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A B S T R A C T   

Distributed fiber optic sensor (DFOS) offers unique capabilities of monitoring corrosion for long pipelines. 
However, manually interpreting DFOS data is labor-intensive and time-consuming. To address this challenge, 
this paper presents a machine learning approach for real-time automatic interpretation of DFOS data used to 
monitor both uniform and non-uniform corrosion in pipeline. A machine learning model is developed to auto
matically detect corrosion based on DFOS data, and a corrosion quantification method is developed based on the 
output of the machine learning model. The proposed approaches are evaluated using laboratory experiments in 
terms of accuracy and robustness to pipeline diameter, spatial resolution of DFOS, type of fiber optic cable, and 
sensor installation methods. The results show that the F1 score for corrosion detection and the R2 value for 
corrosion quantification are 0.986 and 0.953, respectively. This research will facilitate pipeline corrosion 
monitoring by enabling automatic distributed sensor data interpretation.   

1. Introduction 

Corrosion poses a significant challenge to the life-cycle performance 
of civil infrastructure as it causes substantial expenses in the mainte
nance of infrastructure [1]. According to a recent report by the National 
Association of Corrosion Engineers (NACE), the annual global cost of 
corrosion is estimated at a staggering $2.5 trillion, accounting for 3.4 % 
of the global gross domestic product [2]. Beyond the considerable eco
nomic impact, corroded steel can jeopardize the integrity of reinforced 
concrete, prestressed concrete, and steel structures such as bridges and 
pipelines, potentially resulting in structural malfunction or even 
collapse. Based on data from the Pipeline and Hazardous Materials 
Safety Administration (PHMSA), corrosion is responsible for 11 % of 
natural gas pipeline incidents over the past three decades approximately 
[3]. There is an urgent need for real-time corrosion monitoring and 
timely assessment to mitigate these risks for the health of pipes and 
other structures [4]. 

Traditional methods for monitoring pipeline corrosion involve using 
different types of sensors. These existing methods often rely on elec
trochemical measurements such as potentiodynamic polarization [5], 
polarization resistance [6], electrochemical impedance [7], electrical 
resistance [8], and magnetic flux leakage [9]. These methods offer in
sights into the potential occurrence of corrosion at different cross 

sections of a pipeline. These electrochemical sensing technologies 
remain the prevailing corrosion monitoring approach, directly gauging 
metal corrosion situations. However, due to their localized nature, these 
sensors and techniques require numerous installations or measurements 
along the pipeline, rendering the corrosion monitoring system complex 
and costly [10]. Furthermore, they are susceptible to electromagnetic 
interference and influenced by various environmental and pipeline- 
related variables [11]. The performance of these methods is compro
mised by alternating wet-dry conditions and seasonal weathering [12]. 
In addition to the electrochemical measurements, another approach 
involves using sound waves to detect corrosion [13]. This ultrasonic 
wave method sends high-frequency sound waves through the pipeline 
and analyzes the returning echoes. Although this method can provide a 
general idea of where corrosion might be occurring, the accuracy is 
limited [10]. 

Alternatively, distributed fiber optic sensors (DFOSs) are garnering 
increasing attention for corrosion monitoring [14]. DFOSs offer distinct 
advantages over traditional techniques, including immunity to electro
magnetic interference, high precision, compact size, and robust physical 
and chemical stability [15]. Notably, a remarkable feature of DFOSs is 
the utilization of a single fiber optic cable as both the transmission line 
and a sensor with numerous sensing points [16]. This unique feature 
eliminates the need for predicting corrosion locations, as DFOSs 
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continuously measure strains and temperature along their entire length. 
The above exceptional capabilities have led to diverse applications in 
the field of corrosion monitoring. For instance, corrosion-induced pipe 
wall thickness reduction was tracked through hoop strain measurement 
[17], and non-uniform corrosion in steel piles was monitored [18]. 

However, it is difficult to interpret the data measured from DFOSs 
deployed in large-scale pipelines. The following challenges concerning 
real-life applications have been identified: (1) The amount of data is so 
substantial in both spatial and temporal dimensions that automated 
monitoring is a challenge to achieve using traditional manual data 
processing and interpretation. In addition, skilled engineers are required 
to process DFOS data, which increases operation costs of DFOSs. (2) 
Existing methods of corrosion quantification assume pipe corrosion as a 
uniform corrosion along the circumference. Local corrosion situations 
require further consideration. 

With the rapid development of machine learning techniques, several 
innovative methods have emerged for the analysis of strain distributions 
collected from DFOSs. For example, Song et al. [19,20] and Liu et al. 
[21,22] developed machine learning approaches to analyze DFOS data 
for monitoring cracks, automatically. The processing time for a sub
stantial DFOS dataset containing 10,000 measurement points was less 
than 0.05 s [22]. These endeavors clearly highlight the promising po
tential of machine learning approaches for automated interpretation and 
efficient management of voluminous DFOS data. However, currently, 
there is no research exploring the automatic interpretation of DFOS data 
for corrosion monitoring using machine learning. 

To address the above challenge, this paper presents an approach for 
automatic interpretation of DFOS data for monitoring pipeline corro
sion. This paper has three main contributions: (1) A machine learning 
model is developed by integrating a convolutional neural network 
(CNN), a long short-term memory (LSTM) module, an attention module, 
and a fully connection module, aiming to detect pipeline corrosion from 
DFOS data. The dimensions of input data and hyperparameters of the 

machine learning model are optimized via Bayesian optimization. (2) 
Based on the machine learning model, a method is proposed to quantify 
both uniform and non-uniform corrosion. (3) The performance of the 
proposed approach and important influencing factors are evaluated 
based on laboratory corrosion experiments. The investigated factors 
include the pipeline diameter, spatial resolution of DFOS, type of fiber 
optic cable, and sensor installation methods. 

