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Abstract
Bilevel optimization has been successfully applied to many important machine learn-
ing problems. Algorithms for solving bilevel optimization have been studied under 
various settings. In this paper, we study the nonconvex-strongly-convex bilevel opti-
mization under a decentralized setting. We design decentralized algorithms for both 
deterministic and stochastic bilevel optimization problems. Moreover, we analyze 
the convergence rates of the proposed algorithms in difference scenarios including 
the case where data heterogeneity is observed across agents. Numerical experiments 
on both synthetic and real data demonstrate that the proposed methods are efficient.

Keywords  Decentralized optimization · Bilevel optimization · Hypergradient 
estimation
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1  Introduction

Bilevel optimization provides a framework for solving problems arising from 
meta learning [6–8], hyperparameter optimization [9, 10], reinforcement learn-
ing [10, 11], etc. It aims at minimizing an objective in the upper level under a 
constraint given by another optimization problem in the lower level, and has been 
studied intensively in recent years [7, 10–14]. Mathematically, it can be formu-
lated as:

where g is the lower level function which is usually assumed to be strongly con-
vex with respect to y for all x, and f is the upper level function which is possibly 
non-convex. Designing a bilevel optimization algorithm requires estimation of the 
hypergradient ∇Φ(x) , which by chain rule and optimality condition of the lower 
level problem is:

where ∇xyg and ∇2
y
g represent Jacobian matrix of ∇yg and Hessian matrix of g 

respectively. Decentralized optimization aims at solving the finite-sum problem:

where the ith agent only has access to the information related to fi , and each agent 
communicates with neighbors to cooperatively solve the original problem. There 
is no central server collecting local updates. Decentralized algorithms are better 
choices in certain scenarios [15, 16]. Since decentralized training has been proved to 
be efficient, it is natural to ask:

Can we design an algorithm to solve bilevel optimization problems in a decen-
tralized regime?

We will see the answer is affirmative. Our contributions can be summarized as 
follows.

•	 We propose a novel algorithm to estimate the hypergradient in different cases.
•	 We design a decentralized bilevel optimization (DBO) algorithm and analyze 

its convergence rate. We also analyze the convergence results for the stochas-
tic version of DBO. To the best of our knowledge, our paper is the first work 
proposing provably convergent decentralized bilevel optimization algorithms 
in the presence of data heterogeneity.

•	 We study the effect of gradient tracking in the deterministic decentralized 
bilevel optimization and analyze the convergence rates.

•	 We conduct numerical experiments on several hyperparameter optimization 
problems. The results demonstrate the efficiency of our algorithms.

(1)
min
x∈ℝp

Φ(x) = f (x, y∗(x)), (upper level)

s.t. y∗(x) = argmin
y∈ℝq

g(x, y), (lower level)

(2)∇Φ(x) = ∇xf (x, y
∗(x)) − ∇xyg(x, y

∗(x))
(
∇2

y
g(x, y∗(x))

)−1

∇yf (x, y
∗(x)),

(3)min
x∈ℝp

1

n

n∑
i=1

fi(x),
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1.1 � Related work

Bilevel optimization can be dated back to [17, 18]. Due to its great success in solving 
problems in meta learning [6–8], hyperparameter optimization [9, 10] and many 
others [19–21], there is a flurry of work proposing and analyzing bilevel optimiza-
tion algorithms. The major challenge in bilevel optimization is the estimation of the 
hypergradient in (2). Computing each hypergradient requires access to y∗(x) , which 

is often intractable. Even if y∗(x) is available, the nonlinearity in 
[
∇2

y
g
]−1

 still 
requires careful consideration. There are several strategies to overcome this: approx-
imate implicit differentiation (AID) [9, 12, 13, 22–24], iterative differentiation (ITD) 
[10, 13, 22, 24, 25] and Neumann series-based approach [11–14]. All of them only 
require first order information, Jacobian-vector and Hessian-vector products. Based 
on different algorithm designs, bilevel problems can be solved via single-loop [11, 
26] or double-loop algorithms [12–14]. It is worth noting that variance reduction 
and momentum methods have also been introduced to bilevel optimization recently 
[27–29].

Decentralized optimization plays a key role in distributed optimization. It is gain-
ing popularity in recent years due to its superior scalability for handling large lan-
guage models and heterogeneous environments (i.e., different bandwidth, latency, 
data distribution, etc.) [30, 31]. Under a decentralized setting, the data is distributed 
to different agents, and each agent communicates with neighbors to solve a finite-
sum minimization problem. As opposed to centralized optimization, decentralized 
optimization aims at solving the problem without a central server that collects iter-
ates from local agents. The main challenge is the data heterogeneity across agents, 
which should be mitigated by communications. It has been proved that decentralized 
algorithms have their own advantages such as faster convergence, data privacy pres-
ervation and robustness to low network bandwidth compared to the centralized set-
ting and single-agent training [15]. For example, low network bandwidth will greatly 
hinder the communication with the central server if the algorithm is designed to be 
centralized.

An important approach to accelerate the decentralized algorithms is gradient 
tracking, which has been proved to be efficient [32–35]. We refer the interested read-
ers to [36], which provides a comprehensive review of decentralized optimization in 
a unified variance reduction framework.

Distributed bilevel optimization can be directly applied to solve problems like 
hyperparameter optimization, min-max optimization, meta learning, etc, in a distrib-
uted manner. For example, meta learning, which aims at training a model on some 
learning tasks so that it can solve new learning tasks using only a few samples, has 
been studied in the context of medical data analysis [37, 38]. In this bilevel optimi-
zation model, the lower level problem targets to minimize the loss function using 
the training tasks, and the upper level problem targets to choose the shared model 
parameters using the testing tasks. Extending meta learning to the decentralized 
setting has also been studied [39], and one important reason to apply decentralized 
meta learning in medical data analysis is protecting patients’ privacy. Different hos-
pitals, as agents in decentralized training, can collaborate to train a model, but they 
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should not share patients’ data during the training process, and decentralized meta 
learning can help achieve this. Motivated by such applications, there exist recent 
works considering bilevel optimization under distributed setting. Bilevel optimiza-
tion under a federated setting has received some attention recently [40, 41], and so 
does min-max optimization under various distributed settings [42–44]. However, 
none of these papers considers bilevel optimization under the decentralized setting. 
There is a concurrent work [45] also studying decentralized bilevel optimization. 
However, it aims at solving decentralized bilevel optimization problems under a 
personalized setting, in a sense that the lower level problems are different among 
agents. In Sect. 3 we will see that our problem is substantially different. To the best 
of our knowledge, our paper is the first work on non-personalized decentralized 
bilevel optimization.

2 � Preliminaries

In this paper we consider the following decentralized optimization problem:

where x ∈ ℝ
p, y ∈ ℝ

q . fi is possibly nonconvex and gi is strongly convex in y. Here 
n denotes the number of agents. The local objectives fi and gi are defined as:

Dfi
 and Dgi

 represent the data distributions used to generate the objectives for agent 
i, and each agent only has access to fi and gi . In practice we can replace the expecta-
tion by empirical loss,

and then use mini-batch or full batch gradient descent in the updates. When we 
use mini-batch gradient descent, we call it “stochastic case”, and when we use full 
batch gradient descent, we call it “deterministic case”. We will study the conver-
gence rates under these two cases in Sect. 3.

Notation We denote by ∇f (x, y) and ∇2f (x, y) the gradient and Hessian matrix of 
f, respectively. We use ∇xf (x, y) and ∇yf (x, y) to represent the gradients of f with 
respect to x and y, respectively. Denote by ∇xyf (x, y) = ∇x∇yf (x, y) ∈ ℝ

p×q the Jaco-
bian matrix of ∇yf (x, y) and ∇2

y
f (x, y) the Hessian matrix of f with respect to y. ‖ ⋅ ‖ 

denotes the �2 norm for vectors and Frobenius norm for matrices, and ‖ ⋅ ‖2 denotes 
the spectral norm for matrices. 1n is the all one vector in ℝn.

(4)
min
x∈ℝp

Φ(x) =
1

n

n∑
i=1

fi(x, y
∗(x)), (upper level)

s.t. y∗(x) = argmin
y∈ℝq

g(x, y) ∶=
1

n

n∑
i=1

gi(x, y), (lower level)

fi(x, y) = ��∼Dfi

[
F(x, y;�)

]
, gi(x, y) = ��∼Dgi

[
G(x, y;�)

]
.

fi(x, y) =
1

nfi

nfi∑
j=1

F(x, y;�ij), gi(x, y) =
1

ngi

ngi∑
j=1

G(x, y;�ij),



1 3

Decentralized bilevel optimization﻿	

The following assumptions will be used, which are standard in bilevel optimiza-
tion [11–14] and decentralized optimization literature [15, 16, 34, 35].

Assumption 2.1  (Smoothness and convexity) For any i, functions fi , ∇fi , ∇gi , ∇2gi 
are Lf ,0, Lf ,1, Lg,1, Lg,2 Lipschitz continuous respectively, i.e.,

for any z = (x, y) and z� = (x�, y�) . Function gi is �-strongly convex in y for all i, i.e., 
∇2

y
gi(x, y) ⪰ �I. Moreover, we define L = max

(
Lf ,1, Lg,1

)
 , and � =

L

�
.

Assumption 2.2  (Network topology) Suppose the communication network is repre-
sented by a weight matrix W = (wij) ∈ ℝ

n×n , i.e., wij ≥ 0 and is non-zero if and only 
if node i is a neighbor of j. W is symmetric and doubly stochastic, i.e.,

and its eigenvalues satisfy 1 = 𝜆1 > 𝜆2 ≥ ⋯ ≥ 𝜆n > −1 and 
𝜌 ∶= max

(|𝜆2|, |𝜆n|
)
< 1.

Assumption 2.3  (Data homogeneity on g) Assume the data associated with gi 
is independent and identically distributed, i.e., Dgi

= Dg . (We do not require data 
homogeneity in the upper level.)

Assumption 2.4  (Bounded variance) The stochastic derivatives ∇fi(x, y;�) , 
∇gi(x, y;�) , ∇2gi(x, y;�) are unbiased with bounded variances �2

f
 , �2

g,1
 , �2

g,2
 , 

respectively.

3 � Our algorithms

If it is a single-agent system, i.e., n = 1 , a natural idea to solve bilevel optimization (4) 
is to apply gradient descent for the upper level problem, which leads to the following 
updating scheme:

where 𝜂k > 0 is a step size, and ∇Φ(xk) is the hypergradient at xk . However, comput-
ing ∇Φ(xk) requires y∗(xk) . To obtain an approximation to y∗(xk) , we can apply gra-
dient descent to solve the lower-level problem. Therefore, a prototype of the gradient 
descent method for solving bilevel optimization (4) can be described as:

�fi(z) − fi(z
�)� ≤ Lf ,0‖z − z�‖, ‖∇fi(z) − ∇fi(z

�)‖ ≤ Lf ,1‖z − z�‖,
‖∇gi(z) − ∇gi(z

�)‖ ≤ Lg,1‖z − z�‖, ‖∇2gi(z) − ∇2gi(z
�)‖ ≤ Lg,2‖z − z�‖,

W = W�, W�
�
= �

�
, wij ≥ 0,∀i, j,

xk+1 = xk − �k∇Φ(xk),
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where ∇̃Φ(xk) is an approximation of the hypeprgradient ∇Φ(xk) and is defined as

Clearly, there are two loops involved. We call the one updating xk the outer loop, and 
the one updating yt the inner loop.

When it comes to the decentralized setting in a multi-agent system, there are 
a few new challenges. Here we first discuss the main challenge when there is 
data heterogeneity, i.e., when Assumption 2.3 does not hold. In the outer loop 
of bilevel optimization algorithms [11–14], we typically focus on estimating the 
hypergradient so that we can perform gradient descent according to the hyper-
gradient estimate. In the decentralized setting, where each agent has their own 
hypergradient given by:

Note that node i does not have access to ∇xyg(x, y
∗(x))

(
∇2

y
g(x, y∗(x))

)−1

 and y∗(x) 
which both require global information about g. One natural idea is to use the follow-
ing function as a local surrogate (here y∗

i
(x) ∶= arg minygi(x, y)):

Unfortunately, the hypergradient estimation error (i.e., ‖‖‖∇Φi(x) − ∇fi(x, y
∗
i
(x))

‖‖‖ ) may 

not be diminishing. For example, when fi(x, y) =
1

2
y⊤y , and gi(x, y) =

i

2
y⊤y − x⊤y , 

we have ∇fi(x, y∗i (x)) =
x

i2
, ∇Φi(x) =

2x

(n+1)i
 , which implies

which cannot be diminishing no matter how the algorithm proceeds if x ≠ 0 . Thus 
we cannot directly apply (6) in our problem when Assumption 2.3 does not hold. 
Note that the difference between our work and [45] can be viewed as the differ-
ence between (6) and (5). Their problem formulation ((1a) and (1b) in [45]) is essen-
tially minx∈ℝp

1

n

∑n

i=1
fi(x, y

∗
i
(x)) , which means using (6) is sufficient for computing 

the global hypergradient. Mathematically, in our setting we would like to compute 
Z ∈ ℝ

q×p such that

for k = 0, 1,… ,K

for t = 0, 1,… , T − 1

yt+1 = yt − �y∇yg(x
k, yt)

xk+1 = xk − �x∇̃Φ(xk),

∇̃Φ(xk) = ∇xf (x
k, yT ) − ∇xyg(x

k, yT )
(
∇2

y
g(xk, yT )

)−1

∇yf (x
k, yT ).

(5)∇Φi(x) = ∇xfi(x, y
∗(x)) − ∇xyg(x, y

∗(x))
(
∇2

y
g(x, y∗(x))

)−1

∇yfi(x, y
∗(x)).

(6)
∇fi(x, y

∗
i
(x)) = ∇xfi(x, y

∗
i
(x)) − ∇xygi(x, y

∗
i
(x))

(
∇2

y
gi(x, y

∗
i
(x))

)−1

∇yfi(x, y
∗
i
(x)).

��∇Φi(x) − ∇fi(x, y
∗
i
(x))�� =

�
n + 1 − 2i

i2(n + 1)

�
‖x‖
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on node i for any given (x, y). In the next section we design a novel oracle to solve 
this subproblem with heterogeneous data at the price of the computation of Jacobian 
matrices.

3.1 � Jacobian–Hessian–Inverse Product oracle

We introduce the Jacobian–Hessian–Inverse Product (JHIP) oracle, which is essen-
tially a decentralized subroutine. Denote by Hi ∈ �

q×q

++  and Ji ∈ ℝ
p×q the Hessian 

matrix of gi and the Jacobian matrix of ∇ygi . Every agent aims at finding Z ∈ ℝ
q×p 

(i.e., (7)) such that:

Notice that this is exactly the optimality condition of:

The objective in (9) is strongly convex since each Hi is symmetric positive definite. 
Hence we can design a decentralized algorithm with gradient tracking so that all 
the agents can collaborate to solve for (8) without a central server. The algorithm 
is described in Algorithm 1, where we use the bold texts to highlight the different 
updates when the problem is deterministic and stochastic. 

Algorithm 1   Jacobian-Hessian-Inverse Product oracle

(7)Z⊤ =

(
n∑
i=1

∇xygi(x, y)

)(
n∑
i=1

∇2
y
gi(x, y)

)−1

(8)
n∑
i=1

HiZ =

n∑
i=1

J�
i

or equivalently, Z� =

(
n∑
i=1

Ji

)(
n∑
i=1

Hi

)−1

.

(9)min
Z∈ℝq×p

1

n

n∑
i=1

hi(Z), where hi(Z) =
1

2
Tr (Z�HiZ) − Tr (JiZ).
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Note that for the deterministic case we can just maintain G(t+1)

i
= HiZ

(t+1)

i
 instead 

of the gradient HiZ
(t+1)

i
− J�

i
 because we only use G(t+1)

i
 in line 6—the gradient track-

ing step, and the constant term J�
i
 will be cancelled if we set G(t+1)

i
 as the gradient. 

We use Ĥ(t)

i
Z
(t)

i
−
(
Ĵ
(t)

i

)�

 to represent the stochastic gradient of hi(Z) at Z(t+1)

i
 . Each 

Hessian-matrix product HiZ
(t+1)

i
 in line 5 can be viewed as p Hessian-vector prod-

ucts, which is cheaper than computing the Hessian matrix when p is small. This ora-
cle also requires computing the exact Jacobian matrix, which is more expensive than 
Jacobian-vector product. Moreover, the convergence rates have been well under-
stood [34, 36, 46]. In general, one can also design other oracles (e.g., decentralized 
ADMM [47–51]) to solve (9). The convergence rates of this algorithm are summa-
rized in Lemma 15.

3.2 � Hypergradient estimate

Algorithm 2   Hypergradient estimate
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Before we propose our algorithms, we first introduce hypergradient estimates under 
different cases.

•	 Case 1: Deterministic + homogeneous data In this case the hypergradient is esti-
mated based on the AID approach [13], which is essentially utilizing conjugate 
gradient method, and only requires Hessian-vector product oracles instead of 
explicit Hessian matrix computation. We adopt the approximation error (Lemma 
3 in [13]) in Lemma 11.

