SoutheastCon 2024

SINBAD ORIGINS OF CONTEXTUALLY-GUIDED FEATURE
LEARNING: SELF-SUPERVISION WITH LOCAL CONTEXT FOR
TARGET DETECTION

Olcay Kursun
Department of Computer Science
Auburn University at Montgomery
Montgomery, AL 36117, USA
okursun@aum.edu

Abstract— The domain of feature learning is replete with self-
supervised methodologies that harness local context to decode
complex patterns in data. This paper investigates the significance
of the SINBAD model within the realm of self-supervised learning.
SINBAD, a unique non-convolutional neural network approach,
is particularly adept at extracting mutual information and
identifying distinct local structures. The underlying theory of
SINBAD, anchored in neuroscience, suggests that capturing
predictable connections among subsets of features can
significantly enhance feature extraction. This principle has been
instrumental in the advancement of self-supervised learning as it
has given rise to the development of its convolutional extensions
that are self-guided by contextual understanding. In this paper,
we explore the application of the SINBAD algorithm for automatic
target recognition, specifically in detecting military vehicles
within complex rural environments. Our methodology includes a
preprocessing stage utilizing a linear Support Vector Machine
(SVM) to learn and apply a filter. This filter is crucial for
excluding image locations that are completely irrelevant, thereby
isolating potentially relevant regions for contextual self-
supervision. By focusing on these selected areas and avoiding the
need to process arbitrary regions, we aim to minimize resource
requirements and streamline the self-supervised learning process.
In the subsequent phase of our approach, the focus shifts to
identifying nonlinear features that provide insights into local
contexts. This involves extracting correlated nonlinear functions
from nearby, yet distinct and non-overlapping patches. By
analyzing these functions, we can discern patterns and
relationships within the local context, where each function
correlates with its unique, adjacent patch. This sophisticated
analysis allows for a deeper understanding of the local area,
contributing significantly to the accuracy of the final classification
step. Finally, the process culminates with the use of a linear
classifier that utilize the SINBAD features to effectively identify
and categorize image patches that contain the intended targets.
The research was conducted using the TNO-TM Search_2 dataset,
which comprises 44 high-resolution images. These images depict
cluttered rural landscapes and feature 9 different types of military
vehicles. The dataset's complexity and variety provide a
comprehensive environment for testing and validating the
effectiveness of the SINBAD model in accurately identifying and
classifying these vehicles within such challenging and diverse
scenes.
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I. INTRODUCTION

This paper delves into the domain of self-supervised feature
learning methodologies designed to decode complex patterns in
data through the utilization of local context [1, 2, 3, 4]. We focus
our investigation on the SINBAD model [5, 6], a meta-learning
approach typically implemented as a non-convolutional neural
network for extracting mutual information [2] and identifying
distinct local structures [3]. This approach has paved the way for
convolutional extensions for learning transferrable features [7].
Contrasting with deep CNNs, the SINBAD model draws
inspiration from biological neural networks, particularly cortical
areas that optimize feature extraction using local contextual
information rather than relying on error backpropagation. This
approach, grounded in theoretical neuroscience, highlights the
importance of spatial and temporal contexts in feature selection.
Such contextually selected features are behaviorally beneficial
as they capture predictable relationships with other distinct
sensory inputs, reflecting structured causal dependencies in the
external world.

In this paper, we apply the SINBAD algorithm to the
challenge of automatic target recognition, with a specific focus
on detecting military vehicles in complex rural environments
[8]. Our methodology initiates with a preprocessing phase that
employs a linear method (we used linear-SVM [9, 10]) to
discard highly irrelevant image locations, and keeping regions
that are potentially target-related and suitable for contextual
self-supervision. This selective process aims to minimize
resource consumption and optimize the self-supervised learning
workflow. Progressing to the next phase, the SINBAD neural
network is applied to the discover nonlinear features that are
predictive of the local contexts. This is achieved by extracting
correlated nonlinear functions from nearby, distinct, and non-
overlapping patches. Discovering these features in a self-
supervised manner improves the generalization capabilities of
the subsequent classification phase and leads to higher accuracy.
For this final phase, we deploy a linear classifier that utilizes the
derived SINBAD features to efficiently identify and categorize
patches containing the targets. For our experimental results, we
use the TNO-TM Search 2 dataset, consisting of 44 high-
resolution images that depict a variety of military vehicles in
cluttered rural landscapes [8]. The diversity and complexity of
this dataset provide an ideal testing ground for the SINBAD
model, demonstrating its effectiveness in accurately identifying
and classifying military vehicles in challenging and varied
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scenes, thus proving its relevance in
contextually-guided feature extraction [7].

