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e The proposed framework is a transformer-based model to predict drug responses using RNAseq gene expression profile,
drug descriptors and drug fingerprints.

e ITNR utilizes a Context-Aware-Transformer architecture as its scoring function that ensures the modeling of inter-item
dependencies.

e We introduced a novel loss function using the concept of Inversion and Approximate Permutation matrices.

e Our computational results indicated that our method leads to substantially improved performance when compared to the
baseline methods across all performance metrics, which can lead to selecting highly effective personalized treatment.
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Personalized drug response prediction is an approach for tailoring effective therapeutic strategies for
patients based on their tumors’ genomic characterization. While machine learning methods are widely
employed in the literature, they often struggle to capture drug-cell line relations across various cell
lines. In addressing this challenge, our study introduces a novel listwise Learning-to-Rank (LTR)
model named Inversion Transformer-based Neural Ranking (ITNR). ITNR utilizes genomic features
and a transformer architecture to decipher functional relationships and construct models that can

predict patient-specific drug responses. Our experiments were conducted on three major drug response
data sets, showing that ITNR reliably and consistently outperforms state-of-the-art LTR models.

1. Introduction

Conventional Machine Learning (ML) algorithms are
generally designed to minimize regression or classification
errors [1, 2]. Many real-world applications, on the other
hand, deemphasize prediction accuracy and prioritize the
correct ordering among all the instances [3, 4]. The aim of
Learning-to-rank (LTR) methods is to apply ML techniques
to solve ranking problems and predict the optimal ordering
among the instances according to their degrees of relevance,
importance, or preference as defined in the specific applica-
tion.

Ranking plays a central role in a wide variety of appli-
cations, including document retrieval, online advertisement,
drug discovery, machine translation, feature selection, docu-
ment summarization, definition search, question answering,
and recommendation systems, among others [5, 6]. In these
applications, it is highly desirable to design a model that
places relevant/important items at the top of the ranking
list. In this work, and without loss of generality, we focus
on cancer Drug Response Prediction (DRP) where the
goal is to prescribe an optimal therapeutic option for each
patient based on their cancer’s unique molecular fingerprints
(i.e., the goal of “precision oncology”). Not every patient
responds to medical treatment in the same way. Effective-
ness of a medication is influenced by various factors in-
cluding physiological, pathological, environmental, and ge-
netic factors [7]. Since in-vitro experiments are exceedingly
costly and time-consuming, DRP algorithms could serve as
promising strategies for the accurate prediction of optimal
drug therapies based upon the personalized molecular pro-
files of patient tumors [8].

In the current work, we seek to use an under-explored
approach for drug response prediction problems, namely
transformer models. The application of transformer-based
techniques in LTR signifies the high capability of these

*Corresponding author
4 sotudian@bu. edu (S. Sotudian); yannispebu.edu (.I.Ch. Paschalidis)
ORCID(S):

models in various applications [9]. Equipped with this per-
spective, we make the following contributions. We devel-
oped our LTR framework using a context-aware scoring
function and an inversion-based loss function. Unlike the
majority of LTR models whose scoring functions score items
separately, transformer models (i.e., a popular self-attention-
based neural machine translation architecture) allow for the
modeling of inter-item dependencies. We adopt the Context-
Aware-Transformer [9] which is a special case of the encoder
part of the transformer. Additionally, this architecture takes
into account the inter-dependency of scores between items
in the computation of items’ scores. We also proposed a loss
function using the concept of Inversion and Approximate
Permutation matrices.

The remainder of this paper is organized as follows:
Section 2 describes the related works. Section 3 outlines
our method, presents the data we used, and discusses model
training and performance evaluation. Section 4 presents
our main results and compares our method to alternatives.
Section 5 discusses the results and draws some conclusions.

Notational conventions: We use boldfaced lowercase
letters to denote vectors, ordinary lowercase letters to denote
scalars, boldfaced uppercase letters to denote matrices, and
calligraphic capital letters to denote sets. All vectors are
column vectors. For space saving reasons, we write X to
denote the column vector (xy, ..., Xgim(x))» Where dim(x) is
the dimension of x. We use prime to denote the transpose,
and [N] for the set {1,..., N} for any integer N.