•	 Case 2: Stochastic + homogeneous data In this case the hypergradient is esti-
mated based on a slight modification of the Neumann series approach [12]. Gra-
dients ∇fi and ∇gi are replaced by their corresponding first order stochastic ora-
cles (i.e., stochastic gradients). We have the error estimation in Lemma 35.

•	 Case 3: Heterogeneous data In this case we compute the global Jacobian-Hes-
sian-Inverse product by using the JHIP oracle (Algorithm 1). The error estima-
tion results are given in Lemma 14.

3.3 � Deterministic decentralized bilevel optimization

Algorithm 3   (Deterministic) Decentralized Bilevel Optimization

We propose the decentralized bilevel optimization algorithm (DBO) in Algorithm 3. 
In the inner loop (lines 4–11) each agent performs local gradient descent updates 
for variable y in parallel. When Assumption 2.3 holds, we can simply run local gra-
dient descent without communication because in the lower level local distribution 
already captures the global function information. When Assumption 2.3 does not 
hold, then the data distribution is substantially heterogeneous across agents, so we 
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add weighted averaging steps (line 9) to reach consensus and gradient tracking steps 
(line 8) to reduce the complexity. In the outer loop (lines 12–13) each agent commu-
nicates with neighbors and then performs gradient descent for variable x.1 We have 
the following sublinear convergence result.

Theorem  3.1  In Algorithm  3, suppose Assumptions 2.1 and 2.2 hold. Set 
�x = Θ(K− 1

3 �− 8
3 ), �y =

1
�+L

 . If Assumption 2.3 holds, we set T = Θ(� log �),N = Θ(
√

� log �) . If 
Assumption 2.3 does not hold, we set T = N = Θ(logK), �t = Θ(1) . In both cases, we 
have:

3.4 � Deterministic decentralized bilevel optimization with gradient tracking

In this section we study the effect of gradient tracking in decentralized bilevel opti-
mization. We propose the Decentralized Bilevel Optimization with Gradient Track-
ing (DBOGT) Algorithm 4. We introduce u and v to serve as the update directions. 
For Algorithm 4 we have the following theorem. 

Algorithm  4   (Deterministic) Decentralized Bilevel Optimization with Gradient 
Tracking

1

K + 1

K�
j=0

‖∇Φ(x̄j)‖2 = O

�
𝜅

8

3

K
2

3

�
.

1  For simplicity we use constant stepsize �
x
 in the outer loop. Similar results can be obtained for dimin-

ishing stepsizes.
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Theorem  3.2  In Algorithm  4, suppose Assumptions 2.1 and 2.2 hold. Set 
�x = Θ(�−3), �y = Θ(1) . If Assumption 2.3 holds, we set T = Θ(� log �),N = Θ(

√
� log �) . 

If Assumption 2.3 does not hold, we set T = N = Θ(logK), �t = Θ(1) . In both cases, we 
have

Note that this result implies that in DBOGT we can set �x as a constant that is 
independent of the total number of iterations K, which matches the results in gradi-
ent tracking literature [33–35, 52].

3.5 � Decentralized stochastic bilevel optimization

Our stochastic version of the DBO algorithm: Decentralized Stochastic Bilevel 
Optimization (DSBO), is described in Algorithm 5. Its convergence rate is given in 
Theorem 3.3. 

Algorithm 5   Decentralized Stochastic Bilevel Optimization

Theorem  3.3  In Algorithm  5, suppose Assumptions 2.1 and 2.2 hold. Set 

�x = Θ(K− 1
2 ), T = Θ(K

1
2 ) . If Assumption 2.3 holds, we set M = Θ(logK), �(t)y = Θ(K− 1

2 ), � = min
(

�
�2+�2

g,2
, 1
L

) . 

1

K + 1

K�
j=0

‖∇Φ(x̄j)‖2 = O

�
1

K

�
.
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If Assumption 2.3 does not hold, we set N = Θ(logK), �(t)y = ( 1
t
), �t = ( 1

t
) . In both cases, we 

have

4 � Numerical experiments

In this section we conduct several experiments on hyperparameter optimization 
problems in the decentralized setting, which can be formulated as:

Here fi and gi denote the validation loss and training loss on node i, respectively. 
The goal is to find the best hyperparameter � under the constraint that �∗(�) is the 
optimal model parameter of the lower level problem. Due to the space limit, the 
details of the setup of the experiments are given in the “Appendix”.

4.1 � Synthetic data

We first conduct logistic regression with l2 regularization on synthetic heterogene-
ous data (e.g., [9, 24]). We plot the logarithm of the norm of the gradient in Fig. 1a. 
From this figure we see that all three algorithms: DBO (Algorithm  3), DBOGT 
(Algorithm 4), and DSBO (Algorithm 5) can reduce the gradient to an acceptable 
level. Moreover, DBO and DBOGT have similar performance, and they are both 
slightly better than DSBO. We also include the test accuracy in Fig. 1b, which indi-
cates similarly good performance in terms of accuracy.

4.2 � Real‑world data

We now conduct the DSBO algorithm on a logistic regression problem on 20 News-
group dataset2 [24]. In Fig. 1c we plot the test accuracy of every iteration. From this 
figure we see that the DSBO algorithm is able to get good test accuracy under differ-
ent settings of stepsizes.

Finally we apply deterministic DBO and DBOGT algorithms on a data hyper-
cleaning problem [13, 53] for MNIST dataset [54]. The purpose is to demonstrate the 
advantage of the gradient tracking technique. The Fig. 2a shows that the perofromance 
of DBO and DBOGT are similar when the stepsizes are small. However, the Fig. 2b 

1

K + 1

K�
j=0

�
�‖∇Φ(x̄j)‖2

�
= O

�
1√
K

�
.

(10)
min
�∈ℝp

Φ(�) = 1

n

n∑
i=1

fi(�, �
∗(�)),

s.t. �∗(�) = argmin
�∈ℝq

1

n

n∑
i=1

gi(�, �).

2  http://​qwone.​com/​~jason/​20New​sgrou​ps/.

http://qwone.com/%7ejason/20Newsgroups/
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shows that DBOGT converges much faster than DBO when the stepsizes are relatively 
large. This supports the conclusions in Theorem 3.2. We also include the test accuracy 
results in Fig. 2c, d, from which we can find that our test performance are comparable 
with [13].

5 � Conclusion

In this paper we propose both deterministic and stochastic algorithms for solving decen-
tralized bilevel optimization problems. We obtain sublinear convergence rates when the 
lower level function is generated by homogeneous data. Moreover, at the price of com-
puting Jacobian matrices, we propose decentralized algorithms with sublinear conver-
gence rates when the lower level function is generated by heterogeneous data. Numer-
ical experiments demonstrate that the proposed algorithms are efficient. It is still an 
open question whether one can design decentralized optimization algorithms without 
assuming data homogeneity and Jacobian computation. We leave this as a future work.

Appendix 1: Details about experiments and other results

In this section we provide details about our experiments as well as results about train-
ing and test loss. For each experiment, we set our network topology as a special ring 
network, where W = (wi,j) and the only nonzero elements are given by:

wi,i = a, wi,i+1 = wi,i−1 =
1 − a

2
, for some a ∈ (0, 1).

Fig. 1   a, b Logistic regression on synthetic data. c Logistic regression on 20 Newsgroup

Fig. 2   Data hyper-cleaning on MNIST
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Here we overload the notation and set wn,n+1 = wn,1,w1,0 = w1,n . Note that a is the 
unique parameter that determines the weight matrix and will be specified in each 
experiment.

Synthetic data

Logistic regression on synthetic data

In this experiment, on node i we have:

where e� is element-wise, diag(v) denotes the diagonal matrix generated by vec-
tor v, and �(x) = log(1 + e−x) . D′

i
 and Di represent validation set and training set 

on node i. Following the setup in [24], we first randomly generate �∗ ∈ ℝ
p and 

the noise vector � ∈ ℝ
p . For the data point (xe, ye) on node i, each element of xe 

is sampled from the normal distribution with mean 0, variance i2 . ye is then set by 
ye = sign(x�

e
�∗ + m�) , where sign denotes the sign function and m = 0.1 denotes the 

noise rate. In the experiment we choose p = q = 50, and the number of inner-loop 
and outer-loop iterations as 10 and 100 respectively. N,  the number of iterations of 
the JHIP oracle 1 is 20. The stepsizes are �x = �y = � = 0.01. The number of agents 
n is chosen as 20,  and the weight parameter a = 0.4 (Fig. 3).

Real‑world data

Logistic regression on 20 Newsgroup dataset

In this experiment, on node i we have:

where c = 20 denotes the number of topics, p = 101631 is the feature dimension, 
L is the cross entropy loss, Dval and Dtr are the validation and training data sets, 
respectively. Our codes can be seen as decentralized versions of the one provided in 
[13].

fi(�, �
∗(�)) =

∑
(xe,ye)∈D

�
i

�(yex
�

e
�∗(�)),

gi(�, �) =
∑

(xe,ye)∈Di

�(yex
�

e
�) +

1

2
��diag(e�)�,

fi(�, �
∗(�)) =

1

|D(i)

val
|

∑
(xe,ye)∈D

(i)

val

L(x�
e
�∗, ye),

gi(�, �) =
1

|D(i)
tr
|

∑
(xe,ye)∈D

(i)
tr

L(x�
e
�, ye) +

1

cp

c∑
i=1

p∑
j=1

e�j�2
ij
,
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We first set inner and outer stepsizes �x = �y = 100 (the same as the ones 
used in [13]), and then compare its performance with different stepsizes. We set 
the number of inner-loop iterations T = 10, the number of outer-loop iterations 
K = 30, the number of agents n = 20, and the weight parameter a = 0.33 . At the 
end of jth outer-loop iteration we use the average �j =

1

n

∑n

i=1
�i,j as the model 

parameter and then do the classification on the test set to get the test accuracy 
(Fig. 4).

Data hyper‑cleaning on MNIST

In this experiment, on node i we have:

fi(�, �) =
1

�D(i)

val
�

�
(xe,ye)∈D

(i)

val

L(x�
e
�, ye),

gi(�, �) =
1

�D(i)
tr
�

�
(xe,ye)∈D

(i)
tr

�(�e)L(x
�

e
�, ye) + Cr‖�‖2,

Fig. 3   Logistic regression on synthetic data

Fig. 4   Logistic regression on 20 Newsgroup dataset
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where L is the cross-entropy loss and �(x) = (1 + e−x)−1 is the sigmoid function. The 
number of inner-loop iterations T and outer-loop iterations K are set as 10 and 30, 
respectively. The number of agents n = 20 and the weight parameter a = 0.5 . Fol-
lowing [13, 53] the regularization parameter Cr is set as 0.001. We first choose step-
sizes similar to those in [13] and then set larger stepsizes. In each iteration we evalu-
ate the norm of the hypergradient at the average of the hyperparameters 𝜆̄ , and plot 
the logarithm (base 10) of the norm of the hypergradient versus iteration number in 
Fig. 2 (Figs. 5, 6).

Appendix 2: Convergence analysis

In this section we provide the proofs of convergence results. For convenience, we 
first list the notation below.

Fig. 5   Data hyper-cleaning on MNIST

Fig. 6   Data hyper-cleaning on MNIST
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We first introduce a few lemmas that are useful in the proofs.

Lemma 1  For any p, q, r ∈ ℕ+ and matrix A ∈ ℝ
p×q,B ∈ ℝ

q×r , we have:

Lemma 2  For any matrix A = (a1, a2,… , aq) ∈ ℝ
p×q , we have:

For one-step gradient descent, we have the following result (see, e.g., Lemma 10 
in [34] and Lemma 3 in [46]).

Lemma 3  Suppose f(x) is �-strongly convex and L − smooth . For any x and 𝜂 < 2

𝜇+L
 , 

define x+ = x − �∇f (x), x∗ = argmin f (x) . Then we have

The following lemma is a common result in decentralized optimization (e.g., [15, 
Lemma 4]).

W ∶= (wij) is symmetric doubly stochastic, and 𝜌 ∶= max
��𝜆2�, �𝜆n�

�
< 1

Xk ∶=
�
x1,k, x2,k,… , xn,k

�
, x̄k ∶=

1

n

n�
i=1

xi,k,

𝜕Φ(Xk) ∶=
�
∇̂f1(x1,k, y

(T)

1,k
),… , ∇̂fn(xn,k, y

(T)

n,k
)
�
,

𝜕Φ(Xk;𝜙) ∶=
�
∇̂f1(x1,k, y

(T)

1,k
;𝜙1,k),… , ∇̂fn(xn,k, y

(T)

n,k
;𝜙n,k)

�

𝜕Φ(Xk) ∶=
1

n

n�
i=1

∇̂fi(xi,k, y
(T)

i,k
), 𝜕Φ(Xk;𝜙) ∶=

1

n

n�
i=1

∇̂fi(xi,k, y
(T)

i,k
;𝜙i,k),

qi,k ∶= xi,k − x̄k, ri,k ∶= ui,k − ūk,

Qk ∶=
�
q1,k, q2,k,… , qn,k

�
, Rk ∶=

�
r1,k, r2,k,… , rn,k

�
∈ ℝ

p×n,

SK ∶=

K�
k=1

‖Qk‖2, TK ∶=

K�
j=0

‖∇Φ(x̄j)‖2, EK ∶=

K�
j=1

n�
i=1

‖xi,j − xi,j−1‖2,

AK ∶=

K�
j=0

n�
i=1

‖y(T)
i,j

− y∗
i
(xi,j)‖2,BK ∶=

K�
j=0

n�
i=1

‖v∗
i,j
− v

(0)

i,j
‖2,

v∗
i,j
=
�
∇2

y
gi(xi,j, y

∗
i
(xi,j))

�−1

∇yfi(xi,j, y
∗
i
(xi,j)),

𝛿y ∶= (1 − 𝜂y𝜇)
2, 𝛿𝜅 ∶=

�√
𝜅 − 1√
𝜅 + 1

�2

.

‖AB‖ ≤ min
�‖A‖2 ⋅ ‖B‖, ‖A‖ ⋅ ‖B�‖2

�
.

‖aj‖2 ≤ ‖A‖2
2
≤ ‖A‖2 =

q�
i=1

‖ai‖2, ∀j ∈ {1, 2,… , q}.

‖x+ − x∗‖ ≤ (1 − ��)‖x − x∗‖.
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Lemma 4  Suppose Assumption 2.2 holds. We have for any integer k ≥ 0,

Proof  Assume 1 = 𝜆1 > 𝜆2 ≥ ⋯ ≥ 𝜆n > −1 are eigenvalues of W. Since 
Wk

1n1
⊤
n
= 1n1

⊤
n
Wk , we know Wk and 1n1

⊤
n
 are simultaneously diagonalizable. Hence 

there exists an orthogonal matrix P such that

and thus:

By definition of rho, the proof is complete. 	�  ◻

The following three lemmas are adopted from Lemma 2.2 in [12]:

Lemma 5  (Hypergradient) Define Φi(x) ∶= fi(x, y
∗(x)) , where y∗(x) = arg miny∈ℝq g(x, y) . 

Under Assumption 2.1 we have:

Moreover, ∇Φi is Lipschitz continuous:

with the Lipschitz constant given by:

Remark  if Assumption 2.3 does not hold, then this hypergradient is completely dif-
ferent from the local hypergradient:

where y∗
i
(x) = arg miny∈ℝqgi(x, y).

Lemma 6  Define:

‖‖‖‖‖
Wk −

1n1
⊤
n

n

‖‖‖‖‖2
≤ 𝜌k.

Wk = Pdiag(𝜆k
i
)P−1,

1n1
⊤
n

n
= Pdiag(1, 0, 0,… , 0)P−1,

‖‖‖‖‖
Wk −

1n1
⊤
n

n

‖‖‖‖‖2
=
‖‖‖P(diag(𝜆

k
i
) − diag(1, 0, 0,… , 0))P−1‖‖‖2 ≤ max

(|𝜆2|k, |𝜆n|k
)
.

∇Φi(x) = ∇xfi(x, y
∗(x)) − ∇xyg(x, y

∗(x))
(
∇2

y
g(x, y∗(x))

)−1

∇yfi(x, y
∗(x)).

‖∇Φi(x1) − ∇Φi(x2)‖ ≤ LΦ‖x1 − x2‖,

LΦ = L +
2L2 + Lg,2L

2
f ,0

�
+

LLf ,0Lg,2 + L3 + Lg,2Lf ,0L

�2
+

Lg,2L
2Lf ,0

�3
= Θ(�3).

(11)
∇fi(x, y

∗
i
(x)) = ∇xfi(x, y

∗
i
(x)) − ∇xygi(x, y

∗
i
(x))

(
∇2

y
gi(x, y

∗
i
(x))

)−1

∇yfi(x, y
∗
i
(x)),

∇̄fi(x, y) = ∇xfi(x, y) − ∇xyg(x, y)
(
∇2

y
g(x, y)

)−1

∇yfi(x, y).
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Under the Assumption 2.1 we have:

where the Lipschitz constant is given by:

Lemma 7  Suppose Assumption 2.1 holds. We have:

These lemmas reveal some nice properties of functions in bilevel optimization under 
Assumption 2.1. We will make use of these lemmas in our theoretical analysis.

