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1. Introduction. Optimization over Riemannian manifolds has recently drawn
a lot of attention due to its application in many different fields, including low-rank
matrix completion [18, 94], phase retrieval [9, 90], group synchronization [16, 71, 72],
blind deconvolution [51], and dictionary learning [25, 89]. Manifold optimization seeks
to minimize an objective function over a smooth manifold. Some commonly encoun-
tered manifolds include the sphere, the Stiefel manifold, the Grassmann manifold, and
the Hadamard manifold. The recent monographs by Absil, Mahony, and Sepulchre [4]
and Boumal [17] studied this topic in depth. In particular, several important classes
of algorithms for manifold optimization with smooth objective, including line-search
methods, Newton’s method, and trust-region methods, have been studied. There are
also many gradient-based algorithms for solving manifold optimization problems, in-
cluding [101, 84, 85, 70, 54, 110]. However, all these methods require computing the
derivative of the objective function and do not apply to the case where the objective
function is nonsmooth.

In this paper, we focus on a class of nonsmooth nonconvex optimization problems
over the Stiefel manifold that takes the form

(1.1)
min F (X) := f(X) + h(X)

s.t. X ∈M := St(n, r) = {X : X ∈ R
n×r, X>X = Ir},
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where Ir denotes the r × r identity matrix (r ≤ n). Throughout this paper, we make
the following assumptions about (1.1).

Assumption 1.1.
(i) The function f is smooth and possibly nonconvex, and its gradient ∇f is

Lipschitz continuous with Lipschitz constant L.
(ii) The function h is convex, possibly nonsmooth, and Lipschitz continuous with

constant Lh.

Note that here the smoothness, Lipschitz continuity, and convexity are interpreted
when the function in question is considered as a function in the ambient Euclidean
space.

We restrict our discussions in this paper to (1.1) because it already finds many
important applications in practice. In the following we briefly mention some repre-
sentative applications of (1.1).

Example 1. Sparse Principal Component Analysis. Principal component anal-
ysis (PCA), proposed by Pearson [79] and later developed by Hotelling [49], is one
of the most fundamental statistical tools in analyzing high-dimensional data. Sparse
PCA seeks principal components with very few nonzero components. For a given data
matrix A ∈ R

m×n, the sparse PCA that seeks the leading r (r < min{m,n}) sparse
loading vectors can be formulated as

(1.2)
min

X∈Rn×r

−Tr(X>A>AX) + µ‖X‖1

s.t. X>X = Ir,

where Tr(Y ) denotes the trace of matrix Y , the `1 norm is defined by ‖X‖1 =
∑

ij |Xij |, and µ > 0 is a weighting parameter. This is the original formulation of
sparse PCA as proposed by Jolliffe, Trendafilov, and Uddin in [55], where the model
is called SCoTLASS and imposes sparsity and orthogonality on the loading vectors
simultaneously. When µ = 0, problem (1.2) reduces to computing the leading r eigen-
values and the corresponding eigenvectors of A>A. When µ > 0, the `1 norm ‖X‖1
can promote sparsity of the loading vectors. There are many numerical algorithms for
solving (1.2) when r = 1. In this case, problem (1.2) is relatively easy to solve because
X reduces to a vector and the constraint set reduces to a sphere. However, the litera-
ture is very limited for the case r > 1. Existing works, including [118, 27, 86, 56, 73],
do not impose orthogonal loading directions. As discussed in [56], “Simultaneously
enforcing sparsity and orthogonality seems to be a hard (and perhaps questionable)
task.” We refer the interested reader to [119] for more details on existing algorithms
for solving sparse PCA. As we will discuss later, our algorithm can efficiently solve
(1.2) with r > 1 (i.e., imposing sparsity and orthogonality simultaneously).

Example 2. Compressed Modes in Physics. This problem seeks spatially local-
ized (“sparse”) solutions of the independent-particle Schrödinger equation. Sparsity
is achieved by adding an L1 regularization of the wave functions, which leads to so-
lutions with compact support (“compressed modes”). For the 1D free-electron case,
after proper discretization, this problem can be formulated as

(1.3)
min

X∈Rn×r

Tr(X>HX) + µ‖X‖1

s.t. X>X = Ir,

where H denotes the discretized Schrödinger operator. Note that the L1 regularization
reduces to the `1 norm of X after discretization. We refer the reader to [78] for
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more details of this problem. Note that (1.2) and (1.3) are different in that H and
A>A have totally different structures. In particular, H is the discretized Schrödinger
Hamiltonian, which is a block circulant matrix, while A in (1.2) usually comes from
statistical data and thus A>A is usually dense and unstructured. These differences
may affect the performance of algorithms for solving them.

Example 3. Unsupervised Feature Selection. It is much more difficult to se-
lect the discriminative features in unsupervised learning than in supervised learning.
There are some recent works that model this task as a manifold optimization problem
of the form (1.1). For instance, the works [107] and [91] assume that there is a linear
classifier W which assigns each data point xi (where i = 1, . . . , n) in the training data
set to a class, and by denoting Gi = W>xi, [G1, . . . , Gn] gives a scaled label matrix
which can be used to define some local discriminative scores. The target is to train a
W such that the local discriminative scores are the highest for all the training data
x1, . . . , xn. It was suggested in [107] and [91] to solve the following model to find W :

min
W∈Rn×r

Tr(W>MW ) + µ‖W‖2,1

s.t. W>W = Ir.

Here, M is a given matrix computed from the input data, the `2,1 norm is defined
by ‖W‖2,1 =

∑n
i=1 ‖W (i, :)‖2 with W (i, :) being the ith row of W , which promotes

the row sparsity of W , and the orthogonal constraint is imposed to avoid arbitrary
scaling and the trivial solution of all zeros. We refer the reader to [107] and [91] for
more details.

Example 4. Sparse Blind Deconvolution. Given the observations

y = a0 ~ x0 ∈ R
m,

how can one recover both the convolution kernel a0 ∈ R
k and signal x0 ∈ R

m? Here,
the signal x0 is assumed to have a sparse and random support and ~ denotes the
convolution operator. This problem is known as sparse blind deconvolution. Some
recent works on this topic suggest the following optimization formulation to recover
a0 and sparse x0 (see, e.g., [113]):

min
a,x

‖y − a~ x‖22 + µ‖x‖1

s.t. ‖a‖2 = 1.

Note that the sphere constraint here is a special case of the Stiefel manifold; i.e.,
St(k, 1).

Example 5. Nonconvex Regularizer. Problem (1.1) also allows nonconvex reg-
ularizer functions. For example, instead of using the `1 norm to promote sparsity,
we can use the MCP (minimax concave penalty) function [109], which is popular in
statistics. The MCP function is nonconvex and is given by

P (x) =

{

λ|x| − x2

2λ if |x| ≤ γλ,
1
2γλ

2 otherwise,

where λ, γ are given parameters and x ∈ R. If we replace the `1 norm in sparse PCA
(1.2) by MCP, it reduces to

(1.4)
min

X∈Rn×r

−Tr(X>A>AX) + µ
∑

ij

P (Xij)

s.t. X>X = Ir.
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It is easy to see that the objective function in (1.4) can be rewritten as f1(X)+f2(X)
with f1(X) = −Tr(X>A>AX)+µ(

∑

ij P (Xij)−λ‖X‖1) and f2(X) = µλ‖X‖1. Note
that f1 is smooth and its gradient is Lipschitz continuous. Therefore, problem (1.4)
is an instance of problem (1.1).

Our Contributions. Due to the needs of the above-mentioned applications, it is
highly desirable to design an efficient algorithm for solving (1.1). In this paper, we pro-
pose a proximal gradient method for solving it. The proposed method, named ManPG
(manifold proximal gradient method), is based on the proximal gradient method with
a retraction operation to keep the iterates feasible with respect to the manifold con-
straint. Each step of ManPG involves solving a well-structured convex optimization
problem, which can be done efficiently by the semismooth Newton method. We prove
that ManPG converges to a stationary point of (1.1) globally. We also analyze the
iteration complexity of ManPG for obtaining an ε-stationary point. Lastly, we present
numerical results on the sparse PCA (1.2) and compressed modes (1.3) problems to
show that our ManPG algorithm compares favorably with existing methods.

Notation. The following notation is adopted throughout this paper. The tangent
space to the manifold M at the point X is denoted by TXM. We use 〈A,B〉 =
Tr(A>B) to denote the Euclidean inner product of two matrices, A,B. We consider
the Riemannian metric on M that is induced from the Euclidean inner product;
i.e., for any ξ, η ∈ TXM, we have 〈ξ, η〉X = Tr(ξ>η). We use ‖X‖F to denote the
Frobenius norm of X and ‖A‖op to denote the operator norm of a linear operator A.
The Euclidean gradient of a smooth function f is denoted by ∇f , and the Riemannian
gradient of f is denoted by grad f . Note that by our choice of the Riemannian metric,
we have grad f(X) = ProjTXM∇f(X), the orthogonal projection of ∇f(X) onto the
tangent space. According to [4], the projection of Y onto the tangent space at X ∈
St(n, r) is given by ProjTXSt(n,r)Y = (In−XX>)Y + 1

2X(X>Y −Y >X). We use Retr
to denote the retraction operation. For a convex function h, its Euclidean subgradient
and Riemannian subgradient are denoted by ∂h and ∂̂h, respectively. We use vec(X)
to denote the vector formed by stacking the column vectors of X. The set of r × r
symmetric matrices is denoted by Sr. Given an X ∈ Sr, we use vec(X) to denote the
1
2r(r + 1)-dimensional vector obtained from vec(X) by eliminating all superdiagonal
elements of X. We denote Z � 0 if (Z +Z>)/2 is positive semidefinite. The proximal
mapping of h at point X is defined by proxh(X) = argminY

1
2‖Y −X‖2F + h(Y ).

