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Abstract

Bilevel optimization has been successfully applied to many important machine learn-
ing problems. Algorithms for solving bilevel optimization have been studied under
various settings. In this paper, we study the nonconvex-strongly-convex bilevel opti-
mization under a decentralized setting. We design decentralized algorithms for both
deterministic and stochastic bilevel optimization problems. Moreover, we analyze
the convergence rates of the proposed algorithms in difference scenarios including
the case where data heterogeneity is observed across agents. Numerical experiments
on both synthetic and real data demonstrate that the proposed methods are efficient.
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1 Introduction

Bilevel optimization provides a framework for solving problems arising from
meta learning [6—8], hyperparameter optimization [9, 10], reinforcement learn-
ing [10, 11], etc. It aims at minimizing an objective in the upper level under a
constraint given by another optimization problem in the lower level, and has been
studied intensively in recent years [7, 10-14]. Mathematically, it can be formu-
lated as:

min  P(x) = f(x,y"(x)), (upper level)

xeRr
s.t. y*(x) = argmin g(x,y), (lower level) ey
yeR?

where g is the lower level function which is usually assumed to be strongly con-
vex with respect to y for all x, and f is the upper level function which is possibly
non-convex. Designing a bilevel optimization algorithm requires estimation of the
hypergradient V®(x), which by chain rule and optimality condition of the lower
level problem is:

-1
V@ = V. £y () = V80 @) V2w y' @) Ve @), @)

where V, ¢ and Vzg represent Jacobian matrix of V,g¢ and Hessian matrix of g
respectively. Decentrahzed optimization aims at solving the finite-sum problem:

n
. 1
min izZlfi(x), ©)
where the ith agent only has access to the information related to f;, and each agent
communicates with neighbors to cooperatively solve the original problem. There
is no central server collecting local updates. Decentralized algorithms are better
choices in certain scenarios [15, 16]. Since decentralized training has been proved to
be efficient, it is natural to ask:

Can we design an algorithm to solve bilevel optimization problems in a decen-
tralized regime?

We will see the answer is affirmative. Our contributions can be summarized as
follows.

e We propose a novel algorithm to estimate the hypergradient in different cases.

e We design a decentralized bilevel optimization (DBO) algorithm and analyze
its convergence rate. We also analyze the convergence results for the stochas-
tic version of DBO. To the best of our knowledge, our paper is the first work
proposing provably convergent decentralized bilevel optimization algorithms
in the presence of data heterogeneity.

e We study the effect of gradient tracking in the deterministic decentralized
bilevel optimization and analyze the convergence rates.

e We conduct numerical experiments on several hyperparameter optimization
problems. The results demonstrate the efficiency of our algorithms.
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1.1 Related work

Bilevel optimization can be dated back to [17, 18]. Due to its great success in solving
problems in meta learning [6—8], hyperparameter optimization [9, 10] and many
others [19-21], there is a flurry of work proposing and analyzing bilevel optimiza-
tion algorithms. The major challenge in bilevel optimization is the estimation of the
hypergradient in (2). Computing each hypergradient requires access to y*(x), which

-1
is often intractable. Even if y*(x) is available, the nonlinearity in [Vig] still

requires careful consideration. There are several strategies to overcome this: approx-
imate implicit differentiation (AID) [9, 12, 13, 22-24], iterative differentiation (ITD)
[10, 13, 22, 24, 25] and Neumann series-based approach [11-14]. All of them only
require first order information, Jacobian-vector and Hessian-vector products. Based
on different algorithm designs, bilevel problems can be solved via single-loop [11,
26] or double-loop algorithms [12—14]. It is worth noting that variance reduction
and momentum methods have also been introduced to bilevel optimization recently
[27-29].

Decentralized optimization plays a key role in distributed optimization. It is gain-
ing popularity in recent years due to its superior scalability for handling large lan-
guage models and heterogeneous environments (i.e., different bandwidth, latency,
data distribution, etc.) [30, 31]. Under a decentralized setting, the data is distributed
to different agents, and each agent communicates with neighbors to solve a finite-
sum minimization problem. As opposed to centralized optimization, decentralized
optimization aims at solving the problem without a central server that collects iter-
ates from local agents. The main challenge is the data heterogeneity across agents,
which should be mitigated by communications. It has been proved that decentralized
algorithms have their own advantages such as faster convergence, data privacy pres-
ervation and robustness to low network bandwidth compared to the centralized set-
ting and single-agent training [15]. For example, low network bandwidth will greatly
hinder the communication with the central server if the algorithm is designed to be
centralized.

An important approach to accelerate the decentralized algorithms is gradient
tracking, which has been proved to be efficient [32-35]. We refer the interested read-
ers to [36], which provides a comprehensive review of decentralized optimization in
a unified variance reduction framework.

Distributed bilevel optimization can be directly applied to solve problems like
hyperparameter optimization, min-max optimization, meta learning, etc, in a distrib-
uted manner. For example, meta learning, which aims at training a model on some
learning tasks so that it can solve new learning tasks using only a few samples, has
been studied in the context of medical data analysis [37, 38]. In this bilevel optimi-
zation model, the lower level problem targets to minimize the loss function using
the training tasks, and the upper level problem targets to choose the shared model
parameters using the testing tasks. Extending meta learning to the decentralized
setting has also been studied [39], and one important reason to apply decentralized
meta learning in medical data analysis is protecting patients’ privacy. Different hos-
pitals, as agents in decentralized training, can collaborate to train a model, but they
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should not share patients’ data during the training process, and decentralized meta
learning can help achieve this. Motivated by such applications, there exist recent
works considering bilevel optimization under distributed setting. Bilevel optimiza-
tion under a federated setting has received some attention recently [40, 41], and so
does min-max optimization under various distributed settings [42—44]. However,
none of these papers considers bilevel optimization under the decentralized setting.
There is a concurrent work [45] also studying decentralized bilevel optimization.
However, it aims at solving decentralized bilevel optimization problems under a
personalized setting, in a sense that the lower level problems are different among
agents. In Sect. 3 we will see that our problem is substantially different. To the best
of our knowledge, our paper is the first work on non-personalized decentralized
bilevel optimization.

2 Preliminaries

In this paper we consider the following decentralized optimization problem:

xeR

n
min D) = l Y fi(x, y*(x)),  (upper level)

- | @)
s.t. Y (x) = argming(x,y) := - Y g,(x,y), (lower level)

yeR? "=l
where x € R?,y € RY. f; is possibly nonconvex and g; is strongly convex in y. Here
n denotes the number of agents. The local objectives f; and g; are defined as:

fiey) =Eyop [F.yi)].  8ix.y) = Ezop [GEx,y:8)].

D, and D, represent the data distributions used to generate the objectives for agent
i, and each agent only has access to f; and g;. In practice we can replace the expecta-
tion by empirical loss,

ny;

1 | &
fi,y)=— ) FOx,yip;), gx,y)=— ) G y&),
nf ]:ZI ’ ngi /=Z] /

i

and then use mini-batch or full batch gradient descent in the updates. When we
use mini-batch gradient descent, we call it “stochastic case”, and when we use full
batch gradient descent, we call it “deterministic case”. We will study the conver-
gence rates under these two cases in Sect. 3.

Notation We denote by Vf(x,y) and V?f(x,y) the gradient and Hessian matrix of
/. respectively. We use V f(x,y) and V,f(x,y) to represent the gradients of f with
respect to x and y, respectively. Denote by V, f(x,y) = V,V f(x,y) € R" the Jaco-
bian matrix of V f(x,y) and V}Zf(x, y) the Hessian matrix of f with respect to y. || - ||
denotes the £, norm for vectors and Frobenius norm for matrices, and || - ||, denotes
the spectral norm for matrices. 1,, is the all one vector in R".
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Decentralized bilevel optimization

The following assumptions will be used, which are standard in bilevel optimiza-
tion [11-14] and decentralized optimization literature [15, 16, 34, 35].

Assumption 2.1 (Smoothness and convexity) For any i, functions f;, Vf;, Vg, Vzgi
are Lf’o, Lf,l, Lg’l, Lg’2 Lipschitz continuous respectively, i.e.,

i) = £ < Lygllz = 2 Il IVA@) = VA < Lyyllz =2 I,
’f f.
1Vg,(2) = Vgl < L llz =2 Il 1V2gi(2) — Vi@l < Ly,llz =21,

for any z = (x,y) and z/ = (x’,y'). Function g; is p-strongly convex in y for all , i.e.,
Vig[(x, y) = ul. Moreover, we define L = max (L, L, ), and k = %
Assumption 2.2 (Network topology) Suppose the communication network is repre-
sented by a weight matrix W = (w;;) € R™, i.e., w; > 0 and is non-zero if and only
if node i is a neighbor of j. W is symmetric and doubly stochastic, i.e.,

W=Ww", Wi, =1, w;>0,Yij,

and its eigenvalues satisfy Il=A4>4221,>-1 and
p = max (|22|, |/1n|) <L

Assumption 2.3 (Data homogeneity on g) Assume the data associated with g;
is independent and identically distributed, i.e., D, = D,. (We do not require data
homogeneity in the upper level.)

Assumption 2.4 (Bounded variance) The stochastic derivatives Vf(x,y;¢),

. 2 . : : : 2 2 2
Vgi(x,y;6), V7gi(x,y;§) are unbiased with bounded variances o7, Oprr Ogo
respectively.

3 Our algorithms

If it is a single-agent system, i.e., n = 1, a natural idea to solve bilevel optimization (4)
is to apply gradient descent for the upper level problem, which leads to the following
updating scheme:

A = 5~y VO ),

where 7, > 0 is a step size, and V®(x*) is the hypergradient at x*. However, comput-
ing VO (xX) requires y*(x*). To obtain an approximation to y*(x), we can apply gra-
dient descent to solve the lower-level problem. Therefore, a prototype of the gradient
descent method for solving bilevel optimization (4) can be described as:
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fork=0,1,...,K
fortr=0,1,..., T -1

Y=y —n,V,e0dy)
XAl = 3k — nx%(xk),

where %(x") is an approximation of the hypeprgradient V®(x*) and is defined as

~ -1
VB = V(57 = V869D (V2o )V 6y,

Clearly, there are two loops involved. We call the one updating x* the outer loop, and
the one updating y' the inner loop.

When it comes to the decentralized setting in a multi-agent system, there are
a few new challenges. Here we first discuss the main challenge when there is
data heterogeneity, i.e., when Assumption 2.3 does not hold. In the outer loop
of bilevel optimization algorithms [11-14], we typically focus on estimating the
hypergradient so that we can perform gradient descent according to the hyper-
gradient estimate. In the decentralized setting, where each agent has their own
hypergradient given by:

-1
VO, = Vfi(5y" () = Vo800 y" ) Vel y' () ) Vi y @) (5)

-1
Note that node i does not have access to nyg(x, y*(x))(Vig(x, y*(x))) and y*(x)

which both require global information about g. One natural idea is to use the follow-
ing function as a local surrogate (here y7(x) := arg min g,(x, y)):

-1
VAGE00) = V07 (0) = V08,065 0) (Vg6 7700 ) V6700
(6)
Unfortunately, the hypergradient estimation error (i.e., ” VO,(x) — Vfi(x, y! (x))”) may

not be diminishing. For example, when fi(x,y) = %yTy, and g;(x,y) = éyTy -x'y,

we have Vfi(x, i (x)) = li, VOo,(x) = —2_ which implies

(n+1)i

e _ [(n+1=2i
[V®:(x) = Vfi(x, y: ()| = <—i2(n D )IIxII

which cannot be diminishing no matter how the algorithm proceeds if x # 0. Thus
we cannot directly apply (6) in our problem when Assumption 2.3 does not hold.
Note that the difference between our work and [45] can be viewed as the differ-
ence between (6) and (5). Their problem formulation ((1a) and (1b) in [45]) is essen-
tially min, g, i Z?zl fi(x, y;“(x)), which means using (6) is sufficient for computing
the global hypergradient. Mathematically, in our setting we would like to compute
Z € R?% such that
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n n -1
77 = <Zl nygi(x, y)) <Zl Vf,gi(x, y)) 7

on node i for any given (x, y). In the next section we design a novel oracle to solve
this subproblem with heterogeneous data at the price of the computation of Jacobian
matrices.