self-supervised

II. RELATED WORK: CONTEXTUALLY-GUIDED SELF-
SUPERVISED FEATURE LEARNING

Feature learning is a fundamental task in machine learning
and data analysis, aimed at discovering informative
representations from high-dimensional data [9]. Effective
feature extraction techniques play a crucial role in improving the
performance of various machine learning algorithms, including
classification, clustering, and dimensionality reduction.
Traditional methods, such as Principal Component Analysis
(PCA), are limited in their ability to capture nonlinear
relationships and preserve local structure [9]. Kernel PCA
(KPCA) [9-11], as a nonlinear extension of PCA, leverages
kernel functions to map the data into a higher-dimensional
feature space where linear PCA can be applied. This enables
KPCA to capture intricate nonlinear patterns in the data.
However, KPCA does not explicitly take into account the local
neighborhood information, which is vital for preserving the
local structure and forming a meaningful lower-dimensional
representation. Addressing this limitation, manifold learning
methods [9], such as Laplacian eigenmaps [12] and t-SNE [13],
have gained popularity for their ability to capture the underlying
geometry of the data or to visualize/reveal the underlying
structure of the data distribution. However, these manifold
methods may not fully exploit the power of kernel tricks to
handle nonlinearities. Moreover, they often lack the capability
for out-of-sample extension, limiting their practical
applicability [14].

As a promising alternative, deep learning [1, 4, 7, 15, 16, 17,
18, 19, 20, 21], as a subfield of machine learning, has shown its
prowess in many challenging tasks like image recognition,
speech recognition, and natural language processing. Deep
learning models, especially Convolutional Neural Networks
(CNNSs), have been effective due to their ability to capture high-
level abstractions in data by building complex hierarchies of
features [15, 16]. CNNs conduct a series of convolution (Conv)
operations, each succeeded by nonlinear transformations
typified by sigmoidal or ReLU activation functions. These
progressive non-linear operations are instrumental in tuning the
neurons of the network to increasingly inferential features. With
such inferential and transferrable features, the usefulness of
deep learning models extends beyond their impressive accuracy
on expansive datasets. CNN features also receive interest
because the initial layer features they learn to extract show
similarities to the ones derived by biological neurons in the
primary visual cortex (V1) [17].

While there are notable parallels between cortical areas and
deep CNNs, key distinctions exist. One major difference is that,
unlike deep CNNss which rely heavily on error back-propagation
from their upper layers to refine initial features, cortical regions
utilize self-supervision. This self-supervision is rooted in local
contextual information, which is pivotal in optimizing feature
tuning. Although this information is locally sourced, it plays a
crucial role in guiding feature selection. The widely accepted
view in theoretical neuroscience posits that this guidance is
derived from the spatial and temporal contexts of the features
[2, 3,7, 22-26]. The behavioral relevance of these contextually-

selected features stems from their predictable associations with
other distinct features obtained from separate sensory inputs.
Such associations reflect the structured causal relationships
inherent in the external environment, from which these features
originate.

In the CG-CNN framework [7], the concept of context is
akin to how a word’s meaning in Natural Language Processing
depends on its surrounding words. Similarly, in image analysis,
the interpretation of a pixel can depend on nearby areas, forming
a context. To capture these contextual relationships, CG-CNN
introduces contextual groups, each representing a set of training
examples with similar patterns. However, simultaneously
training on a large number of contextual groups to capture
comprehensive contextual regularities in images can be
complex. To manage this, CG-CNN employs an iterative
training strategy, using an Expectation-Maximization (EM)
algorithm, and focusing on a different small subset of contextual
groups in each iteration. This approach follows the principles of
transfer learning. During each EM iteration, the connections in
the Classifier layer are trained in the E-step, holding the Feature
Generator's weights constant. Then, in the M-step, the Feature
Generator's weights are updated while keeping the newly
optimized Classifier connections constant. By iteratively
training on different small subsets of contextual groups, CG-
CNN creates 'pluripotent' features that can capture various
contexts. This training approach provides an efficient method
for learning the regularities that define contextual classes by
limiting the number of classes in each EM iteration to a
manageable level. CG-CNN constructs its multiple views
through a self-supervision process, utilizing augmented versions
of the input data. By learning a common feature space that
maximizes the agreement among these internally generated
views, CG-CNN effectively learns the underlying regularities in
the data.
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Figure 1. Self-supervised CG-CNN architecture that learns to discriminate
auxiliary classes formed by contextual relations.
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III. APPLICATION OF THE SINBAD APPROACH FOR
AUTOMATIC TARGET RECOGNITION