Organization. The rest of this paper is organized as follows. In section 2, we
briefly review existing works on solving manifold optimization problems with non-
smooth objective functions. We introduce some preliminaries of manifolds in section 3.
We then present the main algorithm ManPG and the semismooth Newton method for
solving the subproblem in section 4. In section 5, we establish the global convergence
of ManPG and analyze its iteration complexity for obtaining an ε-stationary point.
We report the numerical results of ManPG on solving compressed modes problems in
physics and sparse PCA in statistics in section 6. In section 7, we discuss some recent
algorithms for manifold optimization with nonsmooth objective functions that are
motivated by ManPG. These include the manifold proximal point algorithm, mani-
fold proximal linear algorithm, stochastic ManPG, zeroth-order ManPG, Riemannian
proximal gradient method, and Riemannian proximal Newton method. Finally, we
draw some concluding remarks in section 8.

2. Nonsmooth Optimization over Riemannian Manifold. Unlike manifold op-
timization with smooth objective functions, which has been studied extensively in
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the monographs [4, 17], the literature on manifold optimization with nonsmooth
objective functions is relatively limited. Numerical algorithms for manifold opti-
mization with nonsmooth objective functions can be roughly classified into three
categories: subgradient-oriented methods, proximal point algorithms, and operator-
splitting methods. We now briefly discuss the existing works in these three categories.

2.1. Subgradient-Oriented Methods. Algorithms in the first category include
those proposed in [33, 15, 43, 45, 48, 46, 8, 28, 42], which are all subgradient-oriented
methods. Ferreira and Oliveira [33] studied the convergence of subgradient meth-
ods for minimizing a convex function over a Riemannian manifold. The subgradient
method generates the iterates via

Xk+1 = expXk
(tkVk),

where expXk
is the exponential mapping at Xk and Vk denotes a Riemannian subgra-

dient of the objective. Like the subgradient method in Euclidean space, the stepsize
tk is chosen to be diminishing to guarantee convergence. However, the result in [33]
does not apply to (1.1) because every smooth function that is convex on a compact
Riemannian manifold is a constant [13]. This motivated some more advanced works
on the Riemannian subgradient method. Specifically, Dirr, Helmke, and Lageman [28]
and Borckmans et al. [15] proposed manifold subgradient methods for the case where
the objective function is the pointwise maximum of smooth functions. In this case, a
generalized gradient can be computed and a descent direction can be found by solving
a quadratic program. Grohs and Hosseini [43] proposed a Riemannian ε-subgradient
method. Hosseini and Uschmajew [48] proposed a Riemannian gradient sampling
algorithm. Hosseini, Huang, and Yousefpour [46] generalized the Wolfe conditions
and extended the BFGS algorithm to optimize nonsmooth functions on Riemannian
manifolds. Grohs and Hosseini [42] proposed a generalization of a nonsmooth trust-
region method for manifold optimization. Hosseini [45] studied the convergence of
some subgradient-oriented descent methods based on the Kurdyka– Lojasiewicz (K L)
inequality. Roughly speaking, all the methods studied in [28, 15, 43, 48, 46, 42, 45]
require subgradient information to build a quadratic program to find a descent direc-
tion:

(2.1) ĝ ←− min
g∈conv(W )

‖g‖.

Here, conv(W ) denotes the convex hull of set W = {Gj , j = 1, . . . , J}, Gj is the
Riemannian gradient of a differentiable point around the current iterate X, and J
usually needs to be larger than the dimension of M. Subsequently, the iterate X is
updated by X+ = RetrX(αĝ), where the stepsize α is found by line search. For high-
dimensional problems on the Stiefel manifold St(n, r), problem (2.1) can be difficult
to solve because n is large. Since the subgradient algorithm is known to be slower
than the gradient algorithm and proximal gradient algorithm in Euclidean space, it is
expected that these subgradient-based algorithms would not be as efficient as gradient
algorithms and proximal gradient algorithms on the manifold in practice.

2.2. Proximal Point Algorithms. Proximal point algorithms (PPAs) for mani-
fold optimization are also studied in the literature. Ferreira and Oliveira [34] extended
PPAs for manifold optimization, which in each iteration needs to minimize the orig-
inal function plus a proximal term over the manifold. However, there are two issues
that limit its applicability. The first is that the subproblem can be as difficult as
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the original problem. For example, Bačák et al. [8] suggested using the subgradient
method to solve the subproblem, but they required the subproblem to be in the form
of the pointwise maximum of smooth functions tackled in [15]. The second is that
the discussions in the literature mainly focus on the Hadamard manifold and heavily
exploit the convexity assumption of the objective function. Thus, they do not apply
to compact manifolds such as St(n, r). Bento, Cruz Neto, and Oliveira [11] aimed
to resolve the second issue and proved the convergence of the PPA for more general
Riemannian manifolds under the assumption that the K L inequality holds for the
objective function. In [10], Bento, Cruz Neto, and Oliveira analyzed the convergence
of some inexact descent methods based on the K L inequality, including the PPA and
steepest descent method. In a more recent work [12], Bento, Ferreira, and Melo stud-
ied the iteration complexity of the PPA under the assumption that the constraint set
is the Hadamard manifold and the objective function is convex. Nevertheless, the
results in [34, 11, 10, 12] seem to be only of theoretical interest because no numerical
results were shown. As mentioned earlier, this could be due to the difficulty in solving
the PPA subproblems.

2.3. Operator-Splitting Methods. Operator-splitting methods do not require
subgradient information, and existing works in the literature mainly focus on the
Stiefel manifold. Note that (1.1) is challenging because of the combination of two
difficult terms: the Riemannian manifold and the nonsmooth objective. If only one
of them is present, then the problem is relatively easy to solve. Therefore, the alter-
nating direction method of multipliers (ADMM) becomes a natural choice for solving
(1.1). ADMM for solving convex optimization problems with two block variables is
closely related to the famous Douglas–Rachford operator-splitting method, which has
a long history [39, 36, 68, 35, 38, 29]. The renaissance of ADMM was initiated by
several papers around 2007–2008, when it was successfully applied to solve various
signal processing [26] and image processing [104, 40, 6] problems. The recent survey
paper [21] popularized this method in many areas. Recently, there has been emerging
interest in using ADMM to solve manifold optimization problems of the form (1.1);
see, e.g., [58, 57, 112, 98]. However, the algorithms presented in these papers either
lack convergence guarantee [58, 57] or their convergence needs further conditions that
do not apply to (1.1) [98, 112].

Here, we briefly describe the SOC method (splitting method for orthogonality
constrained problems) presented in [58]. The SOC method aims to solve

min J(X) s.t. X ∈M

by introducing an auxiliary variable P and considering the following reformulation:

(2.2) min J(P ) s.t. P = X, X ∈M.

By associating a Lagrange multiplier Λ with the linear equality constraint, the aug-
mented Lagrangian function of (2.2) can be written as

Lβ(X,P ; Λ) := J(P )− 〈Λ, P −X〉+
β

2
‖P −X‖2F ,

where β > 0 is a penalty parameter. The SOC algorithm then generates its iterates
as follows:

P k+1 := argmin
P

Lβ(P,Xk; Λk),

Xk+1 := argmin
X

Lβ(P k+1, X; Λk) s.t. X ∈M,

Λk+1 := Λk − β(P −X).
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Note that the X-subproblem corresponds to the projection onto M, and the P -
subproblem is an unconstrained problem whose complexity depends on the structure
of J . In particular, if J is smooth, then the P -subproblem can be solved iteratively
by the gradient method; if J is nonsmooth and has an easily computable proximal
mapping, then the P -subproblem can be solved directly by computing the proximal
mapping of J .

The MADMM (manifold ADMM) algorithm presented in [57] aims to solve the
problem

(2.3) min
X,Z

f(X) + g(Z) s.t. Z = AX, X ∈ St(n, r),

where f is smooth and g is nonsmooth with an easily computable proximal mapping.
The augmented Lagrangian function of (2.3) is

Lβ(X,Z; Λ) := f(X) + g(Z)− 〈Λ, Z −AX〉+
β

2
‖Z −AX‖2F ,

and the MADMM algorithm generates its iterates as follows:

Xk+1 := argmin
X

Lβ(X,Zk; Λk) s.t. X ∈ St(n, r),

Zk+1 := argmin
Z

Lβ(Xk+1, Z; Λk),

Λk+1 := Λk − β(Zk+1 −AXk+1).

Note that the X-subproblem is a smooth optimization problem on the Stiefel manifold,
and the authors of [57] suggested using the MANOPT toolbox [20] to solve it. The
Z-subproblem corresponds to the proximal mapping of function g.

As far as we know, however, the convergence guarantees of SOC and MADMM
are still missing from the literature. Though there are some recent works that analyze
the convergence of ADMM for nonconvex problems [98, 112], their results need further
conditions that do not apply to (1.1) or its reformulations (2.2) and (2.3).

More recently, some other variants of the augmented Lagrangian method have
been proposed to deal with (1.1). In [24], Chen, Ji, and You proposed a method that
hybridizes an augmented Lagrangian method and the proximal alternating minimiza-
tion method [7]. More specifically, this method solves the following reformulation of
(1.1):

(2.4) min
X,Q,P

f(P ) + h(Q) s.t. Q = X, P = X, X ∈ St(n, r).