Lemma 8  Suppose Assumption 2.1 holds. If the iterates satisfy:

then we have the following inequality holds:

Proof  Since Φ(x) is LΦ-smooth, we have:

‖∇̄fi(x, y) − ∇̄fi(x̃, ỹ)‖ ≤ Lf‖(x, y) − (x̃, ỹ)‖,

Lf = L +
L2

�
+ Lf ,0

(
Lg,2

�
+

Lg,2L

�2

)
= Θ(�).

‖y∗
i
(x1) − y∗

i
(x2)‖ ≤ �‖x1 − x2‖, ∀i ∈ {1, 2,… , n}.

x̄k+1 = x̄k − 𝜂x𝜕Φ(Xk), where 0 < 𝜂x ≤
1

LΦ
,

(12)

1

K + 1

K�
k=0

‖∇Φ(x̄k)‖2 ≤ 2

𝜂x(K + 1)
(Φ(x̄0) − inf

x
Φ(x))

+
1

K + 1

K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2.

Φ(x̄k+1) − Φ(x̄k)

≤ ∇Φ(x̄k)
�(−𝜂x𝜕Φ(Xk)) +

LΦ𝜂
2
x

2
‖𝜕Φ(Xk)‖2

=
LΦ𝜂

2
x

2
‖𝜕Φ(Xk)‖2 − 𝜂x∇Φ(x̄k)

�𝜕Φ(Xk)

=
LΦ𝜂

2
x

2
‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2 +

�
LΦ𝜂

2
x

2
− 𝜂x

�
‖∇Φ(x̄k)‖2

+ (LΦ𝜂
2
x
− 𝜂x)∇Φ(x̄k)

�(𝜕Φ(Xk) − ∇Φ(x̄k))

≤
LΦ𝜂

2
x

2
‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2 +

�
LΦ𝜂

2
x

2
− 𝜂x

�
‖∇Φ(x̄k)‖2

+ (𝜂x − LΦ𝜂
2
x
)
�
1

2
‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2 + 1

2
‖∇Φ(x̄k)‖2

�

=
𝜂x
2
‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2 −

𝜂x
2
‖∇Φ(x̄k)‖2,
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where the second inequality is due to Young’s inequality and �x ≤
1

LΦ
 . Therefore, we 

have:

Summing (13) over k = 0,… ,K , yields:

which completes the proof. 	�  ◻

We have the following lemma which provides an upper bound for EK:

Lemma 9  In each iteration, if we have x̄k+1 = x̄k − 𝜂x𝜕Φ(Xk) , then the following ine-
quality holds:

Proof  By the definition of EK , we have:

(13)‖∇Φ(x̄k)‖2 ≤ 2

𝜂x
(Φ(x̄k) − Φ(x̄k+1)) + ‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2.

K�
k=0

‖∇Φ(x̄k)‖2 ≤ 2

𝜂x
(Φ(x̄0) − Φ(x̄k+1)) +

K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2,

EK ≤ 8SK + 4n𝜂2
x

K−1�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + 4n𝜂2
x
TK−1.

EK =

K�
j=1

n�
i=1

‖xi,j − xi,j−1‖2 =
K�
j=1

n�
i=1

‖xi,j − x̄j + x̄j − x̄j−1 + x̄j−1 − xi,j−1‖2

=

K�
j=1

n�
i=1

‖qi,j − 𝜂x(𝜕Φ(Xj−1) − ∇Φ(x̄j−1)) − 𝜂x∇Φ(x̄j−1) − qi,j−1‖2

≤ 4

K�
j=1

n�
i=1

(‖qi,j‖2 + 𝜂2
x
‖𝜕Φ(Xj−1) − ∇Φ(x̄j−1))‖2

+ 𝜂2
x
‖∇Φ(x̄j−1)‖2 + ‖qi,j−1‖2)

≤ 4

K�
j=1

(‖Qj‖2 + ‖Qj−1‖2 + n𝜂2
x
‖𝜕Φ(Xj−1) − ∇Φ(x̄j−1)‖2 + n𝜂2

x
‖∇Φ(x̄j−1)‖2)

≤ 8SK + 4n𝜂2
x

K−1�
j=0

(‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + ‖∇Φ(x̄j)‖2)

= 8SK + 4n𝜂2
x

K−1�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + 4n𝜂2
x
TK−1,
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where the second inequality is by the definition of Qj , the third inequality is by the 
definition of SK and Q0 = 0 , the last equality is by the definition of TK−1. 	�  ◻

Next we give bounds for AK and BK.

Lemma 10  Suppose Assumptions 2.1 and 2.3 hold. If �y, T  and N in Algorithm 3 and 
4 satisfy:

then the following inequalities hold:

where the constants are defined as follows:

Proof  For each term in AK we have

where the first inequality uses Lemma 3. We further have:

where the second inequality is by (16) and Lemma 7, and the last inequality is by the 
condition (14). Taking summation on both sides, we get

(14)0 < 𝜂y <
2

𝜇 + L
, 𝛿T

y
<

1

3
, 𝛿N

𝜅
<

1

8𝜅
,

AK ≤ 3�T
y
(c1 + 2�2EK), BK ≤ 2c2 + 2d1AK−1 + 2d2EK ,

(15)

c1 =

n�
i=1

‖y(0)
i,0

− y∗
i
(xi,0)‖2, c2 =

n�
i=1

‖v∗
i,0
− v

(0)

i,0
‖2,

d1 = 4(1 +
√
�)2

�
� +

Lg,2Lf ,0

�2

�2

= Θ(�3),

d2 = 2

�
�2 +

2Lf ,0�

�
+

2Lf ,0�
2

�

�2

= Θ(�4).

(16)
‖y(T)

i,j
− y∗

i
(xi,j)‖2 = ‖y(T−1)

i,j
− �y∇yg(xi,j, y

(T−1)

i,j
) − y∗

i
(xi,j)‖2

≤ (1 − �y�)
2‖y(T−1)

i,j
− y∗

i
(xi,j)‖2 ≤ �T

y
‖y(0)

i,j
− y∗

i
(xi,j)‖2,

‖y(0)
i,j

− y∗
i
(xi,j)‖2 = ‖y(T)

i,j−1
− y∗

i
(xi,j−1) + y∗

i
(xi,j−1) − y∗

i
(xi,j)‖2

≤ 2(‖y(T)
i,j−1

− y∗
i
(xi,j−1)‖2 + ‖y∗

i
(xi,j−1) − y∗

i
(xi,j)‖2)

≤ 2𝛿T
y
‖y(0)

i,j−1
− y∗

i
(xi,j−1)‖2 + 2𝜅2‖xi,j−1 − xi,j‖2

<
2

3
‖y(0)

i,j−1
− y∗

i
(xi,j−1)‖2 + 2𝜅2‖xi,j−1 − xi,j‖2,
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which directly implies:

Combining (16) and (17) leads to:

We then consider the bound for BK . Recall that:

which is the solution of the linear system ∇2
y
gi(xi,k, y

∗
i
(xi,k))v = ∇yfi(xi,k, y

∗
i
(xi,k)) in 

the AID-based approach in Algorithm 2. Note that v∗
i,k

 is a function of xi,k , and it is 

(�2 +
2Lf ,0L

�2
+

2Lf ,0L�

�2
)-Lipschitz continuous with respect to xi,k [13]. For each term in 

BK , we have:

where the second inequality follows [13, Lemma 4]. Taking summation over i, j, we 
get

K�
j=1

n�
i=1

‖y(0)
i,j

− y∗
i
(xi,j)‖2

≤
2

3

K�
j=1

n�
i=1

‖y(0)
i,j−1

− y∗
i
(xi,j−1)‖2 + 2�2

K�
j=1

n�
i=1

‖xi,j − xi,j−1‖2

≤
2

3

K�
j=0

n�
i=1

‖y(0)
i,j

− y∗
i
(xi,j)‖2 + 2�2EK

≤
2

3
c1 +

2

3

K�
j=1

n�
i=1

‖y(0)
i,j

− y∗
i
(xi,j)‖2 + 2�2EK ,

(17)
K�
j=1

n�
i=1

‖y(0)
i,j

− y∗
i
(xi,j)‖2 ≤ 2c1 + 6�2EK .

AK =

K�
j=0

n�
i=1

‖yT
i,j
− y∗

i
(xi,j)‖2 ≤ �T

y

K�
j=0

n�
i=1

‖y(0)
i,j

− y∗
i
(xi,j)‖2

≤�T
y
(c1 + 2c1 + 6�2EK) = 3�T

y
(c1 + 2�2EK).

v∗
i,k

=
(
∇2

y
gi(xi,k, y

∗
i
(xi,k))

)−1

∇yfi(xi,k, y
∗
i
(xi,k)),

‖v∗
i,j
− v

(0)

i,j
‖2

≤ 2(‖v∗
i,j−1

− v
(N)

i,j−1
‖2 + ‖v∗

i,j
− v∗

i,j−1
‖2)

≤ 4(1 +
√
�)2

�
� +

Lg,2Lf ,0

�2

�2

‖y(T)
i,j−1

− y∗
i
(xi,j−1)‖2

+ 4�

�√
� − 1√
� + 1

�2N

‖v∗
i,j−1

− v
(0)

i,j−1
‖2 + 2

�
�2 +

2Lf ,0L(1 + �)

�2

�2

‖xi,j − xi,j−1‖2,
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where the last inequality holds since we pick N such that 4𝜅𝛿N
𝜅
< 1

2
 . Therefore, we 

can get:

which completes the proof. 	�  ◻

The following lemmas give bounds on 
∑‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2 in (13).We first 

consider the case when the Assumption 2.3 holds. In this case, the outer loop 
computes the hypergradient via AID based approach. Therefore, we borrow [13, 
Lemma 3] and restate it as follows.

Lemma 11  [13, Lemma 3] Suppose Assumptions 2.1 and 2.3 hold, then we have:

where the constant Γ is

Next, we bound 
∑‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2 under Assumption 2.3.

Lemma 12  Suppose Assumptions 2.1 and 2.3 hold. We have:

Proof  Under Assumption 2.3 we know gi = g , and thus from (5) and (6) we have

Therefore, we have

(18)

K�
j=1

n�
i=1

‖v∗
i,j
− v

(0)

i,j
‖2 ≤ d1AK−1 + 4��N

�
BK−1 + d2EK ≤ d1AK−1 +

1

2
BK + d2EK ,

BK ≤ c2 + d1AK−1 +
1

2
BK + d2EK ⇒ BK ≤ 2c2 + 2d1AK−1 + 2d2EK ,

‖∇̂fi(xi,j, y(T)i,j
) − ∇fi(xi,j, y

∗
i
(xi,j))‖2

≤ Γ‖y∗
i
(xi,j) − y

(T)

i,j
‖2 + 6L2𝜅

�√
𝜅 − 1√
𝜅 + 1

�2N

‖v∗
i,j
− v

(0)

i,j
‖2

Γ = 3L2 +
3L2

g,2
Lf ,0

�2
+ 6L2(1 +

√
�)2

�
� +

Lg,2Lf ,0

�2

�2

= Θ(�3).

(19)
K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2 ≤
2L2

Φ

n
SK +

2Γ

n
AK +

12L2𝜅

n
𝛿N
𝜅
BK .

∇Φi(x̄k) = ∇fi(x̄k, y
∗(x̄k)).
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where the first inequality follows from the convexity of ‖ ⋅ ‖2 , the third inequality 
follows from Lemma 11 and Assumption 2.3, the last inequality is by Lemma 5:

Taking summation on both sides, we get:

	�  ◻

We now consider the case when Assumption 2.3 does not hold. In this case, 
our target in the lower level problem is

However, the update in our decentralized algorithm (e.g. line 8 of Algorithm 3) aims 
at solving

which is completely different from our target (20). To resolve this problem, we intro-
duce the following lemma to characterize the difference:

Lemma 13  The following inequality holds:

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2 = 1

n2

�����

n�
i=1

�
∇̂fi(xi,k, y

(T)

i,k
) − ∇fi(x̄k, y

∗(x̄k))
������

2

≤
1

n

n�
i=1

‖∇̂fi(xi,k, y(T)i,k
) − ∇fi(x̄k, y

∗(x̄k))‖2

≤
2

n

n�
i=1

(‖∇̂fi(xi,k, y(T)i,k
) − ∇fi(xi,k, y

∗
i
(xi,k))‖2

+ ‖∇fi(xi,k, y∗i (xi,k)) − ∇fi(x̄k, y
∗(x̄k))‖2)

≤
2

n

n�
i=1

(Γ‖y∗
i
(xi,k) − y

(T)

i,k
‖2 + 6L2𝜅𝛿N

𝜅
‖v∗

i,k
− v

(0)

i,k
‖2 + L2

Φ
‖xi,k − x̄k‖2)

≤
2Γ

n

n�
i=1

‖y∗
i
(xi,k) − y

(T)

i,k
‖2 + 12L2𝜅

n
𝛿N
𝜅

n�
i=1

‖v∗
i,k
− v

(0)

i,k
‖2 + 2L2

Φ

n
‖Qk‖2,

‖∇fi(xi,k, y∗(xi,k)) − ∇fi(x̄k, y
∗(x̄k))‖2 = ‖∇Φi(xi,k) − ∇Φi(x̄k)‖2 ≤ L2

Φ
‖qi,k‖2.

K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2 ≤
2L2

Φ

n
SK +

2Γ

n
AK +

12L2𝜅

n
𝛿N
𝜅
BK .

(20)y∗(x̄k) = argmin
y

1

n

n∑
i=1

gi(x̄k, y).

(21)ỹ∗
k
∶= argmin

y

1

n

n∑
i=1

gi(xi,k, y),

‖ỹ∗
k
− y∗(x̄k)‖ ≤

𝜅

n

n�
i=1

‖xi,k − x̄k‖ ≤
𝜅√
n
‖Qk‖.



1 3

Decentralized bilevel optimization﻿	

Proof  By optimality conditions of (20) and (21), we have:

Combining with the strongly convexity and the smoothness of gi yields:

Therefore, we obtain the following inequality:

where the last inequality is by Cauchy–Schwarz inequality. 	�  ◻

Notice that in the inner loop of Algorithms 3, 4 and 5, i.e., Lines 4–11 of Algo-
rithms 3 and 4, and Lines 4–10 of Algorithm 5, y(T)

i,k
 converges to ỹ∗

k
 and the rates are 

characterized by [34, 36, 46, 55] (e.g., Corollary 4.7. in [55], Theorem 10 in [35] and 
Theorem 1 in [46]). We include all the convergence rates here.

Lemma 14  Suppose Assumption 2.3 does not hold. We have:

•	 In Algorithm 3 and 4 there exists a constant �y such that 

•	 In Algorithm 5 there exists �(t)
y

= O(
1

t
) such that 

Here C1,C2 are positive constants and �1 ∈ (0, 1).

1

n

n∑
i=1

∇ygi(xi,k, ỹ
∗
k
) = 0,

1

n

n∑
i=1

∇ygi(x̄k, y
∗(x̄k)) = 0.

�����
1

n

n�
i=1

∇ygi(x̄k, ỹ
∗
k
)
�����

=
�����
1

n

n�
i=1

∇ygi(x̄k, ỹ
∗
k
) −

1

n

n�
i=1

∇ygi(x̄k, y
∗(x̄k))

�����
≥ 𝜇‖ỹ∗

k
− y∗(x̄k)‖,

�����
1

n

n�
i=1

∇ygi(x̄k, ỹ
∗
k
)
�����

=
�����
1

n

n�
i=1

∇ygi(x̄k, ỹ
∗
k
) −

1

n

n�
i=1

∇ygi(xi,k, ỹ
∗
k
)
�����
≤

L

n

n�
i=1

‖xi,k − x̄k‖.

‖ỹ∗
k
− y∗(x̄k)‖ ≤

𝜅

n

n�
i=1

‖xi,k − x̄k‖ =
𝜅

n

n�
i=1

‖qi,k‖ ≤
𝜅√
n
‖Qk‖,

1

n

n�
i=1

‖y(T)
i,k

− ỹ∗
k
‖2 ≤ C1𝛼

T
1
.

1

n

n�
i=1

�

�
‖y(T)

i,k
− ỹ∗

k
‖2
�
≤

C2

T
.
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Besides, the JHIP oracle (Algorithm 1) also performs standard decentralized opti-
mization with gradient tracking in deterministic case (Algorithms 3, 4) and stochas-
tic case (Algorithm 5). We have:

Lemma 15  In Algorithm 1, we have:

•	 For deterministic case, there exists a constant � such that if �t ≡ � then 

•	 For stochastic case and there exists a diminishing stepsize sequence �t = O(
1

t
) , 

such that 

Here C3,C4 are positive constant, and �2 ∈ (0, 1) . Here the optimal solution is 

denoted by (Z∗)� =
�∑n

i=1
Ji
��∑n

i=1
Hi

�−1.
For simplicity we define:

Since the objective functions mentioned in Lemma 14 (the lower level function g) 
and 15 (the objective in (9)) are strongly convex, we know C and � only depend on 
L,�, � and the stepsize (only when it is a constant). For example �2 in Lemma 15 
only depends on the spectral radius of Hi , smallest eigenvalue of Hi , � and �.

