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Abstract— The domain of feature learning is replete with self-

supervised methodologies that harness local context to decode 

complex patterns in data. This paper investigates the significance 

of the SINBAD model within the realm of self-supervised learning. 

SINBAD, a unique non-convolutional neural network approach, 

is particularly adept at extracting mutual information and 

identifying distinct local structures. The underlying theory of 

SINBAD, anchored in neuroscience, suggests that capturing 

predictable connections among subsets of features can 

significantly enhance feature extraction. This principle has been 

instrumental in the advancement of self-supervised learning as it 

has given rise to the development of its convolutional extensions 

that are self-guided by contextual understanding. In this paper, 

we explore the application of the SINBAD algorithm for automatic 

target recognition, specifically in detecting military vehicles 

within complex rural environments. Our methodology includes a 

preprocessing stage utilizing a linear Support Vector Machine 

(SVM) to learn and apply a filter. This filter is crucial for 

excluding image locations that are completely irrelevant, thereby 

isolating potentially relevant regions for contextual self-

supervision. By focusing on these selected areas and avoiding the 

need to process arbitrary regions, we aim to minimize resource 

requirements and streamline the self-supervised learning process. 

In the subsequent phase of our approach, the focus shifts to 

identifying nonlinear features that provide insights into local 

contexts. This involves extracting correlated nonlinear functions 

from nearby, yet distinct and non-overlapping patches. By 

analyzing these functions, we can discern patterns and 

relationships within the local context, where each function 

correlates with its unique, adjacent patch. This sophisticated 

analysis allows for a deeper understanding of the local area, 

contributing significantly to the accuracy of the final classification 

step. Finally, the process culminates with the use of a linear 

classifier that utilize the SINBAD features to effectively identify 

and categorize image patches that contain the intended targets. 

The research was conducted using the TNO-TM Search_2 dataset, 

which comprises 44 high-resolution images. These images depict 

cluttered rural landscapes and feature 9 different types of military 

vehicles. The dataset's complexity and variety provide a 

comprehensive environment for testing and validating the 

effectiveness of the SINBAD model in accurately identifying and 

classifying these vehicles within such challenging and diverse 

scenes.  

Index Terms— Self-Supervised Learning, Automatic Target 

Recognition, Nonlinear Feature Extraction, Contextually-Guided 

Neural Networks.  

I. INTRODUCTION 

This paper delves into the domain of self-supervised feature 
learning methodologies designed to decode complex patterns in 
data through the utilization of local context [1, 2, 3, 4]. We focus 
our investigation on the SINBAD model [5, 6], a meta-learning 
approach typically implemented as a non-convolutional neural 
network for extracting mutual information [2] and identifying 
distinct local structures [3]. This approach has paved the way for 
convolutional extensions for learning transferrable features [7]. 
Contrasting with deep CNNs, the SINBAD model draws 
inspiration from biological neural networks, particularly cortical 
areas that optimize feature extraction using local contextual 
information rather than relying on error backpropagation. This 
approach, grounded in theoretical neuroscience, highlights the 
importance of spatial and temporal contexts in feature selection. 
Such contextually selected features are behaviorally beneficial 
as they capture predictable relationships with other distinct 
sensory inputs, reflecting structured causal dependencies in the 
external world. 

In this paper, we apply the SINBAD algorithm to the 
challenge of automatic target recognition, with a specific focus 
on detecting military vehicles in complex rural environments 
[8]. Our methodology initiates with a preprocessing phase that 
employs a linear method (we used linear-SVM [9, 10]) to 
discard highly irrelevant image locations, and keeping regions 
that are potentially target-related and suitable for contextual 
self-supervision. This selective process aims to minimize 
resource consumption and optimize the self-supervised learning 
workflow. Progressing to the next phase, the SINBAD neural 
network is applied to the discover nonlinear features that are 
predictive of the local contexts. This is achieved by extracting 
correlated nonlinear functions from nearby, distinct, and non-
overlapping patches. Discovering these features in a self-
supervised manner improves the generalization capabilities of 
the subsequent classification phase and leads to higher accuracy. 
For this final phase, we deploy a linear classifier that utilizes the 
derived SINBAD features to efficiently identify and categorize 
patches containing the targets. For our experimental results, we 
use the TNO-TM Search_2 dataset, consisting of 44 high-
resolution images that depict a variety of military vehicles in 
cluttered rural landscapes [8]. The diversity and complexity of 
this dataset provide an ideal testing ground for the SINBAD 
model, demonstrating its effectiveness in accurately identifying 
and classifying military vehicles in challenging and varied 
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scenes, thus proving its relevance in self-supervised 
contextually-guided feature extraction [7].  