2. Related Works

The confluence of efficient computational tools and a
significant number of samples has ushered in a new gener-
ation of ML models for drug recommendation. The litera-
ture offers a variety of traditional approaches from Support
Vector Machines (SVMs); Principal Component Regres-
sion; Ridge, LASSO, and Elastic Net Regressions; to more
advanced methods such as multiple-output [3], multiple-
kernel [10], and multiple-task learning [11] techniques. As
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for traditional methods, comprehensive comparative stud-
ies [12, 8] demonstrated that Elastic Net or Ridge regression-
based models will most likely yield the most accurate pre-
dictors. On the other hand, deep learning (DL) models have
demonstrated their superiority in capturing the non-linear
and complex relationships of biological data better than
the traditional algorithms [13]. Representative DL-based
algorithms include [14, 15, 9]. For instance, Ahmadian et
al. [16] developed DSAPSO, a recommender system using
deep sparse autoencoder and particle swarm optimization.
It tackles the challenge of applying deep neural networks to
diverse resources and integrates results effectively. DSAPSO
learns latent features from ratings, trust relationships, and
tags, optimizing weights with particle swarm optimization.
Experimental results on two datasets show its superior-
ity over existing recommender algorithms. DHSIRS [17]
is a novel deep hybrid recommender system addressing
the limitations of traditional models. DHSIRS combines
side information and interaction matrix using a multilayer
perceptron neural network, efficiently learning high-order
non-linear relations between users and items. Experimental
results show a 4.18% improvement over the second-best
model, addressing challenges like data sparsity and captur-
ing semantic relationships for more accurate item recom-
mendations. In another study, Yengikand et al. [18] focused
on deep learning-based collaborative filtering methods in
recommendation systems. The objective was to efficiently
map users and items to a common representation space using
techniques such as multilayer perceptron (MLP) and stacked
autoencoder networks. These methods aimed to overcome
the limited expressiveness of the Dot product function in
describing the diverse impacts of latent factors. The pro-
posed recommender system, Deep-MSR, employed MLP
and stacked autoencoder networks to extract latent factors
from the user-item interaction matrix. It enhanced rating
predictions by incorporating different weights to account for
the varying importance of latent factors.

For more information, please refer to [19, 13] and [7] where
a comprehensive analysis of DRP models and other related
topics such as data integration, feature selection, experi-
mental settings, combination therapy, and more have been
provided.

3. Materials and Methods

3.1. Problem Formulation

Data in a drug ranking problem consist of a set of triples
(cell line, drug, drug response score). A cell line-drug pair
is represented by a feature vector. Our ultimate goal is to
select the most effective drugs from a set of drugs based
on their response. We characterize a drug ranking data set
with tuples {(X9, 19‘1)}qu1 where ¢ € [T] indexes cell lines,
and XY and 67 represent the list of cell line-drug pairs and
corresponding drug response scores, respectively. For the g-
th cell line, we have ng drugs. X7 € R"*(Np+Ne) hag rows

(xi’, e xzq), each of which is a (N, + N)-dimensional cell

line-drug vector, formed as the concatenation of an (N)-
dimensional cell line feature vector (i.e., gene expression for
cell lines) and an (N p)-dimensional drug feature vector. The
vector 89 = (67, ... ,HZq) € ]Ri" contains the corresponding
ground-truth drug response scores. The drug response scores
are in [0, 1] and a higher score (in our data) implies a more
effective drug. Our goal is to learn a scoring function f :
RWo+Ne) 5 R from a training data set with given drug
response scores that minimizes the empirical loss:

n

T N
Z Z 4, 1), ¢)

where ¢ R X R — IR is a loss function. For a new
cell line-drug matrix X’ € R"*(Np+Nc) we can obtain the
predicted ranking list by ranking the rows in X’ based on
their inferred ranking scores o = (f (X’l), e f (x;t)). Two
pivotal elements of an LTR framework are a scoring function
and a loss function. In subsequent subsections, we describe
the construction of our LTR framework using a context-
aware scoring function and an inversion-based loss function.

L(f é

3.2. Multi-Headed Self-Attention Scoring
Function

Most algorithms in the DRP literature are trained to
optimize a loss function that may not capture the interactions
among drugs [8]. Moreover, they score them individually
at inference-time without regard to any mutual influences
among the drugs. Given that context-aware models based on
transformers [9] have been successfully used for document
retrieval, we adopt a similar approach of applying a context-
aware ranker for our scoring function. The transformer archi-
tecture proposed by [9] plays the role of the Multi-Headed
Self-Attention (MHSA) scoring function in our LTR frame-
work. The self-attention mechanism of this architecture aims
to handle long-range and inter-item dependencies. Since the
MHSA scoring function scores a drug by considering all
other drugs applicable to a cell line, it fully captures the
interactions among drugs.
We consider the list’s items as our tokens where item fea-
tures are token embeddings. We feed these embeddings to
an Encoder Layer. The attention mechanism is the core
of the encoder layer to catalyze learning the higher-order
representations of items in the list. Mapping query (q;), key
(k;), and value (v;) vectors to a higher level representation
by taking a weighted sum of the values over all items is the
essence of the self-attention mechanism. We use the Scaled
Dot-Product form to compute attention as follows:

Y(Q, K, V) = softmax <?/_dli> V, 2)

m

where Q is a query matrix that contains all items (queries) in
the list; K and V are the key and value matrices, respectively.
To empower the model to leverage the order of the input
tokens, we use fixed positional encodings for the input

ITNR: Inversion Transformer-based Neural Ranking for Cancer Drug Recommendations: Preprint submitted to Elsevier Page 2 of

10



ITNR: Inversion Transformer-based Neural Ranking for Cancer Drug Recommendations

embeddings as follows:
Q,0i) = sin(p/ 10000/dm)y,

i 3)
Q,2i41) = c0s(p/10000%/4n)),

where p refers to the position, and i is the dimension. Here,
Q is a matrix and positional encoding is a system to encode
each position into a vector. For instance, given that the model
uses 256 dimensions for positional encoding (d,, = 256), we
represent each element of the feature vector (i.e., token) as a
256-dimensional vector. In the display above, p is an integer
from O to a pre-defined maximum number of tokens minus
1. Since we have 256 dimensions, we can define 128 pairs
of sine and cosine values. Accordingly, the value of i goes
from O to 127. By ensembling multiple attention modules
(a.k.a Multi-Head Attention (MHA)), we can improve the
ability of the model to learn representations from various
subspaces of the input data. MHA can be expressed as:

MHA(Q, K, V) = Concat(A;, A,, ..., A, )WO,
A; = QWL KWK vywY),

where in the above equations, each head A; (out of r heads)
refers to the i-th attention mechanism of Equation (2), and
we e Réd, WK e RW% WY e R%*%, and
WO e R'Xdn are learnable matrices. Moreover, r refers
to the number of parallel attention layers or heads. Here,
Concat(-) represents a concatenation operation. It is ex-
tremely advantageous to perform the self-attention operation
several times and concatenate the outputs. The main problem
is the growing size of the resulting output vector. This can
be solved by linearly projecting the matrices Q, K, and V
to d,, dy, and d,-dimensional spaces r times, respectively.
Note that we typically use d, = d; = d,, = d,,/r. We refer
the interested reader to [20] for more information.

“

In our transformer model, we use a more complex ar-
chitecture by stacking multiple encoder blocks. The main
components of an encoder block including an MHA layer
with a skip connection, layer normalization, time-distributed
feed-forward layer, and dropout layer can be seen in Figure 1.
For more information regarding these components, please
refer to [20]. Specifically, the encoder part of the Trans-
former includes N encoder blocks, H heads, and hidden
dimension dj,. First, a shared fully connected (FC) input
layer of size dy. is applied to each item. Then, we feed hidden
representations to the encoder part of the transformer. Our
final scoring model can be achieved by iteratively stacking
multiple encoder blocks where the output of each block is
fed into the next one. The final model can be expressed as
follows:

f(x) = p(II; (... My (p(x)))) &)

where p(-) represents a projection onto a fully-connected
layer and II;(-) refers to a single encoder block. We define
a single encoder block II;(-) as:

II;(x) = N(z + D(p(2))),

(6)
z = N(x + D(a(x)))

where a(-) is the MHA module, N(-) refers to the layer
normalisation, and D(:) is the dropout layer. Eventually,
a score for each item is calculated using a shared fully-
connected layer. Figure 1 provides a schematic overview of
our LTR framework.

3.3. Inv-Rank Loss Function

In the previous subsection, we presented the scoring
function of our ranking framework. The architecture of this
model allows the networks to exploit local features. More
importantly, the final score for each item will be calculated
by considering all other items on the list. Now, we can use
the scores and the ground truth labels to optimize any desired
ranking loss.
It has been demonstrated that the sorting operator can be
approximated by the induced permutation matrix, Py, [9].
We use the concept of permutation matrices to define
our proposed loss function. Permutation matrices are both
doubly-stochastic (i.e., a square matrix with entries in [0, 1]
where every row and column sum to one) and unimodal (i.e.,
a square matrix with entries in [0, 1] where each row sums
to one, but also has the constraint that the maximizing entry
in every row should have a unique column index) [21, 9].
Assume A, represents the matrix of absolute pairwise score
differences of s with the i, j-th element given by A([i, j] =
Is; — s;|. Grover et al. [21] proposed a continuous relaxation

of the permutation matrix ﬁson(s) in the space of unimodal

row-stochastic matrices. The i-th row of ﬁwt(s) can be
computed as follows:

A

Pors)lis 11(7) = softmax[((n + 1 —2i)s — A1/7], (7)

where 1 is an all-one vector, # is the number of items in a list,
and 7 behaves like a temperature knob that controls the de-
gree of approximation and the variance of the gradients (i.e.,
lower 7 leads to better approximation and higher variance).
Moreover, softmax is a function that scales the values in the
list and transforms them into values between 0 and 1 such
that all values in the returned list sum to 1 (i.e., they can be
interpreted as probabilities). Essentially, if we left-multiply
a column vector of scores by its f’mr,(s), we can achieve
the approximated sorted list [22]. Note that we perform
Sinkhorn scaling [23] to obtain doubly stochastic permuta-
tion matrices. The Sinkhorn scaling method normalizes all
rows and columns; this process is repeated until convergence
is achieved (i.e., 30 iterations or the greatest gap between
the sum of a row or column and one must be maintained
below 107, whichever occurs first). Assume we use the
MHSA scoring function to calculate scores s? = f(X9) for
the g-th cell line X?. We also have the ground truth labels
07 for the cell line. We define true and predicted Weighted
Approximate Permutation (WAP) matrices using Equation
(7) as:

o Sp= ﬁsor,(sq)qow(eq): predicted WAP matrix induced
by the scores s9,

e Sy = ﬁsort(eq) ® w(67): true WAP matrix induced by
the ground truth labels 67,
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Figure 1: Architecture for the context-aware ranking model. After feeding an item's features into a fully connected layer, we
pass its output through N encoders blocks. The essential elements of an encoder block comprise a Multi-Head Attention (MHA)
layer with a skip connection, layer normalization, a time-distributed feed-forward layer, and a dropout layer. Finally, another

fully-connected layer is used to calculate scores.

where w(@7) = (g(9‘1’), g(Hg), ,g(OZq)) is the drug im-
portance vector, and g(x) = 2¥ — 1 is a famous LTR gain
function. Here, ® indicates the multiplication of columns
of 13Wt(,) by elements of the vector w(:) (i.e., multiply the
first column by the first element, second column by the
second element and so on). The WAP matrix (i.e., Sp and
St) captures the relative position of a drug in a list. Each
column of this matrix refers to a drug and the non-zero
element of a column represents the predicted/true position
of a drug in a ranking list. Note that if the ground truth
labels of multiple drugs in a list are the same, then we have
multiple ideal positions for each of them. Thus, multiple
elements of those columns (i.e., drugs) will be non-zero
which shows the potential predicted/true positions of those
drugs in the list. We use w to force our model to focus on
more sensitive drugs (i.e., it gives higher weights to more
sensitive drugs) rather than insensitive drugs. Consequently,
the model pushes sensitive drugs to the top of the ranking
list.

We use the concept of Inversion to define our loss function.
Inversion can be defined as a pair of elements that are out of
their correct order in a permutation. Let 7 be a permutation.
Ifi < j and 7(i) > =(j) , either the pair of places (i, j) or
the pair of elements (z (i), #(j)) is called an inversion of z.
We define ® to capture inversions in a permutation matrix
as follows:

!

0s%.,6% = (I ® ) ®)

where I = SPS’T - STS’T and B = (1,2,3,...,n,). Precisely,
I measures the deviation between predicted and true WAPs
and penalizes the model for any inversion. The rows of a
WAP matrix represent ranks. There exist various degrees
of inversion. For instance, there is a big difference between
(z(1), #(3)) and (x(1), #(7)). Our model should penalize
(z(1), (7)) more than (z(1), #(3)). To that end, we multiply
the rows of the I matrix by the elements of f. Therefore,
our model places greater emphasis on high inversions. Even-
tually, we define the Inv-Rank loss of all cell lines in our
training data set as follows:

T n, )
LYY oo, ©)

a"q g=1a=1

L(f)=

where @%(s4, 69) is the d-th column of @(s?, 87). Since S pis
differentiable with respect to the elements of s [21], it is easy
to show that the proposed loss function is a differentiable
function of scores. Therefore, the SGD method can be used
to optimize the loss function.