By associating Lagrange multipliers Λ1 and Λ2 with the two linear equality con-
straints, the augmented Lagrangian function of (2.4) can be written as

Lβ(X,Q, P ; Λ1,Λ2) := f(P )+h(Q)−〈Λ1, Q−X〉−〈Λ2, P−X〉+
β

2
‖Q−X‖2F +

β

2
‖P−X‖2F ,

where β > 0 is a penalty parameter. The augmented Lagrangian method for solving
(2.4) is then given by

(2.5)

(Xk+1, Qk+1, P k+1) := argmin
X,Q,P

Lβ(X,Q,P ; Λk
1 ,Λ

k
2) s.t. X ∈ St(n, r),

Λk+1
1 := Λk

1 − β(Qk+1 −Xk+1),

Λk+1
2 := Λk

2 − β(P k+1 −Xk+1).
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Note that the subproblem in (2.5) is still difficult to solve. Therefore, the authors
of [24] suggested using the proximal alternating minimization method [7] to solve
the subproblem in (2.5) inexactly and named their method PAMAL. They proved
that under certain conditions, any limit point of the sequence generated by PAMAL
is a KKT point of (2.4). It should be pointed out that the proximal alternating
minimization procedure involves many parameters that need to be fine-tuned in order
to solve the subproblem inexactly. Our numerical results in section 6 indicate that
the performance of PAMAL depends significantly on the setting of these parameters.

In [116], Zhu et al. studied another algorithm called EPALMAL for solving (1.1),
which is based on the augmented Lagrangian method and the PALM algorithm [14].
The difference between EPALMAL and PAMAL is that they use different algorithms
to minimize the augmented Lagrangian function inexactly. In particular, EPALMAL
uses the PALM algorithm [14], while PAMAL uses PAM [7]. It is also shown in
[116] that any limit point of the sequence generated by EPALMAL is a KKT point.
However, their result assumes that the iterate sequence is bounded, which holds auto-
matically if the manifold in question is bounded but is hard to verify otherwise.

3. Preliminaries on Manifold Optimization. We first introduce the elements
of manifold optimization that will be needed in the study of (1.1). In fact, our
discussion in this section applies to the case where M is any embedded submanifold
of a Euclidean space. To begin, we say that a function F is locally Lipschitz continuous
if for any X ∈M it is Lipschitz continuous in a neighborhood of X. Note that if F is
locally Lipschitz continuous in the Euclidean space E , then it is also locally Lipschitz
continuous when restricted to the embedded submanifold M of E .

Definition 3.1 (generalized Clarke subdifferential [47]). For a locally Lipschitz
function F onM, the Riemannian generalized directional derivative of F at X ∈M
in the direction V is defined by

F ◦(X,V ) = lim sup
Y→X,t↓0

F ◦ φ−1(φ(Y ) + tDφ(X)[V ])− F ◦ φ−1(φ(Y ))

t
,

where (φ, U) is a coordinate chart at X. The generalized gradient or the Clarke

subdifferential of F at X ∈M, denoted by ∂̂F (X), is given by

∂̂F (X) = {ξ ∈ TXM : 〈ξ, V 〉 ≤ F ◦(X,V ) ∀V ∈ TXM}.

Definition 3.2 ([106]). A function f is said to be regular at X ∈M along TXM
if

• for all V ∈ TXM, f ′(X;V ) = limt↓0
f(X+tV )−f(X)

t exists, and
• for all V ∈ TXM, f ′(X;V ) = f◦(X;V ).

For a smooth function f , we know that grad f(X) = ProjTXM∇f(X) by our
choice of the Riemannian metric. According to Theorem 5.1 in [106], for a regu-

lar function F , we have ∂̂F (X) = ProjTXM(∂F (X)). Moreover, the function F =
f + h in (1.1) is regular according to Lemma 5.1 in [106]. Therefore, we have

∂̂F (X) = ProjTXM(∇f(X) + ∂h(X)) = gradf(X) + ProjTXM(∂h(X)). By Theorem
4.1 in [106], the first-order necessary condition of (1.1) is given by 0 ∈ gradf(X) +
ProjTXM(∂h(X)).

Definition 3.3. A point X ∈ M is called a stationary point of problem (1.1) if
it satisfies the first-order necessary condition; i.e., 0 ∈ gradf(X)+ProjTXM(∂h(X)).
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A classic geometric concept in the study of manifolds is that of an exponential
mapping, which defines a geodesic curve on the manifold. However, the exponential
mapping is difficult to compute in general. The concept of a retraction [4], which is a
first-order approximation of the exponential mapping and can be more amenable to
computation, is given as follows.

Definition 3.4 ([4, Definition 4.1.1]). A retraction on a differentiable manifold
M is a smooth mapping Retr from the tangent bundle TM onto M satisfying the
following two conditions (here, RetrX denotes the restriction of Retr onto TXM):

1. RetrX(0) = X for all X ∈M, where 0 denotes the zero element of TXM.
2. For any X ∈M, it holds that

lim
TXM3ξ→0

‖RetrX(ξ)− (X + ξ)‖F
‖ξ‖F

= 0.

Remark 3.5. SinceM is an embedded submanifold of Rn×r, we can treat X and
ξ as elements in R

n×r, and hence their sum is well defined. The second condition in
Definition 3.4 ensures that RetrX(ξ) = X + ξ +O(‖ξ‖2F) and DRetrX(0) = Id, where
DRetrX is the differential of RetrX and Id denotes the identity mapping. For more
details about retraction, we refer the reader to [4, 19] and the references therein.

The retraction onto the Euclidean space is simply the identity mapping; i.e.,
RetrX(ξ) = X + ξ. For the Stiefel manifold St(n, r), common retractions include the
exponential mapping [30]

RetrexpX (tξ) = [X,Q] exp

(

t

[

−X>ξ −R>

R 0

])[

Ir
0

]

,

where QR = −(In−XX>)ξ is the unique QR factorization; the polar decomposition

RetrpolarX (ξ) = (X + ξ)(Ir + ξ>ξ)−1/2;

the QR decomposition
RetrQR

X (ξ) = qf(X + ξ),

where qf(A) is the Q factor of the QR factorization of A; and the Cayley transforma-
tion [101]

RetrcayleyX (ξ) =

(

In −
1

2
W (ξ)

)−1 (

In +
1

2
W (ξ)

)

X,

where W (ξ) = (In −
1
2XX>)ξX> −Xξ>(In −

1
2XX>).

For any matrix Y ∈ R
n×r with r ≤ n, its orthogonal projection onto the Stiefel

manifold St(n, r) is given by UIrV
>, where U, V are the left and right singular vec-

tors of Y , respectively. If Y has full rank, then the projection can be computed by
Y (Y >Y )−1/2, which is the same as the polar decomposition. The total cost of com-
puting the projection UIrV

> is 8nr2+O(r3) flops, where the SVD needs 6nr2+O(r3)
flops [41] and the formation of UIrV

> needs 2nr2 flops. By comparison, if Y = X + ξ
and ξ ∈ TXM, then the exponential mapping takes 8nr2 +O(r3) flops and the polar
decomposition takes 3nr2 +O(r3) flops, where ξ>ξ needs nr2 flops and the remaining
2nr2+O(r3) flops come from the final assembly. Thus, polar decomposition is cheaper
than the projection. Moreover, the QR decomposition of X + ξ takes 2nr2 + O(r3)
flops. For the Cayley transformation of X +ξ, the total cost is 7nr2 +O(r3) [101, 53].
In our algorithm, to be introduced later, we need to perform one retraction operation
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in each iteration. We need to point out that retractions may also affect the overall
convergence speed of the algorithm. As a result, determining the most efficient retrac-
tion to use in the algorithm is still an interesting question to investigate in practice;
see also the discussion after Theorem 3 of [70].

The retraction Retr has the following properties that are useful for our conver-
gence analysis.

Fact 3.6 ([19, 70]). Let M be a compact embedded submanifold of a Euclidean
space. For all X ∈M and ξ ∈ TXM, there exist constants M1 > 0 and M2 > 0 such
that the following two inequalities hold:

‖RetrX(ξ)−X‖F ≤M1‖ξ‖F ∀X ∈M, ξ ∈ TXM,(3.1)

‖RetrX(ξ)− (X + ξ)‖F ≤M2‖ξ‖
2
F
∀X ∈M, ξ ∈ TXM.(3.2)

4. Proximal Gradient Method on the Stiefel Manifold.

4.1. The ManPG Algorithm. For manifold optimization problems with smooth
objective functions, the Riemannian gradient method [1, 4, 77] has been one of the
main methods of choice. A generic update formula of the Riemannian gradient method
for solving

min
X

F (X) s.t. X ∈M

is

Xk+1 := RetrXk
(αkVk),

where F is smooth, Vk is a descent direction of F in the tangent space TXk
M, and αk

is a stepsize. Recently, Boumal, Absil, and Cartis [19] established the sublinear rate of
the Riemannian gradient method for returning a point Xk satisfying ‖gradF (Xk)‖F <
ε. Liu, So, and Wu [70] proved that the Riemannian gradient method converges
linearly for quadratic minimization over the Stiefel manifold. Other methods for
solving manifold optimization problems with smooth objective functions have also
been studied in the literature, including conjugate gradient methods [4, 2], trust-
region methods [4, 19], and Newton-type methods [4, 83].

We now develop our ManPG algorithm for solving (1.1). Since the objective
function in (1.1) has a composite structure, a natural idea is to extend the proximal
gradient method from the Euclidean setting to the manifold setting. The proximal
gradient method for solving minX F (X) := f(X) + h(X) in the Euclidean setting
generates the iterates as follows:

(4.1) Xk+1 := argmin
Y

f(Xk) + 〈∇f(Xk), Y −Xk〉+
1

2t
‖Y −Xk‖

2
F + h(Y ).

In other words, one minimizes the quadratic model Y 7→ f(Xk)+〈∇f(Xk), Y −Xk〉+
1
2t‖Y −Xk‖

2
F +h(Y ) of F at Xk in the kth iteration, where t > 0 is a parameter that

can be regarded as the stepsize. It is known that the quadratic model is an upper
bound of F when t ≤ 1/L, where L is the Lipschitz constant of ∇f . The subproblem
(4.1) corresponds to the proximal mapping of h, and the efficiency of the proximal
gradient method relies on the assumption that (4.1) is easy to solve. For (1.1), in order
to deal with the manifold constraint, we need to ensure that the descent direction lies
in the tangent space. This motivates the following subproblem for finding the descent
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direction Vk in the kth iteration, with t > 0 being the stepsize:

(4.2)
Vk := argmin

V
〈grad f(Xk), V 〉+

1

2t
‖V ‖2F + h(Xk + V )

s.t. V ∈ TXk
M.