II. RELATED WORK: CONTEXTUALLY-GUIDED SELF-

SUPERVISED FEATURE LEARNING 

Feature learning is a fundamental task in machine learning 
and data analysis, aimed at discovering informative 
representations from high-dimensional data [9]. Effective 
feature extraction techniques play a crucial role in improving the 
performance of various machine learning algorithms, including 
classification, clustering, and dimensionality reduction. 
Traditional methods, such as Principal Component Analysis 
(PCA), are limited in their ability to capture nonlinear 
relationships and preserve local structure [9]. Kernel PCA 
(KPCA) [9-11], as a nonlinear extension of PCA, leverages 
kernel functions to map the data into a higher-dimensional 
feature space where linear PCA can be applied. This enables 
KPCA to capture intricate nonlinear patterns in the data. 
However, KPCA does not explicitly take into account the local 
neighborhood information, which is vital for preserving the 
local structure and forming a meaningful lower-dimensional 
representation. Addressing this limitation, manifold learning 
methods [9], such as Laplacian eigenmaps [12] and t-SNE [13], 
have gained popularity for their ability to capture the underlying 
geometry of the data or to visualize/reveal the underlying 
structure of the data distribution. However, these manifold 
methods may not fully exploit the power of kernel tricks to 
handle nonlinearities. Moreover, they often lack the capability 
for out-of-sample extension, limiting their practical 
applicability [14].  

As a promising alternative, deep learning [1, 4, 7, 15, 16, 17, 
18, 19, 20, 21], as a subfield of machine learning, has shown its 
prowess in many challenging tasks like image recognition, 
speech recognition, and natural language processing. Deep 
learning models, especially Convolutional Neural Networks 
(CNNs), have been effective due to their ability to capture high-
level abstractions in data by building complex hierarchies of 
features [15, 16]. CNNs conduct a series of convolution (Conv) 
operations, each succeeded by nonlinear transformations 
typified by sigmoidal or ReLU activation functions. These 
progressive non-linear operations are instrumental in tuning the 
neurons of the network to increasingly inferential features. With 
such inferential and transferrable features, the usefulness of 
deep learning models extends beyond their impressive accuracy 
on expansive datasets. CNN features also receive interest 
because the initial layer features they learn to extract show 
similarities to the ones derived by biological neurons in the 
primary visual cortex (V1) [17].  

While there are notable parallels between cortical areas and 
deep CNNs, key distinctions exist. One major difference is that, 
unlike deep CNNs which rely heavily on error back-propagation 
from their upper layers to refine initial features, cortical regions 
utilize self-supervision. This self-supervision is rooted in local 
contextual information, which is pivotal in optimizing feature 
tuning. Although this information is locally sourced, it plays a 
crucial role in guiding feature selection. The widely accepted 
view in theoretical neuroscience posits that this guidance is 
derived from the spatial and temporal contexts of the features 
[2, 3, 7, 22-26]. The behavioral relevance of these contextually-

selected features stems from their predictable associations with 
other distinct features obtained from separate sensory inputs. 
Such associations reflect the structured causal relationships 
inherent in the external environment, from which these features 
originate.  

In the CG-CNN framework [7], the concept of context is 
akin to how a word’s meaning in Natural Language Processing 
depends on its surrounding words. Similarly, in image analysis, 
the interpretation of a pixel can depend on nearby areas, forming 
a context. To capture these contextual relationships, CG-CNN 
introduces contextual groups, each representing a set of training 
examples with similar patterns. However, simultaneously 
training on a large number of contextual groups to capture 
comprehensive contextual regularities in images can be 
complex. To manage this, CG-CNN employs an iterative 
training strategy, using an Expectation-Maximization (EM) 
algorithm, and focusing on a different small subset of contextual 
groups in each iteration. This approach follows the principles of 
transfer learning. During each EM iteration, the connections in 
the Classifier layer are trained in the E-step, holding the Feature 
Generator's weights constant. Then, in the M-step, the Feature 
Generator's weights are updated while keeping the newly 
optimized Classifier connections constant. By iteratively 
training on different small subsets of contextual groups, CG-
CNN creates 'pluripotent' features that can capture various 
contexts. This training approach provides an efficient method 
for learning the regularities that define contextual classes by 
limiting the number of classes in each EM iteration to a 
manageable level. CG-CNN constructs its multiple views 
through a self-supervision process, utilizing augmented versions 
of the input data. By learning a common feature space that 
maximizes the agreement among these internally generated 
views, CG-CNN effectively learns the underlying regularities in 
the data.  