For heterogeneous data (i.e., no Assumption 2.3) on g we have a different error 
estimation. We first notice that for each JHIP oracle, the following lemma holds:

Lemma 16  Suppose Assumptions 2.1 holds. In Algorithm 3 and 4 we have:

where Z∗
k
 denotes the optimal solution of Algorithm 1 in iteration k:

Proof  Notice that we have

‖Z(t)

i
− Z∗‖2 ≤ C3�

t
2
. (See [34]).

1

n

n�
i=1

�

�
‖Z(t)

i
− Z∗‖2

�
≤

C4

t
. (See [36]).

C = max
(
C1,C2,C3,C4

)
, � = max

(
�1, �2

)
.

‖�Z∗
k

��
− ∇xyg(x̄k, ỹ

∗
k
)
�
∇2

y
g(x̄k, ỹ

∗
k
)
�−1‖2

2

≤
2L2

g,2
(1 + 𝜅2)

𝜇2

�
1

n
‖Qk‖2 + 1

n

n�
j=1

‖y(T)
j,k

− ỹ∗
k
‖2
�
,

(
Z∗
k

)�
=

(
1

n

n∑
j=1

∇xygj(xj,k, y
(T)

j,k
)

)(
1

n

n∑
j=1

∇2
y
gj(xj,k, y

(T)

j,k
)

)−1

.
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where the second inequality holds due to Assumption 2.1 and the following inequality:

	�  ◻

Lemma 17  Suppose Assumption 2.1 holds. In Algorithm 3 and 4 we have:

‖�Z∗
k

��
− ∇xyg(x̄k, ỹ

∗
k
)
�
∇2

y
g(x̄k, ỹ

∗
k
)
�−1‖2

2

≤ 2

������

�
1

n

n�
j=1

∇xygj(xj,k, y
(T)

j,k
) − ∇xyg(x̄k, ỹ

∗
k
)

��
1

n

n�
j=1

∇2
y
gj(xj,k, y

(T)

j,k
)

�−1������

2

2

+ 2

�������
∇xyg(x̄k, ỹ

∗
k
)

⎡
⎢⎢⎣

�
1

n

n�
j=1

∇2
y
gj(xj,k, y

(T)

j,k
)

�−1

−
�
∇2

y
g(x̄k, ỹ

∗
k
)
�−1⎤⎥⎥⎦

�������

2

2

≤
2L2

g,2

n𝜇2

n�
j=1

(‖xj,k − x̄k‖2 + ‖y(T)
j,k

− ỹ∗
k
‖2)

+
2L2

g,1
L2
g,2

n𝜇4

n�
j=1

(‖xj,k − x̄k‖2 + ‖y(T)
j,k

− ỹ∗
k
‖2)

≤
2L2

g,2
(1 + 𝜅2)

𝜇2

�
1

n
‖Qk‖2 + 1

n

n�
j=1

‖y(T)
j,k

− ỹ∗
k
‖2
�

������

�
1

n

n�
j=1

∇2
y
gj(xj,k, y

(T)

j,k
)

�−1

−
�
∇2

y
g(x̄k, ỹ

∗
k
)
�−1

������

2

2

=
����
�
1

n

n�
j=1

∇2
y
gj(xj,k, y

(T)

j,k
)

�−1

⋅

�
∇2

y
g(x̄k, ỹ

∗
k
) −

1

n

n�
j=1

∇2
y
gj(xj,k, y

(T)

j,k
)

��
∇2

y
g(x̄k, ỹ

∗
k
)
�−1����

2

2

≤
L2
g,2

n𝜇4

n�
j=1

(‖xj,k − x̄k‖2 + ‖y(T)
j,k

− ỹ∗
k
‖2).

(22)

1

n

n�
i=1

‖∇̂fi(xi,k, y(T)i,k
) − ∇̄fi(xi,k, ỹ

∗
k
)‖2

≤
18L2

f ,0
L2
g,2
(1 + 𝜅2)

n𝜇2
‖Qk‖2 +

6L2
f ,0

n

n�
i=1

‖Z(N)

i,k
− Z∗

k
‖2

+

�
6 + 6L2𝜅2 +

12L2
f ,0
L2
g,2
(1 + 𝜅2)

𝜇2

�
⋅

�
1

n

n�
i=1

‖y(T)
i,k

− ỹ∗
k
‖2
�
.
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Proof  Note that

Then we know

which gives

The second inequality uses Lemma 16, Assumption 2.1. Taking summation on both 
sides and using Lemma 15, we know

∇̂fi(xi,k, y
(T)

i,k
) = ∇xfi(xi,k, y

(T)

i,k
) −

(
Z
(N)

i,k

)�

∇yfi(xi,k, y
(T)

i,k
),

∇̄fi(xi,k, ỹ
∗
k
) = ∇xfi(xi,k, ỹ

∗
k
) − ∇xyg(xi,k, ỹ

∗
k
)∇2

y
g(xi,k, ỹ

∗
k
)−1∇yfi(xi,k, ỹ

∗
k
).

∇̂fi(xi,k, y
(T)

i,k
) − ∇̄fi(xi,k, ỹ

∗
k
)

= ∇xfi(xi,k, y
(T)

i,k
) − ∇xfi(xi,k, ỹ

∗
k
)

−
(
Z
(N)

i,k

)�

∇yfi(xi,k, y
(T)

i,k
) +

(
Z∗
k

)�
∇yfi(xi,k, y

(T)

i,k
)

−
(
Z∗
k

)�
∇yfi(xi,k, y

(T)

i,k
) +

(
Z∗
k

)�
∇yfi(xi,k, ỹ

∗
k
)

−
(
Z∗
k

)�
∇yfi(xi,k, ỹ

∗
k
) + ∇xyg(x̄k, ỹ

∗
k
)∇2

y
g(x̄k, ỹ

∗
k
)−1∇yfi(xi,k, ỹ

∗
k
)

− ∇xyg(x̄k, ỹ
∗
k
)∇2

y
g(x̄k, ỹ

∗
k
)−1∇yfi(xi,k, ỹ

∗
k
)

+ ∇xyg(xi,k, ỹ
∗
k
)∇2

y
g(x̄k, ỹ

∗
k
)−1∇yfi(xi,k, ỹ

∗
k
)

− ∇xyg(xi,k, ỹ
∗
k
)∇2

y
g(x̄k, ỹ

∗
k
)−1∇yfi(xi,k, ỹ

∗
k
)

+ ∇xyg(xi,k, ỹ
∗
k
)∇2

y
g(xi,k, ỹ

∗
k
)−1∇yf (xi,k, ỹ

∗
k
),

‖∇̂fi(xi,k, y(T)i,k
) − ∇̄fi(xi,k, ỹ

∗
k
)‖2

≤ 6
�
‖y(T)

i,k
− ỹ∗

k
‖2 + L2

f ,0
‖Z(N)

i,k
− Z∗

k
‖2 + L2‖�Z∗

k

��‖2
2
‖y(T)

i,k
− ỹ∗

k
‖2

+L2
f ,0
‖�Z∗

k

��
− ∇xyg(x̄k, ỹ

∗
k
)∇2

y
g(x̄k, ỹ

∗
k
)−1‖2

2
+

L2
g,2
L2
f ,0

𝜇2
‖xi,k − x̄k‖2

+L2L2
f ,0
‖∇2

y
g(x̄k, ỹ

∗
k
)−1 − ∇2

y
g(xi,k, ỹ

∗
k
)−1‖2

2

�

≤ 6

�
‖y(T)

i,k
− ỹ∗

k
‖2 + L2

f ,0
‖Z(N)

i,k
− Z∗

k
‖2 + L4

𝜇2
‖y(T)

i,k
− ỹ∗

k
‖2

+
2L2

f ,0
L2
g,2
(1 + 𝜅2)

𝜇2

�
1

n
‖Qk‖2 + 1

n

n�
j=1

‖y(T)
j,k

− ỹ∗
k
‖2
�

+
L2
g,2
L2
f ,0

𝜇2
‖xi,k − x̄k‖2 +

L2L2
f ,0
L2
g,2

𝜇4
‖xi,k − x̄k‖2

�
.
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	�  ◻

Lemma 18  Suppose Assumption 2.3 does not hold, then in Algorithms 3 and 4 we 
have:

Proof  We have

1

n

n�
i=1

‖∇̂fi(xi,k, y(T)i,k
) − ∇̄fi(xi,k, ỹ

∗
k
)‖2

≤
18L2

f ,0
L2
g,2
(1 + 𝜅2)

n𝜇2
‖Qk‖2 +

6L2
f ,0

n

n�
i=1

‖Z(N)

i,k
− Z∗

k
‖2

+

�
6 + 6L2𝜅2 +

12L2
f ,0
L2
g,2
(1 + 𝜅2)

𝜇2

�
⋅

�
1

n

n�
i=1

‖y(T)
i,k

− ỹ∗
k
‖2
�
.

(23)

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2 ≤ (1 + 𝜅2)

n
⋅

�
36L2

f ,0
L2
g,2

𝜇2
+ 2L2

f

�
‖Qk‖2

+ 12C

��
1 + L2𝜅2 +

2L2
f ,0
L2
g,2
(1 + 𝜅2)

𝜇2

�
𝛼T + L2

f ,0
𝛼N

�
.

(24)

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2 = 1

n2

�����

n�
i=1

�
∇̂fi(xi,k, y

(T)

i,k
) − ∇fi(x̄k, y

∗(x̄k))
������

2

≤
1

n

n�
i=1

‖∇̂fi(xi,k, y(T)i,k
) − ∇fi(x̄k, y

∗(x̄k))‖2

≤
2

n

n�
i=1

(‖∇̂fi(xi,k, y(T)i,k
) − ∇̄fi(xi,k, ỹ

∗
k
))‖2 + ‖∇̄fi(xi,k, ỹ∗k ) − ∇fi(x̄k, y

∗(x̄k))‖2)

≤
36L2

f ,0
L2
g,2
(1 + 𝜅2)

n𝜇2
‖Qk‖2

+ 12

�
1 + L2𝜅2 +

2L2
f ,0
L2
g,2
(1 + 𝜅2)

𝜇2

�
⋅
1

n

n�
i=1

‖y(T)
i,k

− ỹ∗
k
‖2

+
12L2

f ,0

n

n�
i=1

‖Z(N)

i,k
− Z∗

k
‖2 + 2

n

n�
i=1

(L2
f
‖xi,k − x̄k‖2 + L2

f
‖ỹ∗

k
− y∗(x̄k)‖2)

≤ 12

�
1 + L2𝜅2 +

2L2
f ,0
L2
g,2
(1 + 𝜅2)

𝜇2

�
⋅
1

n

n�
i=1

‖y(T)
i,k

− ỹ∗
k
‖2

+
12L2

f ,0

n

n�
i=1

‖Z(N)

i,k
− Z∗

k
‖2 + (1 + 𝜅2)

n
⋅

�
36L2

f ,0
L2
g,2

𝜇2
+ 2L2

f

�
‖Qk‖2,
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 where the third inequality is due to Lemma 17 and Lemma 6, and the fourth inequal-
ity is by Lemma 13. Notice that 1

n

∑n

i=1
‖y(T)

i,k
− ỹ∗

k
‖2 in the first term denotes the error 

of the inner loop iterates. In both DBO (Algorithm 3) and DBOGT (Algorithm 4), 
the inner loop performs a decentralized gradient descent with gradient tracking. 
By Lemmas 14 and 15, we have the error bounds 1

n

∑n

i=1
‖y(T)

i,k
− ỹ∗

k
‖2 ≤ C𝛼T and 

1

n

∑n

i=1
‖Z(N)

i,k
− Z∗

k
‖2 ≤ C�N , which complete the proof. 	�  ◻

Proof of the DBO convergence

In this section we will prove the following convergence result of the DBO algorithm:

Theorem 19  In Algorithm 3, suppose Assumptions 2.1 and 2.2 hold. If Assumption 
2.3 holds, then by setting 
0 < 𝜂x ≤

1−𝜌

130LΦ
, 0 < 𝜂y <

2

𝜇+L
, T = Θ(𝜅 log 𝜅), N = Θ(

√
𝜅 log 𝜅) , we have:

If Assumption 2.3 does not hold, then by setting 0 < 𝜂x ≤
1

LΦ
, 𝜂(t)

y
= O(

1

t
) , we have:

where C1 = Θ(1),C = Θ(1) and C̃1 = O(𝛼T + 𝛼N).

We first consider bounding the consensus error estimation for DBO:

Lemma 20  In Algorithm 3, we have

Proof  Note that the x update can be written as

which indicates

By definition of qi,k , we have

1
K + 1

K
∑

j=0
‖∇Φ(x̄j)‖2 ≤

4
�x(K + 1)

(Φ(x̄0) − inf
x
Φ(x)) + �2x ⋅

1272L2ΦL
2
f ,0(1 + �)2

(1 − �)2
+

C1
K + 1

.

1
K + 1

K
∑

j=0
‖∇Φ(x̄j)‖2 ≤

2
�x(K + 1)

(Φ(x̄0) − inf
x
Φ(x))

+ �2x

(

18L2f ,0L
2
g,2

�2 + L2f

)

4(1 + �2)((1 + �)2 + C�N )L2f ,0
(1 − �)2

+ C̃1,

SK ∶=

K�
k=1

‖Qk‖2 <
𝜂2
x

(1 − 𝜌)2

K−1�
j=0

n�
i=1

‖∇̂fi(xi,j, y(T)i,j
)‖2.

Xk = Xk−1W − �x�Φ(Xk−1),

x̄k = x̄k−1 − 𝜂x𝜕Φ(Xk−1).
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where the last equality uses the fact that W is symmetric. Therefore, for Qk+1 we have

where the last equality is obtained by Q0 = 0 and 1n1
⊤
n
W = 1n1

⊤
n
. By Cauchy–

Schwarz inequality, we have the following estimate

qi,k+1 =

n∑
j=1

wijxj,k − 𝜂x∇̂f (xi,k, y
(T)

i,k
) − (x̄k − 𝜂x𝜕Φ(Xk))

=

n∑
j=1

wij(xj,k − x̄k) − 𝜂x(∇̂f (xi,k, y
(T)

i,k
) − 𝜕Φ(Xk))

= QkWei − 𝜂x𝜕Φ(Xk)

(
ei −

1n

n

)
,

Qk+1 = QkW − 𝜂x𝜕Φ(Xk)

(
I −

1n1
⊤
n

n

)

=

(
Qk−1W − 𝜂x𝜕Φ(Xk−1)

(
I −

1n1
⊤
n

n

))
W − 𝜂x𝜕Φ(Xk)

(
I −

1n1
⊤
n

n

)

= Q0W
k+1 − 𝜂x

k∑
i=0

(
𝜕Φ(Xi)

(
I −

1n1
⊤
n

n

)
Wk−i

)

= −𝜂x

k∑
i=0

𝜕Φ(Xi)

(
Wk−i −

1n1
⊤
n

n

)
,

‖Qk+1‖2 = 𝜂2
x
‖

k�
i=0

𝜕Φ(Xi)

�
Wk−i −

1n1
⊤
n

n

�
‖2

≤ 𝜂2
x

�
k�

i=0

‖𝜕Φ(Xi)

�
Wk−i −

1n1
⊤
n

n

�
‖
�2

≤ 𝜂2
x

�
k�

i=0

‖𝜕Φ(Xi)‖‖
�
Wk−i −

1n1
⊤
n

n

�
‖2
�2

≤ 𝜂2
x

�
k�

i=0

𝜌k−i‖𝜕Φ(Xi)‖2
��

k�
i=0

1

𝜌k−i

�����
Wk−i −

1n1
⊤
n

n

�����

2

2

�

≤ 𝜂2
x

�
k�

i=0s

𝜌k−i‖𝜕Φ(Xi)‖2
��

k�
i=0

𝜌k−i

�
<

𝜂2
x

1 − 𝜌

�
k�

i=0

𝜌k−i‖𝜕Φ(Xi)‖2
�

=
𝜂2
x

1 − 𝜌

�
k�

j=0

𝜌k−j
n�
i=1

‖∇̂fi(xi,j, y(T)i,j
)‖2

�
=

𝜂2
x

1 − 𝜌

n�
i=1

k�
j=0

𝜌k−j‖∇̂fi(xi,j, y(T)i,j
)‖2.
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where the fourth inequality is obtained by Lemma 4. Summing the above inequality 
yields

where the second equality holds since we can change the order of summation. 	�  ◻

Case 1: Assumption 2.3 holds

We first consider the case when Assumption 2.3 holds.

Lemma 21  Suppose Assumptions 2.1 and 2.3 hold, then we have:

Proof  Notice that we have:

where the second inequality is via the Assumption 2.1, and the last inequality is 
based on the convergence result of CG for the quadratic programming, e.g., eq. (17) 
in [24]. 	�  ◻

Next we obtain the upper bound for SK.