Here and also in later discussions, we can interpret Xk + V as the sum of Xk and V
in the ambient Euclidean space R

n×r, as M is an embedded submanifold of R
n×r.

Note that (4.2) is different from (4.1) in two places: (i) the Euclidean gradient ∇f
is changed to the Riemannian gradient grad f , and (ii) the descent direction Vk is
restricted to the tangent space. Following the definition of grad f , we have

〈gradf(Xk), V 〉 = 〈∇f(Xk), V 〉 ∀V ∈ TXk
M,

which implies that (4.2) can be rewritten as

(4.3)
Vk := argmin

V
〈∇f(Xk), V 〉+

1

2t
‖V ‖2F + h(Xk + V )

s.t. V ∈ TXk
M.

As a result, we do not need to compute the Riemannian gradient grad f . Rather, only
the Euclidean gradient ∇f is needed. Note that without considering the constraint
V ∈ TXk

M, the subproblem (4.3) computes a proximal gradient step. Therefore, the
subproblem (4.3) can be viewed as a proximal gradient step restricted to the tangent
space TXk

M. Since, for an arbitrary stepsize αk > 0, the point Xk + αkVk does not
necessarily lie on the manifold M, we perform a retraction to bring it back to M.

Our ManPG algorithm for solving (1.1) is described in Algorithm 1. Note that
ManPG involves an Armijo line-search procedure to determine the stepsize α. As we
will show in section 5, this backtracking line-search procedure is well defined; i.e., it
will terminate after a finite number of steps.

Algorithm 1 Manifold proximal gradient method (ManPG) for solving (1.1).

1: Input: initial point X0 ∈M, γ ∈ (0, 1), stepsize t > 0
2: for k = 0, 1, . . . do
3: obtain Vk by solving the subproblem (4.3)
4: set α = 1

5: while F (RetrXk
(αVk)) > F (Xk)−

α‖Vk‖
2
F

2t
do

6: α = γα
7: end while

8: set Xk+1 = RetrXk
(αVk)

9: end for

4.2. Regularized Semismooth Newton Method for Subproblem (4.3). The
main computational effort of Algorithm 1 lies in solving the convex subproblem (4.3).
We have conducted extensive numerical experiments and found that the semismooth
Newton (SSN) method is very suitable for this purpose. The notion of semismoothness
was originally introduced by Mifflin [75] for real-valued functions and later extended
to vector-valued mappings by Qi and Sun [81]. A pioneering work on the SSN method
was due to Solodov and Svaiter [88], in which the authors proposed a globally conver-
gent Newton method by exploiting the structure of monotonicity and established a
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local superlinear convergence rate under the conditions that the generalized Jacobian
is semismooth and nonsingular at the global optimal solution. The convergence rate
guarantee was later extended in [115] to the setting where the generalized Jacobian
is not necessarily nonsingular. Recently, the SSN method has received a significant
amount of attention due to its success in solving structured convex problems to a high
accuracy. In particular, it has been successfully applied to solving SDP [114, 105],
LASSO [67], nearest correlation matrix estimation [80], clustering [96], sparse inverse
covariance selection [103], and composite convex minimization [102].

In the following, we show how to apply the SSN method to solve the subproblem
(4.3) with M = St(n, r). The tangent space to M = St(n, r) is given by

TXM = {V | V >X + X>V = 0}.

For ease of notation, we define the linear operator Ak by Ak(V ) := V >Xk + X>
k V

and rewrite the subproblem (4.3) as

(4.4)
Vk := argmin

V
〈∇f(Xk), V 〉+

1

2t
‖V ‖2F + h(Xk + V )

s.t. Ak(V ) = 0.

By associating a Lagrange multiplier Λ with the linear equality constraint, the La-
grangian function of (4.4) can be written as

L(V ; Λ) = 〈∇f(Xk), V 〉+
1

2t
‖V ‖2F + h(Xk + V )− 〈Ak(V ),Λ〉,

and the KKT system of (4.4) is given by

(4.5) 0 ∈ ∂V L(V ; Λ), Ak(V ) = 0.

The first condition in (4.5) implies that V can be computed by

(4.6) V (Λ) = proxth(B(Λ))−Xk with B(Λ) = Xk − t(∇f(Xk)−A∗
k(Λ)),

where A∗
k denotes the adjoint operator of Ak. By substituting (4.6) into the second

condition in (4.5), we see that Λ satisfies

(4.7) E(Λ) ≡ Ak(V (Λ)) = V (Λ)>Xk + X>
k V (Λ) = 0.

We will use the SSN method to solve (4.7). To do so, we need to first show that the
operator E is monotone and Lipschitz continuous. For any Λ1,Λ2 ∈ Sr, we have

(4.8)

‖E(Λ1)− E(Λ2)‖F

≤ ‖Ak‖op‖proxth(B(Λ1))− proxth(B(Λ2))‖F

≤ ‖Ak‖op‖B(Λ1)−B(Λ2)‖F

≤ t‖Ak‖
2
op‖Λ1 − Λ2‖F,

where the second inequality holds because the proximal mapping is nonexpansive.
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Moreover,

〈E(Λ1)− E(Λ2),Λ1 − Λ2〉

= 〈V (Λ1)− V (Λ2),A∗
k(Λ1 − Λ2)〉

=
1

t
〈proxth(B(Λ1))− proxth(B(Λ2)), B(Λ1)−B(Λ2)〉

≥
1

t
‖proxth(B(Λ1))− proxth(B(Λ2))‖2F

≥
1

t‖Ak‖2op
‖E(Λ1)− E(Λ2)‖2F ≥ 0,

where the first inequality holds because the proximal mapping is firmly nonexpansive
and the second inequality is due to (4.8). In particular, we see that E is actually
1/(t‖Ak‖

2
op)-coercive. Therefore, the operator E is indeed monotone and Lipschitz

continuous, and we can apply the SSN method to find a zero of E. In order to apply
the SSN method, we need to compute the generalized Jacobian of E.1 Toward that
end, observe that the vectorization of E(Λ) can be represented by

vec(E(Λ)) = (X>
k ⊗ Ip)Knrvec(V (Λ)) + (Ir ⊗X>

k )vec(V (Λ))

= (Krr + Ir2)(Ip ⊗X>
k )

[

proxth(·)(vec(Xk − t∇f(Xk))

+ 2t(Ir ⊗Xk)vec(Λ))− vec(Xk)
]

,

where Knr and Krr denote the commutation matrices. We define the matrix

G(vec(Λ)) = 2t(Krr + Ir2)(Ir ⊗X>
k )J (y)|y=vec(B(Λ))(Ir ⊗Xk),

where J (y) is the generalized Jacobian of proxth(y). From [44, Example 2.5], we

know that G(vec(Λ))ξ = ∂vec(E(vec(Λ)))ξ for all ξ ∈ R
r2 . Thus, G(vec(Λ)) can serve

as a representation of ∂vec(E(vec(Λ))). Note that since Λ is a symmetric matrix, we
only need to focus on the lower triangular part of Λ. It is known that there exists a
unique r2× 1

2r(r+ 1) matrix Ur, called the duplication matrix [74, Chapter 3.8], such
that Urvec(Λ) = vec(Λ). The Moore–Penrose inverse of Ur is U+

r = (U>
r Ur)−1U>

r

and satisfies U+
r vec(Λ) = vec(Λ). Note that both Ur and U+

r have only r2 nonzero
elements. As a result, we can represent the generalized Jacobian of vec(E(Urvec(Λ)))
by

G(vec(Λ)) = tU+
r G(vec(Λ))Ur = 4tU+

r (Ir ⊗X>
k )J (y)|y=vec(B(Λ))(Ir ⊗Xk)Ur,

where we use the identity Krr+Ir2 = 2UrU
+
r . It should be pointed out that G(vec(Λ))

can be singular. Therefore, the vanilla SSN method cannot be applied directly, and
we need to resort to a regularized SSN method proposed in [88] and further studied in
[115, 102]. It is known that the global convergence of the regularized SSN method is
guaranteed if any element in G(vec(Λ)) is positive semidefinite [102], which is the case
here because it can be shown that G(vec(Λ)) + G(vec(Λ))> is positive semidefinite.
We find that the adaptive regularized SSN (ASSN) method proposed in [102] is very
suitable for solving (4.7). The ASSN method first computes the Newton direction dk
by solving

(4.9) (G(vec(Λk)) + ηI)d = −vec(E(Λk)),

1See Appendix A for a brief discussion of the semismoothness of operators related to the proximal
mapping.
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where η > 0 is a regularization parameter. If the matrix size is large, then (4.9)
can be solved inexactly by the conjugate gradient method. The authors of [102] then
designed a strategy to decide whether or not to accept this dk. Roughly speaking, if
there is a sufficient decrease from ‖E(Λk)‖2 to ‖E(Λk+1)‖2, then we accept dk and
set

vec(Λk+1) = vec(Λk) + dk.

Otherwise, a safeguard step is taken. For more details on the ASSN method, we refer
the reader to [102].