 
Figure 1. Self-supervised CG-CNN architecture that learns to discriminate 

auxiliary classes formed by contextual relations. 
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III. APPLICATION OF THE SINBAD APPROACH FOR 

AUTOMATIC TARGET RECOGNITION 

Our research was conducted using the TNO-TM Search_2 
dataset, which includes 44 high-resolution images depicting 
complex rural landscapes featuring nine distinct military vehicle 
types [8]. Training was performed on a subset of 24 images, 
while a separate, randomly selected set of 10 images was 
reserved for validation of our model's efficacy.  

Our methodology employs a layered and iterative strategy 
akin to the repetitive application of convolution and ReLU 
layers in CNNs, enhancing performance progressively. This 
process includes: (1) the initial acquisition of SINBAD features, 
which mirror the patterns found in our database images, to 
pinpoint potential target sites; (2) the refinement of SINBAD 
features, tailored specifically for areas deemed 'suspicious', 
thereby honing the focus to a more defined set of potential 
targets; (3) a further iteration to develop an even more advanced 
set of SINBAD features, applied to this refined set of locations, 
aiming to further diminish the occurrence of false positives; and 
this process continues in a similar fashion. Each step in this 
hierarchical procedure is designed to incrementally improve the 
accuracy and precision of our target detection, akin to the 
deepening complexity of a CNN with each additional 
convolution and activation layer. At each stage, SINBAD 
features can be developed specifically for those image locations 
that were considered suspicious by the preceding stages of the 
analysis. Such specialized SINBAD features will exhibit 
progressively greater discriminative sensitivity to image details 
specific to the ‘suspected’ (i.e., containing a vehicle or not yet 
ruled out) image locations. 

The SINBAD network for feature extraction is a 
constellation of SINBAD cells, each embodying an algorithm 
that capitalizes on mutual information across varied yet 
correlated input sets [5, 6, 27, 28]. In our objective of target 
recognition within natural terrain imagery, SINBAD's self-
supervised approach plays a pivotal role. SINBAD's 
unsupervised learning mechanism identifies various inherent 
local patterns/redundancies with the assumption that by 
extracting local dependencies within the imagery, these features 
can be effectively utilized for distinguishing between different 
classes, such as the presence or absence of vehicles.  

In our study, the determination of whether a specific image 
segment harbors a target, specifically a vehicle, hinges on the 
use of a Support Vector Machine (SVM) [9, 10]. Their 
robustness against overfitting, exceptional generalization 
capabilities, and rapid convergence mark them as ideal for our 
purposes. The pivotal aspects of our methodology are depicted 
in Figure 2. The first SVM (denoted as SVM1) is calibrated to 
recognize military vehicles within the confines of its limited 
observational field across various training images. Inevitably, 
SVM1 is not infallible in its task, it occasionally misidentifies 
natural terrain as containing a vehicle. The primary function of 
SVM1 is to conduct a preliminary survey of an entire high-
resolution image, pinpointing locations with positive 
identifications for subsequent scrutiny. This technique enables 
us to swiftly eliminate 99.65% of the non-relevant image 
segments. Despite this efficient filtration, we are still confronted 
with numerous potential target sites. In the next phase, we focus 

on enhancing SINBAD features exclusively at those junctures 
flagged as 'questionable' by SVM1. In this instance, a composite 
of 14 SINBAD cells, termed 'SINBAD Network 1' as seen in 
Figure 2, was deployed.  

Each SINBAD cell is tasked with identifying a unique 
attribute by learning correlated functions across its dendrites 
within adjacent, non-overlapping 5x5 pixel fields. This method 
compels the dendrites to encode the context of their specific 5x5 
pixel field in relation to neighboring areas. We designed 14 such 
SINBAD cells, each contributing to a 14-dimensional 'feature' 
vector that represents the input field. This vector captures the 
core characteristics of the image window. These SINBAD-
generated features then serve as the input for the secondary 
SVM (identified as SVM2) in Figure 2. SVM2 is trained to 
recognize the presence of a vehicle within a 20x20 pixel 
window. During training, the window is placed only at those 
image locations that were marked as ‘suspicious’ by SVM1.  