Our research was conducted using the TNO-TM Search 2
dataset, which includes 44 high-resolution images depicting
complex rural landscapes featuring nine distinct military vehicle
types [8]. Training was performed on a subset of 24 images,
while a separate, randomly selected set of 10 images was
reserved for validation of our model's efficacy.

Our methodology employs a layered and iterative strategy
akin to the repetitive application of convolution and ReLU
layers in CNNSs, enhancing performance progressively. This
process includes: (1) the initial acquisition of SINBAD features,
which mirror the patterns found in our database images, to
pinpoint potential target sites; (2) the refinement of SINBAD
features, tailored specifically for areas deemed 'suspicious',
thereby honing the focus to a more defined set of potential
targets; (3) a further iteration to develop an even more advanced
set of SINBAD features, applied to this refined set of locations,
aiming to further diminish the occurrence of false positives; and
this process continues in a similar fashion. Each step in this
hierarchical procedure is designed to incrementally improve the
accuracy and precision of our target detection, akin to the
deepening complexity of a CNN with each additional
convolution and activation layer. At each stage, SINBAD
features can be developed specifically for those image locations
that were considered suspicious by the preceding stages of the
analysis. Such specialized SINBAD features will exhibit
progressively greater discriminative sensitivity to image details
specific to the ‘suspected’ (i.e., containing a vehicle or not yet
ruled out) image locations.

The SINBAD network for feature extraction is a
constellation of SINBAD cells, each embodying an algorithm
that capitalizes on mutual information across varied yet
correlated input sets [5, 6, 27, 28]. In our objective of target
recognition within natural terrain imagery, SINBAD's self-
supervised approach plays a pivotal role. SINBAD's
unsupervised learning mechanism identifies various inherent
local patterns/redundancies with the assumption that by
extracting local dependencies within the imagery, these features
can be effectively utilized for distinguishing between different
classes, such as the presence or absence of vehicles.

In our study, the determination of whether a specific image
segment harbors a target, specifically a vehicle, hinges on the
use of a Support Vector Machine (SVM) [9, 10]. Their
robustness against overfitting, exceptional generalization
capabilities, and rapid convergence mark them as ideal for our
purposes. The pivotal aspects of our methodology are depicted
in Figure 2. The first SVM (denoted as SVM1) is calibrated to
recognize military vehicles within the confines of its limited
observational field across various training images. Inevitably,
SVM1 is not infallible in its task, it occasionally misidentifies
natural terrain as containing a vehicle. The primary function of
SVMI is to conduct a preliminary survey of an entire high-
resolution image, pinpointing locations with positive
identifications for subsequent scrutiny. This technique enables
us to swiftly eliminate 99.65% of the non-relevant image
segments. Despite this efficient filtration, we are still confronted
with numerous potential target sites. In the next phase, we focus

on enhancing SINBAD features exclusively at those junctures
flagged as 'questionable' by SVMI1. In this instance, a composite
of 14 SINBAD cells, termed 'SINBAD Network 1' as seen in
Figure 2, was deployed.

Each SINBAD cell is tasked with identifying a unique
attribute by learning correlated functions across its dendrites
within adjacent, non-overlapping 5x5 pixel fields. This method
compels the dendrites to encode the context of their specific 5x5
pixel field in relation to neighboring areas. We designed 14 such
SINBAD cells, each contributing to a 14-dimensional 'feature’
vector that represents the input field. This vector captures the
core characteristics of the image window. These SINBAD-
generated features then serve as the input for the secondary
SVM (identified as SVM2) in Figure 2. SVM2 is trained to
recognize the presence of a vehicle within a 20x20 pixel
window. During training, the window is placed only at those
image locations that were marked as ‘suspicious’ by SVMI.

