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Distributed fiber optic sensor (DFOS) offers unique capabilities of monitoring corrosion for long pipelines.
However, manually interpreting DFOS data is labor-intensive and time-consuming. To address this challenge,
this paper presents a machine learning approach for real-time automatic interpretation of DFOS data used to
monitor both uniform and non-uniform corrosion in pipeline. A machine learning model is developed to auto-
matically detect corrosion based on DFOS data, and a corrosion quantification method is developed based on the
output of the machine learning model. The proposed approaches are evaluated using laboratory experiments in

terms of accuracy and robustness to pipeline diameter, spatial resolution of DFOS, type of fiber optic cable, and
sensor installation methods. The results show that the F1 score for corrosion detection and the R? value for
corrosion quantification are 0.986 and 0.953, respectively. This research will facilitate pipeline corrosion
monitoring by enabling automatic distributed sensor data interpretation.

1. Introduction

Corrosion poses a significant challenge to the life-cycle performance
of civil infrastructure as it causes substantial expenses in the mainte-
nance of infrastructure [1]. According to a recent report by the National
Association of Corrosion Engineers (NACE), the annual global cost of
corrosion is estimated at a staggering $2.5 trillion, accounting for 3.4 %
of the global gross domestic product [2]. Beyond the considerable eco-
nomic impact, corroded steel can jeopardize the integrity of reinforced
concrete, prestressed concrete, and steel structures such as bridges and
pipelines, potentially resulting in structural malfunction or even
collapse. Based on data from the Pipeline and Hazardous Materials
Safety Administration (PHMSA), corrosion is responsible for 11 % of
natural gas pipeline incidents over the past three decades approximately
[3]. There is an urgent need for real-time corrosion monitoring and
timely assessment to mitigate these risks for the health of pipes and
other structures [4].

Traditional methods for monitoring pipeline corrosion involve using
different types of sensors. These existing methods often rely on elec-
trochemical measurements such as potentiodynamic polarization [5],
polarization resistance [6], electrochemical impedance [7], electrical
resistance [8], and magnetic flux leakage [9]. These methods offer in-
sights into the potential occurrence of corrosion at different cross
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sections of a pipeline. These electrochemical sensing technologies
remain the prevailing corrosion monitoring approach, directly gauging
metal corrosion situations. However, due to their localized nature, these
sensors and techniques require numerous installations or measurements
along the pipeline, rendering the corrosion monitoring system complex
and costly [10]. Furthermore, they are susceptible to electromagnetic
interference and influenced by various environmental and pipeline-
related variables [11]. The performance of these methods is compro-
mised by alternating wet-dry conditions and seasonal weathering [12].
In addition to the electrochemical measurements, another approach
involves using sound waves to detect corrosion [13]. This ultrasonic
wave method sends high-frequency sound waves through the pipeline
and analyzes the returning echoes. Although this method can provide a
general idea of where corrosion might be occurring, the accuracy is
limited [10].

Alternatively, distributed fiber optic sensors (DFOSs) are garnering
increasing attention for corrosion monitoring [14]. DFOSs offer distinct
advantages over traditional techniques, including immunity to electro-
magnetic interference, high precision, compact size, and robust physical
and chemical stability [15]. Notably, a remarkable feature of DFOSs is
the utilization of a single fiber optic cable as both the transmission line
and a sensor with numerous sensing points [16]. This unique feature
eliminates the need for predicting corrosion locations, as DFOSs
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continuously measure strains and temperature along their entire length.
The above exceptional capabilities have led to diverse applications in
the field of corrosion monitoring. For instance, corrosion-induced pipe
wall thickness reduction was tracked through hoop strain measurement
[17], and non-uniform corrosion in steel piles was monitored [18].

However, it is difficult to interpret the data measured from DFOSs
deployed in large-scale pipelines. The following challenges concerning
real-life applications have been identified: (1) The amount of data is so
substantial in both spatial and temporal dimensions that automated
monitoring is a challenge to achieve using traditional manual data
processing and interpretation. In addition, skilled engineers are required
to process DFOS data, which increases operation costs of DFOSs. (2)
Existing methods of corrosion quantification assume pipe corrosion as a
uniform corrosion along the circumference. Local corrosion situations
require further consideration.

With the rapid development of machine learning techniques, several
innovative methods have emerged for the analysis of strain distributions
collected from DFOSs. For example, Song et al. [19,20] and Liu et al.
[21,22] developed machine learning approaches to analyze DFOS data
for monitoring cracks, automatically. The processing time for a sub-
stantial DFOS dataset containing 10,000 measurement points was less
than 0.05 s [22]. These endeavors clearly highlight the promising po-
tential of machine learning approaches for automated interpretation and
efficient management of voluminous DFOS data. However, currently,
there is no research exploring the automatic interpretation of DFOS data
for corrosion monitoring using machine learning.