3.4. Data sets and Pre-processing Steps

The current study focused on single-drug response pre-
diction and we designed, trained, and evaluated all models
using the cell line data and drug sensitivity data from the
Predictive Oncology Model & Data Clearinghouse hosted at
the National Cancer Institute [7]. Specifically, we utilized
the Pilot 1 Cancer Drug Response Prediction Dataset [7],
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which is a publicly available dataset representing a commu-
nity effort to establish a benchmark for predicting tumor dose
response across multiple data sources'.

We used three main drug-cell line datasets from the Pilot
1 Cancer Drug Response Prediction Dataset [7], namely the
Cancer Cell Line Encyclopedia (CCLE), the Genomics of
Drug Sensitivity in Cancer (GDSC), and the Genentech Cell
Line Screening Initiative (gCSI) studies. Specifically, Pilot 1
represents a cell line using its RNAseq gene expression pro-
file [24] and employs drug descriptors and drug fingerprints
to characterize a drug. Pilot 1 also includes the Area Under
the drug response Curve (AUC) to quantify drug sensitivity
(i.e., drug response). AUC € [0, 1] can be compared across
studies, and a lower value indicates higher drug sensitivity.
We adjusted drug sensitivities so that a higher value indi-
cates a more effective drug (i.e., one minus AUC). The exis-
tence of low-quality data not only undermines the credibility
and reproducibility of research findings but also impedes the
effectiveness of machine learning algorithms employed in
medical studies [25, 26]. Hence, meticulous preprocessing
steps, including the elimination of incomplete, inconsistent,
noisy, and redundant samples, are imperative for optimizing
the performance of machine learning algorithms employed
in medical research and diagnosis [27]. The details of the
datasets and the preprocessing steps can be found in [7].

To follow the best practice of LTR [6], the continuous
drug responses were converted to graded ones. Accordingly,
we classified drugs into three categories O (i.e., “insensi-
tive”), 1 (i.e., “sensitive”), and 2 (i.e., “highly sensitive”). For
the k-th cell line, let Py and Py, denote the 80-th and 90-th

percentiles of its drug response values {r, rog, ..., 'y i}
respectively. Then, the drug relevance score for the i-th drug,
Fie i =1,..., Np), can be computed as:

2, ifrikngo,
if Pyy < rye < Poo,

0, otherwise.

fikz 1,

We also performed several pre-processing steps to reduce the
training complexity and improve the overall performance.
We standardize the features by subtracting the mean and
scaling to unit variance [28, 29]. Originally, RNAseq gene
expressions are represented by approximately 17,000 fea-
tures. Several studies [30] demonstrated that the LINCS 1000
gene set [31] can outperform or achieve similar performance
compared to any other superset of LINCS1000. Therefore,
we only included LINCS1000 genes in our analysis. More-
over, the data sets include 3838 molecular descriptors and
1024 path fingerprint features to represent a drug.

The datasets contain 3838 molecular descriptors and
1024 path fingerprint features representing drugs. To reduce
the dimensionality of our data, we used a regression model
for feature selection [32]. With drug-cell line vectors and
response values as variables, the model identified important
features based on regression coefficients. We focused on

IThe processed data and preprocessing steps can be accessed at https:
//modac. cancer.gov/assetDetails?dme_data_id=NCI-DME-MSQ1-8088592

1000 cell line features and 4862 drug features, selecting
the top 500 genes and 500 drug features with the highest
coefficient values. This yielded 1000 selected gene-drug
features for our experiments.

3.5. Performance metrics

Two main LTR evaluation metrics, namely NDCG@k
and MRR@k are used to assess the performance of the
models. Let D(s) = 1/log(1 + s) be a discount function,
g(s) = 2% — 1, a monotonically increasing gain function,
and Z, = {(x,»)),...(X,.y,)} a set of items ordered
according to their ground-truth labels, with x; and y; being
an item feature vector and score, respectively. Moreover, let
Z, be a ranked list for Z, according to the y scores. We
define the Discounted Cumulative Gain (DCG) of f{,, as
®(Z,) = X,_ &y, )D(r), where x, is the index of the
item ranked at position r of ZH. The Ideal DCG (IDCG),
ol (Z,) is the DCG score of the ideal ranking result. NDCG
normalizes DCG by the IDCG and can be calculated by
oN(Z,) = ®(Z,)/®(Z,) € [0,1]. To force the metric
to focus on the top-k items, we use NDCG@k, which is
the top-k version of NDCG, where the discount function is
D(s) = 0 for s > k. Mean Reciprocal Rank (MRR) puts
a high focus on the most relevant item of a list. Assume
r; denotes the rank of the most relevant item in the i-th
list, then the reciprocal rank is defined as R; = 1/r;. For
N lists, the MRR is the mean of the N reciprocal ranks,
MRR = % E,j\i | Ri- MRR @k is simply the top-k version of
MRR. The significant difference between MRR and NDCG
is that NDCG distinguishes between “partially sensitive”
and “highly sensitive” drugs while MRR only focuses on
the most sensitive drugs. From now on, we use NDCG @k
and MRR @k to denote the mean NDCG @k and the mean
MRR @k (i.e., the mean of the performance metric for all
lists in our test set).