5. Global Convergence and Iteration Complexity. In this section, we analyze
the convergence and iteration complexity of our ManPG algorithm (Algorithm 1) for
solving (1.1). Our convergence analysis consists of three steps. First, in Lemma 5.1
we show that Vk in (4.3) is a descent direction for the objective function in (4.3).
Second, in Lemma 5.2 we show that Vk is also a descent direction for the objective
function in (1.1) after applying a retraction to it; i.e., there is a sufficient decrease
from F (Xk) to F (RetrXk

(αVk)). This is motivated by a similar result in Boumal,

Absil, and Cartis [19], which states that the pullback function F̂ (V ) := F (RetrX(V ))
satisfies a certain Lipschitz-type property. Therefore, the results here can be seen as
an extension of those for smooth problems in [19] to the nonsmooth problem (1.1).
Third, we establish the global convergence of ManPG in Theorem 5.5.

Now, let us begin our analysis. The first observation is that the objective function
in (4.3) is strongly convex, which implies that the subproblem (4.3) is also strongly
convex. Recall that a function g is said to be α-strongly convex2 on R

n×r if

(5.1) g(Y ) ≥ g(X) + 〈∂g(X), Y −X〉+
α

2
‖Y −X‖2F ∀X,Y ∈ R

n×r.

The following lemma shows that Vk obtained by solving (4.3) is indeed a descent
direction in the tangent space to M at Xk.

Lemma 5.1. Given the iterate Xk, let

(5.2) g(V ) := 〈∇f(Xk), V 〉+
1

2t
‖V ‖2F + h(Xk + V )

denote the objective function in (4.3). Then, the following holds for any α ∈ [0, 1]:

(5.3) g(αVk)− g(0) ≤
(α− 2)α

2t
‖Vk‖

2
F
.

Proof. Since g is (1/t)-strongly convex, we have

(5.4) g(V̂ ) ≥ g(V ) + 〈∂g(V ), V̂ − V 〉+
1

2t
‖V̂ − V ‖2F ∀V, V̂ ∈ R

n×r.

In particular, if V, V̂ are feasible for (4.3) (i.e., V, V̂ ∈ TXk
M), then

〈∂g(V ), V̂ − V 〉 = 〈ProjTXk
M∂g(V ), V̂ − V 〉.

2A function g : Rn → R is called α-strongly convex [82, Definition 12.58] if there exists a constant
α > 0 such that g((1− t)x+ ty)≤(1− t)g(x)+tg(y)− 1

2
αt(1− t)‖x− y‖2 for all x, y when t ∈ (0, 1).

This is equivalent to saying that g − 1

2
α‖ · ‖2 is convex [82, Exercise 12.59]. Thus, we have the

definition in (5.1).
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From the optimality condition of (4.3), we have 0 ∈ ProjTXk
M∂g(Vk). Letting V = Vk

and V̂ = 0 in (5.4) yields

g(0) ≥ g(Vk) +
1

2t
‖Vk‖

2
F,

which implies that

h(Xk) ≥ 〈∇f(Xk), Vk〉+
1

2t
‖Vk‖

2
F + h(Xk + Vk) +

1

2t
‖Vk‖

2
F.

Moreover, the convexity of h yields

h(Xk+αVk)−h(Xk) = h(α(Xk+Vk)+(1−α)Xk)−h(Xk) ≤ α (h(Xk + Vk)− h(Xk)) .

Upon combining the above two inequalities, we obtain

g(αVk)− g(0) = 〈∇f(Xk), αVk〉+
‖αVk‖

2
F

2t
+ h(Xk + αVk)− h(Xk)

≤ α

(

〈∇f(Xk), Vk〉+ α
‖Vk‖

2
F

2t
+ h(Xk + Vk)− h(Xk)

)

≤
α2 − 2α

2t
‖Vk‖

2
F,

as desired.

The following lemma shows that {F (Xk)} is monotonically decreasing, where
{Xk} is generated by Algorithm 1.

Lemma 5.2. For any t > 0, there exists a constant ᾱ > 0 such that for any
0 < α ≤ min{1, ᾱ}, the condition in step 5 of Algorithm 1 is satisfied and the sequence
{Xk} generated by Algorithm 1 satisfies

F (Xk+1)− F (Xk) ≤ −
α

2t
‖Vk‖

2
F .

Proof. Let X+
k = Xk + αVk. Following Boumal, Absil, and Cartis [19], we first

show that f(RetrXk
(V )) satisfies a certain Lipschitz smoothness condition. By the

L-Lipschitz continuity of ∇f , for any α > 0, we have
(5.5)

f(RetrXk
(αVk))− f(Xk) ≤ 〈∇f(Xk),RetrXk

(αVk)−Xk〉+
L

2
‖RetrXk

(αVk)−Xk‖
2
F

= 〈∇f(Xk),RetrXk
(αVk)−X+

k + X+
k −Xk〉+

L

2
‖RetrXk

(αVk)−Xk‖
2
F

≤M2‖∇f(Xk)‖F‖αVk‖
2
F + α〈∇f(Xk), Vk〉+

LM2
1

2
‖αVk‖

2
F,

where the last inequality follows from (3.1) and (3.2). Since ∇f is continuous on the
compact manifoldM, there exists a constant G > 0 such that ‖∇f(X)‖F ≤ G for all
X ∈M. It then follows from (5.5) that

(5.6) f(RetrXk
(αVk))− f(Xk) ≤ α〈∇f(Xk), Vk〉+ c0α

2‖Vk‖
2
F,
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where c0 = M2G + LM2
1 /2. This implies that

F (RetrXk
(αVk))− F (Xk)

(5.6)

≤ α〈∇f(Xk), Vk〉+ c0α
2‖Vk‖

2
F + h(RetrXk

(αVk))− h(X+
k ) + h(X+

k )− h(Xk)

≤ α〈∇f(Xk), Vk〉+ c0α
2‖Vk‖

2
F + Lh‖RetrXk

(αVk)−X+
k ‖F + h(X+

k )− h(Xk)

(3.2)

≤ (c0 + LhM2)‖αVk‖
2
F + g(αVk)−

1

2t
‖αVk‖

2
F − g(0)

(5.3)

≤

(

c0 + LhM2 −
1

αt

)

‖αVk‖
2
F,

where g is defined in (5.2) and the second inequality follows from the Lipschitz
continuity of h. Upon setting ᾱ = 1/(2(c0 + LhM2)t), we conclude that for any
0 < α ≤ min{ᾱ, 1},

F (RetrXk
(αVk))− F (Xk) ≤ −

1

2αt
‖αVk‖

2
F = −

α

2t
‖Vk‖

2
F.

This completes the proof.

The following lemma shows that if one cannot make any progress by solving (4.3)
(i.e., Vk = 0), then a stationary point is found.

Lemma 5.3. If Vk = 0, then Xk is a stationary point of problem (1.1).

Proof. By Theorem 4.1 in [106], the optimality conditions of the subproblem (4.2)
are given by

0 ∈
1

t
Vk + grad f(Xk) + ProjTXk

M∂h(Xk + Vk), Vk ∈ TXk
M.

If Vk = 0, then 0 ∈ grad f(Xk) + ProjTXk
M∂h(Xk), which is exactly the first-order

necessary condition of problem (1.1) since Xk ∈M.

From Lemma 5.3, we know that Vk = 0 implies the stationarity of Xk with respect
to (1.1). This motivates the following definition of an ε-stationary point of (1.1).

Definition 5.4. We say that Xk ∈ M is an ε-stationary point of (1.1) if the
solution Vk to (4.4) with t = 1/L satisfies ‖Vk‖F ≤ ε/L.

We use ‖Vk‖F ≤ ε/L as the stopping criterion of Algorithm 1 with t = 1/L. From
Lemma 5.2, we obtain the following result, which is similar to that in [19, Theorem 2]
for manifold optimization with smooth objective functions.

Theorem 5.5. Under Assumption 1.1, every limit point of the sequence {Xk}
generated by Algorithm 1 is a stationary point of problem (1.1). Moreover, Algo-
rithm 1 with t = 1/L will return an ε-stationary point of (1.1) in at most

⌈

2L(F (X0)−

F ∗)/(γᾱε2)
⌉

iterations, where ᾱ is defined in Lemma 5.2 and F ∗ is the optimal value
of (1.1).

Proof. Since F is bounded below on M, by Lemma 5.2 we have

lim
k→∞

‖Vk‖
2
F = 0.

Combining this with Lemma 5.3, it follows that every limit point of {Xk} is a station-
ary point of (1.1). Moreover, sinceM is compact, the sequence {Xk} has at least one
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limit point. Furthermore, suppose that Algorithm 1 with t = 1/L does not terminate
after K iterations; i.e., ‖Vk‖F > ε/L for k = 0, 1, . . . ,K − 1. Let αk be the stepsize
in the kth iteration; i.e., Xk+1 = RetrXk

(αkVk). From Lemma 5.2, we know that
αk ≥ γᾱ. Thus, we have

F (X0)− F ∗ ≥ F (X0)− F (XK) ≥
t

2

K−1
∑

k=0

αk‖Vk/t‖
2
F >

tε2

2

K−1
∑

k=0

αk ≥
tKε2

2
γᾱ.

Therefore, Algorithm 1 finds an ε-stationary point in at most
⌈

2L(F (X0)−F ∗)/(γᾱε2)
⌉

iterations.

Remark 5.6. When the objective function F in (1.1) is smooth (i.e., the non-
smooth function h vanishes), the iteration complexity in Theorem 5.5 matches the
result given by Boumal, Absil, and Cartis in [19]. Zhang and Sra [111] analyzed the
iteration complexity of some first-order methods, but they assumed that the objec-
tive function is geodesically convex. Such an assumption is rather restrictive, as every
smooth function that is geodesically convex on a compact Riemannian manifold is
constant [13]. Bento, Ferreira, and Melo [12] also established some iteration com-
plexity results for gradient, subgradient, and proximal point methods. However, their
results for gradient and subgradient methods require the objective function to be con-
vex and the manifold to be of nonnegative curvature, while those for proximal point
methods only apply to a convex objective function over the Hadamard manifold.

