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A New Inexact Proximal Linear Algorithm
With Adaptive Stopping Criteria for Robust
Phase Retrieval

Zhong Zheng

Abstract—This paper considers the robust phase retrieval
problem, which can be cast as a nonsmooth and nonconvex
optimization problem. We propose a new inexact proximal
linear algorithm with the subproblem being solved inexactly.
Our contributions are two adaptive stopping criteria for the
subproblem. The convergence behavior of the proposed methods
is analyzed. Through experiments on both synthetic and real
datasets, we demonstrate that our methods are much more
efficient than existing methods, such as the original proximal
linear algorithm and the subgradient method.

Index Terms—Robust phase retrieval (RPR), nonconvex and
nonsmooth optimization, proximal linear algorithm, complexity,
sharpness.

1. INTRODUCTION

HASE retrieval aims to recover a signal from intensity-

based or magnitude-based measurements. It finds various
applications in different fields, including X-ray crystallography
[1], optics [2], array and high-power coherent diffractive imag-
ing [3], astronomy [4] and microscopy [5]. Mathematically,
phase retrieval tries to find the true signal vectors x, or —z,
in R" from a set of magnitude measurements:

bi = (a; x,)?, fori=1,2,...,m, (1)

where a; € R" and b; > 0,7 =1,2,...,m. Directly solving the
equations leads to an NP-hard problem [6], and nonconvex
algorithms based on different designs of objective functions
have been well studied in the literature, including Wirtinger
flow [7], truncated Wirtinger flow [8], truncated amplitude flow
[9], reshaped Wirtinger flow [10], etc.
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In this paper, we focus on the robust phase retrieval (RPR)
problem [11], which considers the case where b; contains noise
due to measurement errors of equipment. That is,

(a] x,)?, i€l

b= |
giv ZE]IQ,

@)
in which I; I ={1,2...,m}, [ NIy =0, and &; denotes a
random noise. [11] proposed to formulate RPR as the following
optimization problem:

. LR - TP
min F(x) -—m;|(ai )% = byl . 3)
Itis demonstrated in [11] that using (3) for RPR possesses better
recoverability compared to the median truncated Wirtinger flow
algorithm [12] based on the ¢5-loss.

Solving (3) is challenging because it is a nonconvex and non-
smooth optimization problem. In [13], the authors proposed the
subgradient method to solve it. This method requires geometri-
cally decaying step size, and it is unclear how to schedule this
kind of step size in practice. [11] proposed to use the proximal
linear (PL) algorithm to solve (3). For ease of presentation, we
rewrite (3) as

~ _ — Az -
min Fx) = h(e(e)) = - [l Aef? ~ 0], @
where Az=[(a1,z),...,{(am,2)]", b=[b1,...,by] ", h(z) :=

L|z|l1, and c(z) :=|Az|* — b is a smooth map in which | - |?
is element-wise square. One typical iteration of the PL algo-
rithm is
2F T ~ argmin F(z;2%), 5)
rER®

where ¢ > 0 is the step size,
F(z;y) := h(c(y) + Vely) (2 — y)), (©)
1
Fi(zy) = F(zy) + o2 —yls, (7

Ve denotes the Jacobian of ¢, and “~” means that the subprob-
lem is solved inexactly. The subproblem (5) is convex and can
be solved by various methods such as the proximal operator
graph splitting (POGS) algorithm used in [11]. The PL. method
has drawn lots of attention recently. It has been studied by [14],
[15], [16] and applied to solving many important applications
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such as RPR [11], robust matrix recovery [17], [18], and sparse
spectral clustering [19]. The subproblem (5) is usually solved
inexactly for practical concerns. As pointed out in [11], the PL
implemented in [11] is much slower than the median truncated
Wirtinger flow method. We found that this is mainly due to
their stopping criterion for solving the subproblem (5), which
unnecessarily solves (5) to very high accuracy in the early stage
of the algorithm. Moreover, we found that the POGS algorithm
used in [11] is ineffective in solving the subproblem (5). In this
paper, we propose adaptive stopping criteria for inexactly solv-
ing (5) with the fast iterative shrinkage-thresholding algorithm
(FISTA) [20], [21], [22]. We found that our new inexact PL
(IPL) with the adaptive stopping criteria greatly outperforms ex-
isting implementations of PL methods [11] for solving RPR (4).