3.1 Jacobian-Hessian-Inverse Product oracle

We introduce the Jacobian—Hessian—Inverse Product (JHIP) oracle, which is essen-
tially a decentralized subroutine. Denote by H; € S”{ and J; € RP the Hessian
matrix of g; and the Jacobian matrix of V g;. Every agent aims at finding Z € R?"
(i.e., (7)) such that:

n n

n n -1
Y HZ=)J orequivalently, Z' = <Z J,.> (Z H,.> . (8)
i=1 i=1

i=1 i=1

Notice that this is exactly the optimality condition of:

.1 1 T
Zrenﬂéglp p ; hi(Z), where h;(Z) = 5 Tr(Z'H,Z) — Tr (J;2). 9)
The objective in (9) is strongly convex since each H; is symmetric positive definite.
Hence we can design a decentralized algorithm with gradient tracking so that all
the agents can collaborate to solve for (8) without a central server. The algorithm
is described in Algorithm 1, where we use the bold texts to highlight the different
updates when the problem is deterministic and stochastic.

Algorithm 1 Jacobian-Hessian-Inverse Product oracle

1. Input: Zi(o) € R7*P_ stepsizes {v:}:2y, N, and initialization.

¢ if deterministic, Yi(o) = HiZi(O) - JT G,EO) = HiZi(O),
N N T N N T
« if stochastic, v, = V2"~ (J) ¢ = iz (V).

7
2: Data: H; € ST, J; € RP*? accessible only to agent i (deterministic).
(ﬁi(t), ji(t)),t € {0,1,..., N — 1} accessible only to agent ¢ (stochastic).
3: fort=0,1,....,N—-1do

Zi(t+1) _ Z;Lz1 wijZ](‘t) . ’YtYi(t)’

5. GV = 1,20 if deterministic, else ATz — (L““’)

P e winj(t) +GUY W fori=1,...,n.
7. end for

T
)

@ Springer



X.Chenetal.

Note that for the deterministic case we can just maintain GEHI) = HiZf’H) instead
of the gradient H,Z"*" e+1)

) — JT because we only use G,

in line 6—the gradient track-

(t+1)
i

ing step, and the constant term JI.T will be cancelled if we set G; ' as the gradient.

R AT
We use 42" — <Ji(’)> to represent the stochastic gradient of h,(Z) at Z'*". Bach

Hessian-matrix product Hl-Zf’H) in line 5 can be viewed as p Hessian-vector prod-
ucts, which is cheaper than computing the Hessian matrix when p is small. This ora-
cle also requires computing the exact Jacobian matrix, which is more expensive than
Jacobian-vector product. Moreover, the convergence rates have been well under-
stood [34, 36, 46]. In general, one can also design other oracles (e.g., decentralized
ADMM [47-51]) to solve (9). The convergence rates of this algorithm are summa-
rized in Lemma 15.

3.2 Hypergradient estimate

Algorithm 2 Hypergradient estimate

1: Input: z,y, N, M, 8
2: if Assumption 2.3 holds then

3: if Deterministic case then
4: Run N-step conjugate gradient method on Vggi(az, y)v =V fi(z,y)
to get vV. Set Vf; = Vo fi(z,y) — Vaygi(z,y)o".

5 else

" where Hy = 83,05 [Ty (T = BVigi(w.y; ¢0T+17m))

8 end if

9: else

10: if Deterministic case then

11: Run N-step deterministic Algorithm 1 with v = O(1) and

12: H; = V32gi(x,y), Ji = Vaygi(,y) to get Zi(N).
. T

o Set Vi =Vafilwy) - (27) V,fil@y).

14: else

15: Run N-step stochastic Algorithm 1 with v; = O(%) and

16: AY =V2g,(z,y; 60), I = Voygi(x,y; 61) to get 2.
. T

o Set V= Vafiwy o) (20) 9y filw s o).

18: end if

19: end if

20: Output: @fi on node 3.
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Decentralized bilevel optimization

Before we propose our algorithms, we first introduce hypergradient estimates under
different cases.

33

Case 1: Deterministic + homogeneous data In this case the hypergradient is esti-
mated based on the AID approach [13], which is essentially utilizing conjugate
gradient method, and only requires Hessian-vector product oracles instead of
explicit Hessian matrix computation. We adopt the approximation error (Lemma
3in[13]) in Lemma 11.

Case 2: Stochastic + homogeneous data In this case the hypergradient is esti-
mated based on a slight modification of the Neumann series approach [12]. Gra-
dients Vf; and Vg, are replaced by their corresponding first order stochastic ora-
cles (i.e., stochastic gradients). We have the error estimation in Lemma 35.

Case 3: Heterogeneous data In this case we compute the global Jacobian-Hes-
sian-Inverse product by using the JHIP oracle (Algorithm 1). The error estima-
tion results are given in Lemma 14.

Deterministic decentralized bilevel optimization

Algorithm 3 (Deterministic) Decentralized Bilevel Optimization

1
2

14
15

. Input: W, N, K, T, 0., 0y, @i.0, .-
. for k=0,1,...,K do

yfok) = y,(:]:)_l if £ > 0 otherwise yf(? = yl(O).

fort=0,1,....,T—1do
if Assumption 2.3 holds then
1 )
yl(f,j ) — yl(t; — nyvygi(xiﬁk,yg,z), fori=1,...,n.
else
t t—1 t t—1
v =0 wil T + Vygi(@in ) — Vygi(iwe i ).
1 .
yl(t,j ) = Py w,jyj(t,)C - nyvg,i, fori =1,...,n.
end if
end for

Run Algorithm 2 (with "deterministic case") to get @fi(aci’k, yl(?)

S T )
Tikt1 = D5 WijTjk — nwVfi(xM,y;k)), fori=1,...,n.
: end for
: Output: Zg = 2 3" | 2 k.

We propose the decentralized bilevel optimization algorithm (DBO) in Algorithm 3.
In the inner loop (lines 4-11) each agent performs local gradient descent updates

for

variable y in parallel. When Assumption 2.3 holds, we can simply run local gra-

dient descent without communication because in the lower level local distribution
already captures the global function information. When Assumption 2.3 does not

hol

d, then the data distribution is substantially heterogeneous across agents, so we
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add weighted averaging steps (line 9) to reach consensus and gradient tracking steps
(line 8) to reduce the complexity. In the outer loop (lines 12—13) each agent commu-
nicates with neighbors and then performs gradient descent for variable x.! We have
the following sublinear convergence result.

Theorem 3.1 In Algorithm 3, suppose Assumptions 2.1 and 2.2 hold. Set
no=0K k), n, = L. If Assumption 2.3 holds, we set T = ©(x log k), N = ©(y/x log k) If
! s

Assumption 2.3 does not hold, we set T = N = O(log K), y, = O(1). In both cases, we
have:

K 8

1 —\n2 K3
—-— D))" = — ]
respl] 0( z)

Jj=0 K

3

3.4 Deterministic decentralized bilevel optimization with gradient tracking

In this section we study the effect of gradient tracking in decentralized bilevel opti-
mization. We propose the Decentralized Bilevel Optimization with Gradient Track-
ing (DBOGT) Algorithm 4. We introduce u and v to serve as the update directions.
For Algorithm 4 we have the following theorem.

Algorithm 4 (Deterministic) Decentralized Bilevel Optimization with Gradient
Tracking

1: Input: W, N, K, T, m,ny,xgo),yl(o).
2: for k=0,1,...., K —1do

3: yl(ok? = yﬁll if k£ > 0 otherwise yg?k) = ygo).

4: fort=0,1,....,T —1do

5: if Assumption 2.3 holds then
1 t .

6: yft,j_ ) = yl(t,z — nyvygi(xi,k,yg’lz), fori=1,...,n.

7: else . » -

t t— t -

8: ”z(li = 2?21 wij%(',k '+ Vygi(xi,kvyi,k) - Vygi@?i,kvyz',k ),
1 t t .

9: yz(tlj ) = Z?:l wijy](-’,)c - nyv;g, fori=1,..,n.

10: end if

11: end for

12: Run Algorithm 2 (with "deterministic case") to get @fz(xzk, yl(,?)

- (T ¢ (1)

13: Uik =D 5 WiUjk—1 + Vfi(@ik,yiy)) — VilTik—1,9; 1),
n .

14: Tijt1 = ijl Wi — Nalik, for i =1,...,n.

15: end for

16: Output: Tx = %Zle Ti K-

! For simplicity we use constant stepsize #, in the outer loop. Similar results can be obtained for dimin-
ishing stepsizes.
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Theorem 3.2 In Algorithm 4, suppose Assumptions 2.1 and 2.2 hold. Set
n, = O, g, = ©(1). If Assumption 2.3 holds, we set T = O(x log k), N = @(\/Elog K).
If Assumption 2.3 does not hold, we set T = N = O(log K), y, = ©(1). In both cases, we
have

K
1 _ 1
Fri &IV =0(g)

Note that this result implies that in DBOGT we can set #, as a constant that is
independent of the total number of iterations K, which matches the results in gradi-
ent tracking literature [33-35, 52].

3.5 Decentralized stochastic bilevel optimization
Our stochastic version of the DBO algorithm: Decentralized Stochastic Bilevel
Optimization (DSBO), is described in Algorithm 5. Its convergence rate is given in

Theorem 3.3.

Algorithm 5 Decentralized Stochastic Bilevel Optimization

1: IHPUt: WM7N7K5T77]:E7ny7x'EO)7y'EO)'
2: for k=0,1,..., K —1do

3 yz(,ok) = yz(jl;)_l if k£ > 0 otherwise yl(ok) = yi(o)'

4 fort=0,1,....,T —1do
5 if Assumption 2.3 holds then
6 Y =yl =y Vygi@i yls &), fori=1,..,n.
7: else )
t+ n t t t .
8 yz(k ) = D e wij(yj(-,;l —vaygi(xi,kyyl(,;z; 55,,2)), fori=1,...,n.
9 end if
10: end for

11: Run Algorithm 2 ("stochastic case" option) to get @fi(xi,k, y;j,;); i k)

n N (7). .
12: Tik+1 = ijl WijTj k — levfi(l"i,k,yi,k 5 ¢i,k’)7 fori=1,..,n.
13: end for
14: Input: T = %Z?zl Ti K-

Theorem 3.3 In Algorithm 5, suppose Assumptions 2.1 and 2.2 hold. Set

1, = K1), T = 0(K?). If Assumption 2.3 holds, we set

M =©(log K), 1 = O(K ™), f = min( “ ,%)-

2402
o,
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If Assumption 2.3 does not hold, we set N = ©(log K, = 0(%), v, = (9(%). In both cases, we
have

K
1 olF = of -
KHFZO[E[nch(x,)u | _O<\/E>'

4 Numerical experiments

In this section we conduct several experiments on hyperparameter optimization
problems in the decentralized setting, which can be formulated as:

. @ _1 . %

min = - Elf,(ﬂ, 7*(4)),

n (10)
s.t. 7*(A) = arg min 1 > g4, 7).

reRe " i=]

Here f; and g; denote the validation loss and training loss on node i, respectively.
The goal is to find the best hyperparameter A under the constraint that 7%(4) is the
optimal model parameter of the lower level problem. Due to the space limit, the
details of the setup of the experiments are given in the “Appendix”.

4.1 Synthetic data

We first conduct logistic regression with /> regularization on synthetic heterogene-
ous data (e.g., [9, 24]). We plot the logarithm of the norm of the gradient in Fig. 1a.
From this figure we see that all three algorithms: DBO (Algorithm 3), DBOGT
(Algorithm 4), and DSBO (Algorithm 5) can reduce the gradient to an acceptable
level. Moreover, DBO and DBOGT have similar performance, and they are both
slightly better than DSBO. We also include the test accuracy in Fig. 1b, which indi-
cates similarly good performance in terms of accuracy.

4.2 Real-world data

We now conduct the DSBO algorithm on a logistic regression problem on 20 News-
group dataset® [24]. In Fig. 1c¢ we plot the test accuracy of every iteration. From this
figure we see that the DSBO algorithm is able to get good test accuracy under differ-
ent settings of stepsizes.

Finally we apply deterministic DBO and DBOGT algorithms on a data hyper-
cleaning problem [13, 53] for MNIST dataset [54]. The purpose is to demonstrate the
advantage of the gradient tracking technique. The Fig. 2a shows that the perofromance
of DBO and DBOGT are similar when the stepsizes are small. However, the Fig. 2b

2 http://qwone.com/~jason/20Newsgroups/.
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log [V0(A)]

-e- DSBO, 7,100.0, 7,=100.0

(a) (b) (c) (d)

Fig.2 Data hyper-cleaning on MNIST

shows that DBOGT converges much faster than DBO when the stepsizes are relatively
large. This supports the conclusions in Theorem 3.2. We also include the test accuracy
results in Fig. 2¢, d, from which we can find that our test performance are comparable
with [13].