To address the above challenge, this paper presents an approach for
automatic interpretation of DFOS data for monitoring pipeline corro-
sion. This paper has three main contributions: (1) A machine learning
model is developed by integrating a convolutional neural network
(CNN), a long short-term memory (LSTM) module, an attention module,
and a fully connection module, aiming to detect pipeline corrosion from
DFOS data. The dimensions of input data and hyperparameters of the
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machine learning model are optimized via Bayesian optimization. (2)
Based on the machine learning model, a method is proposed to quantify
both uniform and non-uniform corrosion. (3) The performance of the
proposed approach and important influencing factors are evaluated
based on laboratory corrosion experiments. The investigated factors
include the pipeline diameter, spatial resolution of DFOS, type of fiber
optic cable, and sensor installation methods.

The remainder of the paper is organized as follows: Section 2 in-
troduces the methods. Section 3 introduces the laboratory experiments.
Section 4 presents and discusses the experimental results. Section 5
summarizes the conclusions.

2. Methods
2.1. Overview

The framework of the proposed approach is shown in Fig. 1, con-
sisting of four main steps: (1) A DFOS and an optic analyze system are
used to collect strain values on the surface of pipes (Section 2.2). (2) The
collected strain values are input into a machine learning model to
determine whether corrosion occurs. (3) A Bayesian optimization-based
hyperparameter tunning method is developed to enhance the perfor-
mance of the proposed machine learning model. (4) Based on the results
of corrosion detection from the machine learning model, a method is
proposed to quantify corrosion in uniform and non-uniform corrosion
cases.

2.2. Distributed fiber optic sensors

In this study, a single-mode fiber optic cable (model: Corning® SMF-
28e+® [23]) was used as the distributed sensor and transmission line.
The cable consisted of a fused silica fiber core, a fused silica fiber
cladding, and multiple layers of polymer coatings for mechanical

Section 2.3: Machine learning
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Fig. 1. Framework of the proposed approach for interpreting DFOS data via machine learning.
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protection. Light waves propagate in the fiber core via total internal
reflection at the core-cladding interface [24]. The fiber optic cable is
attached to the surface of a pipeline. When the pipeline is subjected to
mechanical loads or corrosion that generates strain changes, the prop-
agation of light in the fiber will change accordingly. The strains in the
fiber optic cable is measured with an optical frequency domain reflec-
tometry (OFDR) technique based on a calibration relationship between
strain and frequency shift [10].

In this study, a Luna ODiSI 6120 was used to measure strains based
on the OFDR technique [25]. A DFOS was attached to the surface of a
pipe in a helix pattern for monitoring the corrosion of the pipe, as shown
in Fig. 2(a). The radius of the pipe is Rg. The number of loops of fiber
optic cable on the surface of the pipe is m. Based on the OFDR technique,
the collected strain values at the time of t can be stored as a vector:

e = [811,1

mx

ij Ein,n]

511'2 g‘l_ g’zyn @)

J gfl‘n E;,l 812,2
where ¢f; denotes the j-th strain value in the i-th loop of the DFOS at
time t. The total number of strain data in each loop is n, which can be

calculated by:

(27Ry)* + h?
s

3

where h is the winding spacing of the DFOS on the surface of the pipe,
S is the spatial resolution of the DFOS, and |. ¢ | denotes a round down
function.

Within a period of time t, the DFOS collects m x n X t strain data,
which can be used to monitor pipe corrosion. As time progresses, the
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volume of DFOS data increases rapidly. For example, assuming Ry = 20
mm, h = 20 mm, S = 0.65 mm, m = 1000, and t = 100, the DFOS will

collect a total of 1000x {%MJ x 100 = 19,500,000 data. The

data volume poses a significant challenge for manual processing and
interpretation. Numerous data are collected, and the data change in both
spatial and temporal dimensions, making it difficult to distinguish red
dots from blue dots, as shown in Fig. 2(b).

2.3. Machine learning model

A machine learning architecture integrating a CNN, an LSTM mod-
ule, a self-attention module, and a fully connection module is proposed
in this study, as shown in Fig. 3. Previous research has shown that CNNs
can efficiently extract spatial features from spatial data [26], and LSTM
can effectively extract temporal features from sequential data [27]. This
architecture has components to extract both spatial and temporal fea-
tures from the DFOS data that are collected over time. The input and
output data of the machine learning model is presented in Section 2.3.1.
The modules are elaborated in the following subsections.

2.3.1. Input and output data

In this study, strain distributions along DFOS were measured based
on the OFDR technique. The details of data collection are presented in
Section 3. The strain distributions were segmented in spatial and tem-
poral dimensions using a sliding window method [28], as shown in
Fig. 4.

The window sizes in the spatial and temporal dimensions are noted
as A and B, respectively. As the window slides along the spatial and

Collected strain data:
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Fig. 2. Strain data acquisition for monitoring pipeline corrosion based on DFOS and OFDR: (a) illustration of the process; and (b) example of real collected data.
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Fig. 3. Architecture of the proposed machine learning model for analyzing DFOS data.
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Fig. 4. Generation of data segments using a sliding window in spatial and temporal dimensions.

temporal dimensions, a set of data is segmented and stored in a box that
has A units in length and B units in width. The height of the box is the
strain value. When the data corresponds corrosion, the data is labeled as
1. When the data corresponds no corrosion, the data is labeled as 0. Each
data segment is a two-dimensional matrix, denoted as v,. These seg-
ments form the input data for the proposed machine learning method.
The optimal window sizes are discussed in Section 4.1. The output data
z. of this machine learning method is corrosion condition.