3.6. Experimental settings and hyper-parameter
optimization

We conducted our experiments based on the standard
supervised LTR framework [33]. The authors of LETOR [6]
partitioned the LTR data sets into five parts for five-fold
cross-validation where three parts were used for training, one
part for validation (i.e., tuning the hyperparameters of the
learning algorithms), and the remaining part for evaluating
the performance of the learned model. We followed the
same procedure, partitioning our data sets into five-folds,
and conducting five-fold cross-validation to train the models.
The hyperparameters were tuned on the validation sets (i.e.,
we optimized the hyperparameters to maximize the NDCG
score) and the average on the test sets over the 5 folds
was reported in the various tables. For more details on
the parameter-tuning procedure and experimental settings,
please refer to Appendix.

3.7. Competing Methods

We compared our proposed ranking algorithm with
three types of algorithms, namely Transformer-based Neu-
ral Ranking (TNR), Deep Neural Networks (DNN), and
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traditional models. In recent years, the attention mecha-
nism in transformers began a revolution in deep neural
networks that led to major advances in the performance of
many models obtained in this fashion. We compared our
model with four TNR models (i.e., NDCGLoss2++ [34],
ListMLE [35], ApproxXNDCG [36], and RankNet [37]) to
ensure its superior performance and stability compared to
similar methodologies. Second, we also compared ITNR
with other deep learning-based models. To that end, we
compared ITNR with the so-called DNN-Sakellaropoulos
(DNN-S) [15]. DNN-S has been reported as one of the best
DNN models in the DRP literature [38, 8]. Third, several
DRP comparative studies [39, 40, 41] reported tree-based
models as one of the best-performing algorithms for drug
recommendation. Specifically, LambdaMARTyap [42] has
been shown repeatedly to surpass other LTR methods such
as Coordinate Ascent, Random Forests, BoltzRank, Rank-
Boost, AdaRank, SoftRank, and so on [40, 43, 34]. Finally,
we compared ITNR with Elastic Net Regression (ENR) as
a traditional DRP model. Multiple studies [44, 8, 45] have
suggested that elastic net will most likely yield the most
accurate predictors for drug response prediction.

4. Experimental Results

In Table 1, we summarized the performance of the
models on various DRP data sets. We report NDCG@k
and MRR @k, both computed out-of-sample (i.e., test set
not used for training the model). The average on the test
set over the 5 folds was reported. Bold and underlined
numbers indicate the best performance among all methods
for each metric. Bold numbers demonstrate the second-best
performance among all methods for each metric.

The best model for the CCLE data set (474 unique samples
and 24 unique drugs) is ITNR with an NDCG @10 of 94.03%
and an MRR@10 of 93.90%, with the ENR model close
behind (NDCG@10 of 93.85% and MRR@10 of 93.64%).
While DNN-S achieved the highest MRR among the base-
line models, ITNR outperformed it by a relatively large
margin. Moreover, although NDCG@5 of TNR-RankNet
is higher than our model, it does not have comparable
performance considering other evaluation metrics.

On the gCSI data set (357 unique samples and 16 unique
drugs), ITNR demonstrates consistent performance im-
provement overall baseline models across all performance
metrics and any of the chosen rank cutoffs. Notably, we
observe a 2.6% performance improvement compared to
the average of baseline models (i.e., 78.34%) in terms of
NDCG@5. Moreover, ENR which performed really well on
the CCLE data set demonstrated poor performance on the
gCSI data set. TNR-RankNet and LambdaMART models
achieved moderate performance and are the second-best
methods. The models trained on gCSI did not generalize
well. This was not surprising as gCSI had the smallest num-
ber of drugs and was thus prone to overfitting. Nevertheless,
our method is able to maintain its high performance.