6. Numerical Experiments. In this section, we apply our ManPG algorithm3

(Algorithm 1) to solve the sparse PCA (1.2) and compressed modes (CM) (1.3) prob-
lems. We compare ManPG with two existing methods: SOC [58] and PAMAL [24].
For both problems, we set the parameter γ = 0.5 and use the polar decomposition as
the retraction mapping in ManPG. The latter is because it was found that the MAT-
LAB implementation of QR factorization is slower than the polar decomposition; see
[5]. Moreover, we implement a more practical version of ManPG, named ManPG-Ada
and described in Algorithm 2, which incorporates a few tricks, including adaptively
updating the stepsize t. We set the parameters γ = 0.5 and τ = 1.01 in ManPG-Ada.
All the codes used in this section were written in MATLAB and run on a standard
PC with 3.70 GHz I7 Intel microprocessor and 16GB of memory.

6.1. A More Practical ManPG: ManPG-Ada. In this subsection, we introduce
some tricks used to further improve the performance of ManPG in practice. First, a
warm-start strategy is adopted for SSN; i.e., the initial point Λ0 in SSN is set as the
solution of the previous subproblem. For the ASSN algorithm, we always take the
SSN step as suggested by [102]. Second, we adaptively update t in ManPG. When t is
large, we may need a smaller total number of iterations to reach an ε-stationary point.
However, it increases the number of line-search steps and SSN steps. For sparse PCA
and CM problems, we found that setting t = 1/L leads to fewer line-search steps. We
can then increase t slightly if no line-search step was needed in the previous iteration.
This new version of ManPG, named ManPG-Ada, is described in Algorithm 2. We
also applied ManPG-Ada to solve sparse PCA and CM problems and compared its
performance with those of ManPG, SOC, and PAMAL.

3Our MATLAB code is available at https://github.com/chenshixiang/ManPG.
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Algorithm 2 ManPG-Ada for solving (1.1).

1: Input: initial point X0 ∈M, γ ∈ (0, 1), τ > 1, Lipschitz constant L
2: set t = 1/L
3: for k = 0, 1, . . . do
4: obtain Vk by solving the subproblem (4.3)
5: set α = 1 and linesearchflag = 0

6: while F (RetrXk
(αVk)) > F (Xk)−

α‖Vk‖
2
F

2t
do

7: α = γα
8: linesearchflag = 1
9: end while

10: set Xk+1 = RetrXk
(αVk)

11: if linesearchflag = 1 then

12: t = τt
13: else

14: t = max{1/L, t/τ}
15: end if

16: end for

6.2. Numerical Results on CM. For the CM problem (1.3), both SOC [58] and
PAMAL [24] rewrite the problem as

(6.1)
min

X,Q,P∈Rn×r

Tr(P>HP ) + µ‖Q‖1

s.t. Q = P,X = P,X>X = Ir.

SOC employs a three-block ADMM to solve (6.1), which updates the iterates as
follows:

(6.2)

Pk+1 := argmin
P

Tr(P>HP ) +
β

2
‖P −Qk + Λk‖

2
F +

β

2
‖P −Xk + Γk‖

2
F ,

Qk+1 := argmin
Q

µ‖Q‖1 +
β

2
‖Pk+1 −Q + Λk‖

2
F ,

Xk+1 := argmin
X

β

2
‖Pk+1 −X + Γk‖

2
F s.t. X>X = Ir,

Λk+1 := Λk + Pk+1 −Qk+1,
Γk+1 := Γk + Pk+1 −Xk+1.

PAMAL uses an inexact augmented Lagrangian method to solve (6.1), with the aug-
mented Lagrangian function being minimized by the proximal alternating minimiza-
tion algorithm proposed in [7]. Both SOC and PAMAL need to solve a linear system
(H + βI)X = B, where B is a given matrix.

In our numerical experiments, we tested the same problems as in [78] and [24].
In particular, we considered the time-independent Schrödinger equation

Ĥφ(x) = λφ(x), x ∈ Ω,

where Ĥ = − 1
2∆ denotes the Hamiltonian, ∆ denotes the Laplacian operator, and

H is a symmetric matrix formed by discretizing the Hamiltonian Ĥ. We focused on
the 1D free-electron (FE) model. The FE model describes the behavior of valence
electron in a crystal structure of a metallic solid and has Ĥ = − 1

2∂
2
x. We considered
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the system on a domain Ω = [0, 50] with periodic boundary condition and discretize
the domain with n equally spaced nodes. The stepsize t in Algorithm 1 was set to
1/(2λmax(Ĥ)), where λmax(Ĥ) denotes the largest eigenvalue of Ĥ and is given by
2n2/502 in this case.

Since the matrix H is circulant, we used FFT to solve the linear systems in
SOC and PAMAL, which is more efficient than directly inverting the matrices. We
terminated ManPG when ‖Vk/t‖

2
F ≤ ε := 10−8nr or the maximum iteration number

30000 was reached. For the inner iteration of ManPG (i.e., using SSN to solve (4.3)),
we terminated it when ‖E(Λ)‖2F ≤ max{10−13,min{10−11, 10−3t2ε}} or the maximum
iteration number 100 was reached. In all the tests of the CM problem, we ran ManPG
first and let FM denote the returned objective value. We then ran SOC and PAMAL
and terminated them when F (Xk) ≤ FM + 10−7 and

(6.3)
‖Qk − Pk‖F

max{1, ‖Qk‖F , ‖Pk‖F }
+

‖Xk − Pk‖F
max{1, ‖Xk‖F , ‖Pk‖F }

≤ 10−4.

Note that (6.3) measures the constraint violation of the reformulation (6.1). If (6.3)
was not satisfied in 30000 iterations, then we terminated SOC and PAMAL. We also
ran ManPG-Ada (Algorithm 2) and terminated it if F (Xk) ≤ FM + 10−7.

In our experiments, we found that SOC and PAMAL are very sensitive to the
choice of parameters. The default setting of the parameters of SOC and PAMAL
suggested in [78] and [24] usually cannot achieve our desired accuracy. Unfortunately,
there is no systematic study on how to tune these parameters. We spent a significant
amount of effort on tuning these parameters, and the ones we used are given as
follows. For SOC (6.2), we set the penalty parameter β = nrµ/25 + 1. For PAMAL,
we found that the setting of the parameters given on page B587 of [24] did not work
well for the problems we tested. Instead, we found that the following settings of these
parameters worked best and were thus adopted in our tests: τ = 0.99, γ = 1.001,
ρ1 = 2 |λmin(H)| + r/10 + 2, Λp,min = −100, Λp,max = 100, Λ1

p = 0nr, p = 1, 2, and

εk = (0.995)k, k ∈ N. For the meaning of these parameters, we refer the reader to page
B587 of [24]. We used the same parameters of PAM in PAMAL as recommended by
[24]. For different settings of (n, r, µ), we ran the four algorithms on 50 instances whose
initial points were obtained by projecting randomly generated points onto St(n, r).
Since problem (1.3) is nonconvex, it is possible that ManPG, ManPG-Ada, SOC, and
PAMAL return different solutions from random initializations. To increase the chance
that all four solvers found the same solution, we ran the Riemannian subgradient
method for 500 iterations and used the resulting iterate as the initial point. The
Riemannian subgradient method is described as follows:

(6.4)

∂̂F (Xk) := ProjTXk
St(n,r)(2HXk + µsign(Xk)),

Xk+1 := RetrXk

(

−
1

k3/4
∂̂F (Xk)

)

,

where sign(·) denotes the elementwise sign function. Moreover, we tried to run the
Riemannian subgradient method (6.4) until it solved the CM problem. However, this
method is extremely slow and we only report one case in Figure 1. We report the
average CPU time, iteration number, and sparsity in Figures 1 to 4, where spar-
sity is the percentage of zeros; when computing sparsity, X is truncated by zeroing
out its entries with magnitude smaller than 10−5. For SOC and PAMAL, we only
took into account the solutions that were close to the one generated by ManPG.
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(a) CPU (b) Iteration

Fig. 1 Comparison for CM problem (1.3), different n = {64, 128, 256} with r = 4 and µ = 0.1.

Here, the closeness of the solutions is measured by the distance between their col-
umn spaces. More specifically, let XM , XS , and XP denote the solutions generated
by ManPG, SOC, and PAMAL, respectively. Then their distances are computed by
dist(XM , XS) = ‖XMX>

M −XSX
>
S ‖F and dist(XM , XP ) = ‖XMX>

M −XPX
>
P ‖F. We

only counted the results if dist2(XM , XS) ≤ 0.1 and dist2(XM , XP ) ≤ 0.1.
In Figure 1, we report the results of the Riemannian subgradient method with

respect to different n’s. We terminated the Riemannian subgradient method (6.4) if
F (Xk) < FM + 10−3. We see that this accuracy tolerance 10−3 is too large to yield
a good solution with reasonable sparsity level, yet it is already very time consuming.
As a result, we do not report more results on the Riemannian subgradient method. In
Figures 2, 3, and 4, we see that the solutions returned by ManPG and ManPG-Ada
have better sparsity than SOC and PAMAL. We also see that ManPG-Ada outper-
forms ManPG in terms of CPU time and iteration number. In Figure 2, the iteration
number of ManPG increases with the dimension n, because the Lipschitz constant
L = 2λmax(H) = 4n2/502 increases quadratically, which is consistent with our com-
plexity result. In Figure 3, we see that the CPU times of ManPG and ManPG-Ada
are comparable to those of SOC and PAMAL when r is small, but are slightly higher
when r becomes large. In Figure 4, we see that the performance of the algorithms is
also affected by µ. In terms of CPU time, ManPG and ManPG-Ada are comparable
to SOC and PAMAL when µ becomes large.