The remainder of the paper is organized as follows: Section 2 in
troduces the methods. Section 3 introduces the laboratory experiments. 
Section 4 presents and discusses the experimental results. Section 5 
summarizes the conclusions. 

2. Methods 

2.1. Overview 

The framework of the proposed approach is shown in Fig. 1, con
sisting of four main steps: (1) A DFOS and an optic analyze system are 
used to collect strain values on the surface of pipes (Section 2.2). (2) The 
collected strain values are input into a machine learning model to 
determine whether corrosion occurs. (3) A Bayesian optimization-based 
hyperparameter tunning method is developed to enhance the perfor
mance of the proposed machine learning model. (4) Based on the results 
of corrosion detection from the machine learning model, a method is 
proposed to quantify corrosion in uniform and non-uniform corrosion 
cases. 

2.2. Distributed fiber optic sensors 

In this study, a single-mode fiber optic cable (model: Corning® SMF- 
28e+® [23]) was used as the distributed sensor and transmission line. 
The cable consisted of a fused silica fiber core, a fused silica fiber 
cladding, and multiple layers of polymer coatings for mechanical 

Fig. 1. Framework of the proposed approach for interpreting DFOS data via machine learning.  
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protection. Light waves propagate in the fiber core via total internal 
reflection at the core-cladding interface [24]. The fiber optic cable is 
attached to the surface of a pipeline. When the pipeline is subjected to 
mechanical loads or corrosion that generates strain changes, the prop
agation of light in the fiber will change accordingly. The strains in the 
fiber optic cable is measured with an optical frequency domain reflec
tometry (OFDR) technique based on a calibration relationship between 
strain and frequency shift [10]. 

In this study, a Luna ODiSI 6120 was used to measure strains based 
on the OFDR technique [25]. A DFOS was attached to the surface of a 
pipe in a helix pattern for monitoring the corrosion of the pipe, as shown 
in Fig. 2(a). The radius of the pipe is R0. The number of loops of fiber 
optic cable on the surface of the pipe is m. Based on the OFDR technique, 
the collected strain values at the time of t can be stored as a vector: 

εt =
[

εt
1,1 εt

1,2 ⋯ εt
1,j ⋯ εt

1,n εt
2,1 εt

2,2 ⋯ εt
2,n ⋯ εt

i,j ⋯ εt
m,n

]
(2) 

where εt
i,j denotes the j-th strain value in the i-th loop of the DFOS at 

time t. The total number of strain data in each loop is n, which can be 
calculated by: 

n =

⎢
⎢
⎢
⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2πR0)
2

+ h2
√

S

⎥
⎥
⎥
⎦ (3) 

where h is the winding spacing of the DFOS on the surface of the pipe, 
S is the spatial resolution of the DFOS, and ⌊. • ⌋ denotes a round down 
function. 

Within a period of time t, the DFOS collects m × n × t strain data, 
which can be used to monitor pipe corrosion. As time progresses, the 

volume of DFOS data increases rapidly. For example, assuming R0 = 20 
mm, h = 20 mm, S = 0.65 mm, m = 1000, and t = 100, the DFOS will 

collect a total of 1000×

⌊ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(2π•20)

2
+202

√

0.65

⌋

× 100 = 19,500,000 data. The 

data volume poses a significant challenge for manual processing and 
interpretation. Numerous data are collected, and the data change in both 
spatial and temporal dimensions, making it difficult to distinguish red 
dots from blue dots, as shown in Fig. 2(b). 

2.3. Machine learning model 

A machine learning architecture integrating a CNN, an LSTM mod
ule, a self-attention module, and a fully connection module is proposed 
in this study, as shown in Fig. 3. Previous research has shown that CNNs 
can efficiently extract spatial features from spatial data [26], and LSTM 
can effectively extract temporal features from sequential data [27]. This 
architecture has components to extract both spatial and temporal fea
tures from the DFOS data that are collected over time. The input and 
output data of the machine learning model is presented in Section 2.3.1. 
The modules are elaborated in the following subsections. 

2.3.1. Input and output data 
In this study, strain distributions along DFOS were measured based 

on the OFDR technique. The details of data collection are presented in 
Section 3. The strain distributions were segmented in spatial and tem
poral dimensions using a sliding window method [28], as shown in 
Fig. 4. 

The window sizes in the spatial and temporal dimensions are noted 
as A and B, respectively. As the window slides along the spatial and 

Fig. 2. Strain data acquisition for monitoring pipeline corrosion based on DFOS and OFDR: (a) illustration of the process; and (b) example of real collected data.  
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temporal dimensions, a set of data is segmented and stored in a box that 
has A units in length and B units in width. The height of the box is the 
strain value. When the data corresponds corrosion, the data is labeled as 
1. When the data corresponds no corrosion, the data is labeled as 0. Each 
data segment is a two-dimensional matrix, denoted as vε. These seg
ments form the input data for the proposed machine learning method. 
The optimal window sizes are discussed in Section 4.1. The output data 
zε of this machine learning method is corrosion condition. 