In general, the results for these two data sets indicate

that ITNR significantly outperforms other competing meth-
ods. All models except ENR and LambdaMART are Deep
Learning (DL) based models. Since DL models are complex
and have many learnable parameters, they tend to overfit
easier than traditional models. Due to this, DL algorithms
perform better when trained on large amounts of data. To
that end, we also conducted experiments on the GDSC data
set (670 unique cell lines and 233 unique drugs) which is one
of the largest public DRP data sets. Generally, DL models
outperformed other traditional methods (i.e., ENR), since a
model like ENR may not fully capture the structural infor-
mation within drugs. Among transformer-based baselines,
we observed that ITNR achieved the best performance, with
83.36% for NDCG @5 and 92.74% for MRR @5. NDCG @25
of LambdaMART is higher than our model. However, this
model is not even the second-best model considering other
evaluation metrics. Among the competing models, TNR-
RankNet outperformed other methods by a relatively large
margin.
All in all, ITNR consistently outperforms all baseline meth-
ods across all metrics and data sets. In our experiment
on three DRP data sets, TNR-RankNet and LambdaMART
demonstrated reasonably good overall performance and they
are the second-best methods. ITNR is not only able to push
the most sensitive drugs to the top of the ranking list, but it
can put them in the right order. Further, it can also generalize
better and achieve superior performance on large DRP data
sets like GDSC.

5. Discussion and Conclusion

Our study presented a novel transformer-based model,
called Inversion Transformer-based Neural Ranking (ITNR),
to predict cancer drug response. Although machine learning
models are commonly used for drug response prediction,
they often struggle to capture drug-cell line relations across
various cell lines. Our model used the well-known Trans-
former architecture to extract a better drug-cell line represen-
tation. We also developed a novel loss function based on the
concept of inversion and approximate permutation matrices.
Hence, the proposed architecture can capture local context
information and cross-item interactions that lead to a reliable
drug recommendation system. Extensive experimental re-
sults demonstrated that our model is more effective than the
current state-of-the-art methods highlighting the predictive
capability of our model and its potential translational value
in personalized medicine. Our expremental results suggest
that the transformer network with multi-head attention is
suitable for modeling the interactions of drug substruc-
ture and multi-omics data. With potential implications for
pharmaceutical industries and healthcare providers, our
work highlights the potential impact of genomics-driven
drug recommendation models in advancing personalized
medicine and improving patient outcomes. To effectively
communicate our research findings to potential adopters,
we need to tailor our approach to address the specific needs
and interests of each stakeholder group. For pharmaceutical
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Table 1

Performance Comparison of Ranking Methods on CCLE, GDSC, and gCSI Data Sets.
Algorithms NDCG@5 NDCG@10 NDCG@25 MRROG5 MRR@10 MRRO25

CCLE Data set
ITNR 92.15% 94.03% 94.09% 93.87%  93.90% 93.90%
TNR-NDCGLoss2++  91.87% 93.71% 93.85% 92.93% 92.96% 92.96%
TNR-ListMLE 91.78% 93.41% 93.93% 93.62% 93.71% 93.71%
TNR-RankNet 92.39% 93.76% 94.00% 93.52% 93.52% 93.52%
TNR-ApproxNDCG 90.71% 92.40% 92.49% 88.05% 88.08% 88.08%
DNN-S 92.06% 93.63% 93.99% 93.71%  93.74% 93.76%
LambdaMART ap 92.03% 93.46% 93.72% 92.25% 92.28% 92.28%
ENR 91.73% 93.85% 93.94% 93.55% 93.64% 93.64%

GDSC Data set
ITNR 83.36% 79.26% 82.40% 92.74%  92.76% 92.76%
TNR-NDCGLoss2++  82.01% 78.47% 82.12% 91.33% 91.33% 91.33%
TNR-ListMLE 80.89% 77.08% 80.04% 88.77% 88.79% 88.79%
TNR-RankNet 82.69% 78.59% 82.38% 92.16% 92.16% 92.16%
TNR-ApproxNDCG 82.22% 77.84% 80.86% 90.79% 90.79% 90.79%
DNN-S 77.80% 76.18% 80.15% 83.96% 83.96% 83.96%
LambdaMART ,5p 81.31% 78.24% 82.79% 89.62% 89.64% 89.64%
ENR 76.97% 74.89% 78.39% 83.70% 83.82% 83.82%

gCSlI Data set
ITNR 80.36% 83.20% 83.35% 77.67% 77.71% 77.71%
TNR-NDCGLoss2++ 78.91% 82.62% 82.70% 76.38% 76.52% 76.52%
TNR-ListMLE 76.97% 81.08% 81.31% 75.38% 75.47% 75.47%
TNR-RankNet 79.59% 82.95% 82.99% 76.33% 76.47% 76.47%
TNR-ApproxNDCG 78.56% 82.50% 82.61% 76.09% 76.09% 76.09%
DNN-S 79.59% 82.67% 82.83% 76.41% 76.45% 76.45%
LambdaMART,,»  78.36%  82.19% 8229%  71.67% T71.67%  77.67%
ENR 76.45% 81.12% 81.17% 75.01% 75.10% 75.10%