2.3.2. Convolutional neural network
A CNN is employed to extract spatial features from the data segment,

v.. The CNN employs K one-dimensional spatial convolution layers to
capture a spatial feature that can effectively represent the spatial strain
values collected from the DFOSs. Each convolutional layer takes the data
segment v, as input, yielding an output defined as:

Wer = veQay + by @

where w.x, ax, and by are the output, weight, and bias of the k-th
convolutional layer, respectively, and (X represents the convolution
operation. The resulting dimension of the output w, from the complete

CNN module is B x K.

2.3.3. Long short-term memory module

Designed with B standard LSTM cells and H (H > 1) hidden units, an
LSTM module is developed to extract temporal features from the output
of the previous CNN module. A standard LSTM cell at time step of t is
illustrated in Fig. 5, where the functions sigmoid( e ) and tanh( e ) are the
sigmoid and hyperbolic tangent functions, respectively. Equations (5) to
(10) present the mathematical formulation of the standard LSTM cell
[29,30].
f.= sigmoid(fo x X, +Wp X hy_y +b0) (5)

i, = sigmoid(Wy, x X, + Wy, x h,_1 +b;) (6)
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Fig. 5. Structure of a standard LSTM cell of the machine learning model at time t.

T, = tanh(Wo, < X, + W, x hy_y +by) @
0, = sigmoid(W,, x X, +W,, x h,_; +b3) 8
¢, =f xe 1 +i x¢ 9
h, = o, x tanh(c,) 10$)

where f,, i;, and o, correspond to the forget gate, input gate, and
output gate of the standard LSTM cell at time step of ¢, respectively. X,
¢, and h, represent the current input, memory cell, and hidden state,
respectively. W and b with distinct subscripts denote the corresponding
weights of different gates. The dimension of the output x, from the entire
LSTM module is B x H, which is determined by the number of LSTM cells
and the length of the hidden state.

2.3.4. Attention module

Attention mechanism is a fundamental concept in natural language
processing and computer vision, which enables machine learning
models to focus on specific parts of input data while processing it.
Alongside the well-known scaled dot-product attention utilized in
transformer models [31], there exists a range of other prominent
attention types, such as content-based attention [32], general attention
[33], and location-based attention [33].

A local attention mechanism is utilized (Fig. 6). The input data for
the attention module is derived from the output of the LSTM module,
and the output (y,) is flattened to generate a one-dimensional vector
with dimensions of 1 x (H x S):

¥, = sigmoid (W, x tanh(W; x x}) ) X x, amn

where W; and W, are the trainable weight matrices with two pa-
rameters of attention length L and output size S; and x! is the transposed
input data.

2.3.5. Fully connection module

A fully connected module is often referred to a dense layer in neural
networks and establishes comprehensive connections between input and
output nodes. In this module, the input vector y, undergoes a linear
transformation by employing a weight matrix W, and a bias term b4.

Wy

|

Table 1
Candidates of the undetermined hyperparameters.
Hyperparameter Number of Candidates
candidates
Number of CNN filters 63 {2, 3, ..., 64}
Number of LSTM units 63 {2, 3, ..., 64}
Number of hidden units in the 15 {2,3,...,16}
attention
Number of distinct components in the 15 {2,3,...,16}
attention
Learning rate >100 [10°°, 10'3]
(continuous)
Batch size 6 {2, 4, 8, 16, 32, 64}

Subsequently, a non-linear activation function sigmoid( e ) is applied to
generate the final result of the entire machine learning model z,. The
output z, is one-dimensional vector with a dimension of 1 x 2, indicating
the corrosion detection results.

z. = sigmoid(W. x y, +b,) 12)

2.4. Hyperparameter tuning

The proposed machine learning architecture has hyperparameters
that have a significant effect on the performance of machine learning
model. These hyperparameters are shown in Table 1. Regarding the
architecture, the hyperparameters include the number of CNN filters,
the number of LSTM units, the number of hidden units to decode the
attention, and the number of distinct components in the attention
module. Regarding the learning process, the hyperparameters include
the learning rate and batch size. When hyperparameter tuning is per-
formed using the grid search method, the method will require iterations
for 63 x 63 x 15 x 15 x 100 x 6 = 535,815,000 times. Alternatively,
random search can be employed, but it introduces significant variance
due to its reliance on randomly selected parameters. In addition to the
above limitations, both the grid search and random search methods lack
the ability to learn from prior search results. To overcome these limi-
tations, a Bayesian optimization-based hyperparameter tuning tech-
nique is proposed. This approach leverages Bayesian principles to
transform previously explored parameters into insightful prior

W,

|

Xg T Transposed _"_’ tanh _"—’ Slngld —>.—> Flatten — Y«

T

Fig. 6. Structure of the attention module incorporated into the machine learning architecture.
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information.
The Bayesian optimization-based hyperparameter tuning can be
expressed as follows:

0" = argmin'¥(6) 13)
00

where ¥(0) is the objective function (or loss function) of the pro-
posed machine learning model; # denote hyperparameter values; © is the
search space (or candidates) of the hyperparameters, as shown in
Table 1; and 6" is the best hyperparameter that minimizes the output of
¥(0).