Lemma 22  Suppose Assumptions 2.1 and 2.3 hold, then we have:

(25)

SK =

K−1�
k=0

‖Qk+1‖2 <
𝜂2
x

1 − 𝜌

K−1�
k=0

n�
i=1

k�
j=0

𝜌k−j‖∇̂fi(xi,j, y(T)i,j
)‖2

=
𝜂2
x

1 − 𝜌

K−1�
j=0

n�
i=1

K−1�
k=j

𝜌k−j‖∇̂fi(xi,j, y(T)i,j
)‖2

<
𝜂2
x

(1 − 𝜌)2

K−1�
j=0

n�
i=1

‖∇̂fi(xi,j, y(T)i,j
)‖2,

‖∇̂fi(xi,j, y(T)i,j
)‖2 ≤ 2(L2𝜅𝛿N

𝜅
‖v(0)

i,j
− v∗

i,j
‖2 + (1 + 𝜅)2L2

f ,0
).

‖∇̂fi(xi,j, y(T)i,j
)‖2 ≤ 2‖∇̂fi(xi,j, y(T)i,j

) − ∇̄fi(xi,j, y
(T)

i,j
)‖2 + 2‖∇̄fi(xi,j, y(T)i,j

)‖2
≤ 2‖∇xygi(xi,j, y

(T)

i,j
)(v

(N)

i,j
− v∗

i,j
)‖2

+ 2‖∇xfi(xi,j, y
(T)

i,j
) − ∇xygi(xi,j, y

(T)

i,j
)
�
∇2

y
gi(xi,j, y

(T)

i,j
)
�−1

∇yfi(xi,j, y
(T)

i,j
)‖2

≤ 2(L2‖v(N)
i,j

− v∗
i,j
‖2 + (Lf ,0 +

L

𝜇
Lf ,0)

2) ≤ 2(L2𝜅𝛿N
𝜅
‖v(0)

i,j
− v∗

i,j
‖2 + (1 + 𝜅)2L2

f ,0
),

SK <
2𝜂2

x

(1 − 𝜌)2
(L2𝜅𝛿N

𝜅
BK−1 + nK(1 + 𝜅)2L2

f ,0
).
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Proof  By Lemmas 20 and 21, we have:

which completes the proof. 	�  ◻

We are ready to prove the main results in Theorem 19. We first summarize main 
results in Lemmas 22, 10 and 9:

The next lemma proves the first part of Theorem 19.

Lemma 23  Suppose the assumptions of Lemma 10 hold. Furthermore, if we set 
N = Θ(

√
� log �), T = Θ(� log �), �x = O(�−3) such that:

we have:

where the constant is given by:

SK <
𝜂2
x

(1 − 𝜌)2

K−1�
j=0

n�
i=1

‖∇̂fi(xi,j, y(T)i,j
)‖2

≤
𝜂2
x

(1 − 𝜌)2

K−1�
j=0

n�
i=1

2(L2𝜅𝛿N
𝜅
‖v(0)

i,j
− v∗

i,j
‖2 + (1 + 𝜅)2L2

f ,0
)

=
2𝜂2

x

(1 − 𝜌)2
(L2𝜅𝛿N

𝜅
BK−1 + nK(1 + 𝜅)2L2

f ,0
),

(26)

SK <
2𝜂2

x

(1 − 𝜌)2
(L2𝜅𝛿N

𝜅
BK−1 + nK(1 + 𝜅)2L2

f ,0
),

AK ≤ 3𝛿T
y
(c1 + 2𝜅2EK), BK ≤ 2c2 + 2d1AK−1 + 2d2EK ,

EK ≤ 8SK + 4n𝜂2
x

K−1�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + 4n𝜂2
x
TK−1.

𝛿N
𝜅
< min

(
L2
Φ

L2𝜅(4d1𝜅
2 + 2d2)

, 𝜅−6

)
= Θ(𝜅−6),

𝛿T
y
< min

(
L2
Φ

12Γ𝜅2
, 𝜅−5,

1

3

)
= Θ(𝜅−5), 𝜂x <

1 − 𝜌

130LΦ
,

1
K + 1

K
∑

j=0
‖∇Φ(x̄j)‖2 ≤

4
�x(K + 1)

(Φ(x̄0) − inf
x
Φ(x)) + �2x ⋅

1272L2ΦL
2
f ,0(1 + �)2

(1 − �)2
+

C1
K + 1

,

C1 = 106L2
Φ
⋅

6�2
x

(1 − �)2
L2��N

�
(2c2 + 2d1c1) +

18L2��N
�
(2c2 + 2d1c1) + 9Γc1�

T
y

n

= Θ(�2
x
�N
�
�12 + �5�T

y
) = Θ(1).
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Proof  For BK we know:

We first eliminate BK in the upper bound of SK . Pick N, T such that:

Therefore, we have

where in the first inequality we use (27) to eliminate BK . Next we eliminate EK in 
this bound. By the definition of �x , we know:

which, together with (26), yields

The above inequality indicates

Note that we have

(27)
BK ≤ 2c2 + 2d1AK + 2d2EK ≤ 2c2 +

2

3
d1(3c1 + 6�2EK) + 2d2EK

= 2c2 + 2d1c1 + (4d1�
2 + 2d2)EK .

(28)𝛿N
𝜅
⋅ (4d1𝜅

2 + 2d2) ⋅ L
2𝜅 < L2

Φ
⇒ 𝛿N

𝜅
<

L2
Φ

L2𝜅(4d1𝜅
2 + 2d2)

.

SK ≤
2�2

x

(1 − �)2
(L2��N

�
(2c2 + 2d1c1) + L2��N

�
(4d1�

2 + 2d2)EK + nK(1 + �)2L2
f ,0
)

≤
2�2

x

(1 − �)2
(L2

Φ
EK + L2��N

�
(2c2 + 2d1c1) + nK(1 + �)2L2

f ,0
),

𝜂x <
(1 − 𝜌)

4
√
2LΦ

⇒
16𝜂2

x
L2
Φ

(1 − 𝜌)2
<

1

2
,

(29)

SK ≤
2𝜂2

x

(1 − 𝜌)2
(L2

Φ
(8SK + 4n𝜂2

x

K−1�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + 4n𝜂2
x
TK−1)

+ L2𝜅𝛿N
𝜅
(2c2 + 2d1c1) + nK(1 + 𝜅)2L2

f ,0
)

<
1

2
SK +

2𝜂2
x

(1 − 𝜌)2
(4n𝜂2

x
L2
Φ

K−1�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + 4n𝜂2
x
L2
Φ
TK−1

+ L2𝜅𝛿N
𝜅
(2c2 + 2d1c1) + nK(1 + 𝜅)2L2

f ,0
).

(30)
SK ≤

4𝜂2
x

(1 − 𝜌)2

�
4n𝜂2

x
L2
Φ

K−1�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + 4n𝜂2
x
L2
Φ
TK−1

�

+
4𝜂2

x

(1 − 𝜌)2

�
L2𝜅𝛿N

𝜅
(2c2 + 2d1c1) + nK(1 + 𝜅)2L2

f ,0

�
.

(31)𝛿T
y
<

L2
Φ

12Γ𝜅2
⇒ 𝛿T

y
⋅ 6𝜅2

⋅ 2Γ < L2
Φ
.
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Define

By Lemma 12,

where the second inequality is by (26) and (27), the third inequality is by (28) and 
(31), the fourth inequality is obtained by (26) and the last inequality is by (30). Note 
that the definition of �x also indicates:

Therefore,

which leads to

Λ =
12L2��N

�
(2c2 + 2d1c1) + 6Γc1�

T
y

n
.

K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2 ≤
2L2

Φ

n
SK +

2Γ

n
AK +

12L2𝜅

n
𝛿N
𝜅
BK

≤
2L2

Φ

n
SK +

�
2Γ

n
⋅ 6𝜅2𝛿T

y
+

12L2𝜅

n
⋅ 𝛿N

𝜅
⋅ (4d1𝜅

2 + 2d2)

�
EK

+
12L2𝜅𝛿N

𝜅
(2c2 + 6d1c1𝛿

T
y
) + 6Γc1𝛿

T
y

n

≤
2L2

Φ

n
SK +

�
L2
Φ

n
+

12L2
Φ

n

�
EK +

12L2𝜅𝛿N
𝜅
(2c2 + 2d1c1) + 6Γc1𝛿

T
y

n

≤
2L2

Φ

n
SK +

13L2
Φ

n

�
8SK + 4n𝜂2

x

K−1�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + 4n𝜂2
x
TK−1

�
+ Λ

<
106L2

Φ

n
SK + 52𝜂2

x
L2
Φ

�
K�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + TK

�
+ Λ

≤

�
106L2

Φ

n
⋅
16nL2

Φ
𝜂4
x

(1 − 𝜌)2
+ 52𝜂2

x
L2
Φ

��
K�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + TK

�

+
106L2

Φ

n
⋅

4𝜂2
x

(1 − 𝜌)2

�
L2𝜅𝛿N

𝜅
(2c2 + 2d1c1) + nK(1 + 𝜅)2L2

f ,0

�
+ Λ,

106L2
Φ
⋅
16L2

Φ
𝜂4
x

(1 − 𝜌)2
+ 52𝜂2

x
L2
Φ
<

1

3
.

K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2 < 1

3

�
K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2 + TK

�

+
106L2

Φ

n
⋅

4𝜂2
x

(1 − 𝜌)2
(L2𝜅𝛿N

𝜅
(2c2 + 2d1c1) + nK(1 + 𝜅)2L2

f ,0
) + Λ,
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Combining this bound with (12), we can obtain

which implies

The constant C1 satisfies

Moreover, we notice that by setting

for sufficiently large K the conditions on algorithm parameters in Lemma 23 hold 
and

which proves the first case of Theorems 3.1 and 19. 	�  ◻

K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2

≤
1

2
TK + 106L2

Φ
⋅

6𝜂2
x

(1 − 𝜌)2

�
L2𝜅𝛿N

𝜅
(2c2 + 2d1c1)

n
+ K(1 + 𝜅)2L2

f ,0

�

+
18L2𝜅𝛿N

𝜅
(2c2 + 2d1c1) + 9Γc1𝛿

T
y

n
.

TK ≤
2

𝜂x
(Φ(x̄0) − inf

x
Φ(x)) +

K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2

≤
2

𝜂x
(Φ(x̄0) − inf

x
Φ(x)) + 𝜂2

x
⋅

636L2
Φ
L2
f ,0
(1 + 𝜅)2

(1 − 𝜌)2
K +

1

2
TK +

1

2
C1,

1

K + 1

K�
j=0

‖∇Φ(x̄j)‖2

≤
4

𝜂x(K + 1)
(Φ(x̄0) − inf

x
Φ(x)) + 𝜂2

x
⋅

1272L2
Φ
L2
f ,0
(1 + 𝜅)2

(1 − 𝜌)2
+

C1

K + 1
.

1

2
C1 = 106L2

Φ
⋅
6�2

x
L2��N

�
(2c2 + 2d1c1)

n(1 − �)2
+

18L2��N
�
(2c2 + 2d1c1) + 9Γc1�

T
y

n

= O(�2
x
�N
�
�12 + �5�T

y
) = O(1).

N = Θ(
√
� log �), T = Θ(� log �), �x = Θ(K

−
1

3 �−
8

3 ), �y =
1

� + L
,

1

K + 1

K�
j=0

‖∇Φ(x̄j)‖2 = O

�
𝜅

8

3

K
2

3

�
,
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Case 2: Assumption 2.3 does not hold

Now we consider the case when Assumption 2.3 does not hold.

Lemma 24 
Proof  The first inequality follows from Lemma 20. For the second one observe that:

where we use 
(
Z
(N)

i,k

)�

 to denote the output of Algorithm 1 in outer loop iteration k 

of agent i, and 
(
Z∗
k

)� denotes the optimal solution. By Cauchy–Schwarz inequality 
we know:

which completes the proof. 	�  ◻

Taking summation on both sides of (23) and applying Lemma 24 we know:

where we define:

SK <
𝜂2
x

(1 − 𝜌)2

K−1�
j=0

n�
i=1

‖∇̂fi(xi,j, y(T)i,j
)‖2 <

𝜂2
x
L2
f ,0

(1 − 𝜌)2
nK

�
2(1 + 𝜅)2 + 2C𝛼N

�
.

‖∇̂fi(xi,j, y(T)i,j
)‖ =

����∇xfi(xi,k, y
(T)

i,k
) −

�
Z
(N)

i,k

��

∇yfi(xi,k, y
(T)

i,k
)
����

≤ ‖∇xfi(xi,k, y
(T)

i,k
)‖ + ‖(Z(N)

i,k
− Z∗

k
)�∇yfi(xi,k, y

(T)

i,k
)‖ + ‖�Z∗

k

��
∇yfi(xi,k, y

(T)

i,k
)‖

≤

�
1 +

����
�
Z
(N)

i,k

��

−
�
Z∗
k

������2 + 𝜅

�
Lf ,0,

‖∇̂fi(xi,j, y(T)i,j
)‖2 ≤ (1 + 𝜅 + ‖

�
Z
(N)

i,k

��

−
�
Z∗
k

��‖2)2L2f ,0
≤ (2(1 + 𝜅)2 + 2‖

�
Z
(N)

i,k

��

−
�
Z∗
k

��‖2
2
)L2

f ,0

≤ (2(1 + 𝜅)2 + 2C𝛼N)L2
f ,0
,

K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2

≤
(1 + 𝜅2)

n
⋅

�
36L2

f ,0
L2
g,2

𝜇2
+ 2L2

f

�
SK

+ 12(K + 1)C

��
1 + L2𝜅2 +

2L2
f ,0
L2
g,2
(1 + 𝜅2)

𝜇2

�
𝛼T + L2

f ,0
𝛼N

�

≤

�
36L2

f ,0
L2
g,2

𝜇2
+ 2L2

f

�
(1 + 𝜅2)𝜂2

x
L2
f ,0

(1 − 𝜌)2
K(2(1 + 𝜅)2 + 2C𝛼N) + (K + 1)C̃1,
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The above inequality together with (12) gives

Moreover, if we choose

then we can get:

which proves the second case of Theorems 3.1 and 19.

Proof of the convergence of DBOGT

In this section we will prove the following convergence result of Algorithm 4

Theorem 25  In Algorithm 4, suppose Assumptions 2.1 and 2.2 hold. If Assumption 
2.3 holds, then by setting 0 < �x <

(1−�)2

8LΦ
, 0 < �y <

2
�+L

, T = Θ(� log �), N = Θ(
√

� log �) , we 
have:

If Assumption 2.3 does not hold, then by setting

C̃1 = 12C

[(
1 + L2𝜅2 +

2L2
f ,0
L2
g,2
(1 + 𝜅2)

𝜇2

)
𝛼T + L2

f ,0
𝛼N

]
= O(𝛼T + 𝛼N).

1

K + 1

K�
k=0

‖∇Φ(x̄k)‖2

≤
2

𝜂x(K + 1)
(Φ(x̄0) − inf

x
Φ(x)) +

1

K + 1

K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2

≤
2

𝜂x(K + 1)
(Φ(x̄0) − inf

x
Φ(x))

+
4𝜂2

x
(1 + 𝜅2)L2

f ,0

(1 − 𝜌)2
((1 + 𝜅)2 + C𝛼N)

�
18L2

f ,0
L2
g,2

𝜇2
+ L2

f

�
+ C̃1.

N = Θ(logK), T = Θ(logK), �x = Θ(K
−

1

3 �−
8

3 ), �(t)
y

= Θ(1)

1

K + 1

K�
j=0

‖∇Φ(x̄j)‖2 = O

�
𝜅

8

3

K
2

3

�
,

1

K + 1

K�
j=0

‖∇Φ(x̄j)‖2 ≤ 4

𝜂x(K + 1)
(Φ(x̄0) − inf

x
Φ(x)) +

C2

K + 1
.
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we have:

Here C2 = Θ(1) and C̃2 = Θ(𝛼T + 𝛼N +
1

K+1
).

We first bound the consensus estimation error in the following lemma.

Lemma 26  In Algorithm 4, we have the following inequality holds:

Proof  From the updates of x and u, we have:

which implies:

Hence by definition of qi,k+1:

Therefore, we can write the update of the matrix Qk+1 as

Note that Qk+1 takes the form of

0 < 𝜂x < min

(
(1 − 𝜌)2

14𝜅Lf
,
𝜇(1 − 𝜌)2

21Lf ,0Lg,2𝜅

)
, 𝜂y = Θ(1),

1

K + 1

K�
j=0

‖∇Φ(x̄j)‖2 ≤ 4

𝜂x(K + 1)
(Φ(x̄0) − inf

x
Φ(x)) + C̃2.

SK ≤
𝜂2
x

(1 − 𝜌)4

�
K−1�
j=1

n�
i=1

‖∇̂fi(xi,j, y(T)i,j
) − ∇̂fi(xi,j−1, y

(T)

i,j−1
)‖2 + ‖𝜕Φ(X0)‖2

�
.