5 Conclusion

In this paper we propose both deterministic and stochastic algorithms for solving decen-
tralized bilevel optimization problems. We obtain sublinear convergence rates when the
lower level function is generated by homogeneous data. Moreover, at the price of com-
puting Jacobian matrices, we propose decentralized algorithms with sublinear conver-
gence rates when the lower level function is generated by heterogeneous data. Numer-
ical experiments demonstrate that the proposed algorithms are efficient. It is still an
open question whether one can design decentralized optimization algorithms without
assuming data homogeneity and Jacobian computation. We leave this as a future work.

Appendix 1: Details about experiments and other results

In this section we provide details about our experiments as well as results about train-
ing and test loss. For each experiment, we set our network topology as a special ring
network, where W = (w, ;) and the only nonzero elements are given by:

1—-a
Wi =a, Wi =W = — for some a € (0, 1).
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Here we overload the notation and set w,,,,,.; = w, |, w; o = w, . Note that a is the
unique parameter that determines the weight matrix and will be specified in each
experiment.

Synthetic data
Logistic regression on synthetic data

In this experiment, on node i we have:

[T = Y woxle (),

(%Y, )ED,

gi(A, 1) = Z WX T) + = erlag(e‘)r
(Xe:Ye)ED;
where e” is element-wise, diag(v) denotes the diagonal matrix generated by vec-

tor v, and w(x) = log(1 + e™). D; and D, represent validation set and training set
on node i. Following the setup in [24], we first randomly generate z* € R” and
the noise vector € € R”. For the data point (x,,y,) on node i, each element of x,
is sampled from the normal distribution with mean 0, variance i°. y, is then set by

Ve = sign(xzr* + me), where sign denotes the sign function and m = 0.1 denotes the
noise rate. In the experiment we choose p = g = 50, and the number of inner-loop
and outer-loop iterations as 10 and 100 respectively. N, the number of iterations of
the JHIP oracle 1 is 20. The stepsizes are 7, = 1, = y = 0.01. The number of agents

n is chosen as 20, and the weight parameter a = 0.4 (Fig. 3).

Real-world data
Logistic regression on 20 Newsgroup dataset

In this experiment, on node i we have:

ﬁ(ﬂ,f*(/l))—T Y L&y,

val (%ey)ED?,
c p
1 .
&A1) = (1) Y Llmy)+— Y Y el
D, soent ==

where ¢ = 20 denotes the number of topics, p = 101631 is the feature dimension,
L is the cross entropy loss, D,,; and D, are the validation and training data sets,
respectively. Our codes can be seen as decentralized versions of the one provided in
[13].
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80

Training loss
e N W oA o0 @ w
5 8 8 8 8 3 3

o

-e- DBO, ,=0.01, n,=0.01
DBOGT, n,=0.01, n,=0.01
—— DSBO, n,=0.01, n,=0.01

\"\g

Test loss

0 20 40 60 80 100

Iteration

(2)

Fig. 3 Logistic regression on synthetic data

201

154

-e- DBO, n,=0.01, n,=0.01
DBOGT, nx=0.01, n,=0.01
—— DSBO, n,=0.01, n,=0.01

60 80 100

Iteration

We first set inner and outer stepsizes #, =, = 100 (the same as the ones
used in [13]), and then compare its performance with different stepsizes. We set
the number of inner-loop iterations 7 = 10, the number of outer-loop iterations

K =30, the number of agents n = 20, and the weight parameter a = 0.33. At the

end of jth outer-loop iteration we use the average 7, =

%Z?:l 7;; as the model

parameter and then do the classification on the test set to get the test accuracy
(Fig. 4).

Data hyper-cleaning on MNIST

In this experiment, on node i we have:

Training loss
o
5

Fig. 4 Logistic regression on 20 Newsgroup dataset

fi(A, 1) =

(1) =
T

(l) Y Ly,

va[ (X,.Ye )ED(')

Y o)Ly + C eI,
(x, yg)G’D(')

-®- DSBO, 1,=100.0, 1,=100.0

DSBO, 1,=300.0, 1,=100.0
—— DSBO, 1,=100.0, 7,=300.0
~-- DSBO, n,=300.0, 1,=300.0

Test loss

201

154

-8~ DSBO, 1,=100.0, 1,=100.0

DSBO, 1,=300.0, 1,=100.0
—— DSBO, 7,=100.0, n,=300.0
~=- DSBO, 1,=300.0, ,=300.0

0 5 10 15 20 25 30
Iteration

(a)

20 25 30

Iteration
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Fig.5 Data hyper-cleaning on MNIST
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2 —— DBOGT, n,=10.0, n,=1.0 @ —— DBOGT, nx=10.0, ny,=1.0
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10 104
—_—— —_—
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Fig.6 Data hyper-cleaning on MNIST

where L is the cross-entropy loss and o(x) = (1 + e™*)!is the sigmoid function. The
number of inner-loop iterations 7" and outer-loop iterations K are set as 10 and 30,
respectively. The number of agents n = 20 and the weight parameter a = 0.5. Fol-
lowing [13, 53] the regularization parameter C, is set as 0.001. We first choose step-
sizes similar to those in [13] and then set larger stepsizes. In each iteration we evalu-
ate the norm of the hypergradient at the average of the hyperparameters A, and plot
the logarithm (base 10) of the norm of the hypergradient versus iteration number in

Fig. 2 (Figs. 5, 6).

Appendix 2: Convergence analysis

In this section we provide the proofs of convergence results. For convenience, we
first list the notation below.
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W := (w;) is symmetric doubly stochastic, and p :=max (|4,].|4,]) <1
X, = (xlyk,ngk,..., nk == lek,

0D(X,) 1= (@fl(xlk,yﬁf,j o Uy D),

DX ;) 1= (@fl @ 5B s VG 33, k))

0D(X,) 1= ZVf(x,k, ), 00(X,:$) 1= 2Vf<x,k, Wi

Qi = Xig — Xp» Tig 2= Uy — Uy,
Q'—( )R‘—(r r r )GR‘”X"
k = Qi D2k -+ sk ) Dk ~= T Togo oo Tk

K K
Sk 1= D QP T = ) IVOGE)IP, Ey := Z Z Iy = xija 1%,
k=1 j=0 j=1 i=
T s 0
: Z Z Iy = ¥ e IP, By Z 2 vy, = v,
j=0 i= j=0 i=

-1
= <V§g,-(xi,,»,yf(x,;,-))> Vyfi(xiljsy?(xizj)),

2
-1
8, = (1= np?, 5K:=<\/E >

Ve+1

We first introduce a few lemmas that are useful in the proofs.

Lemma1 Forany p,q,r € N, and matrix A € R4, B € R?, we have:
IABI| < min (lAll, - |BII, 1AIl - 1B7l,)-
Lemma 2 For any matrix A = (a,,a,, ... ,aq) € RP*4, we have:
q
gl < IAI3 < HAI? = D Nl V) € {1,2,....q}.
i=1

For one-step gradient descent, we have the following result (see, e.g., Lemma 10
in [34] and Lemma 3 in [46]).

Lemma 3 Suppose f(x) is u-strongly convex and L — smooth. For any x and n < e

define x* = x — nVf(x), x* = argminf(x). Then we have
e = x| < (1= nllx = x*I.

The following lemma is a common result in decentralized optimization (e.g., [15,
Lemma 4]).
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Lemma 4 Suppose Assumption 2.2 holds. We have for any integer k > 0,

1,17

n

wk < pk .

2

Proof Assume 1=4;,> A, >+ >4,>—1 are eigenvalues of W. Since

Wklnlz = lnlz W, we know W and 1,11; are simultaneously diagonalizable. Hence
there exists an orthogonal matrix P such that

;

k __ - kyp—1 1"171 _ - —1

W* = Pdiag(AP~!, 1 = pdiag(1,0,0,...,0)P",
g(4; -

and thus:
1n11 . k . 1 k k
wh— 2 =”P@mg%)—dmgLOJL””0DP‘”2§nmx“h|JAA).
2
By definition of rho, the proof is complete. O

The following three lemmas are adopted from Lemma 2.2 in [12]:

Lemma 5 (Hypergradient) Define ®,(x) := f;(x,y*(x)), where y(x) = arg min,cp,g(x.y)-
Under Assumption 2.1 we have:

-1
V() = V(55" () = V,y 8y () V2" () Yty (6.

Moreover, VO, is Lipschitz continuous:
(IV®,(x) = VO,(x)|| < Lgllx; — x5l

with the Lipschitz constant given by:

2 2
2L+ Loolyo | Llypoloa + 1+ Lyalyol | LealLyo

Lo=L+ = 0(x).

u u? u

Remark if Assumption 2.3 does not hold, then this hypergradient is completely dif-
ferent from the local hypergradient:

-1
VAG00) = ViG] 00) = V.63, @) (Ve i () ) Ve @),
(11)

where y?(x) = arg min,cp,g;(x, y).

Lemma 6 Define:

-
Vf;(xuy) = fo;(xny) - nyg(xﬂ)(Vig(xJ)) Vyf;(xay)

@ Springer



Decentralized bilevel optimization

Under the Assumption 2.1 we have:

where the Lipschitz constant is given by:

> L, L,L
Lf_L+L—+Lf0< i >=®(K).
u oo

Lemma 7 Suppose Assumption 2.1 holds. We have:
Iy 0e) = yiCell <kl = xoll, Vi€ {1.2,....n).

These lemmas reveal some nice properties of functions in bilevel optimization under
Assumption 2.1. We will make use of these lemmas in our theoretical analysis.

Lemma 8 Suppose Assumption 2.1 holds. If the iterates satisfy:

X1 = n,0®(X,), where0 < 5, < Li
(o}

then we have the following inequality holds:

—va @I < (K Ry (@00 —inf O(x)
(12)

LS 5000 - voi)|?
— oD(X;) — Vo .
+K+1k§0u (X0 = Vo

Proof Since ®(x) is Lg-smooth, we have:

DO(Xypy) — P(xp)

< VOE) (-1,
ofly ——— —
= ——[0DXPII* = 1, VOE) 0D(X,)
L<1>’1f -
Vd>(fck)||2+< 5 —rzx>||vo1>(xk)||2

+ (Lot = n)VOGE) (0P(X,) — VO(T,))

- 2 LCD”? _ 2
VoI + =1, JIVOGYII

2
N A NEvvera a2, | -2
+ (1, = Lom) (51090 = VORI + 5 IVOG)I?)

Ny S . n ,
= EXIIOCD(Xk) - VO@EII* - fIIVq)(xk)IIZ,
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where the second inequality is due to Young’s inequality and #, < Therefore we

have:
IVOEIP < f(cb@) — O + 10090 — VORI (13)

Summing (13) overk =0, ..., K, yields:
Z V&) < —<<1><xo> - D) + Z 100(X,) — V&%,
k=0 k=0

which completes the proof. O
We have the following lemma which provides an upper bound for E:

Lemma 9 In each iteration, if we have %, = X;, — n,09(X}), then the following ine-
quality holds:

K-1
Ex < 8Sx + 4nn? Z 100(X;) — VO&E)|I* + 4ny> Ty _;.
J=0

Proof By the definition of Ey, we have:

2 _ - = 2
Z Z llx;j — X lI” = Z 2 llx;; — X; =X X — Xl

j=1i= j=1 i=

=ZZ”% 1,00(X,_)) = VO_))) = 1,VOFE,_)) — ¢, I
j=1 i=

K n
Z Z(quwn2 + 200X, — VOE,_ )|
+ nIVOGE_DI* + llg;—i 17)
K
<4 NI + Q1 I + nn?[0®(X,_,) — VOE;_)II* + n [ VOE_)II?)

J=1

K-1
<88 +4n? Y (100(X) — VOE)II + | V()|
=0

K-1
=88 +4nn? Y 100(X)) — VOE)II + 4nn’Ty_,,
j=0
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where the second inequality is by the definition of Q;, the third inequality is by the
definition of Sy and Q, = 0, the last equality is by the definition of T_;. a

Next we give bounds for Ay and By.