2.3.2. Convolutional neural network 
A CNN is employed to extract spatial features from the data segment, 

vε. The CNN employs K one-dimensional spatial convolution layers to 
capture a spatial feature that can effectively represent the spatial strain 
values collected from the DFOSs. Each convolutional layer takes the data 
segment vε as input, yielding an output defined as: 

wε,k = vε⨂ak + bk (4) 

where wε,k, ak, and bk are the output, weight, and bias of the k-th 
convolutional layer, respectively, and ⨂ represents the convolution 
operation. The resulting dimension of the output wε from the complete 
CNN module is B × K. 

2.3.3. Long short-term memory module 
Designed with B standard LSTM cells and H (H ≥ 1) hidden units, an 

LSTM module is developed to extract temporal features from the output 
of the previous CNN module. A standard LSTM cell at time step of t is 
illustrated in Fig. 5, where the functions sigmoid( • ) and tanh( • ) are the 
sigmoid and hyperbolic tangent functions, respectively. Equations (5) to 
(10) present the mathematical formulation of the standard LSTM cell 
[29,30]. 

f t = sigmoid
(
Wfx × Xt + Wfh × ht−1 + b0

)
(5)  

it = sigmoid(Wix × Xt + Wih × ht−1 + b1) (6) 

Fig. 3. Architecture of the proposed machine learning model for analyzing DFOS data.  

Fig. 4. Generation of data segments using a sliding window in spatial and temporal dimensions.  
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c̃t = tanh(Wcx × Xt + Wch × ht−1 + b2) (7)  

ot = sigmoid(Wox × Xt + Woh × ht−1 + b3) (8)  

ct = f t × ct−1 + it × c̃t (9)  

ht = ot × tanh(ct) (10) 

where f t, it, and ot correspond to the forget gate, input gate, and 
output gate of the standard LSTM cell at time step of t, respectively. Xt , 
ct, and ht represent the current input, memory cell, and hidden state, 
respectively. W and b with distinct subscripts denote the corresponding 
weights of different gates. The dimension of the output xε from the entire 
LSTM module is B × H, which is determined by the number of LSTM cells 
and the length of the hidden state. 

2.3.4. Attention module 
Attention mechanism is a fundamental concept in natural language 

processing and computer vision, which enables machine learning 
models to focus on specific parts of input data while processing it. 
Alongside the well-known scaled dot-product attention utilized in 
transformer models [31], there exists a range of other prominent 
attention types, such as content-based attention [32], general attention 
[33], and location-based attention [33]. 

A local attention mechanism is utilized (Fig. 6). The input data for 
the attention module is derived from the output of the LSTM module, 
and the output (yε) is flattened to generate a one-dimensional vector 
with dimensions of 1 × (H × S): 

yε = sigmoid
(
W2 × tanh

(
W1 × xT

ε
) )

× xε (11) 

where W1 and W2 are the trainable weight matrices with two pa
rameters of attention length L and output size S; and xT

ε is the transposed 
input data. 

2.3.5. Fully connection module 
A fully connected module is often referred to a dense layer in neural 

networks and establishes comprehensive connections between input and 
output nodes. In this module, the input vector yε undergoes a linear 
transformation by employing a weight matrix Wz and a bias term b4. 

Subsequently, a non-linear activation function sigmoid( • ) is applied to 
generate the final result of the entire machine learning model zε. The 
output zε is one-dimensional vector with a dimension of 1 × 2, indicating 
the corrosion detection results. 

zε = sigmoid(Wz × yε + b4) (12)  

2.4. Hyperparameter tuning 

The proposed machine learning architecture has hyperparameters 
that have a significant effect on the performance of machine learning 
model. These hyperparameters are shown in Table 1. Regarding the 
architecture, the hyperparameters include the number of CNN filters, 
the number of LSTM units, the number of hidden units to decode the 
attention, and the number of distinct components in the attention 
module. Regarding the learning process, the hyperparameters include 
the learning rate and batch size. When hyperparameter tuning is per
formed using the grid search method, the method will require iterations 
for 63 × 63 × 15 × 15 × 100 × 6 = 535, 815, 000 times. Alternatively, 
random search can be employed, but it introduces significant variance 
due to its reliance on randomly selected parameters. In addition to the 
above limitations, both the grid search and random search methods lack 
the ability to learn from prior search results. To overcome these limi
tations, a Bayesian optimization-based hyperparameter tuning tech
nique is proposed. This approach leverages Bayesian principles to 
transform previously explored parameters into insightful prior 

Fig. 5. Structure of a standard LSTM cell of the machine learning model at time t.  

Fig. 6. Structure of the attention module incorporated into the machine learning architecture.  

Table 1 
Candidates of the undetermined hyperparameters.  

Hyperparameter Number of 
candidates 

Candidates 

Number of CNN filters 63 {2, 3, …, 64} 
Number of LSTM units 63 {2, 3, …, 64} 
Number of hidden units in the 

attention 
15 {2, 3, …, 16} 

Number of distinct components in the 
attention 

15 {2, 3, …, 16} 

Learning rate >100 [10-5, 10-3] 
(continuous) 

Batch size 6 {2, 4, 8, 16, 32, 64}  
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information. 
The Bayesian optimization-based hyperparameter tuning can be 

expressed as follows: 

θ* = argmin
θ∈Θ

Ψ(θ) (13) 

where Ψ(θ) is the objective function (or loss function) of the pro
posed machine learning model; θ denote hyperparameter values; Θ is the 
search space (or candidates) of the hyperparameters, as shown in 
Table 1; and θ* is the best hyperparameter that minimizes the output of 
Ψ(θ). 