IV. EXPERIMENTAL RESULTS 

SVM1 misidentifies natural terrain as containing a vehicle, 
with a 0.35% error rate in our trials. SVM2 greatly reduces the 
number of False Positives that were made by a factor of 20 
without missing any of the real vehicles in the test images. Thus, 
a sequence of SVM1-SINBAD-SVM2 in our experiments so far 
was able to detect all the test vehicles while making False 
Positive mistakes on only 0.015% of the test trials.  

Presented in Figure 3 are the results from the initial dual-
phase process of vehicular identification conducted on a 
representative image from the dataset. This particular image was 
set aside from the training dataset, not contributing to the 
training of either SVM1 or SINBAD or SVM2, and was solely 
utilized for the assessment of their trained algorithms. The lower 
two panels in the figure highlight the specific segments of the 
image where the SVMs indicated vehicular presence. 

The efficacy of stage 1 is evidenced in the third panel of 
Figure 3, where SVM1 accurately detects a tank's position. 
Nonetheless, it concurrently generates 155 False Positive 
signals for locations void of vehicles. Progressing to stage 2, as 
depicted in the lowest panel, SVM2 successfully eliminates 153 
out of the 155 False Positives. It narrows down the potential 
vehicle-containing locations to eight, of which six validly 
correspond to different sections of the same tank, resulting in 
only two erroneous identifications. Consequently, Figure 3 
exemplifies the success of our method in refining SINBAD 
features for areas under scrutiny and leveraging a subsequent 
SVM trained on these features, significantly diminishing False 
Positive counts while maintaining the detection of actual targets. 

 Figure 4 illustrates the detection outcomes across six distinct 
test images. In each image, three elements are showcased: (1) a 
segment of the original high-resolution image, (2) the 
pinpointed squares indicating potential vehicle locations, and 
(3) an enhanced view where these areas and their context are 
accentuated, revealing the landscape features SVM2 
inaccurately recognized as vehicles. A closer examination 
reveals that the majority of these misidentified features—such 
as portions of tree trunks or branches—bear little resemblance 
to actual vehicles. This observation supports the potential for 
subsequent SINBAD-SVM stages to discern and classify these 
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features accurately as non-vehicular. Notably, as referenced in 
[8], human observers encountered challenges in locating a 
vehicle within database image 11 (displayed in the top-left panel 
of Figure 4), with a significant portion (18 out of 62) unable to 
detect it. In contrast, SVM2 readily identified the vehicle in this 

image with minimal False Positives. A similar advantage of 
SVM2 was observed with database image 2 (shown in the top-
right panel of Figure 4), another image where human observers 
demonstrated a high rate of non-detection (16 out of 62 missed 
it). 

 

 

 

Figure 2. Deep SINBAD network architecture. SVM1-SINBAD-SVM2 portion is demonstrated in this study with favorable target detection results. 
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Figure 3. The proposed method eliminates false positives successfully by 

utilizing the nonlinear SINBAD features.  

 

V. CONCLUSION 

In conclusion, our research highlights the effectiveness of 
local contextual features learned through self-supervision, 
particularly those derived using the biologically-inspired 
SINBAD approach, in the context of vehicle detection. Key 
findings from our experiments include the initial stage with 
SVM1 accurately identifying a tank location, albeit 
accompanied by 155 false positives. Remarkably, the SVM2 
stage efficiently reduced these to just 2 false positives, while 
correctly identifying 6 out of 8 potential vehicle locations. This 
process, centered around the creation and utilization of 
specialized SINBAD features followed by a refined SVM 
training, has proven to be highly effective in minimizing false 
positives without diminishing the ability to detect true targets. 

Incorporating advanced techniques like CG-CNN and 
transfer learning could potentially enhance our system's 
performance. However, the primary objective of this research 
was to demonstrate the inherent power of contextual features 
without resorting to such complex methodologies. Our results 
clearly indicate that even without these additional layers of 
complexity, our approach is capable of achieving impressive 
vehicle detection accuracy.  

In addition to exploring these advanced techniques, we are 
also considering several other strategies to maximize our 
system's efficiency. This includes optimizing various 
parameters such as the sizes of viewing windows, SINBAD and 
SVM parameters, and the number of training samples. Also, 
image preprocessing techniques like local dynamic range 

normalization and contrast enhancement could be instrumental 
in improving the performance, especially given the sub-optimal 
quality of the original images. 
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Figure 4. Target detection results of the proposed approach. 
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