IV. EXPERIMENTAL RESULTS

SVMI misidentifies natural terrain as containing a vehicle,
with a 0.35% error rate in our trials. SVM?2 greatly reduces the
number of False Positives that were made by a factor of 20
without missing any of the real vehicles in the test images. Thus,
a sequence of SVM1-SINBAD-SVM?2 in our experiments so far
was able to detect all the test vehicles while making False
Positive mistakes on only 0.015% of the test trials.

Presented in Figure 3 are the results from the initial dual-
phase process of vehicular identification conducted on a
representative image from the dataset. This particular image was
set aside from the training dataset, not contributing to the
training of either SVM1 or SINBAD or SVM2, and was solely
utilized for the assessment of their trained algorithms. The lower
two panels in the figure highlight the specific segments of the
image where the SVMs indicated vehicular presence.

The efficacy of stage 1 is evidenced in the third panel of
Figure 3, where SVMI1 accurately detects a tank's position.
Nonetheless, it concurrently generates 155 False Positive
signals for locations void of vehicles. Progressing to stage 2, as
depicted in the lowest panel, SVM2 successfully eliminates 153
out of the 155 False Positives. It narrows down the potential
vehicle-containing locations to eight, of which six validly
correspond to different sections of the same tank, resulting in
only two erroneous identifications. Consequently, Figure 3
exemplifies the success of our method in refining SINBAD
features for areas under scrutiny and leveraging a subsequent
SVM trained on these features, significantly diminishing False
Positive counts while maintaining the detection of actual targets.

Figure 4 illustrates the detection outcomes across six distinct
test images. In each image, three elements are showcased: (1) a
segment of the original high-resolution image, (2) the
pinpointed squares indicating potential vehicle locations, and
(3) an enhanced view where these areas and their context are
accentuated, revealing the landscape features SVM2
inaccurately recognized as vehicles. A closer examination
reveals that the majority of these misidentified features—such
as portions of tree trunks or branches—bear little resemblance
to actual vehicles. This observation supports the potential for
subsequent SINBAD-SVM stages to discern and classify these
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features accurately as non-vehicular. Notably, as referenced in ~ image with minimal False Positives. A similar advantage of
[8], human observers encountered challenges in locating a SVM2 was observed with database image 2 (shown in the top-
vehicle within database image 11 (displayed in the top-left panel ~ right panel of Figure 4), another image where human observers
of Figure 4), with a significant portion (18 out of 62) unable to demonstrated a high rate of non-detection (16 out of 62 missed
detect it. In contrast, SVM2 readily identified the vehicle in this  it).
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Figure 2. Deep SINBAD network architecture. SVM1-SINBAD-SVM2 portion is demonstrated in this study with favorable target detection results.
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Figure 3. The proposed method eliminates false positives successfully by
utilizing the nonlinear SINBAD features.

V. CONCLUSION

In conclusion, our research highlights the effectiveness of
local contextual features learned through self-supervision,
particularly those derived using the biologically-inspired
SINBAD approach, in the context of vehicle detection. Key
findings from our experiments include the initial stage with
SVM1 accurately identifying a tank location, albeit
accompanied by 155 false positives. Remarkably, the SVM2
stage efficiently reduced these to just 2 false positives, while
correctly identifying 6 out of 8 potential vehicle locations. This
process, centered around the creation and utilization of
specialized SINBAD features followed by a refined SVM
training, has proven to be highly effective in minimizing false
positives without diminishing the ability to detect true targets.

Incorporating advanced techniques like CG-CNN and
transfer learning could potentially enhance our system's
performance. However, the primary objective of this research
was to demonstrate the inherent power of contextual features
without resorting to such complex methodologies. Our results
clearly indicate that even without these additional layers of
complexity, our approach is capable of achieving impressive
vehicle detection accuracy.

In addition to exploring these advanced techniques, we are
also considering several other strategies to maximize our
system's efficiency. This includes optimizing various
parameters such as the sizes of viewing windows, SINBAD and
SVM parameters, and the number of training samples. Also,
image preprocessing techniques like local dynamic range

normalization and contrast enhancement could be instrumental
in improving the performance, especially given the sub-optimal
quality of the original images.
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Figure 4. Target detection results of the proposed approach.
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