Because each computation of the objective function Ψ(θ) in Equation 
(13) is a training of the machine learning model, its time consumption is 
often excessive. To mitigate this computational challenge, Bayesian 
optimization-based hyperparameter optimization techniques are lever
aged. These methods employ surrogate models and acquisition functions 
to streamline the process. A Gaussian process is used to establish a 
surrogate model for the objective function: 

Ψ(θ) G P (μ(θ), k(θ, θ′) ) (14) 

where G P ( • ) denotes the Gaussian process, μ( • ) represents the 
mean function associated with different hyperparameter combinations, 
and k( • ) is the covariance function between two hyperparameter 
combinations. 

The Gaussian process integrates information from the current 
hyperparameter combination and combinations, i.e., 
p(Ψ(θt+1)|θt+1, Ψt ), where t is the t-th hyperparameter combination. For 
each input hyperparameter combination, the surrogate model outputs a 
Gaussian distribution rather than the value of the objective function. In 
general, for hyperparameter tuning of machine learning models, the 
mean of the Gaussian distribution is considered as μ(θ) = 0, and the 
covariance function is computed using the Matern kernel function. The 
objective of the acquisition function is to maximize the probability that 
the next hyperparameter combination achieves a higher objective 
function. This is carried out to maximize the probability of improvement 
(POI): 

POI(θt+1) = P(Ψ(θt+1) ≥ Ψ(θ+) + ξ ) = Φ
(

μ(θt+1) − Ψ(θ+) − ξ
σ(θt+1)

)

(15) 

where θ+ denotes the current combination of hyperparameter values 
that can minimize the objective function; Φ( • ) is the normal cumulative 
distribution function; ξ is a trade-off parameter greater than or equal to 
0; μ(θt+1) and σ(θt+1) denote the corresponding mean and standard de
viation f the hyperparameter combination is θt+1, respectively. 

As ξ approaches 0, the next hyperparameter combination θt+1 ap
proaches θ+, meaning that this hyperparameter tuning tends to exploit 
the most-likely region of the global optimum according to the known 
posterior distributions. On the contrary, this hyperparameter tuning 
explores the unknown region. Through continuous iterations, when the 
stopping condition is reached, the current hyperparameter combination 
θ+ is the combination of hyperparameter values θ* that can minimize the 
output of the objective function. 

2.5. Quantification of corrosion 

In the course of steel corrosion, as more and more rust is produced 
and accumulates on the surface of pipeline, the overall diameter of the 
pipeline is increased because rust is porous and has a larger volume than 
the original steel. The increase of the pipeline diameter exerts tensile 
strains to the fiber optic cable attached to the exterior surface of the 
pipeline, as shown in Fig. 7. The original diameter of the pipeline is R0. 
Due to corrosion, the thickness of steel is reduced to Rw. The radius of the 
pipe with rust is noted as Rc. The radius of the pipe with rust and the 
thickness of fiber optic cable is Rf . 

Curves L1 and L2 indicate the edges of pipeline before and after 

corrosion, respectively. According to Fig. 7, the following equation is 
satisfied: 

α =
L1

R0
=

L2

Rc
(16) 

The volumes of consumed steel (Vp) and corrosion rust (Vr) between 
two loops of the DFOS can be expressed as: 

Vp =
α
2π πh

(
R2

0 − R2
w

)
=

αh
2

(
R2

0 − R2
w

)
(17)  

Vr =
α
2π πh

(
R2

c − R2
w

)
=

αh
2

(
R2

c − R2
w

)
(18) 

The j-th mass loss (Δmt
i,j) caused by corrosion in the i-th loop of the 

DFOS at time t can be expressed as: 

Δmt
i,j = Vpρ =

αhρ
2

(
R2

0 − R2
w

)
(19) 

where ρ is the density of pipe material (ρ = 7850 kg/m3 for steel). 
The strain variation (εt

i,j) due to the increase of pipeline diameter can 
be calculated by the average elongation from curve L1 to curve L2. Due 
to the thickness (δ) of the DFOS, the measured strain values from the 
DFOS reflect the elongation of the core of the DFOS instead of the sur
face of the pipeline, although the DFOS is tightly attached to the surface 
of the pipeline. In practice, the thickness of the DFOS is negligible 
compared with the radius of the pipeline: 

R0 + δ ≈ R0 (20) 

Further discussion on the effect of δ is presented in Section 4.2.3 and 
Section 4.3.2. The strain variation and Rc can be calculated as follows: 

εt
i,j =

α(R0 + δ) − α(Rc + δ)

α(R0 + δ)
=

R0 − Rc

R0 + δ
≈

R0 − Rc

R0
(21)  

Rc = R0
(
1 − εj

i
)

− εj
iδ ≈ R0

(
1 − εj

i
)

(22) 

The volume expansion coefficient (λ) due to the expansion of 
corrosion rust is defined as: 

λ =
Vr

Vp
=

R2
c − R2

w

R2
0 − R2

w
(23) 

Substituting Equations (16), (21), (22), and (23) into Equation (19), 
the mass loss can be expressed as: 

Δmt
i,j =

L1hρR0

2(λ − 1)

[

2εt
i,j +

(
εt

i,j

)2
]

(24) 

When there are m loops of fiber optic cable and n points of mea
surement in each loop, the total mass loss Δm is expressed as: 

Δm =
∑m

i=1

∑n

j=1
Δmt

i,jz
t
i,j =

∑m

i=1

∑n

j=1
zt

i,j
L1hρR0

2(λ − 1)

[

2εt
i,j +

(
εt

i,j

)2
]

(25) 

Fig. 7. Non-uniform corrosion model of a steel pipe with a fiber optic cable on 
the surface. 
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zt
i,j =

{
1, εt

i,jrepresents corrosion
0, otherwise

(26) 

where zt
i,j is the corrosion result obtained from the machine learning 

model corresponding to εt
i,j. 