ūk = ūk−1 + 𝜕Φ(Xk) − 𝜕Φ(Xk−1), ū0 = 𝜕Φ(X0), x̄k+1 = x̄k − 𝜂xūk,

ūk = 𝜕Φ(Xk), x̄k+1 = x̄k − 𝜂x𝜕Φ(Xk).

qi,k+1 = xi,k+1 − x̄k+1 =

n∑
j=1

wijxj,k − 𝜂xui,k − x̄k + 𝜂xūk

=

n∑
j=1

wij(xj,k − x̄k) − 𝜂x(ui,k − ūk)

=

n∑
j=1

wijqj,k − 𝜂xri,k = QkWei − 𝜂xRkei.

Qk+1 = QkW − �xRk, Q1 = −�xR0.

(32)Qk+1 = (Qk−1W − �xRk−1)W − �xRk = −�x

k∑
i=0

RiW
k−i.
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We then compute ri,k as following

The matrix Rk+1 can be written as

where the third equality holds because of the initialization ui,0 = ∇̂fi(xi,0, y
(T)

i,0
) and 

we denote �Φ(X−1) = 0 . Plugging (33) into (32) yields

where the second equality is obtained by 1n1
⊤
n
W = 1n1

⊤
n
 and switching the order of 

the summations. Therefore, we have

ri,k+1 = ui,k+1 − ūk+1

=

n∑
j=1

wijuj,k + ∇̂fi(xi,k+1, y
(T)

i,k+1
) − ∇̂fi(xi,k, y

(T)

i,k
) − ūk − (𝜕Φ(Xk+1) − 𝜕Φ(Xk))

=

n∑
j=1

wij(uj,k − ūk) + (𝜕Φ(Xk+1) − 𝜕Φ(Xk))

(
ei −

1n

n

)

= RkWei + (𝜕Φ(Xk+1) − 𝜕Φ(Xk))

(
ei −

1n

n

)
.

(33)

Rk+1 = RkW + (𝜕Φ(Xk+1) − 𝜕Φ(Xk))(I −
1n1

⊤
n

n
)

= R0W
k+1 +

k∑
j=0

(𝜕Φ(Xj+1) − 𝜕Φ(Xj))

(
I −

1n1
⊤
n

n

)
Wk−j

= 𝜕Φ(X0)

(
I −

1n1
⊤
n

n

)
Wk+1 +

k∑
j=0

(𝜕Φ(Xj+1) − 𝜕Φ(Xj))

(
I −

1n1
⊤
n

n

)
Wk−j

=

k+1∑
j=0

(𝜕Φ(Xj) − 𝜕Φ(Xj−1))

(
I −

1n1
⊤
n

n

)
Wk+1−j,

Qk+1 = −𝜂x

k∑
i=0

i∑
j=0

(𝜕Φ(Xj) − 𝜕Φ(Xj−1))

(
I −

1n1
⊤
n

n

)
Wk−j

= −𝜂x

k∑
j=0

k∑
i=j

(𝜕Φ(Xj) − 𝜕Φ(Xj−1))

(
Wk−j −

1n1
⊤
n

n

)

= −𝜂x

k∑
j=0

(k + 1 − j)(𝜕Φ(Xj) − 𝜕Φ(Xj−1))

(
Wk−j −

1n1
⊤
n

n

)
,
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where the second inequality is by Lemma 1, the third inequality is by Lemma 4, and 
the last inequality uses the fact that:

Summing (34) over k = 0,… ,K − 1 , we get:

which completes the proof. 	�  ◻

(34)

‖Qk+1‖2 = 𝜂2
x

������

k�
j=0

(k + 1 − j)(𝜕Φ(Xj) − 𝜕Φ(Xj−1))

�
Wk−j −

1n1
⊤
n

n

�������

2

≤ 𝜂2
x

�
k�

j=0

������
(k + 1 − j)(𝜕Φ(Xj) − 𝜕Φ(Xj−1))

�
Wk−j −

1n1
⊤
n

n

�������

�2

≤ 𝜂2
x

�
k�

j=0

���(k + 1 − j)(𝜕Φ(Xj) − 𝜕Φ(Xj−1))
���
�����
Wk−j −

1n1
⊤
n

n

�����2

�2

≤ 𝜂2
x

�
k�

j=0

𝜌k−j(k + 1 − j)‖𝜕Φ(Xj) − 𝜕Φ(Xj−1)‖2
�
⋅

�
k�

j=0

(k + 1 − j)

𝜌k−j

�����
Wk−j −

1n1
⊤
n

n

�����

2

2

�

≤ 𝜂2
x

�
k�

j=0

𝜌k−j(k + 1 − j)‖𝜕Φ(Xj) − 𝜕Φ(Xj−1)‖2
��

k�
j=0

(k + 1 − j)𝜌k−j

�

<
𝜂2
x

(1 − 𝜌)2

�
k�

j=0

𝜌k−j(k + 1 − j)‖𝜕Φ(Xj) − 𝜕Φ(Xj−1)‖2
�
,

(35)

k∑
j=0

(k + 1 − j)𝜌k−j =

k∑
m=0

(m + 1)𝜌m =
1 − (k + 2)𝜌k+1 + (k + 1)𝜌k+2

(1 − 𝜌)2
<

1

(1 − 𝜌)2
.

SK =

K−1�
k=0

‖Qk+1‖2

≤
𝜂2
x

(1 − 𝜌)2

�
K−1�
k=0

k�
j=0

𝜌k−j(k + 1 − j)‖𝜕Φ(Xj) − 𝜕Φ(Xj−1)‖2
�

=
𝜂2
x

(1 − 𝜌)2

�
K−1�
j=0

K−1�
k=j

𝜌k−j(k + 1 − j)‖𝜕Φ(Xj) − 𝜕Φ(Xj−1)‖2
�

<
𝜂2
x

(1 − 𝜌)4

K−1�
j=0

‖𝜕Φ(Xj) − 𝜕Φ(Xj−1)‖2

=
𝜂2
x

(1 − 𝜌)4

�
K−1�
j=1

n�
i=1

‖∇̂fi(xi,j, y(T)i,j
) − ∇̂fi(xi,j−1, y

(T)

i,j−1
)‖2 + ‖𝜕Φ(X0)‖2

�
,
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Case 1: Assumption 2.3 holds

When Assumption 2.3 holds, we have the following lemmas.

Lemma 27  Under Assumption 2.3, the following inequality holds for Algorithm 4:

Moreover, we have:

Proof  For each term, we know that for j ≥ 1:

where the last inequality uses Lemmas 11 and 5. Taking summation 
( j = 1, 2,… ,K − 1 and i = 1, 2,… , n ) on both sides, we have:

Together with Lemma 26, we can prove the second inequality for SK . 	�  ◻

The above lemma together with Lemma 10 and 9 gives

K−1�
j=1

n�
i=1

‖∇̂fi(xi,j, y(T)i,j
) − ∇̂fi(xi,j−1, y

(T)

i,j−1
)‖2

≤ 6ΓAK−1 + 36L2𝜅𝛿N
𝜅
BK−1 + 3L2

Φ
EK−1.

SK ≤
�2
x

(1 − �)4
(6ΓAK−1 + 36L2��N

�
BK−1 + 3L2

Φ
EK−1 + ‖�Φ(X0)‖2).

‖∇̂fi(xi,j, y(T)i,j
) − ∇̂fi(xi,j−1, y

(T)

i,j−1
)‖2

≤ 3(‖∇̂fi(xi,j, y(T)i,j
) − ∇Φi(xi,j)‖2 + ‖∇Φi(xi,j) − ∇Φi(xi,j−1)‖2

+ ‖∇Φi(xi,j−1) − ∇̂fi(xi,j−1, y
(T)

i,j−1
)‖2)

≤ 3(Γ(‖y∗
i
(xi,j) − y

(T)

i,j
‖2 + ‖y∗

i
(xi,j−1) − y

(T)

i,j−1
‖2)

+ 6L2𝜅𝛿N
𝜅
(‖v∗

i,j
− v

(0)

i,j
‖2 + ‖v∗

i,j−1
− v

(0)

i,j−1
‖2) + L2

Φ
‖xi,j − xi,j−1‖2),

K−1�
j=1

n�
i=1

‖∇̂fi(xi,j, y(T)i,j
) − ∇̂fi(xi,j−1, y

(T)

i,j−1
)‖2

≤ 6ΓAK−1 + 36L2𝜅𝛿N
𝜅
BK−1 + 3L2

Φ
EK−1.

(36)

SK ≤
𝜂2
x

(1 − 𝜌)4
(6ΓAK−1 + 36L2𝜅𝛿N

𝜅
BK−1 + 3L2

Φ
EK−1 + ‖𝜕Φ(X0)‖2)

AK ≤ 𝛿T
y
(3c1 + 6𝜅2EK) BK ≤ 2c2 + 2d1AK−1 + 2d2EK

EK ≤ 8SK + 4n𝜂2
x

K−1�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + 4n𝜂2
x
TK−1.



1 3

Decentralized bilevel optimization﻿	

Now we can obtain the following result.

Lemma 28  Suppose Assumptions 2.1, 2.2 and 2.3 hold. Set:

For Algorithm 4, we have:

where the constant is defined as:

Proof  We first bound BK as

Next we eliminate AK and BK in the upper bound of SK . Choose N, T such that

which implies

By (36) and the, we have

Next we eliminate EK−1 in this bound. The definition of �x gives 𝜂x <
(1−𝜌)2

8LΦ
 , which 

implies 32L
2
Φ
𝜂2
x

(1−𝜌)4
< 1

2
. Together with (36) and EK−1 ≤ EK , we have:

𝛿T
y
< min

(
L2
Φ

72𝜅2Γ
, 𝜅−5

)
= Θ(𝜅−5),

𝛿N
𝜅
< min

(
L2
Φ

72L2𝜅(4d1𝜅
2 + 2d2)

, 𝜅−4

)
= Θ(𝜅−4), 𝜂x <

(1 − 𝜌)2

8LΦ
.

1

K + 1

K�
k=0

‖∇Φ(x̄k)‖2 ≤ 4

𝜂x(K + 1)
(Φ(x̄0) − inf

x
Φ(x)) +

C2

K + 1
,

1

2
C2 =

15�2
x
L2
Φ

n(1 − �)4
(‖�Φ(X0)‖2 + 18Γc1�

T
y
+ 36L2��N

�
(2c2 + 2d1c1))

+
18L2��N

�
(2c2 + 2d1c1) + 9Γc1�

T
y

n

= Θ(�2
x
�6 + (�2

x
�6 + 1)(�5�T

y
+ �4�N

�
)) = Θ(1).

(37)
BK ≤ 2c2 + 2d1AK + 2d2EK ≤ 2c2 +

2

3
d1(3c1 + 6�2EK) + 2d2EK

= 2c2 + 2d1c1 + (4d1�
2 + 2d2)EK .

𝛿T
y
⋅ 6𝜅2

⋅ 6Γ <
L2
Φ

2
, 𝛿N

𝜅
⋅ (4d1𝜅

2 + 2d2) ⋅ 36L
2𝜅 <

L2
Φ

2
,

(38)𝛿T
y
<

L2
Φ

72𝜅2Γ
, 𝛿N

𝜅
<

L2
Φ

72L2𝜅(4d1𝜅
2 + 2d2)

.

SK ≤
�2
x

(1 − �)4
(4L2

Φ
EK−1 + ‖�Φ(X0)‖2 + 18Γc1�

T
y
+ 36L2��N

�
(2c2 + 2d1c1)).
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which immediately implies

Moreover, by (19) we have

where the second inequality is by (36), (37) and (38), and the third inequality uses 
(36). Note that �x satisfies:

SK ≤
𝜂2
x

(1 − 𝜌)4

�
4L2

Φ
(8SK + 4n𝜂2

x

K−1�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + 4n𝜂2
x
TK−1

�

+ ‖𝜕Φ(X0)‖2 + 18Γc1𝛿
T
y
+ 36L2𝜅𝛿N

𝜅
(2c2 + 2d1c1))

≤
1

2
SK +

𝜂2
x

(1 − 𝜌)4

�
4L2

Φ
(4n𝜂2

x

K�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + 4n𝜂2
x
TK

�

+ ‖𝜕Φ(X0)‖2 + 18Γc1𝛿
T
y
+ 36L2𝜅𝛿N

𝜅
(2c2 + 2d1c1)),

(39)
SK <

2𝜂2
x

(1 − 𝜌)4
(16n𝜂2

x
L2
Φ

�
K�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + TK

�

+ ‖𝜕Φ(X0)‖2 + 18Γc1𝛿
T
y
+ 36L2𝜅𝛿N

𝜅
(2c2 + 2d1c1)).

K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2 ≤
2L2

Φ

n
SK +

2Γ

n
AK +

12L2𝜅

n
𝛿N
𝜅
BK

≤
2L2

Φ

n
SK +

�
L2

Φ

6n
+

L2

Φ

6n

�
EK +

12L2𝜅𝛿N
𝜅
(2c2 + 2d1c1) + 6Γc1𝛿

T
y

n

≤
2L2

Φ

n
SK +

L2

Φ

3n

�
8SK + 4n𝜂2

x

K−1�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + 4n𝜂2
x
TK−1

�

+
12L2𝜅𝛿N

𝜅
(2c2 + 2d1c1) + 6Γc1𝛿

T
y

n

<
5L2

Φ

n
SK +

4𝜂2
x
L2

Φ

3

�
K�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + TK

�

+
12L2𝜅𝛿N

𝜅
(2c2 + 2d1c1) + 6Γc1𝛿

T
y

n

≤

�
5L2

Φ

n
⋅
32nL2

Φ
𝜂4
x

(1 − 𝜌)4
+

4𝜂2
x
L2

Φ

3

��
K�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + TK

�

+
5L2

Φ

n
⋅

2𝜂2
x

(1 − 𝜌)4

�
‖𝜕Φ(X0)‖2 + 18Γc1𝛿

T

y
+ 36L2𝜅𝛿N

𝜅
(2c2 + 2d1c1)

�

+
12L2𝜅𝛿N

𝜅
(2c2 + 2d1c1) + 6Γc1𝛿

T
y

n
,

𝜂x <
(1 − 𝜌)2

8LΦ
⇒

160L4
Φ
𝜂4
x

(1 − 𝜌)4
+

8𝜂2
x
L2
Φ

3
<

1

3
.
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Therefore, we have:

which leads to

Recall (12), we have

Therefore, we get

where the constant is defined as following

Then if we choose

then the restrictions on algorithm parameters in Lemma 28 hold and we have

K
∑

k=0
‖�Φ(Xk) − ∇Φ(x̄k)‖2 ≤

1
3

K
∑

k=0
‖�Φ(Xk) − ∇Φ(x̄k)‖2 +

1
3
TK

+
10�2x L

2
Φ

n(1 − �)4
(‖�Φ(X0)‖2 + 18Γc1�Ty + 36L2��N� (2c2 + 2d1c1))

+
12L2��N� (2c2 + 2d1c1) + 6Γc1�Ty

n
,

K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2

≤
1

2
TK +

15𝜂2
x
L2
Φ

n(1 − 𝜌)4

�
‖𝜕Φ(X0)‖2 + 18Γc1𝛿

T
y
+ 36L2𝜅𝛿N

𝜅
(2c2 + 2d1c1)

�

+
18L2𝜅𝛿N

𝜅
(2c2 + 2d1c1) + 9Γc1𝛿

T
y

n
.

1

K + 1
TK ≤

2

𝜂x(K + 1)
(Φ(x̄0) − inf

x
Φ(x)) +

1

K + 1

K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2

≤
2

𝜂x(K + 1)
(Φ(x̄0) − inf

x
Φ(x)) +

1

2(K + 1)
TK +

1

2(K + 1)
C2.

1

K + 1

K�
j=0

‖∇Φ(x̄j)‖2 ≤ 4

𝜂x(K + 1)
(Φ(x̄0) − inf

x
Φ(x)) +

C2

K + 1
,

1

2
C2 =

15�2
x
L2
Φ

n(1 − �)4
(‖�Φ(X0)‖2 + 18Γc1�

T
y
+ 36L2��N

�
(2c2 + 2d1c1))

+
18L2��N

�
(2c2 + 2d1c1) + 9Γc1�

T
y

n

= Θ(�2
x
�6 + (�2

x
�6 + 1)(�5�T

y
+ �4�N

�
)) = Θ(1).

T = Θ(� log �),N = Θ(
√
� log �), �x = Θ(�−3), �y =

1

� + L
,
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which proves the first case of Theorems 3.2 and 25. 	�  ◻

Case 2: Assumption 2.3 does not hold

We first give a bound for ‖ỹ∗
j
− ỹ∗

j−1
‖ in the following lemma.

Lemma 29  Recall that ỹ∗
j
= argmin

1

n

∑n

i=1
gi(xi,j, y) . We have:

Proof  The proof technique is similar to Lemma 13. Consider:

which implies:

	�  ◻

Lemma 30  Suppose �x satisfies

When the Assumption 2.3 does not hold, we have for Algorithm 4:

1

K + 1

K�
j=0

‖∇Φ(x̄j)‖2 = O

�
1

K

�
,

‖ỹ∗
j
− ỹ∗

j−1
‖2 ≤ 𝜅2

n

n�
i=1

‖xi,j − xi,j−1‖2.