Our Contributions. In this paper, we propose two new
adaptive stopping criteria for inexactly solving (5). The first one
ensures that (5) is solved to a relatively low accuracy:

(LACC) Ft(xk+1;xk) — Hel]iRr}L Fy(x;2%)
< pu (Fy(a®a®) = R ab) . p>0, ®)

and the second one ensures that (5) is solved to a relatively high
accuracy:
(HACC) F; (a:k'H; xk) — min Fy(x; xk)

rER™

< %kaH — 2|3, 0<pu<l1/4 )
Here, p; and p;, are given constants. Similar to the proximal
bundle method [23] for nonsmooth convex problems, (LACC)
and (HACC) are designed to ensure the sufficient decrease of
the objective function for the nonsmooth and nonconvex RPR
problem. Note that both (LACC) and (HACC) are only used
theoretically because min,cgn F(x; xk) is not available. Later
we will propose more practical stopping criteria that can guar-
antee (LACC) and (HACC). The connections of our approach
to existing work are listed below.

(a) Our (LACC) condition coincides with the inexact stop-
ping criterion proposed in [24], [25], [26] for the proxi-
mal gradient method. In these papers, the authors focus
on a different optimization problem

min fo(z) := f1(z) + f2(),

TER™

in which f; is a smooth function, and f5 is a proper,
convex, and lower semi-continuous function. One typical
iteration of their algorithms can be written as

ykﬂ ~ ggg}z Jor(z) = fl(xk) + (z — $k)TVf1($k)
+f2(x)+%(x—xk)THk(x—:vk), (10a)
oF = 2k 4 A (yF T — 2P, (10b)

where Hj, € R"*" is a positive semi-definite matrix and
Ai € [0, 1] is a step size. The stopping criterion for inex-
actly solving (10a) proposed in [24], [25], [26] is

for (") = for <1 (f()k(x’“) - fok) ; (11)
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where fOk = minger~ for(x) and n € (0,1). We note
that this is the same as our (LACC). Therefore, our
(LACC) is essentially an extension of (11) from the
proximal gradient method to the proximal linear method.

(b) To the best of our knowledge, our (HACC) criterion is
new and serves as a good alternative to (LACC). From
our numerical experiments, we found that (HACC) works
comparably with (LACC), and we believe that it can be
useful for other applications.

(c) We analyze the overall complexity and the local conver-
gence of our IPL algorithm for solving RPR under the
sharpness condition. To the best of our knowledge, this
is the first time such results have been obtained under the
sharpness condition.

(d) We propose to solve (5) inexactly using FISTA [20], [21],
[22], which uses easily verifiable stopping conditions that
can guarantee (LACC) and (HACC). Through extensive
numerical experiments, we demonstrate that our IPL with
the new stopping criteria significantly outperforms exist-
ing algorithms for solving RPR.

Organization. The rest of this paper is organized as follows.
In Section II, we propose the main framework of our inexact
proximal linear algorithm with two new adaptive stopping cri-
teria for the subproblem. We establish its iteration complexity
for obtaining an e-stationary point and its local convergence
under the sharpness condition. Connections with some existing
methods are also discussed. In Section III, we discuss how to
adapt the FISTA to solve the subproblem inexactly. We also
establish the overall complexity of FISTA — the total number
of iterations of the FISTA — in order to obtain an e-optimal
solution under the sharpness condition. In Section IV, we show
the numerical results on both synthetic and real datasets to
demonstrate the advantage of the proposed methods over some
existing methods. The proofs for all the theorems and lemmas
are given in Section V. Finally, we include some concluding
remarks in Section VI.

II. IPL AND ITS CONVERGENCE ANALYSIS

In this section, we introduce our IPL algorithm for solving the
RPR (4) with the inexact stopping criteria (LACC) and (HACC)
for the subproblem (5) and analyze its convergence. We will
discuss the FISTA for solving (5) that guarantees (LACC) and
(HACC) in the next section.

We first follow [15] to introduce some notation. Let

Si(y) == argmin Fi(z;y),
rER™

e(z;y) == Fy(x;y) — F(Se(y);v),

where F}(z;y) is defined in (7). We will also use the notation

m
E aiaj
i=1 2

A Meta Algorithm of our IPL is summarized in Algorithm 1.
We again emphasize that Algorithm 1 cannot be implemented
because mingeg» Fy(x;2%) is not available, and we will dis-
cuss practical versions of it in the next section.

2 2
L=2)4=2
=A==
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Algorithm 1 IPL — A Meta Algorithm

Input: Initial point 2V, step size ¢t = 1/L, parameters p; > 0
and pp, € (0,1/4)
for k=0,1,...,do
Obtain zF*! by inexactly solving (5) with one of the
following stopping criteria:
Option 1: (LACC), i.e., (8)
Option 2: (HACQ), i.e., (9)
end for

A. Convergence Under General Settings

In this subsection, we analyze the convergence rate of IPL
(Algorithm 1) for obtaining an e-stationary point of (4) under
the general settings when the sharpness condition may not hold.
We use the definition of e-stationary point as introduced in [15].