The main idea of the proposed corrosion quantification method is to 
divide the cross section of a pipeline into multiple parts. The proposed 
machine learning method is used to identify whether the strain distri
bution corresponding to each part represents corrosion or not. When 
corrosion is detected, the corresponding mass loss is calculated. The 
cumulative value of all mass losses is then the overall mass loss of the 
pipe. This method can tackle both local and global corrosion. Compared 
with previous research, which assumes uniform pipeline corrosion along 
the circumference [10], the proposed method can address non-uniform 
corrosion. 

2.6. Performance metrics 

Various performance metrics were proposed to evaluate machine 
learning models. Among them, F1 score has been commonly adopted 
[34]. F1 score combines precision and recall into a single value from 0 to 
1. A perfect classifier with high precision and recall achieves a score of 1. 
The F1 score is well-suited for binary classification tasks [34]. 

For corrosion quantification, mass loss is usually employed to eval
uate corrosion severity of pipelines [10,18]. The quantification perfor
mance is evaluated with the coefficient of determination (R2) between 
the true values and calculated values of mass loss [27]. The R2 value 
varies between 0 and 1, and 1 indicates that the corrosion quantification 
model perfectly evaluates the mass loss. The F1 score and R2 are defined 
as: 

F1 =
TP

TP + 1
2 (FP + FN)

(27)  

R2 = 1 −

∑K
k=1(Δmk − Δ̂mk)

2

∑K
k=1(Δmk − Δm)

2 (28) 

where TP indicating the number of the segments representing 
corrosion accurately identified as corrosion; FP denoting the number of 
the segments wrongly identified as corrosion; FN denoting the number 
of the segments representing corrosion wrongly identified as no corro
sion; Δmk and Δ̂mk represents the true and calculated mass loss of the k- 
th pipe, respectively; K is the number of pipes; Δm denotes the average 
value of the true mass loss of the K pipes. 

3. Experimental program 

3.1. Experiments 

In this research, three types of steel pipes were investigated. The 
pipes were immersed in a sodium chloride solution (concentration: 3.5 
% by mass) for corrosion tests at room temperature (25 ± 2 ◦C). The 

dimensions and materials of the pipes are shown in Fig. 8, including 
stainless pipes, small low-carbon steel pipes, and large low-carbon steel 
pipes. 

DFOSs were attached to the exterior surfaces of the pipe specimens 
following a helix pattern, as shown in Fig. 9. The total length of the 
DFOS was around 4.4 m. Different spacings between adjacent rounds of 
spiral were investigated to optimize the sensor installation method. The 
pipes were supported by plastic blocks at the two ends to expose the 
pipes to the sodium chloride solution. The fiber optic cable was con
nected to the Luna ODiSI system for measuring strain distributions. 

The measurements were carried out at 12 different immersion times 
(0 h, 30 h, 60 h, 114 h, 134 h, 184 h, 208 h, 280 h, 472 h, 640 h, 912 h, 
and 1080 h). The gauge length of the DFOS was 0.65 mm [25]. Another 
distributed sensor was installed closely for temperature compensation. 

The mass loss of the pipe specimens due to steel corrosion was 
measured to quantify corrosion. The initial mass of the pipe specimens 
was gauged with a high precision balance before immersing. At 12-hour 
intervals, a pipe specimen was extracted, rust was carefully eliminated 
using vinegar acid, and the mass after corrosion was measured using the 
high-precision balance. The difference between this mass and the cor
responding initial mass represents the mass loss due to corrosion, which 
serves as the true mass loss to evaluate the proposed corrosion quanti
fication method in Section 4.3. More details about the experiments can 
be found in Ref. [10]. 

3.2. Datasets 

Based on the gauge length (0.65 mm), the 4.4-m DFOS measured 
4400/0.65 = 6769 strain data in each measurement and a total of 6769 
× 12 = 81,228 strain data in 12 measurements. Since the stainless-steel 
pipes did not corrode, the strain distributions measured from the 

Fig. 8. Pipe specimens: (a) stainless pipes, (b) small low-carbon steel pipes, and (c) large low-carbon steel pipes.  

Fig. 9. Steel pipe specimens immersed in sodium chloride solution for corro
sion experiments. 
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stainless-steel pipes were used as the reference (no corrosion) data for 
evaluating the corrosion severity of the corroded specimens. The 
collected strain data representing no corrosion are shown in Fig. 10(a). 
The minor increase of tensile strains in the DFOS can be attributed to the 
polymer coatings of the fiber optic cable because the coatings can absorb 
water and swell. The strain distributions collected from the low-carbon 
steel pipe specimens are shown in Fig. 10(b). With the increase of im
mersion time, the strains of low-carbon steel pipes have shown a sig
nificant increase. The increase of strains can be attributed to the growth 
of rust on the surface of the pipe specimens. 

In the laboratory corrosion experiment, the strain distributions were 
measured on a daily basis. In this study, linear interpolation was used to 
generate more data. Specifically, strain distributions were generated 
every 3 h via linear interpolation [35]. With the generated strain data
set, a total of 12 datasets were generated in both spatial and temporal 
dimensions using the sliding window approach (Section 2.3.1), as shown 
in Table 2. 