Because each computation of the objective function ¥(6) in Equation
(13) is a training of the machine learning model, its time consumption is
often excessive. To mitigate this computational challenge, Bayesian
optimization-based hyperparameter optimization techniques are lever-
aged. These methods employ surrogate models and acquisition functions
to streamline the process. A Gaussian process is used to establish a
surrogate model for the objective function:

W(0) £.P(u(0).k(0.0)) (14)

where 2.7( o) denotes the Gaussian process, yi( e ) represents the
mean function associated with different hyperparameter combinations,
and k(e) is the covariance function between two hyperparameter
combinations.

The Gaussian process integrates information from the current
hyperparameter combination and combinations, ie.,
D(¥(0¢1+1)|0e11, ¥r ), where t is the t-th hyperparameter combination. For
each input hyperparameter combination, the surrogate model outputs a
Gaussian distribution rather than the value of the objective function. In
general, for hyperparameter tuning of machine learning models, the
mean of the Gaussian distribution is considered as y(f#) = 0, and the
covariance function is computed using the Matern kernel function. The
objective of the acquisition function is to maximize the probability that
the next hyperparameter combination achieves a higher objective
function. This is carried out to maximize the probability of improvement

H(0:1) —P(O") —

(POD):
¢
6(0:41) ) 1)

where 6" denotes the current combination of hyperparameter values
that can minimize the objective function; ®( e ) is the normal cumulative
distribution function; ¢ is a trade-off parameter greater than or equal to
0; y(0,+1) and 6(6,,1) denote the corresponding mean and standard de-
viation f the hyperparameter combination is 6,1, respectively.

As ¢ approaches 0, the next hyperparameter combination 6,1 ap-
proaches 0", meaning that this hyperparameter tuning tends to exploit
the most-likely region of the global optimum according to the known
posterior distributions. On the contrary, this hyperparameter tuning
explores the unknown region. Through continuous iterations, when the
stopping condition is reached, the current hyperparameter combination

POIB,11) = P(¥(0,,,) > W(07) + &) = d>(

0" is the combination of hyperparameter values @* that can minimize the
output of the objective function.

2.5. Quantification of corrosion

In the course of steel corrosion, as more and more rust is produced
and accumulates on the surface of pipeline, the overall diameter of the
pipeline is increased because rust is porous and has a larger volume than
the original steel. The increase of the pipeline diameter exerts tensile
strains to the fiber optic cable attached to the exterior surface of the
pipeline, as shown in Fig. 7. The original diameter of the pipeline is Ry.
Due to corrosion, the thickness of steel is reduced to R,,. The radius of the
pipe with rust is noted as R.. The radius of the pipe with rust and the
thickness of fiber optic cable is Ry.

Curves L; and L, indicate the edges of pipeline before and after
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Fig. 7. Non-uniform corrosion model of a steel pipe with a fiber optic cable on
the surface.

corrosion, respectively. According to Fig. 7, the following equation is
satisfied:

L L,
—1_= 16
R "R (16)
The volumes of consumed steel (V,) and corrosion rust (V;) between
two loops of the DFOS can be expressed as:

ah

a
Vy =5 mh(R—R}) ==~ (R, — R} an
_a 2 p2 ah o
w_hmm —R.) =7 (R—R}) 18)

The j-th mass loss (Amf_j) caused by corrosion in the i-th loop of the
DFOS at time t can be expressed as:

“2” (R~ R) 19)

Am;d. =V =
where p is the density of pipe material (p = 7850 kg/m® for steel).
The strain variation (5 ) due to the increase of pipeline diameter can

be calculated by the average elongation from curve L; to curve L,. Due

to the thickness (6) of the DFOS, the measured strain values from the

DFOS reflect the elongation of the core of the DFOS instead of the sur-

face of the pipeline, although the DFOS is tightly attached to the surface

of the pipeline. In practice, the thickness of the DFOS is negligible
compared with the radius of the pipeline:

Ry+0~Ry (20)

Further discussion on the effect of § is presented in Section 4.2.3 and
Section 4.3.2. The strain variation and R, can be calculated as follows:

#:M&+®*M&+®:&*&z&*& @1
J a(Ry + 6) Ry+06 Ry
R.=Ry(1-¢)) —€o~Ry(1-¢) (22)

The volume expansion coefficient (1) due to the expansion of
corrosion rust is defined as:
2 2

V., R.—R,

"V, R-R

(23)

Substituting Equations (16), (21), (22), and (23) into Equation (19),
the mass loss can be expressed as:

2
. LR {24J+.(gb> } @4)

24— 1)
When there are m loops of fiber optic cable and n points of mea-
surement in each loop, the total mass loss Am is expressed as:

am= 30w = 305 4 o+ () 25)
i=1 j=

m
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(26)

1,¢ jrepresents corrosion
;= .
0, otherwise

where z{; is the corrosion result obtained from the machine learning
model corresponding to ¢;;.