industries, our research offers opportunities to optimize drug
development pipelines and accelerate the identification of
promising drug candidates. We emphasize the potential cost
and time-saving benefits of leveraging genomics-driven drug
recommendation models in streamlining drug discovery and
development processes. Regarding healthcare providers, we
underscore how our models can support clinicians in making
more informed treatment decisions tailored to individual
patient characteristics. This approach ultimately leads to
improved patient outcomes and better healthcare delivery.
Although our model is quite promising, some limitations
could be explored and addressed in future studies. In the
current model, we use an approximated permutation matrix
(i.e., NeuralSort) as the sorting operator. We can replace
NeuralSort with another approximation of a sorting operator
such as the Optimal Transport [46] and SoftSort [47].
Furthermore, the current model assumes that all drugs have
the same side effects and toxicity. We can enhance our
recommendations by incorporating the toxicity of drugs into
our predictions.

CRediT authorship contribution statement

Shahabeddin Sotudian: Conceptualization, Data cura-
tion, Formal analysis, Investigation, Methodology, Software,
Validation, Visualization, Writing — Original Draft Prepara-
tion. Ioannis Ch. Paschalidis: Conceptualization, Formal
analysis, Funding acquisition, Investigation, Methodology,

Project administration, Resources, Supervision, Writing -
review and editing.

Acknowledgement

This research was partially supported by the National
Science Foundation (NSF) in the form of grants awarded
to ICP (CCF-2200052, DMS-1664644, and 1IS 1914792),
the Office of Naval Research (ONR) in the form of a grant
awarded to ICP (N0O0014-19-1-2571), the National Institutes
of Health (NIH) in the form of grants awarded to ICP and the
Boston University Clinical & Translation Science Institute
(RO1 GM135930, UL54 TR004130), and by Boston Uni-
versity funds. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation
of the manuscript. There was no additional external funding
received for this study.

Appendix

A. Hyper-parameter optimization

We utilized grid search to fine-tune the parameters of the
models. The list of hyper-parameters and their values for all
ranking algorithms can be found in Table 2. In this table, L
is the list length used for training (note that a list was either
padded or sub-sampled to that length), dy. is the dimension
of the linear projection, N is the number of encoder blocks,
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Table 2
The List of Hyper-parameters and Their Values.
Algorithms Parameters Values
L 120
d, 128, 256
All Transformer Models N 2.4
d, 128, 512
H 2,4
D, 0.1,03, 05
B 25
DNN-S E 50
‘, 0.01, 0.001, 0.0001
n 0.1, 0.01, 0.001
D, 10, 100
LambdaMART _MAP 5 1, 10, 1000
Ny 10, 100, 1000
a 0.01, 0.1, 1, 10, 100
ENR R, 0.2,0.6,0.8
Table 3
Best Parameters - Transformer Models
Algorithms Data Set L d. N 4, H
CCLE 120 25 2 128 2
Proposed Method GDSC 120 256 2 128 2
gCsl 120 128 2 128 2
CCLE 120 128 2 128 2
TNR-NDCGLoss2++ GDSC 120 25 2 128 2
gCsl 120 128 2 128 2
CCLE 120 256 2 128 2
TNR-ListMLE GDSC 120 128 2 128 2
gCsl 120 128 2 128 2
CCLE 120 128 2 128 2
TNR-RankNet GDSC 120 128 2 128 2
gCsl 120 128 2 128 2
CCLE 120 256 2 128 2
TNR-ApproxNDCG ~ GDSC 120 256 2 128 2
gCsl 120 128 2 128 2

dj, is the transformer hidden dimension, H is the number
of attention heads, D, refers to the hidden dropout ratio,
B is the batch size, E is the number of epochs, 7, is the
parameter of the £,-norm penalty for the DNN-S model, #
is the learning rate, D,,,, is the maximum depth of a tree,
Npin 18 the minimum sum of the instance weight (Hessian)
needed in a leaf, N is the number of estimators, « is the
regularization strength of the model, and R, controls the
contribution of the | and £, penalties in the ENR model.
The details of hyper-parameter settings of all methods for the
five folds can be found in Tables 3, 4, 5, and 6.
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