Regarding the spatial dimension, the sliding width is determined by 
the fractions (1/16, 2/16, 3/16, and 4/16.) of the circumference of the 
pipe specimens. Specifically, the designated candidate lengths were 5 
mm, 10 mm, 15 mm, and 20 mm, respectively. Regarding the time 
dimension, the sliding window widths include 3 h, 6 h, and 9 h. The 
effect and the optimization of the sliding width are elaborated in Section 
4.1. Each dataset was split into a training dataset, a validation dataset, 
and a testing dataset with a ratio of 7:1:2. The data in the testing dataset 
was not used in the training of the machine learning model, and was 
used to verify the generalization ability of the model, i.e., the ability of 
the model to predict unknown data. 

4. Results and discussion 

4.1. Machine learning model 

To determine the structure and hyperparameters of the machine 
learning model, the effects of hyperparameters and sliding widths on the 
accuracy of the model were investigated. The datasets in Table 2 were 
utilized to train the machine learning model and tune the hyper
parameters based on Bayesian optimization. The results are summarized 
in Table 3. When the input data format is (23, 3), the F1 score of the 
machine learning model is 0.835 before performing hyperparameter 
tuning and 0.986 after performing hyperparameter tuning based on 
Bayesian optimization. The improvement indicates that hyperparameter 
tuning is important. With the increase of the number of optimization 

steps, the accuracy of the machine learning model increases overall, as 
shown in Fig. 11. The highest F1 score value occurs in the 86th step and 
is marked by a red triangle. The optimization process shows that the 
hyperparameter tuning based on Bayesian optimization can significantly 
improve the accuracy of the machine learning model. 

The effects of the sliding widths (i.e., A and B in Section 2.3.1) on the 
accuracy of the machine learning model are shown in Fig. 12. With the 
increase of the sliding width in spatial dimension, as shown in Fig. 12(a), 
the accuracy of the machine learning model increases and then stabi
lizes, meaning that data from a minimum length of DFOS are necessary 
for extracting sufficient spatial features of the data to identify corrosion. 
It is recommended to set the minimum spatial dimension (i.e., A) at 15 
mm. With the increase of the sliding width in temporal dimension, as 
shown in Fig. 12(b), the accuracy of the machine learning model 

Fig. 10. Strain distributions measured from DFOSs on the surface of pipe specimens: (a) stainless-steel pipes (no corrosion) and (b) low-carbon steel 
pipes (corrosion). 

Table 2 
Summary of the dataset used in this study.  

No. Spatial 
length 
(mm) 

Ratio between 
the spatial 
length and the 
circumference 

Time 
length 
(hour) 

Number of strain 
values 

Dataset 
size 

Spatial Temporal 

1 5 1/16 3 7 2 (7, 2) 
2 5 1/16 6 7 3 (7, 3) 
3 5 1/16 9 7 4 (7, 4) 
4 10 2/16 3 15 2 (15, 2) 
5 10 2/16 6 15 3 (15, 3) 
6 10 2/16 9 15 4 (15, 4) 
7 15 3/16 3 23 2 (23, 2) 
8 15 3/16 6 23 3 (23, 3) 
9 15 3/16 9 23 4 (23, 4) 
10 20 4/16 3 30 2 (30, 2) 
11 20 4/16 6 30 3 (30, 3) 
12 20 4/16 9 30 4 (30, 4)  

Table 3 
Effects of the hyperparameters on the performance of the proposed model.  

Hyperparameter Before tunning After tunning 

Number of CNN filters 4 10 
Number of LSTM units 8 56 
Number of hidden units in the attention 8 2 
Number of distinct components in the attention 8 12 
Learning rate 0.0001 0.0001 
Batch size 8 2 
F1 score of the model 0.835 0.986  
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increases and then stabilizes, meaning that data from a minimum period 
of measurements from DFOS are necessary for extracting sufficient 
temporal features of the data to identify corrosion. It is recommended to 
set the minimum temporal dimension (i.e., B) at 6 h. 

The interactions between spatial and temporal dimensions are shown 
in Fig. 12. When the target F1 score is 0.95, the required spatial 
dimension and temporal dimension are dependent on each other. When 
the temporal dimension is 9 h, the F1 score exceeds 0.95, even when the 
spatial dimension is only 5 mm, as shown in Fig. 12(a). When the spatial 
dimension is 15 mm, the F1 score exceeds 0.95 as long as the temporal 
dimension is not shorter than 6 h, as shown in Fig. 12(b). In short, it is 
important to optimize the selection of spatial and temporal dimensions 
in specific applications. Thereafter, the spatial and temporal dimensions 
are 15 mm and 6 h, respectively. 

4.2. Detection results and robustness 

4.2.1. Detection results 
The performance of the machine learning model is evaluated by its 

ability to identify segments representing corrosion and segments rep
resenting no corrosion accurately. This process involves four distinct 
scenarios (Fig. 13): (1) true positives (TP), indicating accurate identifi
cation of the segments representing corrosion; (2) true negatives (TN), 
where the model correctly identifies the segments representing no 
corrosion; (3) false negatives (FN), where actual corrosion is overlooked 
by the model; and (4) false positives (FP), denoting instances wrongly 
identified as corrosion. 

The confusion matrix in Fig. 14 provides a comprehensive overview 
of the performance of the proposed machine learning model. As shown 
in Fig. 14(a), the confusion matrix presents the counts of TP, TN, FN, and 
FP [34]. Each of these cases corresponds to a specific cell in the confu
sion matrix. The specific statistical results of the proposed model are 
shown in Fig. 14(b). This visual representation shows how well the 
model accurately predicts different cases. Notably, the F1 score reaches 
an impressive value of 0.986, further affirming the effectiveness of the 
proposed machine learning method in corrosion detection tasks. 