The first five CM of the 1D FE model computed by the ManPG-Ada, SOC, and
PAMAL methods are shown in Figure 5. We found that the CM generated by ManPG
and ManPG-Ada were the same, so we only report the results of ManPG-Ada. We
flip the CM if necessary so that most values on the support of the CM are positive, as
sign ambiguities do not affect the minimal values of the objective function in (1.3). It
can be seen that the CM obtained from the three methods are compactly supported
functions, and their localization degree is almost the same. We next examine the
approximation behavior of the unitary transformations derived from the CM to the
eigenmodes of the Schrödinger operator. The approximation accuracy is measured
by comparing the first r eigenvalues (σ1, . . . , σr) of the matrix X>ĤX with the first
r eigenvalues (λ1, . . . , λr) of the corresponding Schrödinger operator Ĥ. Figure 6
reports the results for different values of r. We can see that the approximation errors
of the ManPG-Ada, SOC, and PAMAL methods are similar, and that (σ1, . . . , σr)
converges to (λ1, . . . , λr) as r increases.
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(a) CPU (b) Iteration

Fig. 2 Comparison for CM problem (1.3), different n = {64, 128, 256, 512} with r = 4 and µ = 0.1.
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Fig. 3 Comparison for CM problem (1.3), different r = {1, 2, 4, 6, 8} with n = 128 and µ = 0.15.
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Fig. 4 Comparison for CM problem (1.3), different µ = {0.05, 0.1, 0.15, 0.2, 0.25} with n = 128 and

r = 4.

We also report the total number of line-search steps and the averaged iteration
number of SSN in ManPG and ManPG-Ada in Table 1. We see that ManPG-Ada
needs more line-search steps and SSN iterations, but as we show in Figures 2, 3, and 4,
ManPG-Ada is faster than ManPG in terms of CPU time. This is mainly because the
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Fig. 5 Comparison of the first five modes obtained for the 1D FE model with different values of µ.

Left column: µ = 1/30. Right column: µ = 1/50.
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Fig. 6 Comparisons of the first r eigenvalues of the 1D FE model. ∗: the first r eigenvalues of the

matrix Ĥ. ◦: the first r eigenvalues of the matrix X>ĤX, where X is the solution obtained

by ManPG-Ada. �: the first r eigenvalues of the matrix X>ĤX, where X is the solution

obtained by SOC. +: the first r eigenvalues of the matrix X>ĤX, where X is the solution

obtained by PAMAL.

computational costs of retraction and SSN steps in this problem are both nearly the
same as computing the gradient. In the last two columns of Table 1, “#s|d” denotes
the number of instances for which SOC and PAMAL generate the same/ different
solutions as ManPG with the closeness measurement discussed above; “# f” denotes
the number of instances in which SOC and PAMAL fail to converge. We see that
for the tested instances of the CM problem, all algorithms converged thanks to the
parameters that we chose, although sometimes the solutions generated by PAMAL
are different from those generated by ManPG and SOC.
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Table 1 Number of line-search steps and average number of SSN iterations for different (n, r, µ).

ManPG ManPG-Ada SOC PAMAL

# line-search SSN iter # line-search SSN iter # s| d| f # s| d| f

n r = 4, µ = 0.1

64 85.94 1.0005 165.98 1.3307 50|0|0 48|2|0
128 70.5 0.64414 540.76 1.2237 50|0|0 50|0|0
256 84.06 0.39686 1191.5 0.60652 50|0|0 50|0|0
512 55.1 0.16622 2720.6 0.2417 50|0|0 49|1|0

µ n = 128, r = 4

0.05 49.2 0.30933 695.6 0.83637 50|0|0 50|0|0
0.1 74.38 0.54915 572.42 1.1514 50|0|0 50|0|0
0.15 102.62 0.82093 439.6 1.2899 50|0|0 50|0|0
0.2 82.52 0.81565 350.86 1.2114 50|0|0 50|0|0
0.25 93.3 0.57232 209.12 1.0122 50|0|0 48|2|0

r n = 128, µ = 0.15

1 0 0.8971 0 0.98694 50|0|0 50|0|0
2 3.48 1.0001 61.02 1.1135 50|0|0 50|0|0
4 86.92 0.91814 311 1.2812 50|0|0 50|0|0
6 169.8 0.60206 719.42 1.5195 50|0|0 49|1|0
8 216.54 1.2011 1198.8 2.8667 50|0|0 42|8|0

6.3. Numerical Results on Sparse PCA. In this section, we compare the per-
formance of ManPG, ManPG-Ada, SOC, and PAMAL for solving the sparse PCA
problem (1.2). Note that there are other algorithms for sparse PCA such as those
proposed in [55, 27], but these methods work only for the special case when r = 1, i.e.,
the constraint set is a sphere. The algorithm proposed in [37] needs to smooth the
`1 norm in order to apply existing gradient-type methods, and thus the sparsity of the
solution is no longer guaranteed. Algorithms proposed in [118, 86, 56] do not impose
orthogonal loading directions. In other words, they cannot impose both sparsity and
orthogonality on the same variable. Therefore, we chose not to compare our ManPG
with these algorithms.

The random data matrices A ∈ R
m×n considered in this section were generated

in the following manner. We first generate a random matrix using the MATLAB
function A = randn(m,n), then shift the columns of A so that their mean is equal
to 0, and lastly normalize the columns so that their Euclidean norms are equal to
one. In all tests, m is equal to 50. The Lipschitz constant L is 2σ2

max(A), so we
use t = 1/(2σ2

max(A)) in Algorithms 1 and 2, where σmax(A) is the largest singular
value of A. Again, we spent a lot of effort in fine-tuning the parameters for SOC
and PAMAL and found that the following settings of the parameters worked best for
our tested problems. For SOC, we set the penalty parameter β = 2σ2

max(A). For
PAMAL, we set τ = 0.99, γ = 1.001, ρ1 = 5σ2

max(A), Λp,min = −100, Λp,max = 100,
Λ1
p = 0nr, p = 1, 2, and εk = (0.996)k, k ∈ N. We again refer the reader to page

B587 of [24] for the meanings of these parameters. We used the same parameters
of PAM in PAMAL as suggested in [24]. We used the same stopping criterion for
ManPG, ManPG-Ada, SOC, and PAMAL as for the CM problems. For different
settings of (n, r, µ), we ran the four algorithms with 50 instances whose initial points
were obtained by projecting randomly generated points onto St(n, r). We then ran
the Riemannian subgradient method (6.4) for 500 iterations and used the returned
solution as the initial point of the compared solvers.
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(a) CPU (b) Iteration (c) Sparsity

Fig. 7 Comparison for sparse PCA problem (1.2), different n = {100, 200, 500, 800, 1000, 1500} with

r = 5 and µ = 0.8.
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Fig. 8 Comparison for sparse PCA problem (1.2), different r = {1, 2, 4, 6, 8, 10} with n = 800 and

µ = 1.
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Fig. 9 Comparison for sparse PCA problem (1.2), different µ = {0.55, 0.6, 0.65, 0.7, 0.75, 0.8} with

n = 500 and r = 5.

The CPU time, iteration number, and sparsity are reported in Figures 7, 8, and
9. As with the CM problem, all the values were averaged over those instances that
yielded solutions that were close to those given by ManPG. In Figures 7, 8, and 9,
we see that ManPG and ManPG-Ada significantly outperformed SOC and PAMAL
in terms of the CPU time required to obtain the same solutions. We also see that
ManPG-Ada greatly improved the performance of ManPG. We also report the total
number of line-search steps and the average iteration number of SSN in ManPG and
ManPG-Ada in Table 2. We observe from Table 2 that SOC failed to converge on
one instance, and for several instances SOC and PAMAL generated different solutions
when compared to those generated by ManPG.
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Table 2 Sparse PCA: Number of line-search steps and average number of SSN iterations for dif-

ferent (n, r, µ).

ManPG ManPG-Ada SOC PAMAL

# line-search SSN iter # line-search SSN iter # s| d| f # s| d| f

n r = 5, µ = 0.8

100 0.8 1.1881 0.08 1.5221 46|3|1 50|0|0
200 2.98 1.0722 15.1 1.3705 48|2|0 48|2|0
500 0.4 1.025 29.4 1.2066 50|0|0 50|0|0
800 0 1.0167 59.36 1.1847 49|1|0 50|0|0
1000 3.08 1.016 82.04 1.1712 49|1|0 49|1|0
15 11 1.0121 108.94 1.1035 48|2|0 49|1|0

µ n = 500, r = 5

0.55 0 1.0155 68.7 1.1463 48|2|0 50|0|0
0.60 0 1.0197 48.82 1.1431 50|0|0 49|1|0
0.65 0 1.019 57.96 1.1841 48|2|0 48|2|0
0.70 0 1.0246 52.5 1.2098 49|1|0 50|0|0
0.75 0.36 1.0238 55.88 1.2252 48|2|0 49|1|0
0.80 0 1.0286 28.98 1.1966 49|1|0 49|1|0

r n = 800, µ = 0.6

1 0 0.90182 4.12 1.0335 50|0|0 50|0|0
2 82.06 1.0041 10.74 1.0767 49|1|0 50|0|0
4 8.52 1.0229 39.04 1.1453 48|2|0 50|0|0
6 0 1.0243 72.22 1.3198 46|4|0 49|1|0
8 0.34 1.0309 125.64 1.5325 46|4|0 50|0|0
10 0.76 1.0579 132.58 1.6894 42|8|0 47|3|0

7. Subsequent Developments. In this section, we discuss some recent advances
in algorithms for Riemannian optimization with nonsmooth objective functions that
are mostly inspired by ManPG.