Lemma 10 Suppose Assumptions 2.1 and 2.3 hold. If n,, T and N in Algorithm 3 and
4 satisfy:
1

2 N
s s 6 < P
url T3 % Sy (14

0<n <

then the following inequalities hold:
Ag <35](c +26%Eg), By <26y +2diAg_; + 2d,Ey,

where the constants are defined as follows:

n

0 2 0)12

o _Zuy“ VilP e = X IV, = vioII%,
i=1

L,,Lo\>
d1=4(1+\/E)2<:<+ g’zzf’°> = O(kY), (15)
H
2
2L.0k 2L, k2
dy =2 2+ L& 770 = O(xY).
u u

Proof For each term in A; we have

Iy = il = 15" = n,V,80a 5 ) = vi G IP

. (16)
< (=PI = yrepI” < 871y = yi I,

where the first inequality uses Lemma 3. We further have:

(0) ()

- y;k(xiJ)||2 = ||yiJ 1= y?(xij—l) + )’f(xi,j—l) - y;‘(xiJ)IIZ
< 2y = Vi G DI + 1) G = Y I

0 2 2
< 26T||yfj L= YOI+ 26 e g = xil

(0)
ij—1

llyi;

— DI + 267,

2
< 5”)’ ij— 1~ lJ” s

where the second inequality is by (16) and Lemma 7, and the last inequality is by the
condition (14). Taking summation on both sides, we get
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=

©
Ily;

Ma

- y?(xi,j)llz

1l
—_

Jj=1 =1

n n

K K

) ¢ 2 2 2
<2 DI =y DI 267 ) 3 e — il
j=1 i=1 J=1

i=1

L»-)ll\.J
=

Mw

IA
SSTR S

0 *
Z Iy = ¥ e)I> + 26 Eg
=1

IA
U-)IN

0
1+ 3 ZZuy“ VI + 267 E,

which directly implies:

n

K
Z DI =y pI? < 26, + 667 Ex. (17)
=1

i=1
Combining (16) and (17) leads to:

2 2 ! = yi Gl < 6T2 2 Iy = eI
J

J=0 i= Jj=0 i=
<8 (cy +2¢; +6K7Eg) = 358! (c; + 21<2EK)_

We then consider the bound for Bg. Recall that:

-1
= (V2airae )1 () Vi i i)

which is the solution of the linear system Vigi(xi’k, Vi) = Vifilx g i (X)) in
the AID-based approach in Algorithm 2. Note that v?, is a function of x;, and it is

ol | 2Upoli . . . . .
(k% + % + ~Z2%) Lipschitz continuous with respect to X;; [13]. For each term in
By, we have:

* 0))2
”V,‘J - V.. ”
N
<20y = v P+ v = v )
L, ,L,
2 8.27f,0 T 2
<4+ vi) <z<+ T) Iy =y Gl

V=1 2L o L(1 + k)

“£,0

+ 4 llve_, - <°>1||2+2< —2> Iy = xj1 1%,
\/;+1 7

where the second inequality follows [13, Lemma 4]. Taking summation over i, j, we
get
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K n

DI = VIR < dyAgy +4x8) By, + doEy < diAg + %BK + dyEy,
(18)

where the last inequality holds since we pick N such that 41(5{(\’ < % Therefore, we

can get:

which completes the proof. O

The following lemmas give bounds on Y. [|0®(X,) — VO(x,)||* in (13).We first
consider the case when the Assumption 2.3 holds. In this case, the outer loop
computes the hypergradient via AID based approach. Therefore, we borrow [13,

Lemma 3] and restate it as follows.

Lemma 11 [13, Lemma 3] Suppose Assumptions 2.1 and 2.3 hold, then we have:

IV v = Vg v G

K+ 1 N

\/— 1 2N

-

) vy, = v 1P
iy

< Fllyj(xiJ) —yg)||2 + 6L2K<

where the constant I is

312 L L,oL:o\?>
r=3Lz+Lf 6L2(1+\/_)2<K+ g””) = 0.
l’l ,u

Next, we bound Y ||0®(X,) — V®(x,)||*> under Assumption 2.3.
Lemma 12 Suppose Assumptions 2.1 and 2.3 hold. We have:

- or 1212k

212
Y 100(x,) — VOE)|I* < —SK At 8By (19)

Proof Under Assumption 2.3 we know g; = g, and thus from (5) and (6) we have
VO, (x,) = Vi y* (%)

Therefore, we have
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n 2

12 (VD = V@)

i=1

—ZHVf(x,k, ) = VG y GO

lo®(X,) — VOE)|I* =

I/\

IA

2 . . . i
et VG 005 = VA LY (G
n ,-;(” JiieYi) = Ve i G

+ VA0 i) = VG Y @)

IA

n

2 * -

= DI} ) = vy 1P + 6Lk vy = vig I + Ll = %)
i=1

IA

n 2

2r 1212k 2L

= 2 i) =y P+ ==Y Z Vi = Vi I+ —= QP
i=1

where the first inequality follows from the convexity of || - ||?, the third inequality

follows from Lemma 11 and Assumption 2.3, the last inequality is by Lemma 5:
IIVfi(x,-,k,y*(xi,k)) - Vf,-(fck,y*(ik))||2 = ||VCDi(xl-,k) - Vq),-(fck)llz < pr”‘]i,kllz'
Taking summation on both sides, we get:

2L%
3 36 - VoI < o+ g+ 2k

k=0

8" By.

O

We now consider the case when Assumption 2.3 does not hold. In this case,
our target in the lower level problem is

n
e 1 -
y*(X;) = arg min - 2 8%y, y). (20)
y i=1

However, the update in our decentralized algorithm (e.g. line 8 of Algorithm 3) aims
at solving

LT 1 l S
y; = arg;nln - z 8i(Xi fs V)s 21

which is completely different from our target (20). To resolve this problem, we intro-
duce the following lemma to characterize the difference:

Lemma 13 The following inequality holds:

n
~ — K _ K
157 =y @Ol < = D lxix = Bll < == 11Q,l-
= Vi
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Proof By optimality conditions of (20) and (21), we have:
1 n 1 n
- ,; V,8itip ) =0, — l; V81 Y (@) = 0

Combining with the strongly convexity and the smoothness of g; yields:

RS -
; Zl vygi(xk’yk)

> ully; =y &I,

1 n o | n ] -
; Zl Vygi(xk,yk) - ; Zl Vygi(xk,y x))

1 n
— V.o.(x ”‘*
n Z ygz(xk yk)

n

<53 g~ &l
DN

i=1

Z Vygl(xkv yk Z V)g (-xlkvyk)

Therefore, we obtain the following inequality:

I5; y(xk>||<—2||x,k Xl == 2||q,k||<7||Qk||

where the last inequality is by Cauchy—Schwarz inequality. O

Notice that in the inner loop of Algorithms 3, 4 and 5, i.e., Lines 4-11 of Algo-
rithms 3 and 4, and Lines 4-10 of Algorithm 5, y converges to y; and the rates are
characterized by [34, 36, 46, 55] (e.g., Corollary 4 7 in [55], Theorem 10 in [35] and

Theorem 1 in [46]). We include all the convergence rates here.

Lemma 14 Suppose Assumption 2.3 does not hold. We have:

¢ In Algorithm 3 and 4 there exists a constant #, such that
= Z Iy} = 557 < Cyaf.
e In Algorithm 5 there exists n;’) = O(%) such that
[E[nyf? 5] < 2.

Here C,, C, are positive constants and a; € (0, 1).
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Besides, the JHIP oracle (Algorithm 1) also performs standard decentralized opti-
mization with gradient tracking in deterministic case (Algorithms 3, 4) and stochas-
tic case (Algorithm 5). We have:

Lemma 15 In Algorithm 1, we have:

e For deterministic case, there exists a constant y such that if y, = y then

IZ" = Z*|I < Cyab.  (See [34]).

e For stochastic case and there exists a diminishing stepsize sequence y, = O(%),
such that

1 S (1) 5112 C4
- E||Z: —Z < =, .
nz:, (120 -z 1P| < =2 (See 36D

Here C;,C, are positive constant, and a, € (0,1). Here the optimal solution is

denoted by (Z*)T = (Z, 1 l)(Z,_ H) l

For simplicity we define:
C =max (C,,C,,C5,C;), a=max (a,a,).

Since the objective functions mentioned in Lemma 14 (the lower level function g)
and 15 (the objective in (9)) are strongly convex, we know C and « only depend on

L, u, p and the stepsize (only when it is a constant). For example a, in Lemma 15
only depends on the spectral radius of H;, smallest eigenvalue of H;, p and y.

For heterogeneous data (i.e., no Assumption 2.3) on g we have a different error
estimation. We first notice that for each JHIP oracle, the following lemma holds:

Lemma 16 Suppose Assumptions 2.1 holds. In Algorithm 3 and 4 we have:

x\ T = o~k =~k
1(Z)" = Vo5V I3
202 (1 +«2)
8.2 1 2 (T) 112
< (;quu Zn 50 ).

where Z; denotes the optimal solution of Algorithm 1 in iteration k:

-1
(T> 2 (T)
( zvxygj( k’ jk >< ZV gj k’ jk > .

Proof Notice that we have
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+\ T - o~k - o~k
1(Z)" = Ve )| Ve 5| 113

n -11?
. 1 T
( Z nygl ko Y ]k nyg(xk,yk)><; Z Vigj(xl'k, ( ))>
Jj=1 2
—1 | 2
+ 2||V,,8G. 1) < szg,( m j?) —(vig(xk,yp)
2

< 2<|| =Xl + 15 = 50

2L2 n
Tele2 g2 -
2<|| PR R VAR A !

217 (1 + KZ) "
8.2 1 2, 1 @) _ w2

< ———( e’ ;]Z] 5 =5l
where the second inequality holds due to Assumption 2.1 and the following inequality:
-1 .

( Z V28,050 > - (VoG5
1 T

(3 Z ¥istsein)

2

-1
<v 8055 - — Z V380540 Vi )) (Vo)) X

2

2

Leo 212 o 1D o2
<o g(nx,,»,k =%l + 11y = 1P,
p=

Lemma 17 Suppose Assumption 2.1 holds. In Algorithm 3 and 4 we have:

1w e (T) = 8112
= Z VG0 v ) = VG,
P IV i yii) = Vi O

1812 L2 ,(1 + k2 - R, ,
< e 10,117 + Z 1z =z (22)

12L2 oL (1+;<2)
+ <6+6L2K2+ &2 > ( leym iin)-
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Proof Note that

0T = Vi) = (290) V.
Vfi(xigo 57) = V,fi(x,»,k,w - vwg(xi,k,y:)vig(xi,k,yk)-‘vyﬁ(xi,k,y,’:).
Then we know
Vo 3 = VG 5
= Vi 30 = Vafi g 3)
—<Z.(N)> vyf.(x,.k,y@n(z*) Vi)
-(z )Vyf(xzk» D+ (Z) Ve 5
— () Vi 50 + Vo 8 TV 28 50 Vi 5
= V0 8G TOV8 G )™V i )
+V }g(x,k,yk)V 8 IV fixie 57
xyg(xi,k’Yk)Vi (X k) Vyfi(xi,k’yk
+ nyg(xi,k’S’Z)Vig(xi,k,?z)_l Vi G )5
which gives
V£ 3)) = Vi FOIP

T ~
<6(Iy =517 + 13

N T
201Z8) =z + L21(z) TR - 5112

2,12,

* T =, ~% = ~k\— 2 f -
+Lf2,o||(zk) _nyg(xk’)’k)vig(xk’yk) l”§+ = Il = xk”2
+L2L] IV 7)™ = Vig(xig 3 )‘IIQ)

<6<||ym ||2+L20||z(§>—z;||2 ||y<” FelI?

202 L2 (1 + )

1.0 g, 1 24 (M) wxp2
+T(Z"Qk” Zuy -5l

I[* 12 [21?% 12
22710 F.07g.2 _
+ llx; s = xk”2 t+t—F ||xi,k—kuI2 .
u? 7

The second inequality uses Lemma 16, Assumption 2.1. Taking summation on both
sides and using Lemma 15, we know
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n
1 o T 6 S
- VG W) = VG,
. ; IV ik Vi) = Vi FO

18L2 oL+ k?) 6L2
8.2 2 7.0 (N) %112
S — e+ == 2 17 - 2l
120212 (1 + k2)
+ <6+6L21<2+ e > (1 3y - ~k||2>.
H n i=1

O

Lemma 18 Suppose Assumption 2.3 does not hold, then in Algorithms 3 and 4 we
have:

2
_ _ (1+x2) [36L;,L,,
199X — VORI < ———- ’; d : +2L2 |11,

202 L2 ,(1 + &%)
+12C || 1+ 6% + ——F—— |’ + L] a"|.

12
(23)

Proof We have

2

1990 - VO = Z(Vﬂx,k, W = VA @)

I\

1w, e oo
= 2 VG0 = VG Y GO
i=1

I\

%Z(Wf,(x,»k, W) = VG TP + IV 57 = VAES Y EDIP)

36L2 oL2 (1 + &)

P
ny

2L2 L22(1 + x?)

+12<1+L2K2 —M ) leym 5il?

12 z
jO £3 2 = ~k %=
2 1z =z 1P + = Z(L,%ux,-,k - |7 + LE 15} -y GOl

2L2 L22(1 +x?)