4.2.2. Comparison with other machine learning models 
The performance of the proposed machine learning model has been 

compared with that of other popular machine learning models, 
including support vector machine (SVM), extreme gradient boosting 
decision tree (XGBoost), multi-layer perceptron (MLP), LSTM, CNN, 
combined CNN and LSTM, and deep belief network (DBN). The inves
tigated performance metrics include the accuracy and efficiency of the 
different machine learning models. The accuracy and efficiency are 
evaluated using the F1 score and average detection time, respectively, as 
shown in Fig. 15. The proposed model successfully identifies corrosion 
and no corrosion from a total of 2000 strain distributions with an F1 
score of 0.986 within 1.2 s, outperforming the other investigated ma
chine learning models. Traditional machine learning methods, such as 
SVM and MLP, are computationally fast, generally taking less than 0.1 
ms on average, yet the accuracies of corrosion identification are less 
than 0.9. 

4.2.3. Effect of distributed sensor parameters 
The effects of three important sensor parameters on the accuracy of 

the proposed machine learning model have been evaluated. The inves
tigated sensor parameters are the spatial resolution, coating thickness, 
and helix spacing, as shown in Table 4. Spatial resolution is an important 
sensing parameter which describes the spatial fineness of the measure
ments from DFOS. Coating thickness is associated with the type of fiber 
optic cable, and it affects the strain transfer behavior [36] and me
chanical properties of DFOS. Helix spacing is associated with the effi
ciency of sensor installation, and coarse spacing is preferred for 
achieving a high installation efficiency when the accuracy of measure
ment is sufficient. The investigated spatial resolutions are 0.65 mm, 
1.30 mm, 2.60 mm, and 5.20 mm, which are consistent with the OFDR 
technology. The investigated coating thicknesses are 242 µm, 650 µm, 
and 900 µm, which represent typical commercial fiber optic cables. The 
investigated helix spacings are 10 mm, 20 mm, 40 mm, 60 mm, and 80 
mm, consistent with the literature [10]. The results show that the pro
posed machine learning model successfully detects corrosion in different 

Fig. 11. Improvement of F1 score in the hyperparameter tuning based on 
Bayesian optimization. 

Fig. 12. Effect of (a) the spatial length and (b) the temporal length in the datasets on the accuracy of the trained model.  
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Fig. 13. Examples of corrosion detection results using the proposed machine learning model: (a) TP, (b) TN, (c) FN, and (d) FP.  

Fig. 14. Confusion matrix of the proposed machine learning model: (a) illustration of the matrix, and (b) the specific matrix in this study.  
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scenarios with F1 scores higher than 0.95, revealing that the proposed 
approach is effective in various cases involving different sensor 
parameters. 

4.2.4. Robustness 
The robustness of the proposed approach was evaluated using six 

new datasets. The first dataset was collected from a similar corrosion 
experiment using large low-carbon steel pipes with a diameter of 38.1 
mm, as shown in Fig. 8(c). The experiment with the large steel pipe 
increases the variability of the dataset compared to the previous ex
periments, which allows for a better simulation of the pipe conditions in 
real-world scenarios, which in turn comes to validate the robustness of 
the proposed method. The remaining five datasets were produced by 
adding Gaussian white noises to the data obtained from the corrosion 
experiment using small low-carbon steel pipes. Various noise-to-signal 
ratios (1 %, 2 %, 3 %, 4 %, and 5 %) of Gaussian white noise were 
included in the data. The percentages indicate the amplitude of the 
strain data. The results of the proposed approach are shown in Table 5. 

The baseline performance was established using the test data from 

the corrosion experiment of the small low-carbon steel pipes. The F1 
score achieved by the proposed method on the baseline dataset is 0.986. 
On the larger low-carbon steel pipes, the F1 score slightly decreases to 
0.975. Despite this minor reduction, comparative experiments highlight 
the commendable robustness of the proposed method across various 
corrosion datasets. When a larger, diverse dataset becomes available in 
the future, the proposed method can be applied to train and validate a 
model with better performance in terms of accuracy and 
generalizability. 

4.3. Quantification results and discussion 

4.3.1. Quantification results 
According to Refs. [10,37], the volume expansion coefficient (λ) of 

rust is approximately 2.0 for steel. The results of mass loss obtained from 
the proposed approach and corrosion tests are compared in Fig. 16. 

An approach proposed in Ref. [10] was employed for comparison 
with the proposed approach. The green line shows the true mass loss 
obtained from corrosion tests. The R2 value of the proposed approach is 
0.953, and the R2 value of the reference approach is 0.656. The results 
indicate that the proposed approach can accurately quantify corrosion 
severity. 

4.3.2. Effect of distributed sensor parameters 
The effects of spatial resolution, coating thickness, and helix spacing 

on the quantification accuracy of the proposed machine learning model 
have been evaluated, as shown in Fig. 17. As the spatial resolution and 
coating thickness change, the errors are relatively stable, meaning that 
the quantification accuracy is insensitive to the spatial resolution and 
coating thickness. As the helix spacing increases from 10 mm to 80 mm, 
the error is increased from 0.231 g to 0.384 g, revealing that fine spacing 
is preferred for improving the corrosion quantification accuracy. Since 
fine spacing compromises the sensor installation efficiency, it is rec
ommended to adopt helix spacings between 40 mm and 60 mm. 

