bugs.openjdk.org/browse/JDK-8280126?focusedCommentId=14476253&page=com.atlassian.jira.plugin.

system.issuetabpanels%3Acomment-tabpanel#comment-14476253.

[31] Oracle Corporation and/or its affiliates. 2023. openjdk/jdk: JDK main-line development. https://github.com/openjdk/jdk.

[32] OW2. 2024. ASM. https://asm.ow2.io.

[33] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007. Feedback-Directed Random Test

Generation. In International Conference on Software Engineering. IEEE, 75ś84. https://doi.org/10.1109/ICSE.2007.37

[34] Priya Khaira-Hanks. 2023. What is a Java Uber-JAR and Why Is It Useful? https://blog.payara.fish/what-is-a-java-

uber-jar.

[35] Emin Gün Sirer and Brian N. Bershad. 2000. Using Production Grammars in Software Testing. In Conference on

Domain-Specific Languages. ACM, 1ś13. https://doi.org/10.1145/331960.331965

[36] The Apache Software Foundation. 2023. commons-codec/BinaryCodec.java. https://github.com/apache/commons-

codec/blob/4de60e/src/main/java/org/apache/commons/codec/binary/BinaryCodec.java.

[37] The Apache Software Foundation. 2023. commons-codec/StringUtils.java. https://github.com/apache/commons-

codec/blob/4de60e/src/main/java/org/apache/commons/codec/binary/StringUtils.java.

[38] The Apache Software Foundation. 2023. commons-math/AdamsNordsieckTransformer.java. https:

//github.com/apache/commons-math/blob/dff1a0/src/main/java/org/apache/commons/math4/ode/nonstiff/

AdamsNordsieckTransformer.java.

[39] The Apache Software Foundation. 2023. commons-math/Quaternion.java. https://github.com/apache/commons-

math/blob/dff1a0/src/main/java/org/apache/commons/math4/complex/Quaternion.java.

[40] The Apache Software Foundation. 2023. commons-text/StrBuilder.java. https://github.com/apache/commons-text/blob/

e62203/src/main/java/org/apache/commons/text/StrBuilder.java.

[41] The Apache Software Foundation. 2023. Maven - Welcome to Apache Maven. https://maven.apache.org/.

[42] The JUnit Team. 2023. JUnit 5. https://junit.org/junit5/.

[43] Vasudev Vikram, Rohan Padhye, and Koushik Sen. 2021. Growing A Test Corpus with Bonsai Fuzzing. In International

Conference on Software Engineering. ACM, 723ś735. https://doi.org/10.1109/ICSE43902.2021.00072

[44] Mingyuan Wu, Minghai Lu, Heming Cui, Junjie Chen, Yuqun Zhang, and Lingming Zhang. 2023. JITfuzz: Coverage-

guided Fuzzing for JVM Just-in-Time Compilers. In International Conference on Software Engineering. IEEE, 56ś68.

https://doi.org/10.1109/ICSE48619.2023.00017

[45] Mingyuan Wu, Yicheng Ouyang, Minghai Lu, Junjie Chen, Yingquan Zhao, Heming Cui, Guowei Yang, and Yuqun

Zhang. 2023. SJFuzz: Seed &Mutator Scheduling for JVM Fuzzing. In Joint Meeting of the European Software Engineering

Conference and the Symposium on the Foundations of Software Engineering. ACM, 1062ś1074. https://doi.org/10.1145/

3611643.3616277

[46] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding Bugs in C Compilers. In

Programming Language Design and Implementation. ACM, 283ś294. https://doi.org/10.1145/1993316.1993532

[47] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2021. GCC Bug List Found by Random Testing (Total 79).

https://embed.cs.utah.edu/csmith/gcc-bugs.html.

[48] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2021. LLVM Bug List Found by Random Testing (Total 203).

https://embed.cs.utah.edu/csmith/llvm-bugs.html.

[49] Guixin Ye, Tianmin Hu, Zhanyong Tang, Zhenye Fan, Shin Tan, Hwei, Bo Zhang, Wenxiang Qian, and Wang Zheng.

2023. A Generative and Mutational Approach for Synthesizing Bug-exposing Test Cases to Guide Compiler Fuzzing.

In Joint Meeting of the European Software Engineering Conference and the Symposium on the Foundations of Software

Engineering. ACM, 1127ś1139. https://doi.org/10.1145/3611643.3616332

[50] Takahide Yoshikawa, Kouya Shimura, and Toshihiro Ozawa. 2003. Random Program Generator for Java JIT Compiler

Test System. In International Conference on Quality Software. IEEE, 20ś23. https://doi.org/10.1109/QSIC.2003.1319081

[51] Zhiqiang Zang, Nathaniel Wiatrek, Milos Gligoric, and August Shi. 2022. Compiler Testing using Template Java

Programs. In International Conference on Automated Software Engineering. ACM, 23:1ś23:13. https://doi.org/10.1145/

3551349.3556958

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

Java JIT Testing with Template Extraction 51:23

[52] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal Program Enumeration for Rigorous Compiler Testing.

In Programming Language Design and Implementation. ACM, 347ś361. https://doi.org/10.1145/3140587.3062379

[53] Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun Zhang, and Lingming Zhang. 2022.

History-Driven Test Program Synthesis for JVM Testing. In International Conference on Software Engineering. ACM,

1133ś1144. https://doi.org/10.1145/3510003.3510059

Received 2023-09-29; accepted 2024-01-23

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 51. Publication date: July 2024.

	Abstract
	1 Introduction
	2 Example
	3 LeJit Framework
	3.1 Collection
	3.2 Extraction
	3.3 Generation
	3.4 Testing
	3.5 Pruning
	3.6 Implementation

	4 Evaluation
	4.1 Setup
	4.2 Contribution of Major Components
	4.3 Comparison with State-of-the-art
	4.4 Impact of Holes in Various Language Features on LeJit's Bug Detection
	4.5 Impact of Template Types on LeJit's Bug Detection
	4.6 Detected Bugs

	5 Limitations and Future Work
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