Definition 1: We call T an e-stationary point of (4) if the
following inequality holds:

1G:(Z) ]2 <e, (12)
where G (x) is the proximal gradient which is defined as:
Gi(z) =t (x — Sy(x)). (13)

Our convergence rate result of Algorithm 1 is given in The-
orem 1, and the proof is given in Section V.
Theorem 1: Denote F* =inf,cgn F(z). For Algorithm 1
with ¢t = 1/L, the following conclusion holds.
(a) When (LACC) holds with p; > 0 for any k£ € N, we can
find an e-stationary point in

{2(1 +p)(F(2°) — F*)J

te2

iterations for any € > 0.
(b) When (HACC) holds with 0 < p;, < 1/4 for any k € N,
we can find an e-stationary point in

{2(1 — VP)?(F(2°) — F*)J
(1 —2y/pn)te?
iterations for any € > 0.

Theorem 1 shows that IPL finds an e-stationary point in
O(1/€?) main iterations with the adaptive IPL stopping con-
ditions. Moreover, Theorem 1 achieves the best known conver-
gence rate for PL in [15]. We should point out that we use two
adaptive stopping criteria for the subproblem, but [15] requires
solving the subproblem (5) exactly (see their Proposition 3)
or using their pre-determined subproblem accuracy conditions
(see their Theorem 5.2).

B. Local Convergence Under Sharpness Assumption

In this subsection, we analyze the local convergence of IPL
(Algorithm 1) to the global optimal solution under the sharp-
ness condition.

Assumption 1 (Sharpness): There exists a constant Ag > 0
such that the following inequality holds for any x € R™:

F(z) — F(zy) > XAsA(2), (14)
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where A(z) := min{ ||z — |2, ||z + i []2}-

[11] proved that the sharpness condition (Assumption 1) is
satisfied by the RPR (4) with high probability under certain
mild conditions.

Another assumption is about the closeness between the initial
point and the optimal solution, which can be guaranteed by the
modified spectral initialization (see Algorithm 3 in [11]) with
high probability under some mild conditions.

Assumption 2: Under Assumption 1, we assume that the ini-
tial point 2° in Algorithm 1 satisfies the following inequalities.

(a) If (LACC) is chosen in Algorithm 1, then we assume

20 satisfies

F(z°) — F(z,) < \2/(2L). (15)

(b) If (HACC) is chosen in Algorithm 1, then we assume
2 satisfies

A(l‘o) < )\s(l B 4Ph) )
2(1 —3pn)L

We now define the e-optimal solution to RPR (4).

Definition 2: We call T an e-optimal solution to RPR (4), if
A(z) <e.

Now we are ready to show in Theorem 2 that, in terms of
main iteration number, (LACC) leads to local linear conver-
gence and (HACC) leads to local quadratic convergence.

Theorem 2: Lett = % and suppose that Assumption 1 holds.
For the sequence {xk}zozo generated by Algorithm 1, we have
the following conclusions.

(a) (Low Accuracy) When (15) holds and (8) holds with p; >

0 for any k£ € N, we have

(16)

F(2°) = F(zy) (1+4p
k

<

Ale7) < s 2+ 4p,

(b) (High Accuracy) When (16) holds and (9) holds with 0 <
pn < 1/4 for any k € N, we have

k
) , Vk € N.

)\S(]. — 4ph) k
Alzh) < 22T 27 Vk e N,
)< T —3m ¢
20)(1—:
where ¢ := 7LA/\(§(1)$[,3§M)

Theorem 2 shows that, with a good initialization, using
(LACC) finds an e-optimal solution to (4) within O(log 1)
iterations, which is a linear rate, and using (HACC) finds an
e-optimal solution to (4) within O(loglog %) iterations, which
is a quadratic rate.