< 12<1 +L2k% + M—) Z ”)’f? _yk”2

12L2 " 2 (361}
1217, . (1+x2) foken
z ”Z(Z) —Z )+ - < p : +2Lf>IIQk||2,

(24)
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where the third inequality is due to Lemma 17 and Lemma 6, and the fourth inequal-
ity is by Lemma 13. Notice that% Zl 1 ||y(T) ||2 in the first term denotes the error
of the inner loop iterates. In both DBO (Algorlthm 3) and DBOGT (Algorithm 4),
the inner loop performs a decentralized gradient descent with gradient tracking.
By Lemmas 14 and 15, we have the error bounds i Zl | ||y(T) 5’2”2 < CaT and

1 h ||ZfIZ) — Z¢||* < Ca”, which complete the proof. m|

n

Proof of the DBO convergence
In this section we will prove the following convergence result of the DBO algorithm:

Theorem 19 In Algorithm 3, suppose Assumptions 2.1 and 2.2 hold. If Assumption

23 holds, then by setting
2

0<n, < 130L L 0<ny <=, T =0(klogk), N = O(+/x log k), we have:

272 2
127203 12 (1 + 1) e
(1—p)2 K+1

2 IVoE)|* < (@(x) — inf () + 177 -

K+l (K+1)

If Assumption 2.3 does not hold, then by setting 0 < 5, < LL 71)(,’) = O(%), we have:
D

2 IVOE)I* < (@) — inf D)

(K+1)
2 72 2 2 Nyr2
18LjOL D\ 40+ + K7 + CaL,
+ 172 +
4 (1-p7?

K+1

+C,

where C; = ©(1),C = ©(1) and C, = O(a” + aV).
We first consider bounding the consensus error estimation for DBO:

Lemma 20 In Algorithm 3, we have

K—

K 2
n
Sk 1= DO < —— > ¥ IV 3IP.
& (1-p)

=0 i=1

=

Proof Note that the x update can be written as
Xk = Xk—l W - WXGQ(X](—I)’
which indicates
Xk = )_Ck_l - r]xaé(xk_l)

By definition of ¢, ;, we have
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Gik+1 = ZWU Xk ’lx@f(xi,k’yg;)) = (% — n,09(X}))
= Zw,,u,k %) = n,(Vf (i)'} = 00(X,)

1
= Q,We,; — n,00(X,) <e[ - —">,
n

where the last equality uses the fact that W is symmetric. Therefore, for O, we have
1,17
Qk+1 =0O,W - 11X(3(I>(Xk)

1,17
O 1 W —n,00(X,_,) W —n,00(X;) "
T
= QW — . Z <a<D(X)<I - %)W"")
i=0

=-n Y 0(1)(X,»)<Wk" -~ T)

i=0

where the last equality is obtained by Q, =0 and 1,1IIW = 1,11;. By Cauchy-
Schwarz inequality, we have the following estimate

1,17
Qs 11> = 71l Zad><X><w" - —)||2

2

k
nx(Zna@(X)(W" e ) >

i=0

k T
Snf(Zna@(X)un(wk - "n”)nz)

i=0

k k T 2
s:ﬁ( pk‘uaqa(x)llZ)(Z — >

i=0 =0 2

k k ' ’72
Sn§< pk’nacb(X)nz)( p"-'> <Zp’<—||a<1><X>||2>

i=0

1=

4

2 k n 2 n k
’7X Um _
(z 4y ||Vf<x,J,y<T>>||2) LS 3 S I

~P\i=0 i=1 i=1 j=0
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where the fourth inequality is obtained by Lemma 4. Summing the above inequality

yields

K-1 K-1 n

Sk =D Qi <
k=0

2

P 20 =
K-1

k

— T
D ANV I
===

K-1

]
>

-1

’12
X — T
— AN DI

>~

il N

=

m;

1-p? 55

< 1¥f; e YOI,

where the second equality holds since we can change the order of summation.

Case 1: Assumption 2.3 holds

We first consider the case when Assumption 2.3 holds.

Lemma 21 Suppose Assumptions 2.1 and 2.3 hold, then we have:
IV YOI < 202k Y IV = VEIP + (14 60°L7 ).

Proof Notice that we have:

I/ ey YOI < 2095065 Y0 = Vi YOIP + 2119 DI
< 20|V 805 YO = viDIP

1
£ 2V 000 = V8o (Vi) ) Vi v DI

5 L 0
S ALV = VI + Ly + Lyg)®) < 202GV = Vil + (L4 6L

(25)

0)

where the second inequality is via the Assumption 2.1, and the last inequality is
based on the convergence result of CG for the quadratic programming, e.g., eq. (17)

in [24].
Next we obtain the upper bound for Sy.

Lemma 22 Suppose Assumptions 2.1 and 2.3 hold, then we have:
2 2

m(h&”BK |+ nK(1 + )L LY.

Sk <
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Proof By Lemmas 20 and 21, we have:

K-1 n
)2 Z DIV YOI
-
K-1 n
2 SN, O s 2 272
(1—p)2 ;;m KM v = viIP + 4+ L7 )
2 2
2. N 2
m(l‘ 5 BK 1+nK(1+K) O)’
which completes the proof. O

We are ready to prove the main results in Theorem 19. We first summarize main
results in Lemmas 22, 10 and 9:

2

S - -
KT
Ag <38](c; +2K7Ey), By < 2¢, +2d,Ag_ + 24, By,

(L*xk8NBy_; +nK(1 + k)*L? f0)

(26)
K-1

Eyx <88 +4n2 ) [109(X;) — VOE)|* + 4nn’ Ty _,.
j=0

The next lemma proves the first part of Theorem 19.

Lemma 23 Suppose the assumptions of Lemma 10 hold. Furthermore, if we set
N = @(\/Elog k), T = O(k log k), n, = O(k=>) such that:

L2
&Y < min —q), 0 ) = 0™,
K L%k (4d,x? + 2d,)

. Ly, s 1 5 I1-p
57 < min LK, = | =0&™), 1 < ;
Y 122 3 130L

we have:

12721212 (1 + x)? c

2 ¢ 2 7,0
K+1 Z Vo)l —(K+ @G0 —inf o) 7 - —— L+
where the constant is given by:
61’ 182k 8" (2¢, + 2d,c,) + ¢, 8T
2 2, .sN K y
C, =106Ly, - a )2L K6 (2¢y + 2d ) +
—p n

=0k + K55yT) =0(1).
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Proof For By we know:

By < 2¢, +2d,Ag + 2d,Ey < 2¢, + %d, Ge, + 6K>Ey) + 2d,Ey

27
=2¢, + 2d,c; + (4d,k* + 2d,)Ey.
We first eliminate By in the upper bound of Sy. Pick N, T such that:
L2
8Y-(4d P +2dy) - P <Ly = 8N< —T—— (28)

K L2k(4d k% +2dy)

Therefore, we have

2

Sy <
K= -p2

2
<
(1-p)p

where in the first inequality we use (27) to eliminate By. Next we eliminate Ej in
this bound. By the definition of #,, we know:

(k6] (2¢; +2dy¢)) + L*k&) (4dy k% + 2y Eg + nK(1 + k)’L7 )

(LLEx + Lk8Y (2c, + 2d,c)) + nK(1 + k)°L? L}y,

L 4-» 16m3Lg,

1
n = <3,
* 4\/_L (1-p? 2

which, together with (26), yields

2 K-1
Sk < T S(La(8Sk + 4nn? Y ([0D(X) = VOE)|I* + 4nnTy_))
j=0
+ L*xk8N (2, + 2d,c)) + nK(1 + K)2LJ%70)
1 2 e (29)
< ESK as )2 (4nn’L3 Z 10(X)) — VOE)II*> + 4nn’ L3 Ty,

+ Lk8N(2c, +2dc)) + nK(l + KLy ).

The above inequality indicates

Sg <
(1= 97 P

4]12 K-1
<4nn2L2 D 100(X)) — VO + 4nn’L3 Ty,
2 (30)

t oo <L2 5Y(2e +2dy¢)) + nK(1 + kL )

Note that we have

L2
T D T 2 2
8, < oI = 6, -6k” 20 <Lg,. 31
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Define
12L7k6N (2¢, + 2dc)) + 6F615VT
A= Y
n
By Lemma 12,
K 2
- 2L 2
D 10@(X,) — VOE)(I* < —2Sk + EA ;2R v,
=0 n
2L or 1212k
<25 = .6k267 + ——— . 5" . (4d,k* +24,) |E
n K < n O n o (dix 2 JEx
1212x5% (2¢, + 6d,¢,8]) + 6T'c, 8!
+
n
212 13 1212 1212x6) (2¢, + 2d,¢,) + 6T'c; 8!
< —Sg+| —+ Ex +
n n

2L2 131, 2 K-1 )
< TS,( 8S +4nn2 Y 100(X) — VOE)I* +4nn’Tyc_, | + A
Jj=0

10612 K
< 28y + 5223 ( D) 100(X) — VOE)I* + T | + A
j=0
106L%  16nLZn? ko
< +52n°L7 0D(X,) — VOGE)|>+ T
_< PRy ;II X)) — VO + Tg
10612 4n? s »
(L K8"(2e, + 2d,¢,) + nK(1 + K)°L ) +A,
n (1-pp

where the second inequality is by (26) and (27), the third inequality is by (28) and
(31), the fourth inequality is obtained by (26) and the last inequality is by (30). Note
that the definition of #, also indicates:

2 4 |

16L-#n
10612 X+ 52712 < %
Yo T Pte <3

Therefore,

Z lo@(X,) - VOE I < —(Z lo®(X,) - VoI + TK>

k=0
10613 42
no o (1-pp?

(L7K8Y 2cy +2dy¢y) + nK (1 + €L ) + A,

which leads to
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K
D 100(X,) - Vo)
k=0
2 2..sN
1 ) 61 L7686 (2¢cy + 2d,cy) 5 s
< 2T + 106L;, - - )2< " +K(1+ 1)Ly,

18L7k6Y (2¢ + 2dyc,) + 9Tc, 8]
+ .

n

Combining this bound with (12), we can obtain

Ty < n—(cboco) — inf d(x)) + 2 l00(X,) - VOE,)II?
k=0
636L2 L% (1 + k)2
2 - . 2 ®F,0 1 1
< Z(P(Xy) — inf P(x)) + 7 K+ =Ty + =C,
e o d=pp 2 %72

which implies

K
1 -
[ VO (x.
) JZ; IVo)|

12721212 (1 + «)?
4 . 5 10 G,
< ————(P(X,) — inf @ . .
= (K + 1)( (%) = Inf @(x)) + 1, (1-pQ2 K+

The constant C, satisfies

6n2L*k6" (2, + 2d,cy) 1817k 6N (2¢, + 2dc)) + 9F615yT

1 2
~C, =106L2 -
27! @ n(l — p)? n
=0 6Vk" + K55yT) =O(1).

Moreover, we notice that by setting

1

1 8
N=0 I , T =01 s =K 3k 3), n,= ——,
(Vxlog ) (clog k). . = OK K2 1y =~

for sufficiently large K the conditions on algorithm parameters in Lemma 23 hold
and

Ivo)I? = o £ ),
ey o =o( %)

which proves the first case of Theorems 3.1 and 19. O
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Case 2: Assumption 2.3 does not hold

Now we consider the case when Assumption 2.3 does not hold.

2 K-1 n 2
x

i 22‘ 1V ¥EOIP <

J= =

2
22, )
(1-p)?

Sy < K(2(1 + x)* +2Ca").

Lemma 24
Proof The first inequality follows from Lemma 20. For the second one observe that:

)
194y = |V i $) = (Z5) ¥ fiieon )

<MV y(T)>”+“<Zf,N ) ZTV ey 11(Z) TV iy
< <1 + ‘ (Zf?) - (Z]:)T + K>Lf,0,
| 2

T
where we use (Zl(’;(’)) to denote the output of Algorithm 1 in outer loop iteration k

of agent i, and (Z:)T denotes the optimal solution. By Cauchy—Schwarz inequality
we know:

A T T
195, PIP < A x+11(Z5)) = () 102

<ea+rr+20(20) - () B,
< QU +x)?* +2CaMLE,

which completes the proof. O

Taking summation on both sides of (23) and applying Lemma 24 we know:

K
D 1100(X,) — VO,
k=0
2 3612 [?
§(1+K)- 10782 a2 \g
n 12 N e

2L2 L22(1 + «?)
+ 12K+ DC|| 1+ L%+ —2 aT+L]%0aN
P :

PKQ(1 + k) +2Ca) + (K + DT,

36LJ%OL§2 2 1+ Kz)l]sz
<[ L= & 2 DL
u? / (I-pp

where we define:
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2 72 2
2Lf’0Lg’2(1 + k%)

¢, =12C Kl + Lk + > >aT + L;YOaN] =0@" +da").