7.1. Manifold Proximal Point Algorithm. An immediate extension of ManPG is
the manifold proximal point algorithm (ManPPA), which is studied by Chen et al. in
[22]. In particular, the authors focused on two representative applications of Rie-
mannian optimization with nonsmooth objective: orthogonal dictionary learning and
robust subspace recovery. Both problems take the following form, which minimizes a
nonsmooth function over the Stiefel manifold [61, 60, 63, 62, 59, 92, 117]:

(7.1) min
X

h(X) := ‖Y >X‖1 s.t. X ∈ St(n, r).

Note that (7.1) is a special case of (1.1), where the smooth function f vanishes.
Therefore, ManPG can be naturally applied to solve (7.1) and, interestingly, ManPG
becomes a Riemannian counterpart of the PPA in this case. The authors thus named
it ManPPA in [22]. It is proved in [22] that if the problem instance has the sharpness
property, then the local convergence rate of ManPPA is at least quadratic. Key to
their proof of the quadratic rate result is a new Riemannian subgradient inequality
(see also [66]), which can be of independent interest. A stochastic ManPPA is also
proposed in [22] to tackle problems with larger size.

7.2. Manifold Proximal Linear Algorithm. In a similar vein as ManPG and
ManPPA, a manifold proximal linear algorithm (ManPL) is proposed in [100] to solve
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the following problem:

(7.2) min
X

f(X) + h(c(X)) s.t. X ∈ M.

Here, f and h satisfy Assumption 1.1, and c is a smooth mapping. A typical iteration
of the ManPL algorithm for solving (7.2) is given by

Vk := argmin
V

〈∇f(Xk), V 〉 + h(c(Xk) + J(Xk)V ) +
1

2t
‖V ‖2F s.t. V ∈ TXk

M,

Xk+1 := RetrXk
(αkVk),

where J(X) = ∇c(X) is the Jacobian of c and t > 0 is a stepsize. Note that the
subproblem for updating Vk is convex and thus can be solved by the SSN method in a
similar manner as the ManPG subproblem (4.3). The iteration complexity of ManPL
is also established in [100].

7.3. Stochastic ManPG. Wang, Ma, and Xue [95] proposed the stochastic coun-
terpart of ManPG, which solves (1.1) when the smooth function f takes one of the
following forms:

f(X) = Eπ[f(X;π)], (Online Case)

f(X) =
1

m

m
∑

i=1

fi(X). (Finite-Sum Case)

Here, π is a random variable and Eπ is the expectation with respect to the distribution
of π. The stochastic ManPG generates the iterates via

Vk := argmin
V

〈gk, V 〉 +
1

2t
‖V ‖2F + h(Xk + V ) s.t. V ∈ TXk

M,

Xk+1 := RetrXk
(αkVk),

where gk is a stochastic gradient of f . The authors of [95] discussed two different
choices of gk. One is a minibatch stochastic gradient estimator, which gives rise to
the R-ProxSGD algorithm. The other is the SpiderBoost [32, 99] gradient estimator,
which gives rise to the R-ProxSPB algorithm. They then established the first-order
oracle complexities of these two algorithms.

7.4. Zeroth-Order ManPG. Using the Gaussian smoothing technique [76], the
work [64] develops the zeroth-order ManPG (ZO-ManPG) algorithm, which estimates
the gradient of the objective function from its zeroth-order information. Specifically,
suppose that the smooth function f in (1.1) takes the form

f(x) :=

∫

ξ

F̄ (x, ξ)dP (ξ),

where P is a probability distribution. In the ZO-ManPG algorithm, the gradient
∇f(Xk) in (4.3) is replaced by the zeroth-order gradient estimator

ḡµ,ξ(x) =
1

m

m
∑

i=1

gµ,ξi(x),

where

gµ,ξi(x) =
F̄ (Retrx(µui), ξi) − F̄ (x, ξi)

µ
ui,
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µ > 0 is the smoothing parameter, and ui is a standard normal random vector on
TxM. The zeroth-order oracle complexity of the proposed ZO-ManPG algorithm is
established in [64].

7.5. Riemannian Proximal Gradient Method. It is not hard to see that most
results in this paper directly apply to (1.1) when the Stiefel manifold is replaced
by an embedded submanifold. A natural question then is whether ManPG can be
extended to solve (1.1) when M is a general Riemannian manifold. This question was
studied by Huang and Wei in [52]. In particular, the Riemannian proximal gradient
(RPG) method proposed in [52] replaces (4.2) in ManPG by the following update:
Find V ∗

k ∈ TXk
M such that V ∗

k is a stationary point of `Xk
(V ) on TXk

M and
`Xk

(0) ≥ `Xk
(V ∗

k ), where

`Xk
(V ) := 〈grad f(Xk), V 〉Xk

+
1

2t
‖V ‖2Xk

+ h(RetrXk
(V )).

The reason that one can only find a stationary point of `Xk
(V ) is because the term

h(RetrXk
(V )) is nonsmooth and nonconvex. Consequently, the convergence rate anal-

ysis in [52] requires a rather strong assumption (see [52, Assumption 4]), which is only
known to hold when the retraction is the exponential mapping.

7.6. Riemannian Proximal Newton Method. A Riemannian proximal Newton
(RPN) method for solving (1.1) with h(X) = ‖X‖1 is proposed in [87]. The method
proceeds as follows. First, the RPG direction Vk ∈ TXk

M is obtained by solving
(4.3). Then, the Riemannian Newton direction Uk ∈ TXk

M is obtained by solving
the linear system Jk(Uk) = −Vk, where Jk is a certain linear operator related to the
generalized Jacobian of Vk. Finally, a retraction step is performed to update Xk+1;
i.e., Xk+1 = RetrXk

(Uk). It is proved in [87] that the proposed RPN method has a
local superlinear convergence rate under certain assumptions.

8. Discussion and Concluding Remarks. Manifold optimization has attracted
a lot of attention recently. In this paper, we have discussed our ManPG algorithm
for solving (1.1), which involves minimizing a structured nonsmooth function over the
Stiefel manifold. Unlike existing methods, our ManPG algorithm relies on proximal
gradient information on the tangent space rather than subgradient information. Un-
der the assumption that the smooth part of the objective function has a Lipschitz
continuous gradient, we proved that ManPG converges globally to a stationary point
of (1.1). Moreover, we analyzed the iteration complexity of ManPG for obtaining an ε-
stationary solution. Our numerical experiments suggested that when combined with a
regularized SSN method for finding the descent direction, ManPG performs efficiently
and robustly. In particular, ManPG is more robust than SOC and PAMAL for solving
the compressed modes and sparse PCA problems, as it is less sensitive to the choice of
parameters. Moreover, ManPG significantly outperforms SOC and PAMAL for solv-
ing the sparse PCA problem in terms of CPU time needed to obtain the same solution.

It is worth noting that the convergence and iteration complexity analyses in sec-
tion 5 also hold for other, not necessarily bounded, embedded submanifolds of a
Euclidean space, provided that the objective function F satisfies some additional as-
sumptions (e.g., F is coercive and lower bounded on M). We focused on the Stiefel
manifold because it is easier to discuss the SSN method in section 4.2 for finding
the descent direction. As demonstrated in our tests on the compressed modes and
sparse PCA problems, the efficiency of ManPG relies highly on that of solving the
convex subproblem to find the descent direction. For general Riemannian submani-
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folds, it remains an interesting question whether the operator Ak in (4.4) can be easily
computed and the resulting subproblem solved efficiently.

Our ManPG algorithm has motivated many follow-up works, some of which were
discussed in section 7. Riemannian optimization with nonsmooth objective functions
is an active research area, and there are many developments that we are not able to
cover in this paper. For example, various applications involving manifold optimization
with nonsmooth objective functions can be found in [3, 97, 69]. Moreover, variants
of ManPG have been applied to tackle applications such as sparse CCA [23] and ro-
bust matrix completion [50]. There are also some exciting recent developments in
Riemannian ADMM [65] and Riemannian optimization with non-Lipschitz objective
functions [108]. One important research goal is to design algorithms for nonsmooth
optimization over Riemannian manifold that enjoy strong convergence guarantees and
are numerically efficient.

Appendix A. Semismoothness of Proximal Mapping.

Definition A.1. Let E : Ω → R
q be locally Lipschitz continuous at X ∈ Ω ⊂ R

p.

The B-subdifferential of E at X is defined by

∂BE(X) :=

{

lim
k→∞

E′(Xk)
∣

∣

∣
Xk ∈ DE , Xk → X

}

,

where DE is the set of differentiable points of E in Ω. The set ∂E(X) = conv(∂BE(X))
is called Clarke’s generalized Jacobian, where conv denotes the convex hull.

Note that if q = 1 and E is convex, then the definition is the same as that of the
standard convex subdifferential. Thus, we use the notation ∂ in Definition A.1.

Definition A.2 ([75, 81]). Let E : Ω → R
q be locally Lipschitz continuous at

X ∈ Ω ⊂ R
p. We say that E is semismooth at X ∈ Ω if E is directionally differentiable

at X and for any J ∈ ∂E(X + ∆X) with ∆X → 0,

E(X + ∆X) − E(X) − J∆X = o(‖∆X‖).

We say that E is strongly semismooth at X if E is semismooth at X and

E(X + ∆X) − E(X) − J∆X = O(‖∆X‖2).

We say that E is semismooth on Ω if it is semismooth at every X ∈ Ω.

The proximal mapping of the `p (p ≥ 1) norm is strongly semismooth [31, 93].
From [93, Proposition 2.26], if E : Ω → R

m is a piecewise C1 (piecewise smooth)
function, then E is semismooth. If E is a piecewise C2 function, then E is strongly
semismooth. It is known that proximal mappings of many interesting functions are
piecewise linear or piecewise smooth.
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