The main idea of the proposed corrosion quantification method is to
divide the cross section of a pipeline into multiple parts. The proposed
machine learning method is used to identify whether the strain distri-
bution corresponding to each part represents corrosion or not. When
corrosion is detected, the corresponding mass loss is calculated. The
cumulative value of all mass losses is then the overall mass loss of the
pipe. This method can tackle both local and global corrosion. Compared
with previous research, which assumes uniform pipeline corrosion along
the circumference [10], the proposed method can address non-uniform
corrosion.

2.6. Performance metrics

Various performance metrics were proposed to evaluate machine
learning models. Among them, F1 score has been commonly adopted
[34]. F1 score combines precision and recall into a single value from 0 to
1. A perfect classifier with high precision and recall achieves a score of 1.
The F1 score is well-suited for binary classification tasks [34].

For corrosion quantification, mass loss is usually employed to eval-
uate corrosion severity of pipelines [10,18]. The quantification perfor-
mance is evaluated with the coefficient of determination (R?) between
the true values and calculated values of mass loss [27]. The R? value
varies between 0 and 1, and 1 indicates that the corrosion quantification
model perfectly evaluates the mass loss. The F1 score and R? are defined
as:

TP

Fl=
TP + L(FP + FN)

(27)

S (Amy — Amy)?

R =1 —
Zf:l (Amy — Am)z

(28)

where TP indicating the number of the segments representing
corrosion accurately identified as corrosion; FP denoting the number of
the segments wrongly identified as corrosion; FN denoting the number
of the segments representing corrosion wrongly identified as no corro-
sion; Amy and Kn\"tk represents the true and calculated mass loss of the k-
th pipe, respectively; K is the number of pipes; Am denotes the average

value of the true mass loss of the K pipes.
3. Experimental program
3.1. Experiments
In this research, three types of steel pipes were investigated. The

pipes were immersed in a sodium chloride solution (concentration: 3.5
% by mass) for corrosion tests at room temperature (25 + 2 °C). The

3 mm

i

Stainless =

25.4 mm

(2)

25.4 mm
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Fig. 9. Steel pipe specimens immersed in sodium chloride solution for corro-
sion experiments.

dimensions and materials of the pipes are shown in Fig. 8, including
stainless pipes, small low-carbon steel pipes, and large low-carbon steel
pipes.

DFOSs were attached to the exterior surfaces of the pipe specimens
following a helix pattern, as shown in Fig. 9. The total length of the
DFOS was around 4.4 m. Different spacings between adjacent rounds of
spiral were investigated to optimize the sensor installation method. The
pipes were supported by plastic blocks at the two ends to expose the
pipes to the sodium chloride solution. The fiber optic cable was con-
nected to the Luna ODiSI system for measuring strain distributions.

The measurements were carried out at 12 different immersion times
(0h,30h,60h,114h, 134 h, 184 h, 208 h, 280 h, 472 h, 640 h, 912 h,
and 1080 h). The gauge length of the DFOS was 0.65 mm [25]. Another
distributed sensor was installed closely for temperature compensation.

The mass loss of the pipe specimens due to steel corrosion was
measured to quantify corrosion. The initial mass of the pipe specimens
was gauged with a high precision balance before immersing. At 12-hour
intervals, a pipe specimen was extracted, rust was carefully eliminated
using vinegar acid, and the mass after corrosion was measured using the
high-precision balance. The difference between this mass and the cor-
responding initial mass represents the mass loss due to corrosion, which
serves as the true mass loss to evaluate the proposed corrosion quanti-
fication method in Section 4.3. More details about the experiments can
be found in Ref. [10].

3.2. Datasets

Based on the gauge length (0.65 mm), the 4.4-m DFOS measured
4400/0.65 = 6769 strain data in each measurement and a total of 6769
x 12 = 81,228 strain data in 12 measurements. Since the stainless-steel
pipes did not corrode, the strain distributions measured from the

1.65 mm
3 mm| e
38.1 mm

(b) (c)

Fig. 8. Pipe specimens: (a) stainless pipes, (b) small low-carbon steel pipes, and (c) large low-carbon steel pipes.
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stainless-steel pipes were used as the reference (no corrosion) data for
evaluating the corrosion severity of the corroded specimens. The
collected strain data representing no corrosion are shown in Fig. 10(a).
The minor increase of tensile strains in the DFOS can be attributed to the
polymer coatings of the fiber optic cable because the coatings can absorb
water and swell. The strain distributions collected from the low-carbon
steel pipe specimens are shown in Fig. 10(b). With the increase of im-
mersion time, the strains of low-carbon steel pipes have shown a sig-
nificant increase. The increase of strains can be attributed to the growth
of rust on the surface of the pipe specimens.

In the laboratory corrosion experiment, the strain distributions were
measured on a daily basis. In this study, linear interpolation was used to
generate more data. Specifically, strain distributions were generated
every 3 h via linear interpolation [35]. With the generated strain data-
set, a total of 12 datasets were generated in both spatial and temporal
dimensions using the sliding window approach (Section 2.3.1), as shown
in Table 2.

Regarding the spatial dimension, the sliding width is determined by
the fractions (1/16, 2/16, 3/16, and 4/16.) of the circumference of the
pipe specimens. Specifically, the designated candidate lengths were 5
mm, 10 mm, 15 mm, and 20 mm, respectively. Regarding the time
dimension, the sliding window widths include 3 h, 6 h, and 9 h. The
effect and the optimization of the sliding width are elaborated in Section
4.1. Each dataset was split into a training dataset, a validation dataset,
and a testing dataset with a ratio of 7:1:2. The data in the testing dataset
was not used in the training of the machine learning model, and was
used to verify the generalization ability of the model, i.e., the ability of
the model to predict unknown data.