H

The above inequality together with (12) gives

K
1 -
— Vo
. kZ‘) IVl

K
2 o | o
< K 1) OG0 — @) + k_Z,O [0DX,) — VO,
2 o
< m(q)(xo) — inf &(x))
47]3(1 + Kz)Lj% 1812 2

0 2 N 10782 2 o
T2 (1 +x)" + Ca )<T +Lf> +C.

Moreover, if we choose
N = @(ogK), T = ©(logK), n, = OK 5x3), 7 = O(1)
then we can get:
, X 8
oIz =0ol £
7 2 IVe®)IP = 0< - )
=0 K

which proves the second case of Theorems 3.1 and 19.

Proof of the convergence of DBOGT
In this section we will prove the following convergence result of Algorithm 4

Theorem 25 In Algorithm 4, suppose Assumptions 2.1 and 2.2 hold. If Assumption

2.3 holds, then by setting o<, < (IS-L»:‘, 0<n, < ”2: T = O(x logk), N = O(y/x logk)s We

have:

K
1 =1\[12 4 -\ C2
K+1 ]Z;‘ ”V(D(x])” = nx(K + 1)(@()(0) ll’;fq)(x)) + .

K+1

If Assumption 2.3 does not hold, then by setting
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11— 2 1-— 2
(1=p? u(l-p >’ny=®(1)’

0 <7, < min < )
l4xL,  21L; oL,k

we have:

. i
K+1ZWV(NI m+D@Wﬂlﬂﬁm+Cz

Here Cy = ©(1) and C, = O(a” + o + ﬁ)

We first bound the consensus estimation error in the following lemma.

Lemma 26 In Algorithm 4, we have the following inequality holds:

=

2 K-1
‘ukf< ”WWM%—WmNN%W+MM%W>
=1 =1

Proof From the updates of x and u, we have:

i, = i, +0DX) — 0DX,_,), = 0DXy), ¥y = X — 1,k

which implies:

iy, = 0D(X,), ¥y =X, —1,00(X,).

Hence by definition of g; ;. :
n

Dijs1 =Xijp1 ~ Xyl = ZWU X~ Ml g — Xg + 1,1
J=1

- Z le( nx(ut k k)

= Z Wildjk — Mxlix = OWe; — n.Rye;.
j=1

Therefore, we can write the update of the matrix Q,, ; as
Q1 = QW —n R, Q) =-n.R,.
Note that O, takes the form of

k

Ot = QW =Ry )W = Ry = —n, 2 R,WH (32)
i=0

@ Springer



X.Chenetal.

We then compute r; . as following

Fik+1 = Uigs1 — Upy1

= 2 Willir + @fi(xi,kﬂ’ygi.l) - vﬁ(xi,k’yi?) = iy — (0D(Xyy ) — 0D(Xy))
=1

n ln
= 3wy = )+ OP(Xy) — 0B(X,) <el. _ ;>
j=1
ll’l
= R, We; + (00(X,,) — 00X )| e; — ).
The matrix R, can be written as

1,17
Riy = R +(00(X,,.)) = 00(X,)(I — —=2)

k T

11
— k+1 non k—i
_&W++§@m&ﬁ—w@mc_jr>wj

=0

LI e, 3 LI
= 00(Xy)| 1~ = )W + D (0D(X;, ) — 0B(X))) e L

J=0

k+1 1 1T
nn k+1—j
= D (0D(X) ~ a@(X,»_l))(l - —>W 7,
j=0 "

(33)
where the third equality holds because of the initialization u;, = @f,-(xi’o,yg?) and
we denote 0P(X_,) = 0. Plugging (33) into (32) yields

k

i 1,17 ,
Qper =1, Y, D (OD(X)) — ad>(X,~_1))<I - T>W"‘f

i=0 j=0

S .
= -1, Z Z(aq)(xj) - ad>(xj_1))<wk—] _ Tn>

j=0 i5j

: 1,17
= —n, Y (k+ 1= PODX,) - dCD(Xj_l))<Wk—/ - _">

=0 n

where the second equality is obtained by lnIIW = 1,,1; and switching the order of
the summations. Therefore, we have
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2

||Qk+1||2 = ”I

k lan
2 (k1= D) — 00X, )| W — ==

J=0

11’
(k+1—)@DX)) - a@(xj_l)><wk-f - T)

)
)

r
Wk —

< nf(i e+ 1= owcx) - a0x; mH‘

P+ 1= llodX;) - ad>(X,»_1)||2>‘

T2
Wk — ln_" )
n 2

k k
< ni(Z Pk +1 = )llodX;) - acb(xj_1>||2>(z(k +1- ,-)pk—f)
Um

Jj=0

<Gz p)z(Zp—’(k+1—1)||a<I>(X) 00X, 1>||2>

(34)
where the second inequality is by Lemma 1, the third inequality is by Lemma 4, and
the last inequality uses the fact that:

1 — (k+2)p"! + (k + 1)prt2 !

k k
D+ 1=pT = Ym+ D" =
j=0 m=0

(1-p)? (1-p?
(35)
Summing (34) overk =0, ..., K — 1, we get:
K-1
Sk = D 102
k=0

2 K-1 k
0o p)2< Zp""’(k+ 1= )llod(X) —acb(x,-_1)||2>

2 1K-1
= a7 (/ 2} P+ 1 = pllodx) — ad)(xj_onz)

2 K-1

<q=o Z 10D(X;) — 9D(X,_))|1>

K-1 n
<ZZ||Vf<x,J,y”>) Vfixijo1Y fj>1)||2+||a<1><xo)||2>

j=1 i=

pf

which completes the proof. a
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Case 1: Assumption 2.3 holds
When Assumption 2.3 holds, we have the following lemmas.

Lemma 27 Under Assumption 2.3, the following inequality holds for Algorithm 4:

K-1 n

DV Y = UGy DI

=1 =l

~.

< 6TAg_, +36L°k6"By_ + 3L E_,.

Moreover, we have:

2

Sy < 5 S(6TAg_; +36L°k8" By + 3Lg,Ex_; + |0D(X,)|I*).

(1-

Proof For each term, we know that for j > 1:

IV v = Vo DI
< 30NV Y2 = V@I + IV (x;) = Vi)

+ IV, (x;;_) — Vfilx oy g)l)ﬂ )

< 3 O = ¥ 1P+ 11y G =35, 1)

ij—1
2 0)2 0 2 2
+6L7k8Y (v, = v I7 + vy = v 1P + Lyl = xi 1),

ij— 1
where the last inequality uses Lemmas 11 and 5. Taking summation
(=12,...,K—1landi=1,2,...,n) on both sides, we have:

K-1 n

2 IV ¥ = Vo ¥ DIP

ij—1
J=li

<O6LAg_; +36L°k6"By_| + 3LeEx_;.

Together with Lemma 26, we can prove the second inequality for Sg. O

The above lemma together with Lemma 10 and 9 gives
2

n;
Sy < T —~ (6T Ag_y +36L*k8NBy_| + 3LIEx_; + [|0®(X)|1)
Ag < 8] (Be; +6K7Ey) By < 2¢) +2diAg_y + 2d,Ex (36)
K-1
Ex <88 +4n2 Y 109(X;) — VOE)|* + 4nn’ Ty,
j=0
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Now we can obtain the following result.

Lemma 28 Suppose Assumptions 2.1, 2.2 and 2.3 hold. Set:

LZ
87 < min ®_ ) =0,
y 722

L2 1= p)2
8 < min @ ) =0, 1, < d=p"
x 7202k (4, &2 + 2d,) 8L,

For Algorithm 4, we have:

2 « C2
e Zuv @I < (KH)@(xo) T

where the constant is defined as:

1 15n;Lg, 2 T 2 N
Lo, = 2570 (lodxy)|? + 18Tc,67 + 3617k (2c, + 2d;¢,))
2 n(l — p)* ) K
1817k 67 (2¢, + 2dyc,) + 9c, 8]
+

n
= Ok’ + ('’ + 1)(;<55T +x*e)) = o).

Proof We first bound By as

By < 2¢y +2d\Ag + 2d,Ex < 20, + §d1(3c1 +6K2Ey) + 2d,Ex

(37
=2¢, + 2d,c; + (4d,k* + 2d,)Ey.
Next we eliminate Ay and By in the upper bound of Sg. Choose N, T such that
L2 L2
5] - 6x7 - 61" < 7‘1’ 8Y - (4d,x* +2dy) - 36L%k < 7‘1’
which implies
L L
6T < &Y < (38)
YU K 7202k (4d k% + 2d,)

By (36) and the, we have

’72

kST i ———— (4LGEg_; + [|0DX,)|I* + 18T, 8] + 36L%k6) (2, +2d, ).

Next we eliminate E_, in this bound. The definition of #, gives 5, < (1 ” y , which

implies 2L “")14* < % Together with (36) and E_, < Ej, we have:
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j=0
+ | 0X)|1> + 18rc15yT +36L% k6" (2¢, + 2d, )

2 K-1
m;
Sk < Ty <4L2 (BSk + 4nn? Y [00(X)) — VOE)I* + 4nn’ T 1>

2 K
1 ’7 2 2 SArv -\12 2
< ES Ao <4L (4nn? Fz; 0DX;) — VO )| + 4nn’ Ty
+ [[0DX)||* + 18rc15§ +36L°k6" (2¢, + 2d, ),

which immediately implies

25> Kk
Se < (16n7°L5, |0D(X) — VOGE)|> + T )
K=ot <,Z; ' o (39)

+ 109X + 18T°¢; 8] + 36L7k8) (2¢, +2d;¢)).

Moreover, by (19) we have

K

_ 212

Y 10RX,) - VOER)I? < =25, + 2FA 1227 K(SNB
n

k=0

6n = 6n

2L% Ly L} 12L2k6) (2 + 2d,¢)) + 6I'c; 6]
kT K -

2 L2 K-1
< T‘I’s,( <8S +4np? Y 10BX;) — VO + 4nn’ Ty,
Jj=0

121%k6% (2¢, + 2d,c)) + 6I°c;5]
+

n
5L L& —
X = 2
< =S+ —% > [100(X) — VO®E)I1* + T

K
J=0

12L7k8) (2, + 2d, ) + 6I'c; 6]
+

n

SL2 32nlint AL\ [ ——— o
$<T' T TS Y 10®(X) = VOE)I* + T

=
512 29>
—e. T (||a<1>(X0)||2 + 18Tc, 87 + 36126 (2¢, + 2d1cl)>

1212k 68X (2¢, +2d,¢,) + 6T°c, 87

+

s

n

where the second inequality is by (36), (37) and (38), and the third inequality uses
(36). Note that #, satisfies:

(1-p)? N 160LY n* N 8n*L2 ol
= 8L, A—pt 73 %
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Therefore, we have:

LS [ pp— 1
D 100X)) - VOEI* < < Y 1000X) - VOGIP + 3 Tk
k=0 3 k=0 3

On;Lg, 2 T 2 N
+ m(uacp(Xo)ll + 188, +36L°k6, (2c) + 2d, )
.\ 12L7k5Y (2¢; +2dy ;) + 6I'c, 5]
- .

which leads to

K
D llo@(x,) — VoE)|I*

k=0
15#%L2
< 1TK + ;‘D(H()(D(Xo)llz +18T¢; 87 + 36L%k6Y (2¢, + 2d1c1)>
2 n(l — p)* y K

18L7k 6 (2¢, + 2dyc,) + 9Tc, 8]

+

n
Recall (12), we have

K
1 2 I 1 — .
T < ®(%,) — inf @ —-— 0P(X,) — Vo
K176 S r @00 I P+ gy D, 10004) — Vel
1 1 c,

2 o
< K ) PG~ @) + Sam S Tt ST

Therefore, we get

1 3 IVOE)|? < L(cb(x ) — inf ®(x)) + o
K+14 N &) R K+1

where the constant is defined as following

1 15'731‘%45 2 T 2 N
20y = —2 (00X )| + 18T¢; 87 + 36L%k6Y (2¢, + 2d, ;)
22T wd = v «

18L?k6Y (2¢ + 2dyc,) + ¢, 6]
+
n
= Ok + (1 + (8] +k*8)) = O(1).

Then if we choose
1

T = O(k logx),N = O(\/k logk), 1, = O(k ™), , = T

then the restrictions on algorithm parameters in Lemma 28 hold and we have
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K
1 _ 1
el 2(; Vo) = O(E)’

which proves the first case of Theorems 3.2 and 25. O

Case 2: Assumption 2.3 does not hold
We first give a bound for || )7;.‘ — )7;‘_1 || in the following lemma.