‖1
n

n�
i=1

∇ygi(xi,j−1, ỹ
∗
j
)‖

= ‖1
n

n�
i=1

∇ygi(xi,j−1, ỹ
∗
j
) −

1

n

n�
i=1

∇ygi(xi,j−1, ỹ
∗
j−1

)‖ ≥ 𝜇‖ỹ∗
j
− ỹ∗

j−1
‖,

‖1
n

n�
i=1

∇ygi(xi,j−1, ỹ
∗
j
)‖

= ‖1
n

n�
i=1

∇ygi(xi,j−1, ỹ
∗
j
) −

1

n

n�
i=1

∇ygi(xi,j, ỹ
∗
j
)‖ ≤

L

n

n�
i=1

‖xi,j − xi,j−1‖,

‖ỹ∗
j
− ỹ∗

j−1
‖2 ≤ 𝜅2

n2

�
n�
i=1

‖xi,j − xi,j−1‖
�2

≤
𝜅2

n

n�
i=1

‖xi,j − xi,j−1‖2.

(40)�x ≤
�(1 − �)2

21Lf ,0Lg,2�
.
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Proof  We first notice that

Taking summation on both sides and using Lemma 17, we have

where the second inequality uses Lemma 14, 29 and (40). This completes the proof 
together with Lemma 26. 	�  ◻

Lemma 31  When the Assumption 2.3 does not hold, we further have for Algorithm 4:

Proof  Note that the above inequality is a direct result of Lemma 18. 	�  ◻

SK ≤
2�2

x

(1 − �)4

�
3L2

f
(1 + �2)

K−1�
j=1

n�
i=1

EK−1 + ‖�Φ(X0)‖2
�

+
72nKC�2

x

(1 − �)4

��
1 + L2�2 +

2L2
f ,0
L2
g,2
(1 + �2)

�2

�
�T + L2

f ,0
�N

�

‖∇̂fi(xi,j, y(T)i,j
) − ∇̂fi(xi,j−1, y

(T)

i,j−1
)‖2

≤ 3‖∇̂fi(xi,j, y(T)i,j
) − ∇̄fi(xi,j, ỹ

∗
j
)‖2 + 3‖∇̄fi(xi,j, ỹ∗j ) − ∇̄fi(xi,j−1, ỹ

∗
j−1

)‖2
+ 3‖∇̄fi(xi,j−1, ỹ∗j−1) − ∇̂fi(xi,j−1, y

(T)

i,j−1
)‖2.

1

n

K−1�
j=1

n�
i=1

‖∇̂fi(xi,j, y(T)i,j
) − ∇̂fi(xi,j−1, y

(T)

i,j−1
)‖2

≤
108L2

f ,0
L2

g,2
(1 + 𝜅2)

n𝜇2
SK−1

+ 36(K − 1)

�
1 + L2𝜅2 +

2L2

f ,0
L2

g,2
(1 + 𝜅2)

𝜇2

�
⋅
1

n

n�
i=1

‖y(T)
i,k

− ỹ∗
k
‖2

+ 36(K − 1)CL2

f ,0
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3L2

f

n

K−1�
j=1

n�
i=1

(‖xi,j − xi,j−1‖2 + ‖ỹ∗
j
− ỹ∗

j−1
‖2)

≤
(1 − 𝜌)4

2n𝜂2
x

SK−1 + 36KC

��
1 + L2𝜅2 +

2L2

f ,0
L2
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(1 + 𝜅2)

𝜇2

�
𝛼T + L2

f ,0
𝛼N
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+
3L2

f
(1 + 𝜅2)

n
EK−1,

1

K + 1

K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2

≤
(1 + 𝜅2)

n(K + 1)
⋅

�
36L2

f ,0
L2
g,2

𝜇2
+ 2L2

f

�
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+ 12C

��
1 + L2𝜅2 +

2L2
f ,0
L2
g,2
(1 + 𝜅2)

𝜇2

�
𝛼T + L2

f ,0
𝛼N

�
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Now we are ready to provide the convergence rate. Recall that from Lemma 30, 9 
and inequality (12), we have:

The following lemma proves the convergence results in Theorem 25.

Lemma 32  Suppose the Assumption 2.3 does not hold. We set �x as

Then we have:

where the constant is given by:

Proof  We first eliminate EK−1 in the upper bound of SK . Note that (42) implies

which together with EK−1 ≤ EK and the upper bounds of SK and EK in (41) gives

(41)

1

K + 1

K�
k=0

‖∇Φ(x̄k)‖2

≤
2

𝜂x(K + 1)
(Φ(x̄0) − inf

x
Φ(x)) +

1

K + 1

K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2,

SK ≤
2𝜂2

x

(1 − 𝜌)4

�
3L2

f
(1 + 𝜅2)EK−1 + ‖𝜕Φ(X0)‖2

�

+
72nKC𝜂2

x

(1 − 𝜌)4

��
1 + L2𝜅2 +

2L2
f ,0
L2
g,2
(1 + 𝜅2)

𝜇2

�
𝛼T + L2

f ,0
𝛼N

�
,

EK ≤ 8SK + 4n𝜂2
x

K−1�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 + 4n𝜂2
x
TK−1.

(42)𝜂x < min

(
(1 − 𝜌)2

14𝜅Lf
,

𝜇(1 − 𝜌)2

21Lf ,0Lg,2𝜅

)
.

1

K + 1

K�
k=0

‖∇Φ(x̄k)‖2 ≤ 6

𝜂x(K + 1)
(Φ(x̄0) − inf

x
Φ(x)) +

‖𝜕Φ(X0)‖2
K + 1

+ C̃2,

C̃2

6
= 6L2(1 + 𝜅2)C𝛼T + 6L2

f ,0
C𝛼N

+ 2L2
f
(1 + 𝜅2) ⋅

2𝜂2
x

(1 − 𝜌)4

�
6L2(1 + 𝜅2)nC𝛼T + 6nL2

f ,0
C𝛼N +

‖𝜕Φ(X0)‖2
K + 1

�

= Θ
�
𝛼T + 𝛼N +

1

K + 1

�
.

2𝜂2
x

(1 − 𝜌)4
⋅ 3L2

f
(1 + 𝜅2) ⋅ 8 <

1

2
,
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Hence we know

By Lemma 31, we have

where the second inequality holds since we have (42), which implies

The constant is defined as:

From (43) we know

SK ≤
1

2

�
SK +

𝜂2
x

2

K−1�
j=0

‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 +
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�
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x
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x
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�
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��
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2L2
f ,0
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(1 + 𝜅2)

𝜇2

�
𝛼T + L2

f ,0
𝛼N

��
.

SK ≤
𝜂2
x

2

K−1�
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‖𝜕Φ(Xj) − ∇Φ(x̄j)‖2 +
𝜂2
x

2
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4𝜂2
x
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(1 − 𝜌)4

�
36nKC

��
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𝜇2

�
𝛼T + L2

f ,0
𝛼N

��
.

(43)

1

K + 1

K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2

≤
(1 + 𝜅2)

n(K + 1)
⋅

�
36L2

f ,0
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𝜇2
+ 2L2

f

�
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+ 12C
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�
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≤
1
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�
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(
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L2
g,2

�2
+ 2L2

f

)
≤

1

4
.

C̃2

3
= 12C
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+
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Combining the above inequality, Lemma 8, and TK−1 ≤ TK , we have

Hence

Furthermore, by setting

we have

which proves the second case of Theorems 3.2 and 25. 	�  ◻

Proof of the convergence of DSBO

In this section we will prove the convergence result of the DSBO algorithm.

Theorem 33  In Algorithm 5, suppose Assumptions 2.1 and 2.2 hold. If Assumption 

2.3 holds, then by setting M = Θ(logK), T = Ω(� log �), � ≤ min

(
�

�2+�2
g,2

,
1

L

)
,

𝜂
x
≤

1

LΦ

, 𝜂
y
< 2

𝜇+L
 , we have:

If Assumption 2.3 does not hold, then by setting �x ≤
1

LΦ
, �(t)

y
= O(

1

t
) , we have:

1

K + 1

K�
k=0

‖∇Φ(x̄k)‖2 < 2

𝜂x(K + 1)
(Φ(x̄0) − inf

x
Φ(x)) +

C̃2

2
+

1

2(K + 1)
TK .

1

K + 1
TK <

4

𝜂x(K + 1)
(Φ(x̄0) − inf

x
Φ(x)) + C̃2.

N = Θ(logK), T = Θ(logK), �x = Θ(�−3), �y = Θ(1)

1

K + 1

K�
j=0

‖∇Φ(x̄j)‖2 = O

�
1

K

�
,

1

K + 1

K�
k=0

�
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�

≤
2

𝜂x(K + 1)
(�
�
Φ(x̄0)

�
− inf

x
Φ(x)) +

3𝜂yL
2
f
𝜎2
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𝜇
+

3𝜂2
x
L2
Φ
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C̃2
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+ L𝜂x𝜎̃

2
f
+ C3.

1
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K�
k=0

�
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≤
2

𝜂x(K + 1)
(�
�
Φ(x0)

�
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�
36L2

f ,0
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�
𝜂2
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�
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Here C = Θ(1), C3 = Θ(�2
x
+

1

K+1
) and C̃3 = O

(
1

T
+ 𝛼N

)
.

We first define the following filtration:

Then in both cases we have the following lemma.

Lemma 34  If �x ≤
1

LΦ
 , then we have:

Proof  In each iteration of Algorithm 5, we have:

The LΦ-smoothness of Φ indicates that

Taking conditional expectation with respect to Fk on both sides, we have the 
following

Fk = �

(
n⋃
i=1

{xi,0, xi,1,… , xi,k}

)
,

G
(t)

i,j
= �

(
{y

(s)

i,l
∶ 0 ≤ l ≤ j, 0 ≤ s ≤ t}

⋃
{xi,l ∶ 0 ≤ l ≤ j}

)
.

�
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Φ(x̄k)

�
− �
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�
‖2.
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‖𝜕Φ(X

k
;𝜙)‖2�F

k

�

= −
𝜂
x

2
(‖∇Φ(x̄

k
)‖2 + ‖�

�
𝜕Φ(X

k
;𝜙)�F

k

�
‖2 − ‖�

�
𝜕Φ(X

k
;𝜙)�F

k

�
− ∇Φ(x̄

k
)‖2)

+
LΦ𝜂

2
x

2
(‖�
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where the second inequality holds since we pick �x ≤
1

L
 . Thus we can take expecta-

tion again and use tower property to obtain:

which completes the proof. 	�  ◻

Case 1: Assumption 2.3 holds

Lemma 35  Suppose � ≤
1

L
 and Assumption 2.3 holds, we have:

Proof  We first consider the expectation

Notice that for the finite sum we have:

which implies:

The above inequality and the fact that

imply

(45)

𝜂x
2
�
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≤ �
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− �
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− �
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]
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�
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)

− 𝛽∇xyg(xi,k, y
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)
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(
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y
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y
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(T)

i,k
)



1 3

Decentralized bilevel optimization﻿	

which completes the proof. 	�  ◻

Lemma 36  Under Assumption 2.3, we have:

Proof  We first bound each component of the gradient error as

where the second inequality is obtained by Lemmas 35 and 5. Taking summation on 
both sides over i = 1,… , n , we have:

Taking summation on both sides over k = 0,… ,K , we know

which completes the proof. 	�  ◻
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;𝜙i,k)|Fk

]
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The following lemma characterizes the variance of the hypergradient estimation.

Lemma 37  Suppose � in Algorithm 2 satisfies

Under Assumptions 2.1–2.4, we have:

where the constants are defined as

Proof  We first notice that in the stochastic case of Algorithm 2 under Assumption 
2.3, for each agent i we have

For m = 1, 2,… ,M − 1 we define

which gives

For simplicity in the proof of this lemma we denote by �0 the conditional expecta-
tion given �(0) . In other words we have �0[x] = �

[
x|�(0)

]
 for any random vector (or 

matrix) x. From (52) we know

Combining (52) and (53), we know

(49)� ≤ min

(
�

�2 + �2
g,2

,
1

L

)

(50)
�

�
‖�

�
∇̂fi(xi,k, y

(T)

i,k
;𝜙i,k)�Fk

�
− ∇̂fi(xi,k, y

(T)

i,k
;𝜙i,k)‖2

�
≤ 𝜎̃2

f
,

�

�
‖
�
𝜕Φ(Xk;𝜙)

�
− �

�
𝜕Φ(Xk;𝜙)�Fk

�
‖2
�
≤

𝜎̃2
f

n
,

𝜎̃2
f
= 𝜎2

f ,1
+

2(𝜎2
g,2

+ L2)(𝜎2
f ,1

+ L2
f ,0
)

𝜇2
= O(𝜅2).

(51)HM ⋅ ∇yfi(x, y;�
(0)) = �

M−1∑
s=0

s∏
n=1

(I − �∇2
y
gi(x, y;�

(M+1−n)))∇yfi(x, y;�
(0)).

A = ∇2
y
gi(x, y), Am = ∇2

y
gi(x, y;�

(m+1)), b0 = ∇yfi(x, y;�
(0)),

xm = �

m−1∑
s=0

s∏
n=1

(I − �Am−n)b0, x0 = 0,

(52)xm+1 = (I − �Am)xm + �b0.

(53)‖�0

�
xm
�‖ = �

������

M−1�
n=1

(I − �A)nb0

������
=
���A

−1
�
I − (I − �A)M

�
b0
��� ≤

‖b0‖
�

.
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The second equality uses the independence, the second inequality uses (49), and the 
third inequality repeats the second inequality for m times. From the above inequality 
we know that the variance of xm , namely, (51), has bounded variance since

where the second inequality uses Assumption 2.1 and the third inequality uses (49). 
We further know from the above conclusion and (53) that

Hence in Algorithm 2 (stochastic case under Assumption 2.3) we have the following 
decomposition:

which implies

where the first inequality uses the independence between different samples, the first 
inequality uses Assumptions 2.1 and 2.4 and the second inequality uses (54). Hence 

�0

�‖xm+1 − �0

�
xm+1

�‖2�

= �0

�‖(I − �A)(xm − �0

�
xm

�
) + �(A − Am)xm‖2

�

= �0

�‖(I − �A)(xm − �0

�
xm

�
)‖2� + �2�0

�‖(A − Am)xm‖2
�

≤ (1 − ��)2�0

�‖xm − �0

�
xm

�‖2� + �2�2
g,2
(�0

�‖xm − �0

�
xm
�‖2� + ‖�0

�
xm
�‖2)

≤ (1 − ��)�0

�‖xm − �0

�
xm
�‖2� +

�2�2
g,2
‖b0‖2

�2

≤ (1 − ��)m+1�
�‖x0 − �0

�
x0
�‖2� +

�2�2
g,2
‖b0‖2

�2

�
m�
i=0

(1 − ��)i

�
≤

��2
g,2
‖b0‖2
�3

.

�
�‖xM − �0

�
xM

�‖2� ≤
��2

g,2
�
�‖b0‖2

�

�3
≤

��2
g,2
(�2

f ,1
+ L2

f ,0
)

�3
≤

�2
f ,1

+ L2
f ,0

�2
,

(54)

�
�‖xM − �

�
xM

�‖2�

≤ �
�‖xM‖2

�
= �

�‖xM − �0

�
xM

�‖2� + �
�‖�0

�
xM

�‖2� ≤
2(�2

f ,1
+ L2

f ,0
)

�2
.

∇̂fi − �
[

∇̂fi
]

= ∇xfi(x, y;�(0)) − ∇xfi(x, y) + ∇xygi(x, y)�
[

xM
]

− ∇xygi(x, y;�(1))xM
= ∇xfi(x, y;�(0)) − ∇xfi(x, y) + (∇xygi(x, y) − ∇xygi(x, y;�(1)))xM
+ ∇xygi(x, y)(�

[

xM
]

− xM),

�

����∇̂fi − �
�
∇̂fi

����
2�x, y

�

= �
�‖∇xfi(x, y;𝜙

(0)) − ∇xfi(x, y)‖2�x, y
�

+ �
�‖(∇xygi(x, y) − ∇xygi(x, y;𝜙

(1)))xM‖2�x, y
�

+ �
�‖∇xygi(x, y)(�

�
xM

�
− xM)‖2�x, y

�

≤ 𝜎2
f ,1

+ (𝜎2
g,2

+ L2)�
�‖xM‖2

�
≤ 𝜎2

f ,1
+

2(𝜎2
g,2

+ L2)(𝜎2
f ,1

+ L2
f ,0
)

𝜇2
= 𝜎̃2

f
,
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we know the first inequality of (50) holds. Furthermore the second inequality of (50) 
is true since for any n independent random vectors v1,… , vn with variance bounded 
by �2

v
 if we define v̄ = 1

n

∑n

i=1
vi we have

	�  ◻

The following lemmas give the estimation bound of AK and SK in the stochastic case.