4. Results and discussion
4.1. Machine learning model

To determine the structure and hyperparameters of the machine
learning model, the effects of hyperparameters and sliding widths on the
accuracy of the model were investigated. The datasets in Table 2 were
utilized to train the machine learning model and tune the hyper-
parameters based on Bayesian optimization. The results are summarized
in Table 3. When the input data format is (23, 3), the F1 score of the
machine learning model is 0.835 before performing hyperparameter
tuning and 0.986 after performing hyperparameter tuning based on
Bayesian optimization. The improvement indicates that hyperparameter
tuning is important. With the increase of the number of optimization

4
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Table 2
Summary of the dataset used in this study.
No. Spatial Ratio between Time Number of strain Dataset
length the spatial length values size
(mm) lejngth and the (hour) Spatial Temporal
circumference
1 5 1/16 3 7 2 (7,2)
2 5 1/16 6 7 3 (7,3)
3 5 1/16 9 7 4 7, 4)
4 10 2/16 3 15 2 (15, 2)
5 10 2/16 6 15 3 (15, 3)
6 10 2/16 9 15 4 (15,4
7 15 3/16 3 23 2 (23,2)
8 15 3/16 6 23 3 (23, 3)
9 15 3/16 9 23 4 (23,4
10 20 4/16 3 30 2 (30, 2)
11 20 4/16 6 30 3 (30, 3)
12 20 4/16 9 30 4 (30, 4)

steps, the accuracy of the machine learning model increases overall, as
shown in Fig. 11. The highest F1 score value occurs in the 86th step and
is marked by a red triangle. The optimization process shows that the
hyperparameter tuning based on Bayesian optimization can significantly
improve the accuracy of the machine learning model.

The effects of the sliding widths (i.e., A and B in Section 2.3.1) on the
accuracy of the machine learning model are shown in Fig. 12. With the
increase of the sliding width in spatial dimension, as shown in Fig. 12(a),
the accuracy of the machine learning model increases and then stabi-
lizes, meaning that data from a minimum length of DFOS are necessary
for extracting sufficient spatial features of the data to identify corrosion.
It is recommended to set the minimum spatial dimension (i.e., A) at 15
mm. With the increase of the sliding width in temporal dimension, as
shown in Fig. 12(b), the accuracy of the machine learning model

Table 3
Effects of the hyperparameters on the performance of the proposed model.

Hyperparameter Before tunning After tunning
Number of CNN filters 4 10
Number of LSTM units 8 56
Number of hidden units in the attention 8 2
Number of distinct components in the attention 8 12
Learning rate 0.0001 0.0001
Batch size 8 2
F1 score of the model 0.835 0.986
4000
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Fig. 10. Strain distributions measured from DFOSs on the surface of pipe specimens: (a) stainless-steel pipes (no corrosion) and (b) low-carbon steel

pipes (corrosion).
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Fig. 11. Improvement of F1 score in the hyperparameter tuning based on
Bayesian optimization.

increases and then stabilizes, meaning that data from a minimum period
of measurements from DFOS are necessary for extracting sufficient
temporal features of the data to identify corrosion. It is recommended to
set the minimum temporal dimension (i.e., B) at 6 h.

The interactions between spatial and temporal dimensions are shown
in Fig. 12. When the target F1 score is 0.95, the required spatial
dimension and temporal dimension are dependent on each other. When
the temporal dimension is 9 h, the F1 score exceeds 0.95, even when the
spatial dimension is only 5 mm, as shown in Fig. 12(a). When the spatial
dimension is 15 mm, the F1 score exceeds 0.95 as long as the temporal
dimension is not shorter than 6 h, as shown in Fig. 12(b). In short, it is
important to optimize the selection of spatial and temporal dimensions
in specific applications. Thereafter, the spatial and temporal dimensions
are 15 mm and 6 h, respectively.

4.2. Detection results and robustness

4.2.1. Detection results

The performance of the machine learning model is evaluated by its
ability to identify segments representing corrosion and segments rep-
resenting no corrosion accurately. This process involves four distinct
scenarios (Fig. 13): (1) true positives (TP), indicating accurate identifi-
cation of the segments representing corrosion; (2) true negatives (TN),
where the model correctly identifies the segments representing no
corrosion; (3) false negatives (FN), where actual corrosion is overlooked
by the model; and (4) false positives (FP), denoting instances wrongly
identified as corrosion.
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The confusion matrix in Fig. 14 provides a comprehensive overview
of the performance of the proposed machine learning model. As shown
in Fig. 14(a), the confusion matrix presents the counts of TP, TN, FN, and
FP [34]. Each of these cases corresponds to a specific cell in the confu-
sion matrix. The specific statistical results of the proposed model are
shown in Fig. 14(b). This visual representation shows how well the
model accurately predicts different cases. Notably, the F1 score reaches
an impressive value of 0.986, further affirming the effectiveness of the
proposed machine learning method in corrosion detection tasks.