Lemma 29 Recall that §; = arg min i Y &, y). We have:
K2 ¢
157 =507 < 2= 3 ey = I
i=1
Proof The proof technique is similar to Lemma 13. Consider:
1 n
I~ Zl V81 3Dl
R 1 %
— 1= Sy 2 ~ ok o
- ”n ;V)rgi(xij—lsyj) n i:ZIV)vg[(x[J—lsyj_l)ll ZM”)’J yj_llls
1 n
I~ 2:, V81 3Dl
1 % 1 % L ¢
= ||; Z V,8i(xij_1:57) — - Z Vy8i(xi s ¥)II < - Z llxi; — xi -1l
i=1 i=1 i=1

which implies:

2 (& ? 2 &
~ ~ 2 K K 2
15 =507 < ) ( Z llx; _xiJ—1||> < " Z llx;; — xi 11
i=1 i=1

Lemma 30 Suppose n, satisfies

u(l — p)?

< : 40
2Ly, o (40)

When the Assumption 2.3 does not hold, we have for Algorithm 4:
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2

2]1x , K-1 n )
Sy < a7 lSLf(l +x? ; ZEK_I + [[0PXp)l

72n1<c;1 2L2 oLi, (1 + K
(1 -p) H '

Proof We first notice that

¥/ 3 = VAo v DI
< 3INA G ¥0) = VG IDIP + 3190, 37 = VAo 5 I

+ 311V T ) = VG DI

Taking summation on both sides and using Lemma 17, we have

n

K-1
1 Z Z () NOTE
;J ] ||vf(-lesy )— Vfi(xixj 1Y i 1)”

i=1
108L2 12, (1 + k%)

S
n[lz K-1

] (T) ~k 12
p Z [REA

202 12,(1+ &%)
+36(K — 1)(1 + 1+ %)
H i=1

3L2 K-1 n
2 2
+36(K = DL + —= 3% 3 (ke =, I + 15 =5, 1%)

j=1 i=1

212 12 (1 + k%)
s% S +36KC( 14+ L7%2 + 2 )aT 4 L2 o
2nn; H '

3Lf2(1 +«?)
+ —_—
N K-1>

where the second inequality uses Lemma 14, 29 and (40). This completes the proof
together with Lemma 26. O

Lemma 31 When the Assumption 2.3 does not hold, we further have for Algorithm 4:
K

1 — e
_ 0P(X,) — VO
K}I;n<u @l

2 36L% 17
cU+x) < /0 g2+2Lf2>SK

= K +1) 2

202 12 (14 «2?)
+12C Kl + 12 + L)oﬁ +L2,0aN] .
u? /i

Proof Note that the above inequality is a direct result of Lemma 18. O
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Now we are ready to provide the convergence rate. Recall that from Lemma 30, 9
and inequality (12), we have:

i 2 IVOGEI

2

K
S 1 —_
= n(K + 1)(<D(x0) ll}fCI)(x)) + K+1 ; [[0D(X,) — VOG-,

2 2
i < s (30 + D + 100 (4D

2 2 2
—72nKC11 1+ L%2% + —ZLf Lt al +12 aV
(1-pp u? 7.0
K-1
2

Ex <85 +4nn? )" 100(X)) = VO)|1? + 4nn’Ty._,.
=0

The following lemma proves the convergence results in Theorem 25.

Lemma 32 Suppose the Assumption 2.3 does not hold. We set n, as

. 1 —p)? 1 — p)?
7. < min d-p ’ pd=-p)" \ “2)
l4xL, ~ 21L; oL, K
Then we have:
3 vl £ —5 (@) - inf() + L0
K+l ‘ n(K+1) 0 K+1 »
where the constant is given by:
G 2 2y T 2 ~ N
3 =6L°(1 + «°)Ca +6Lf,OC(x
2 92Xy
2 2 x 2 2 T 2 N 0
+ 2Lf(1 + k%) - m [6L 1+« nCa’ + 6an!OCa + S FTE
1
=o(e"+ '+ )
al +aV + K+l

Proof We first eliminate Ej_, in the upper bound of Sk. Note that (42) implies
2n;
— 321 +«k%)-8< 1,
A-p* 7 2

which together with Ex_; < Ey and the upper bounds of Sy and Ej in (41) gives
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2 K-1 2

1 21

Sk §<SK + 5 2 100X) — VOm)II* + —TK 1) Ty el
Jj=0

2 217 L2 ,(1 + k%)
2.2 10782 T 2 N
(1 — (36nKC(<1+L K +T a + Ly .

Hence we know

P K= " 4n?
<M Z [0@(X,) — VO&)|I* + STk + 7 a=pf
j=0

4 217 L2 (1 + &%)
+ 36nKC| | 1+ L%k + ————— Ja" + L7 a" ] |.
(1 - p)* u? 1

By Lemma 31, we have

[ 0@(X,)|?

K
L3 300 - v

K+1&
LU L +2L2 |S
~ K +1) u2 A
212 L2 (1 + k?) “3)
+ 120 | 1+ L JaT 4 2 0
P 2

K-1 ~

I —_ o

< — Dd(X) - VO(x; T, —
—3<1<+1><j§=0 [9B(X) — VO + K_1>+ =

where the second inequality holds since we have (42), which implies

3612 [?
(1 +K2) - <M +2L2> 1
x 2 4

The constant is defined as:

o 202 L2 (1 + k?) ADX)|I2
2= 12CK1+L2K2+—” &2 of + 2|+ —2 IOl

I’ (I-p)* n(K+1)

1 217,13 ,(1 + &%)
+——(36c( [ 14122+ L2 )aT 412"
(1-py* IS 19

1
=0l +a"+ 1)
al +a" +K+1

From (43) we know

1

C,
1 Z ||aq)(Xk) - vd>(x,)||2 <5 * m Tkt

K
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Combining the above inequality, Lemma 8, and T_; < T, we have

1

C
(@(%) — inf D) + = T 1)

K
1 I < —2
o kzz‘,onV@(xk)n (K 5

Hence

1 4
Ty, <
K+1 n(K +1)

(@(%) — inf D(x)) + C,.

Furthermore, by setting

N = ©(logK), T = ©(logK), n, = O(>), n, = O(1)

we have
1 < I
— Y IVo@)|? = O(—),
] jzo Vo) <
which proves the second case of Theorems 3.2 and 25. O

Proof of the convergence of DSBO
In this section we will prove the convergence result of the DSBO algorithm.

Theorem 33 In Algorithm 5, suppose Assumptions 2.1 and 2.2 hold. If Assumption
2.3 holds, then by setting M = ®(logK), T = Q(xlogk), f < min < l) ,

o2, L

1 2 .
n, < i ny < e we have:

K
1 -
1 g E[IVo)I]

3n,L%07 3;7
(E[@(5y)] — inf &) + el o

2 ~2

If Assumption 2.3 does not hold, then by setting n, < LL, nﬁ’) = (’)(%), we have:
, X
— ) E[|IVOGE)I?
T k:ZO [IVOG)I1’]

2

2
< 36L; L., N+
T n(K+1) f

(E[@G)] - inf @) + (T M e

+L;1x(4af2(1+1<2)+(8L2 +407)% )+C3.
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Here C = (1), Cy = 007> + ——) and Cy = 0(% + aN>.

We first define the following filtration:

Fi = U(U{xw,xi,], ,xi’k}>,
i=1
g0 =o() :0<i<j0<s <y Jix s 0<1<h).
Then in both cases we have the following lemma.

Lemma34 Ifn, < LL, then we have:
E[IvoI?]
< Z(E[0)] - E[0, ) + E[IE[00, B 7 - VoaI]

+ L EI|[00(:)| - E[000IF] I
Proof In each iteration of Algorithm 5, we have:
T =%~ 1,00(X5). (44)
The Lg-smoothness of @ indicates that

Ld)’?f
2

(i) — D) < VO (—1,0D(X5)) + [0DX,:)I.
Taking conditional expectation with respect to F, on both sides, we have the
following

E[Dy 1) F] — D)

Lq)nf J—
[ AIEEA

< Vo) (nE[9BKHIF)) +

= —ZAVOEIP +IE[0005:)1 7 I ~ IE[ 00K 7| - VoI

+

anzﬂﬁ (IE [0ORGHIF I + E 10000 - E[000Gh1 7] 1717 )

Lq,nf, My SHIY B 2
:( ” _?)||[E[aq>(xk,¢)lfk]ll

Lon?
2

- ZAVOE)IP - [E[00:9) 5| - VeGI®)

B s AP

Lan?
< ok
-2

= 21 - IE[XPIF - vorIP.

| 139059 - E[0Ch17 1717
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where the second inequality holds since we pick 7, < % Thus we can take expecta-

tion again and use tower property to obtain:
'Ix —
SE[IVo)I]
— - nx T~ —
<E[@,)] - E[®,, )] + E[E[||[E[aep(xk;qb)m] - Vcb(xk)||2]
2
olly [z~ — 2
+ 2[00 - E[000)1F I

which completes the proof.

Case 1: Assumption 2.3 holds

Lemma 35 Suppose f < % and Assumption 2.3 holds, we have:

| @iz - sy

| S Lo = pu)x.
Proof We first consider the expectation

[Vf('xlk’ Vik zk)l}—k]
= fo;‘(xi,k’ yi,k)

<

-1

ﬂvxyg('xlk’ (T)) (l ﬂvzg(xz kY (T))) V\xf;(‘xl kY (T)
J

I§
o

Notice that for the finite sum we have:

M-

) (1= 89260500 = B(pV2000Th) (1= = P20 9T

J=

1
= (Vetuur)) (1= = PV,
which implies:

ﬁMZl(l P20 D)) = (VietssnD))

J=

S(l—ﬁﬂ)M.
u

2

The above inequality and the fact that

Vi y ) = Vofipy ™) wg(xi,k,y,f;’)(vgg(xi,k, m) Vi)

imply
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H[E [v-ﬁ(xi,k’yg);d’i,k)lfk] B vfi(xi’k’yg?)

<Lyl = p,
which completes the proof. O

Lemma 36 Under Assumption 2.3, we have:

K
> IE[0ex:h)1 7| - voI?
k=0
L2 L2 (48)
< 3<(K + DE2 (1 = i + LA+ —“’SK)
e n n

Proof We first bound each component of the gradient error as
Y, (7). = \]2
E| 905 ,¢,-,k>|fk] - Vo, &)
< 3(||[E[Vf<x,k, W BDIE = Ve I

+ 1V YD = Vg 3] G I + IV g ¥ (ig0) = VO,EDIP)
<3, = B + LY = i Gl + Lyl — X1,

where the second inequality is obtained by Lemmas 35 and 5. Taking summation on
both sides overi =1, ..., n, we have:

IE[00C¢:0)17| - veeI®

1 < y (T) -2
<- [E[VA.,.;- ]-"]—V(D-
w 2 NE [V 5l 7| = Vel

2 2M .2 L]% S (1) 2 Lé S 2
<3\ Lo = B4 <0 I =0l + 5 2 =5l )

Taking summation on both sides over k =0, ..., K, we know

K
> IE[00%:h)1 7| - VoI
k=0

L2 L
< 3((K + 1)Lf2.,0(1 BuyMi? + AK + —SK>

which completes the proof. O
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The following lemma characterizes the variance of the hypergradient estimation.

Lemma 37 Suppose p in Algorithm 2 satisfies

. U 1
ﬂsmm<ﬂZ+—G§2’ Z) (49)

Under Assumptions 2.1-2.4, we have:

E|IE[9fiCxeo 700017 = Vitrer( 0P| < 32,
. (50)
E[I[000:6)] - E[00tX:dl 7] I] < %’2

where the constants are defined as

2 230 2 2
2(0'&2 +L )(O'f,1 + lff,o)

_ _ 2
=0+ " = O(k”).