Lemma 38  In Algorithm 5, we have

where the constant is defined as

Proof  Observe that in this stochastic case, we can replace ∇̂fi(xi,j, y
(T)

i,j
) with 

∇̂fi(xi,j, y
(T)

i,j
;𝜙i,j) in Lemma 20 to get the first inequality. For the second inequality, 

we adopt the bound in Lemma 2 of [14]. 	�  ◻

Lemma 39  Set parameters in Algorithm 5 as

Then we have the following inequalities

Proof  The proof is based on Lemma 10. Taking conditional expectation with respect 
to the filtration G(t−1)

i,j
 , we get

�
�‖v̄ − �[v̄]‖2� = 1

n2

n�
i=1

�
�‖vi − �

�
vi
�‖2� ≤ 𝜎2

v

n
.

�
�
SK

�
<

𝜂2
x

(1 − 𝜌)2

K−1�
j=0

n�
i=1

�

�
‖∇̂fi(xi,j, y(T)i,j

;𝜙i,j)‖2
�
≤

𝜂2
x
nK

(1 − 𝜌)2
C̃2
f
,

C̃2
f
=

(
Lf ,0 +

LLf ,1

𝜇
+

LLf ,1

𝜇

)2

+ 𝜎̃2
f
= O(𝜅2).

(55)𝜂y <
2

𝜇 + L
, 𝛿T

y
≤

1

3
.

�
[
AK

]
≤ 𝛿T

y
(2�

[
c1
]
+ 6𝜅2

�
[
EK

]
) +

𝜂ynK𝜎
2
g,1

𝜇
, �

[
EK

]
≤

9n𝜂2
x
KC̃2

f

(1 − 𝜌)2
.

�

�
‖y(t)

i,j
− y∗

i
(xi,j)‖2�G(t−1)

i,j

�

= �

�
‖y(t−1)

i,j
− �y∇yg(xi,j, y

(t−1)

i,j
;�

(t−1)

i,j
) − y∗

i
(xi,j)‖2�G(t−1)

i,j

�

= ‖y(t−1)
i,j

− �y∇yg(xi,j, y
(t−1)

i,j
) − y∗

i
(xi,j)‖2

+ �2
y
�

�
‖∇yg(xi,j, y

(t−1)

i,j
) − ∇yg(xi,j, y

(t−1)

i,j
;�

(t−1)

i,j
)‖2�G(t−1)

i,j

�

≤ (1 − �y�)
2‖y(t−1)

i,j
− y∗

i
(xi,j)‖2 + �2

y
�2
g,1
,
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where the inequality uses Lemma 3. Taking expectation on both sides and using the 
tower property, we have

Moreover, by the warm-start strategy, we have y(0)
i,j

= y
(T)

i,j−1
 and thus

where the second inequality is by Lemma 7 and (57) and the last inequality is by 
(55). Taking summation over i, j, we have:

which leads to

Combining (58) with (56) and taking summation over i, j, we have

(56)

�

�
‖y(T)

i,j
− y∗

i
(xi,j)‖2

�

≤ (1 − �y�)
2
�

�
‖y(T−1)

i,j
− y∗

i
(xi,j)‖2

�
+ �2

y
�2
g,1

≤ (1 − �y�)
2T
�

�
‖y(0)

i,j
− y∗

i
(xi,j)‖2

�
+ �2

y
�2
g,1

T−1�
s=0

(1 − �y�)
2s

≤ �T
y
�

�
‖y(0)

i,j
− y∗

i
(xi,j)‖2

�
+

�y�
2
g,1

�
.

(57)

�

�
‖y(0)

i,j
− y∗

i
(xi,j)‖2

�

= �

�
‖y(T)

i,j−1
− y∗

i
(xi,j−1) + y∗

i
(xi,j−1) − y∗

i
(xi,j)‖2

�

≤ 2�
�
‖y(T)

i,j−1
− y∗

i
(xi,j−1)‖2

�
+ 2�

�‖y∗
i
(xi,j−1) − y∗

i
(xi,j)‖2

�

≤ 2�T
y
�

�
‖y(0)

i,j−1
− y∗

i
(xi,j−1)‖2

�
+ 2�2

�
�‖xi,j−1 − xi,j‖2

�

≤
2

3
�

�
‖y(0)

i,j−1
− y∗

i
(xi,j−1)‖2

�
+ 2�2

�
�‖xi,j−1 − xi,j‖2

�
,

K�
j=1

n�
i=1

�

�
‖y(0)

i,j
− y∗

i
(xi,j)‖2

�

≤
2

3

K�
j=1

n�
i=1

�

�
‖y(0)

i,j−1
− y∗

i
(xi,j−1)‖2

�
+ 2�2

�
�
EK

�

≤
2

3
�
�
c1
�
+

2

3

K�
j=1

n�
i=1

�

�
‖y(0)

i,j
− y∗

i
(xi,j)‖2

�
+ 2�2

�
�
EK

�
,

(58)
K�
j=1

n�
i=1

�

�
‖y(0)

i,j
− y∗

i
(xi,j)‖2

�
≤ 2�

�
c1
�
+ 6�2

�
�
EK

�
.
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Recall that for EK we have:

Taking expectation on both sides yields

which completes the proof. 	�  ◻

Next, we prove the main convergence results in Theorem 33. Taking expectation on 
both sides in (48), we have:

�
�
AK

�
≤ �T

y

K�
j=1

n�
i=1

�

�
‖y(0)

i,j
− y∗

i
(xi,j)‖2

�
+

�ynK�
2
g,1

�

≤ �T
y
(2�

�
c1
�
+ 6�2

�
�
EK

�
) +

�ynK�
2
g,1

�
.

EK =

K�
j=1

n�
i=1

‖xi,j − xi,j−1‖2

=

K�
j=1

n�
i=1

‖xi,j − x̄j + x̄j − x̄j−1 + x̄j−1 − xi,j−1‖2

=

K�
j=1

n�
i=1

‖qi,j − 𝜂x𝜕Φ(Xj−1;𝜙) − qi,j−1‖2

≤ 3

K�
j=1

n�
i=1

(‖qi,j‖2 + 𝜂2
x
‖𝜕Φ(Xj−1;𝜙)‖2 + ‖qi,j−1‖2)

≤ 3

K�
j=1

(‖Qj‖2 + ‖Qj−1‖2 + 𝜂2
x
‖𝜕Φ(Xj−1;𝜙)‖2

≤ 6SK +
3𝜂2

x

n

K−1�
j=0

n�
i=1

‖∇̂fi(xi,j, y(T)i,j
;𝜙i,j)‖2.

�
�
EK

�
≤ 6�

�
SK

�
+

3𝜂2
x

n

K−1�
j=0

n�
i=1

�

�
‖∇̂fi(xi,j, y(T)i,j

;𝜙i,j)‖2
�

≤
6𝜂2

x
nK

(1 − 𝜌)2
C̃2
f
+ 3𝜂2

x
KC̃2

f
=

9n𝜂2
x
KC̃2

f

(1 − 𝜌)2
,

(59)

1

K + 1

K�
k=0

�

�
‖�

�
𝜕Φ(Xk;𝜙)�Fk

�
− ∇Φ(x̄k)‖2

�

≤ 3

�
L2
f ,0
(1 − 𝛽𝜇)2M𝜅2 +

L2
f

n(K + 1)
�
�
AK

�
+

L2
Φ

n(K + 1)
�
�
SK

��

≤ C3 +
3𝜂yL

2
f
𝜎2
g,1

𝜇
+

3𝜂2
x
L2
Φ

(1 − 𝜌)2
C̃2
f
,
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where the constant is defined as:

Here we denote �� = (1 − ��)2 for simplicity. Therefore, we set M = Θ(logK) and 

T = Θ(log �) such that C3 = Θ(�2
x
+

1

K+1
) . Recall that (45) yields:

Taking summation on both sides and using (59) and Lemma 37, we have

By setting

we know that the restrictions on algorithm parameters in Lemmas 35, 37, and 39 
hold and we have

which proves the first case of Theorems 3.3 and 33.

Case 2: Assumption 2.3 does not hold

Lemma 40  Suppose the Assumption 2.3 does not hold in Algorithm 5, we have

C3 = 3L2
f ,0
(1 − 𝛽𝜇)2M𝜅2 +

3L2
f

n(K + 1)
𝛿T
y
(2�

[
c1
]
+ 6𝜅2

�
[
EK

]
)

≤ 3L2
f ,0
(1 − 𝛽𝜇)2M𝜅2 +

3L2
f

n(K + 1)
𝛿T
y

(
2�

[
c1
]
+

54𝜅2n𝜂2
x
KC̃2

f

(1 − 𝜌)2

)

= Θ(𝛿M
𝛽
𝜅2 + 𝜂2

x
𝛿T
y
𝜅8).

�
�‖∇Φ(x̄k)‖2

�

≤
2

𝜂x

�
�
�
Φ(x̄k)

�
− �

�
Φ(x̄k+1)

��
+ �

�
‖�

�
𝜕Φ(Xk;𝜙)�Fk

�
− ∇Φ(x̄k)‖2

�

+ L𝜂x�‖
�
𝜕Φ(Xk;𝜙)

�
− �

�
𝜕Φ(Xk;𝜙)�Fk

�
‖2.

1

K + 1

K�
k=0

�
�‖∇Φ(x̄k)‖2

�
≤

2

𝜂x(K + 1)
(�
�
Φ(x̄0)

�
− inf

x
Φ(x)) +

3𝜂yL
2
f
𝜎2
g,1

𝜇

+
3𝜂2

x
L2
Φ

(1 − 𝜌)2
C̃2
f
+

L𝜂x𝜎̃
2
f

n
+ C3.

M = Θ(logK), T = Θ(K
1

2 ), �x = Θ(K−
1

2 ), �y = Θ(K−
1

2 )

1

K + 1

K�
k=0

�
�‖∇Φ(x̄k)‖2

�
= O

�
1√
K

�
,



	 X. Chen et al.

1 3

Proof  Denote by Ẑ(N)

i,k
 the output of each stochastic JHIP oracle 1 in Algorithm 5. 

Then

which implies

Hence we can follow the same process in case 2 of DBO to get (24) and thus

The second inequality uses Lemmaa 14 and 15. Taking expectation, multiplying by 
1

K+1
 , and using Lemma 38 we complete the proof. 	�  ◻

The next lemma characterizes the variance of the gradient estimation.

Lemma 41  Suppose the Assumption 2.3 does not hold in Algorithm  5, then there 
exists �t = O

(
1

t

)
 such that

1

K + 1

K�
k=0

�

�
‖�

�
𝜕Φ(Xk;𝜙)�Fk

�
− ∇Φ(x̄k)‖2

�

≤ 12

�
1 + L2𝜅2 +

2L2
f ,0
L2
g,2
(1 + 𝜅2)

𝜇2

�
⋅
C

T
+ 12CL2

f ,0
𝛼N

+

�
36L2

f ,0
L2
g,2

𝜇2
+ 2L2

f

�
𝜂2
x
(1 + 𝜅2)

(1 − 𝜌)2
C̃2
f
.

�

[
Ẑ
(N)

i,k

]
= Z

(N)

i,k
,

�

[
�Φ(Xk;�)|Fk

]
= �Φ(Xk).

K�
k=0

‖�
�
𝜕Φ(Xk;𝜙)�Fk

�
− ∇Φ(x̄k)‖2 =

K�
k=0

‖𝜕Φ(Xk) − ∇Φ(x̄k)‖2

≤ 12

�
1 + L2𝜅2 +

2L2
f ,0
L2
g,2
(1 + 𝜅2)

𝜇2

�
⋅
1

n

K�
k=0

n�
i=1

‖y(T)
i,k

− ỹ∗
k
‖2

+
12L2

f ,0

n

K�
k=0

n�
i=1

‖Z(N)

i,k
− Z∗

k
‖2 + (1 + 𝜅2)

n
⋅

�
36L2

f ,0
L2
g,2

𝜇2
+ 2L2

f

�
SK .

≤ 12

�
1 + L2𝜅2 +

2L2
f ,0
L2
g,2
(1 + 𝜅2)

𝜇2

�
⋅
(K + 1)C

T
+ 12(K + 1)CL2

f ,0
𝛼N

+
(1 + 𝜅2)

n
⋅

�
36L2

f ,0
L2
g,2

𝜇2
+ 2L2

f

�
SK .

�‖�Φ(Xk;�) − �

�
�Φ(Xk;�)�Fk

�
‖2 ≤ 4�2

f
(1 + �2) + (8L2

f ,0
+ 4�2

f
)
C

N
.
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Proof  Recall that we have:

By introducing intermediate terms we have

Hence we know

For the first term and the third term we use �
�‖∇fi(x, y;�) − ∇fi(x, y)‖2

�
≤ �2

f
 . For 

the second term (and the fourth term) we use the fact that stochastic (and determin-
istic) decentralized algorithm achieves sublinear rate (Lemma 15). Without loss of 
generality we can set C such that: max

�
1

n

∑n

i=1
�

�
‖Ẑ(N)

i,k
− Z∗

k
‖2
�
, ‖Z(N)

i,k
− Z∗

k
‖2
�
≤

C

N
 . 

For partial gradients in the second and fourth terms, we use Assumption 2.1 and the 
fact that

for any random vector X. Taking summation and expectation on both sides, we have

which, together with

∇̂fi(xi,k, y
(T)

i,k
;𝜙) = ∇xfi(xi,k, y

(T)

i,k
;𝜙

(0)

i,k
) −

[
Ẑ
(N)

i,k

]�
∇yfi(xi,k, y

(T)

i,k
;𝜙

(0)

i,k
)

∇̂fi(xi,k, y
(T)

i,k
) = ∇xfi(xi,k, y

(T)

i,k
) −

(
Z
(N)

i,k

)�

∇yfi(xi,k, y
(T)

i,k
).

∇̂fi(xi,k, y
(T)

i,k
;𝜙) − ∇̂fi(xi,k, y

(T)

i,k
)

= ∇xfi(xi,k, y
(T)

i,k
;𝜙

(0)

i,k
) − ∇xfi(xi,k, y

(T)

i,k
) −

[
Ẑ
(N)

i,k

]�
∇yfi(xi,k, y

(T)

i,k
;𝜙

(0)

i,k
)

+
(
Z∗
k

)�
∇yfi(xi,k, y

(T)

i,k
;𝜙

(0)

i,k
) −

(
Z∗
k

)�
∇yfi(xi,k, y

(T)

i,k
;𝜙

(0)

i,k
)

+
(
Z∗
k

)�
∇yfi(xi,k, y

(T)

i,k
) −

(
Z∗
k

)�
∇yfi(xi,k, y

(T)

i,k
) +

(
Z
(N)

i,k

)�

∇yfi(xi,k, y
(T)

i,k
).

‖∇̂fi(xi,k, y(T)i,k
;𝜙) − ∇̂fi(xi,k, y
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proves the lemma. 	�  ◻

Now we are ready to give the final proof. Taking summation on both sides of (45) 
and putting Lemma 40 and 41 together we know:

which completes the proof. Here the constant is defined as

By setting

we have:

�‖
�
𝜕Φ(Xk;𝜙)

�
− �

�
𝜕Φ(Xk;𝜙)�Fk

�
‖2

≤
1

n

n�
i=1

�

�
‖∇̂fi(xi,k, y(T)i,k

;𝜙) − ∇̂fi(xi,k, y
(T)

i,k
)‖2

�
,

1

K + 1

K�
k=0

�
�‖∇Φ(x̄k)‖2

�

≤
1

K + 1

� 2
𝜂x
(�
�
Φ(x0)

�
− inf

x
Φ(x)) +

K�
k=0

�[‖�
�
𝜕Φ(Xk;𝜙)�Fk

�
− ∇Φ(x̄k)‖2]

�

+
L𝜂x
K + 1

K�
k=0

�‖
�
𝜕Φ(Xk;𝜙)

�
− �

�
𝜕Φ(Xk;𝜙)�Fk

�
‖2

≤
2

𝜂x(K + 1)
(�
�
Φ(x0)

�
− inf

x
Φ(x))

+ 12

�
1 + L2𝜅2 +

2L2
f ,0
L2
g,2
(1 + 𝜅2)

𝜇2

�
⋅
C

T
+ 12CL2

f ,0
𝛼N

+

�
36L2

f ,0
L2
g,2

𝜇2
+ 2L2

f

�
𝜂2
x
(1 + 𝜅2)

(1 − 𝜌)2
C̃2

f
+ L𝜂x

�
4𝜎2

f
(1 + 𝜅2) + (8L2

f ,0
+ 4𝜎2

f
)
C

N

�

=
2

𝜂x(K + 1)
(�
�
Φ(x0)

�
− inf

x
Φ(x)) +

�
36L2

f ,0
L2
g,2

𝜇2
+ 2L2

f

�
𝜂2
x
(1 + 𝜅2)

(1 − 𝜌)2
C̃2

f

+ L𝜂x

�
4𝜎2

f
(1 + 𝜅2) + (8L2

f ,0
+ 4𝜎2

f
)
C

N

�
+ C̃3,

C̃3 = 12

(
1 + L2𝜅2 +

2L2
f ,0
L2
g,2
(1 + 𝜅2)

𝜇2

)
⋅
C

T
+ 12CL2

f ,0
𝛼N = O

(
1

T
+ 𝛼N

)
.
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which proves the second case of Theorems 3.3 and 33.
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