4.2.2. Comparison with other machine learning models

The performance of the proposed machine learning model has been
compared with that of other popular machine learning models,
including support vector machine (SVM), extreme gradient boosting
decision tree (XGBoost), multi-layer perceptron (MLP), LSTM, CNN,
combined CNN and LSTM, and deep belief network (DBN). The inves-
tigated performance metrics include the accuracy and efficiency of the
different machine learning models. The accuracy and efficiency are
evaluated using the F1 score and average detection time, respectively, as
shown in Fig. 15. The proposed model successfully identifies corrosion
and no corrosion from a total of 2000 strain distributions with an F1
score of 0.986 within 1.2 s, outperforming the other investigated ma-
chine learning models. Traditional machine learning methods, such as
SVM and MLP, are computationally fast, generally taking less than 0.1
ms on average, yet the accuracies of corrosion identification are less
than 0.9.

4.2.3. Effect of distributed sensor parameters

The effects of three important sensor parameters on the accuracy of
the proposed machine learning model have been evaluated. The inves-
tigated sensor parameters are the spatial resolution, coating thickness,
and helix spacing, as shown in Table 4. Spatial resolution is an important
sensing parameter which describes the spatial fineness of the measure-
ments from DFOS. Coating thickness is associated with the type of fiber
optic cable, and it affects the strain transfer behavior [36] and me-
chanical properties of DFOS. Helix spacing is associated with the effi-
ciency of sensor installation, and coarse spacing is preferred for
achieving a high installation efficiency when the accuracy of measure-
ment is sufficient. The investigated spatial resolutions are 0.65 mm,
1.30 mm, 2.60 mm, and 5.20 mm, which are consistent with the OFDR
technology. The investigated coating thicknesses are 242 um, 650 um,
and 900 pm, which represent typical commercial fiber optic cables. The
investigated helix spacings are 10 mm, 20 mm, 40 mm, 60 mm, and 80
mm, consistent with the literature [10]. The results show that the pro-
posed machine learning model successfully detects corrosion in different
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Fig. 12. Effect of (a) the spatial length and (b) the temporal length in the datasets on the accuracy of the trained model.
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Fig. 13. Examples of corrosion detection results using the proposed machine learning model: (a) TP, (b) TN, (c) FN, and (d) FP.
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Fig. 15. Performance comparison for the proposed machine learning model

and other models.

Table 4

Effect of the parameters of the distributed sensors.
No.  Spatial resolution Coating thickness Spacing length F1

(mm) (um) (mm) score

1 0.65 900 20 0.977
2 1.30 900 20 0.968
3 2.60 900 20 0.963
4 5.20 900 20 0.950
5 0.65 242 20 0.980
6 0.65 650 20 0.977
7 0.65 242 10 0.982
8 0.65 242 40 0.977
9 0.65 242 60 0.971
10 0.65 242 80 0.979

scenarios with F1 scores higher than 0.95, revealing that the proposed
approach is effective in various cases involving different sensor
parameters.

4.2.4. Robustness

The robustness of the proposed approach was evaluated using six
new datasets. The first dataset was collected from a similar corrosion
experiment using large low-carbon steel pipes with a diameter of 38.1
mm, as shown in Fig. 8(c). The experiment with the large steel pipe
increases the variability of the dataset compared to the previous ex-
periments, which allows for a better simulation of the pipe conditions in
real-world scenarios, which in turn comes to validate the robustness of
the proposed method. The remaining five datasets were produced by
adding Gaussian white noises to the data obtained from the corrosion
experiment using small low-carbon steel pipes. Various noise-to-signal
ratios (1 %, 2 %, 3 %, 4 %, and 5 %) of Gaussian white noise were
included in the data. The percentages indicate the amplitude of the
strain data. The results of the proposed approach are shown in Table 5.

The baseline performance was established using the test data from

Table 5
Robustness of the proposed approach on corrosion detection.
No. Source of the dataset Pipe diameter (mm) F1 score
/ Baseline 25.4 0.986
1 Experiments using large pipes 38.1 0.975
2 Baseline + 1 % noise 25.4 0.981
3 Baseline + 2 % noise 25.4 0.985
4 Baseline + 3 % noise 25.4 0.984
5 Baseline + 4 % noise 25.4 0.984
6 Baseline + 5 % noise 25.4 0.982
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the corrosion experiment of the small low-carbon steel pipes. The F1
score achieved by the proposed method on the baseline dataset is 0.986.
On the larger low-carbon steel pipes, the F1 score slightly decreases to
0.975. Despite this minor reduction, comparative experiments highlight
the commendable robustness of the proposed method across various
corrosion datasets. When a larger, diverse dataset becomes available in
the future, the proposed method can be applied to train and validate a
model with better performance in terms of accuracy and
generalizability.

4.3. Quantification results and discussion

4.3.1. Quantification results

According to Refs. [10,37], the volume expansion coefficient (1) of
rust is approximately 2.0 for steel. The results of mass loss obtained from
the proposed approach and corrosion tests are compared in Fig. 16.