Proof We first notice that in the stochastic case of Algorithm 2 under Assumption
2.3, for each agent i we have

M-1 s

Hy -V fiteyi¢p®) = p ) H(I BV, (%, yip M NV fix, i ). (51)

s=0 n=
Form=1,2,...,M — 1 we define

A=Vigixy), A, = Vigito "), by =V fix, yip),

m—1 s

=5 H(I BA,_)bo, Xo =0,

s=0 n=
which gives
Xl = (I - ﬁAm)xm + ﬂbO (52)

For simplicity in the proof of this lemma we denote by [E,, the conditional expecta-
tion given ¢®. In other words we have Ey[x] = E[x|¢©] for any random vector (or
matrix) x. From (52) we know

l1Boll

I Eo x|l = B MZ_I(I—/?A)”bo ||A (1= (1 - pAY™) b0“<
n=1

Combining (52) and (53), we know
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E, [”‘xm+1 -k [‘xm+]] ||2]
= Eo [ = pAYx,, — g [x,,]) + BA = A,)x,|I7]
=E,[IIt - A, — Eo|x,DIP] + A Eo[IIA — A,)x,,1I%]
< (1= By E[llx,, — B [x, ] IP] + B207 1 (B [llx,, — Eg [, ] IP] + IEq [, ] 17)

§02, by
< (1= Byl — Eg[x, ] 17] + %
Pl N
< (U= )" E[llxg = By [xo] IP] + %(Zﬂ —ﬂm’) < —g’zs —.
i=0

The second equality uses the independence, the second inequality uses (49), and the
third inequality repeats the second inequality for m times. From the above inequality
we know that the variance of x,,, namely, (51), has bounded variance since

ﬂ6§,2[E[IIboII2] ﬂO' (O' +L20) O'f1+L2

u M3 Tl

E{llocy — Eg [xa] I1P] <

s

where the second inequality uses Assumption 2.1 and the third inequality uses (49).
We further know from the above conclusion and (53) that
[E[HXM - [E[XM] ||2]
2007, +L7) (54)
E{lheal1°] = Il = Eo x| I7] + E[IEo [ ] I°] < T'

Hence in Algorithm 2 (stochastic case under Assumption 2.3) we have the following
decomposition:
—E[VA] = VafiCo 3 ™) = Vafi(r ) + Vi 81 »E [y ] = Vi 105, 3y
=V, £i06,3:09) = Vi) + (V816 9) = V0 8i(x, yi! )y

+V,,8ix, y)([E[xM] =Xy,

which implies

[E[”Vfi —E[of] [ y]

= E[IV.fi(x, y:¢) = V. fix. 01 |x. y]
+E (V8% y) = V.80 yip)xy |7 |x, y)]
+ [E[”nygi(x’ )’)([E[XM] —x)ll7Ix, y]
202, + L)} + L))
2 = af’

< af%l + (6;2 + LOE[|lxy %] < a]il + p

where the first inequality uses the independence between different samples, the first
inequality uses Assumptions 2.1 and 2.4 and the second inequality uses (54). Hence
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we know the first inequality of (50) holds. Furthermore the second inequality of (50)
is true since for any n independent random vectors vy, ..., v, with variance bounded

by o2 if we define v = i > v, we have

i=1"i

E[|Iv - E[11] 2Z[Elv—E[v]II] 2
O

The following lemmas give the estimation bound of A, and Sy in the stochastic case.

Lemma 38 In Algorithm 5, we have

K-1

=

2

n‘nkK
(195 s8I < 75
(1 - P)2 j=0 i=1 J ! )2 f

E[Sk] <

where the constant is defined as

LL LL, \?2
L ’1) +52 = O(x?),
y7,

o
2 = <Lf,0 +

Proof Observe that in this stochastic case, we can replace Vf (x5 y(T)) with

VEi(x; o y(T) ¢;;) in Lemma 20 to get the first inequality. For the second inequality,
we adopt the bound in Lemma 2 of [14]. O

Lemma 39 Set parameters in Algorithm 5 as

2 r 1
n, < m, o, < 3 (55)
Then we have the following inequalities
K0'2 9}1172](C2

nyn
E[Ac] <6 QE[c,] + 6x7E [E¢]) + T E[E¢] < W'

Proof The proof is based on Lemma 10. Taking conditional expectation with respect
to the filtration gﬁ?“), we get
E|Iy i pIPIg |

= |E|:”y(t_]) _ny yg(xld’y(l 1. g(f 1)) y (.X )”2|g£;—l):|

(=1 =1y _

||y y'(xij)||2
1 1 1 1
+n2E[||v}g<xl,,y“ )= V804 s OIPIGE|

1
< (U=’ =y @ IP +n2o?

=1, V,8(x;j ¥,
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where the inequality uses Lemma 3. Taking expectation on both sides and using the
tower property, we have

T
B[ =y I

< (1 =PIy = i IP| + 202,

T-1 (56)
< (=PI =y IR + o2, Pt = n®
5s=0
2
, MO
< STE[IDY = il + =2,
U
Moreover, by the warm-start strategy, we have yﬁ = yg) , and thus
E| I =¥ )l
=E|| (T) * * o E 2
= Yij-1 = Vi (X[J—1)+yi (xiJ—l) yi(x[J)ll
< 2E[ 17, = iG]+ 2E [ o) =3[ )

< 28TE[ I, = 7Gxy DIP| + 26 Iy = 3, 1]

0 *
ZE[I0, =37 0yeIP] + 262 [y =, 1P],

where the second inequality is by Lemma 7 and (57) and the last inequality is by
(55). Taking summation over i, j, we have:

> Y E[Ib - iepl?]

j=1 i=1

=

=

K
<3 D E[IN) — iG] + 2% [

j=1 i=1

wll\)

n

K
= 3[E[Cl] * i 22 [E[”y(m yf(xi,i)llz] + 2.

j=1 i=1

which leads to

n

K
X D E[I - eI < 2E[e,] + 65K [E]. (58)

j=1 i=1

Combining (58) with (56) and taking summation over i, j, we have
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2
i nynKo 1
Ela] <6] 3 FE[Ib iR | + ———

j=1 i=1

;7ynl(o'21
< 6TQE[c,] + 6x°E[Ex]) + =
Y H

Recall that for Ex we have:

K n

2
Eg= Z 2 Iy =3
_ S = = - 2
= Z z llxiy =% + X — X + X — x5l

3

3

IA
w
DM~

(g I + n2 100X, @)1 + gy 17)
i=1

/\
Mx

IIQ 17 + 101 I + nZ 00X, )1

~.
Il

K-1 n

IA
(A
k

1
I/, 1 si ) I
Jj=0 i=1

Taking expectation on both sides yields

3 K 1 n
E[Ex] < 6E[Si] + (197,000 s )P
j=0 i=1
6n*nK O’ K C?
< C2 + 32K C? = —
(1-p)2? 1-p
which completes the proof. O

Next, we prove the main convergence results in Theorem 33. Taking expectation on
both sides in (48), we have:

i E [||rE [dd)(Xk,¢>)|fk] V(I)()_Ck)uz]

k=0
Lj% 12
<3| 2.0 - puM2+ —L _F[A —2 _FJs 59
< (130( Pyt + e i ElA + Ly ElSK (59)
3nLio?, 312
<+ —L8 ° ¢z,
U (1-p)2?
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where the constant is defined as:
2

Cs = 3L; (1 - puw™x’ + 5, (2E[c;] + 6k’ [Eg])

n(K + 1)
5 2 3L}% , 54]('2]1115[{6?
<3L; (1- +———6 2E +
<3051 = P 4 ) [e1] a7

= @(524 K2+ njajxs).
Here we denote 6, = (1 — Pu)? for simplicity. Therefore, we set M = @(log K) and
T = ©(log k) such that C; = ®(11§ + KLH). Recall that (45) yields:
E[IVOE)I]

< ng([E[dwck)] - E[®F,))]) + [E[Il[E[@d)(Xk;¢)|]-‘k] _ vq>(xk)||2]

X

+ Ln,ENl[00(X9)]| — E |00 7 I

Taking summation on both sides and using (59) and Lemma 37, we have

K 2 .2

L:o
! ] < — 2 % : Al
K+l Z[E[“V(D(Xk)“ ] < (K + 1)(“5[(1)()60)] —11;f(1)(x))+
k=0 X
~2
3 2Lc21> . Lnxaf

+ C;.
A=p2 7" n ’
By setting

M = ®(logK), T = O(K?3), n, = O(K ™), n, = OK?)

we know that the restrictions on algorithm parameters in Lemmas 35, 37, and 39

hold and we have
< 1
E[IVO&E)II?] (—)

which proves the first case of Theorems 3.3 and 33.
Case 2: Assumption 2.3 does not hold

Lemma 40 Suppose the Assumption 2.3 does not hold in Algorithm 5, we have
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zK: [E[ IE [aq>(xk,¢)|fk] Vd)(xk)llz]

15
2L2 oL2,(1+ &%)
2.2 5,2 C 2 N
<1+L x +—2>-?+12CLf’0a

)%
3612 L* 2(1 + &2

L 20 o \ A A KD e,

u> ) a-p2

Proof Denote by ZIUZ) the output of each stochastic JHIP oracle 1 in Algorithm 5.
Then ’

5(N) (N)
E[20] =z,
which implies

E[00(:H)IF| = 000X,

Hence we can follow the same process in case 2 of DBO to get (24) and thus

Z||[E[ad><xk,¢>|fk] VoG = Z||ac1><xk>—vcb<xk>||2

k=0
212 12 (1 +«?)
< 12<1 LR > Z Z (A e
u ==
12L2 K & 1 +x2) [36L%L2
M _ 72 4 ¢ J;K )-< Ll L +2LJ%>SK.
e R i H
2L2 L2 (1 + %) K4l
< 12(1 + D7 LT > K+ DC 2k + ner? o
p T !
2 12
+(+K)'< f(2)g2+2LJ% Sk
n H
The second inequality uses Lemmaa 14 and 15. Taking expectation, multiplying by
Kl o and using Lemma 38 we complete the proof. a

The next lemma characterizes the variance of the gradient estimation.

Lemma 41 Suppose the Assumption 2.3 does not hold in Algorithm 5, then there
exists y, = O(% ) such that

Ell0@(X,:¢) — [E[()(I)(Xk;zb)lfk] I < 407(1 + k%) + (8L}, + 4] )
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Proof Recall that we have:
s ) = Voo (2] Vot 0l
i <T>>—fo,(x,k, D)= (2) VoD
By introducing intermediate terms we have
Vit v i) = Vi i)
= VG ) — VafiCe ) [ZFM] V iy D)
+(2) Vi 900 - %) Vi Y )
+(Z) Vi YD) = (Z7) TV i) + <Z([Z)> Vi ).
Hence we know

NG 31 38 = VG DI

ANV S Y500 = Vi YOI

+4“(ng) —Z*> Vi @. (0))“2
+41(Z) Vi ¥ = Vi IR
+4||(z Z(N)> Ve DI
For the first term and the third term we use [E[llVfi(x,y;(,b) — Vfix, y)llz] < aj?. For

the second term (and the fourth term) we use the fact that stochastic (and determin-
istic) decentralized algorithm achieves sublinear rate (Lemma 15). Without loss of

. ) 1y 5(N) 2 (N) 2 c
generality we can set C such that: max (; 2 E [||Zi’k -ZA ] 1z, = Z:| ) =

For partial gradients in the second and fourth terms, we use Assumption 2.1 and the
fact that
E[IX11?] = E[lIX — ELXTI%] + I ELX]|?

for any random vector X. Taking summation and expectation on both sides, we have

—Z (194035 = U DI

2 C 4L 2+4L2 C

2
< 4o} +4(LF, + o) Fon

which, together with
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Ell [()CID(Xk;¢)] -E [aCD(Xk;qb)lfk] II”
1 [e M. 5§ @ 2]
< - [E[ V X1y 9 - V i\Xi ks Y
<- Z} IV Cri s Vi i YOl
proves the lemma. o

Now we are ready to give the final proof. Taking summation on both sides of (45)
and putting Lemma 40 and 41 together we know:

K
1

K—-I-l [E[”V‘D(Xk)” ]

< (—<E[<D<xo>]—1nfd><x))+Z[E[||[E[a<D<Xk DIF| - vorIP)

K+1 =

Lnx
K+1

Z N[990 - E [0 7| I

—=— (E[0Gy)] - infd)

2L2 o2 (1 + k%)
8.2 C 2 N
—2) * ? + IZCLf’Oa

<
nx(K +1)

+ 12(1 + 22+
i

3612 12 2 K2

(L + &%)

b 1082 L op2 L) (32+L11x<462(1+K2)+(8L2 +40' )— >
u? )= pp

361212, 2>;1§(1 )

(K+1)([E[<D(_)] ir;ftb(x))+<—ﬂz +2L; T

+Lnx<46f2(1+K2)+(8L2 +402)% )+C3,

which completes the proof. Here the constant is defined as

. ) 5 2L2 L22(1+K2) C . 1 .
G =12\ 1+ L« + T '?+12CLf’0a =(’)<7,+a )

By setting

N =(logK), T =O(K?), 1, = 0K ), 1 = 0( ),

we have:
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1

K+1

E[Ivel?] = o ——

0 VK )

DM =

o~
I

which proves the second case of Theorems 3.3 and 33.
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