4.4. Limitations and future opportunities 

In this research, the method for automatic interpretation of DFOS 
data for pipeline corrosion was developed based on laboratory 

Fig. 15. Performance comparison for the proposed machine learning model 
and other models. 

Table 4 
Effect of the parameters of the distributed sensors.  

No. Spatial resolution 
(mm) 

Coating thickness 
(µm) 

Spacing length 
(mm) 

F1 
score 

1  0.65 900 20  0.977 
2  1.30 900 20  0.968 
3  2.60 900 20  0.963 
4  5.20 900 20  0.950 
5  0.65 242 20  0.980 
6  0.65 650 20  0.977 
7  0.65 242 10  0.982 
8  0.65 242 40  0.977 
9  0.65 242 60  0.971 
10  0.65 242 80  0.979  

Table 5 
Robustness of the proposed approach on corrosion detection.  

No. Source of the dataset Pipe diameter (mm) F1 score 

/ Baseline  25.4  0.986 
1 Experiments using large pipes  38.1  0.975 
2 Baseline + 1 % noise  25.4  0.981 
3 Baseline + 2 % noise  25.4  0.985 
4 Baseline + 3 % noise  25.4  0.984 
5 Baseline + 4 % noise  25.4  0.984 
6 Baseline + 5 % noise  25.4  0.982  

Fig. 16. Corrosion quantification results of the proposed and reference ap
proaches [10]. 
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experiments. It should be noted that real applications will involve more 
variables, such as the variations of temperature and environmental vi
brations, which will potentially influence the performance of the pro
posed method. The main limitation of this research is that the dataset 
utilized to train and test the performance of the machine learning model 
is limited, in terms of the size and diversity. Currently, this is a general 
problem for using machine learning to automate the interpretation of 
DFOS data because there is lack of large datasets for DFOS data. In 
particular, there is lack of datasets for field testing data because DFOS 
has not been widely used in engineering structures. When DFOS is 
applied to more projects, more diverse data will be generated. However, 
the lack of effective methods for automatic data interpretation is one of 
the important challenges for the adoption of DFOS in real applications 
because DFOS generates a large number of data which cause difficulties 
in data analysis when data analysis is performed manually. For example, 
when the spacing between adjacent measuring points is 0.65 mm, each 
measurement from a DFOS with a length of 100 m generates 153,800 
data points. When the sampling frequency is 20 Hz, more than 3 million 
data points will be generated every second. Although DFOS can provide 
real-time measurements, the measurement data cannot be manually 
analyzed and interpreted in real time. More laboratory and field tests are 
necessary to fully evaluate and improve the performance of the proposed 
method. 

In future research, it is promising to develop knowledge-guided 
machine learning methods which combine the strengths of established 
principles and data-driven methods. For example, the loss function of 
the machine learning models can include two terms, one term for the 
compliance with established principles such as governing equations and 
the other term for the compliance with data from experiments. In the 
training process, the machine learning models will be trained to satisfy 
both established principles and the data. It is speculated that high ac
curacy and generalizability will be achieved using knowledge-guided 
machine learning methods even when the dataset is small. This specu
lation needs to be tested through further research. In addition to the 
development of knowledge-guided machine learning methods, it is 
important to conduct more laboratory and field experiments to establish 
a larger database, which will be significant for training and testing 
machine learning models for DFOS sensor data analysis and 
interpretation. 

5. Conclusions 

This paper proposes an automated corrosion monitoring approach 
using strain data measured from DFOSs and machine learning. The 
following conclusions are drawn:  

• The proposed machine learning model is successfully developed to 
automatically detect corrosion using the DFOS data. Bayesian opti
mization based hyperparameter tuning was used to find the hyper
parameter combinations that performed well from millions of 
hyperparameter candidate combinations to improve the detection 
accuracy of the proposed machine learning model. The F1 score of 
the proposed model increased from 0.835 to 0.986, revealing a high 
accuracy of the machine learning model for corrosion detection and 
the effectiveness of the Bayesian optimization based hyperparameter 
tuning.  

• The robustness of the proposed approach in corrosion detection is 
analyzed. High values (>0.950) of the F1 score were retained, 
revealing that the proposed approach is robust to the different pipe 
sizes, environmental noises, and the parameters of the DFOS, 
including different coating thickness, spatial resolution, and instal
lation spacing of the DFOS.  

• Based on the results of the machine learning model, a corrosion 
quantification method is proposed for both uniform and non-uniform 
cases. The proposed quantification method considers that some of 
the measured strains are not generated by corrosion. The R2 of the 
proposed quantification method reached 0.953, while that of the 
reference method was 0.656, indicating a significant improvement. 

• The effects of the coating thickness, spatial resolution, and installa
tion spacing of the DFOS on the accuracy of the proposed corrosion 
quantification method were investigated. The coating thickness and 
the spatial resolution of the DFOS do not have a significant effect on 
the accuracy. However, the larger the winding spacing, the smaller 
the accuracy of the quantification method. When the winding 
spacing increased from 10 mm to 80 mm, the error of the mass loss 
due to corrosion increased from 0.231 g to 0.384 g. 

The validation and performance evaluation are limited to laboratory 
experiments in this study. It should be noted that more variables can be 
involved in field applications, such as variations in temperature and 
environmental vibrations, which were not included in the laboratory 
experiments. Before this method is implemented into real projects, it is 
essential to validate and enhance the performance using larger, more 
diverse datasets, as well as field testing using in-use pipelines. 
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