An approach proposed in Ref. [10] was employed for comparison
with the proposed approach. The green line shows the true mass loss
obtained from corrosion tests. The R? value of the proposed approach is
0.953, and the R? value of the reference approach is 0.656. The results
indicate that the proposed approach can accurately quantify corrosion
severity.

4.3.2. Effect of distributed sensor parameters

The effects of spatial resolution, coating thickness, and helix spacing
on the quantification accuracy of the proposed machine learning model
have been evaluated, as shown in Fig. 17. As the spatial resolution and
coating thickness change, the errors are relatively stable, meaning that
the quantification accuracy is insensitive to the spatial resolution and
coating thickness. As the helix spacing increases from 10 mm to 80 mm,
the error is increased from 0.231 g to 0.384 g, revealing that fine spacing
is preferred for improving the corrosion quantification accuracy. Since
fine spacing compromises the sensor installation efficiency, it is rec-
ommended to adopt helix spacings between 40 mm and 60 mm.

4.4. Limitations and future opportunities

In this research, the method for automatic interpretation of DFOS
data for pipeline corrosion was developed based on laboratory
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Fig. 16. Corrosion quantification results of the proposed and reference ap-

proaches [10].
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Fig. 17. Effects of sensor parameters on corrosion quantification accuracy: (a) spatial resolution, (b) coating thickness, and (c) helix spacing.

experiments. It should be noted that real applications will involve more
variables, such as the variations of temperature and environmental vi-
brations, which will potentially influence the performance of the pro-
posed method. The main limitation of this research is that the dataset
utilized to train and test the performance of the machine learning model
is limited, in terms of the size and diversity. Currently, this is a general
problem for using machine learning to automate the interpretation of
DFOS data because there is lack of large datasets for DFOS data. In
particular, there is lack of datasets for field testing data because DFOS
has not been widely used in engineering structures. When DFOS is
applied to more projects, more diverse data will be generated. However,
the lack of effective methods for automatic data interpretation is one of
the important challenges for the adoption of DFOS in real applications
because DFOS generates a large number of data which cause difficulties
in data analysis when data analysis is performed manually. For example,
when the spacing between adjacent measuring points is 0.65 mm, each
measurement from a DFOS with a length of 100 m generates 153,800
data points. When the sampling frequency is 20 Hz, more than 3 million
data points will be generated every second. Although DFOS can provide
real-time measurements, the measurement data cannot be manually
analyzed and interpreted in real time. More laboratory and field tests are
necessary to fully evaluate and improve the performance of the proposed
method.

In future research, it is promising to develop knowledge-guided
machine learning methods which combine the strengths of established
principles and data-driven methods. For example, the loss function of
the machine learning models can include two terms, one term for the
compliance with established principles such as governing equations and
the other term for the compliance with data from experiments. In the
training process, the machine learning models will be trained to satisfy
both established principles and the data. It is speculated that high ac-
curacy and generalizability will be achieved using knowledge-guided
machine learning methods even when the dataset is small. This specu-
lation needs to be tested through further research. In addition to the
development of knowledge-guided machine learning methods, it is
important to conduct more laboratory and field experiments to establish
a larger database, which will be significant for training and testing
machine learning models for DFOS sensor data analysis and
interpretation.

5. Conclusions
This paper proposes an automated corrosion monitoring approach

using strain data measured from DFOSs and machine learning. The
following conclusions are drawn:
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e The proposed machine learning model is successfully developed to
automatically detect corrosion using the DFOS data. Bayesian opti-
mization based hyperparameter tuning was used to find the hyper-
parameter combinations that performed well from millions of
hyperparameter candidate combinations to improve the detection
accuracy of the proposed machine learning model. The F1 score of
the proposed model increased from 0.835 to 0.986, revealing a high
accuracy of the machine learning model for corrosion detection and
the effectiveness of the Bayesian optimization based hyperparameter
tuning.
The robustness of the proposed approach in corrosion detection is
analyzed. High values (>0.950) of the F1 score were retained,
revealing that the proposed approach is robust to the different pipe
sizes, environmental noises, and the parameters of the DFOS,
including different coating thickness, spatial resolution, and instal-
lation spacing of the DFOS.

e Based on the results of the machine learning model, a corrosion
quantification method is proposed for both uniform and non-uniform
cases. The proposed quantification method considers that some of
the measured strains are not generated by corrosion. The R? of the
proposed quantification method reached 0.953, while that of the
reference method was 0.656, indicating a significant improvement.

e The effects of the coating thickness, spatial resolution, and installa-
tion spacing of the DFOS on the accuracy of the proposed corrosion
quantification method were investigated. The coating thickness and
the spatial resolution of the DFOS do not have a significant effect on
the accuracy. However, the larger the winding spacing, the smaller
the accuracy of the quantification method. When the winding
spacing increased from 10 mm to 80 mm, the error of the mass loss
due to corrosion increased from 0.231 g to 0.384 g.

The validation and performance evaluation are limited to laboratory
experiments in this study. It should be noted that more variables can be
involved in field applications, such as variations in temperature and
environmental vibrations, which were not included in the laboratory
experiments. Before this method is implemented into real projects, it is
essential to validate and enhance the performance using larger, more
diverse datasets, as well as field testing using in-use pipelines.
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