C. Related Work

There are two closely related works that need to be discussed
here. [11] studied the PL algorithm for solving RPR (4), and
established its local quadratic convergence under the sharpness
condition. But their theoretical analysis requires the subproblem
(5) to be solved exactly. In practice, [11] proposed to use POGS
[27], which is a variant of the alternating direction method of
multipliers (ADMM)), to solve (5) inexactly. However, they did
not provide any convergence analysis for the algorithm when
the subproblem (5) is solved inexactly by POGS. [15] also con-
sidered solving (4) for obtaining an e-stationary point as defined
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in Definition 1.! Indeed, several algorithms were proposed and
analyzed in [15]. In particular, a practical algorithm proposed
by [15] uses FISTA [20], [21], [22] to inexactly solve

=2k /= Ve(*) AR
= \T(e(a¥) = Velah)a®) + () V),

which is the dual problem of a smoothed version of (5). Here
(h,)* () is the Fenchel conjugate of h,, and h,, is the Moreau
envelope of h, which is defined as

e, o)

1
— inf l I 2.
hy(N) = nf h(V)+ 5= X = A3
[15] proposed to terminate the FISTA  when

dist(0; 8(;5;“()\’“* ))_m, and then update x* by
okt = 2% —tVe(x®) TARFTL The authors established the
overall complexity of this algorithm for suitably chosen
parameters ¢t and v. Compared to [15], we use adaptive
stopping criteria and provide a better convergence rate based
on Assumption 1.

III. FISTA FOR SOLVING THE SUBPROBLEM INEXACTLY

In this section, we propose to use the FISTA to inexactly
solve (5) with more practical stopping criteria that guarantee
(LACC) and (HACC). Therefore, the convergence results (The-
orems 1 and 2) in Section II still apply here.

For simplicity, we let ¢t = 1/L throughout this section and
rewrite (5) as follows.

o
min Hi(z)

1
%HZHS""HBICZ—dkHIa amn
where we denote z =z — z*, B, = 2diag(Aaz"*)A, and dj), =
% (b - (Axk)Q). As a result, (LACC) and (HACC) can be
rewritten respectively as

Hy(z) — min Hy(z) < pr (Hg(0) —

z€ER"

Hy(zk)),p0 20, (18)

and

Hk(Zk) HGIIH Hk( ) sz||2;0</7h<1/4 (19)

In IPL, we set 21 = 2% + 2, where z;, satisfies either (18)
or (19). The dual problem of (17) is

t 2
Di(N) =—2 |BEA, — AT di. 20
AERT Ao <1 N ==3 1B A ¥ 20)
From weak duality, we know that
Di(\) < Hi(2),Vz € R", and ||A||oc < 1. 21

Therefore, Dy () can serve as a lower bound for min, Hy(z),
and we can obtain verifiable stopping criteria that are sufficient
conditions for (18) and (19). This leads to our inexact FISTA
for solving (17), which is summarized in Algorithm 2. Here we
define z;,(\) = —t B,/ A.

IThe authors of [15] actually considered solving a more general problem
ming g(x) + h(c(x)). Here, for simplicity, we assume that g =0 and this
does not affect the discussion.
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Algorithm 2 FISTA for Solving (20)
Input: \” € R satisfying [\%]|oc <1.A) =A) = A2 = X",
Yo =1, pp >0 and pp, € (0,1/4).
for =0,1,2... do

M= (1~ %‘))\j + A
)x{f = argmln —||/\ MTL)2
N1 2Lk
- (>\ — N (B BI N + dy) i > 0,
(22)
N = (=) + AT

Yi+1 =2/ <1+\/1+4/’YJ2-)7

Terminate if one of the following stopping criteria is sat-
isfied:

(LACC-FISTA)  Hy (2, (M) — Dy (M)

< pi(Hp(0) — Hi(z: (X)), (23)
(HACC-FISTA)  Hy (2 (M) — Dp(M+1Y)

< 22z (I 24)

end for

Output: A\, = N1,z = —t B \g,, ¥+ =2k + 2.

Remark 1: Here we remark on the step size t;; in (22). It
can be chosen as (tLQ) for some Ly, > || B||2 or chosen by
the Armijo backtracking line search. More specifically, suppose
that we have an initial step size ¢(_1) > 0. Given the step size
lr(j—1),J = 0, denote

AL

sbs

= argmin i [N — N2
AER™ Ao <1 2Ls

+ A= N (tBeBI N + dy)
and
N3 = (1= )N+ 3!

t}; can be selected as

trj = max {tslts =27 k(1) s €N,
. t i i
i+1 Tyj+1 T
o IV = XU = SIBTNE - B Wl“%}'

We now discuss the overall complexity of the IPL (Algo-
rithm 1) with the subproblem (5) solved inexactly by FISTA
(Algorithm 2). For ease of presentation, we denote this algo-
rithm as IPL+FISTA. We assume that IPL is terminated af-
ter K. iterations, when an e-optimal solution is found, i.e.,
A(xEe) <e, A(zF<71) > €. We use Ji, k>0 to denote the
number of iterations of FISTA when it is called in the k-th
iteration (getting 2%t from z*) of IPL. The overall complexity
of IPL+FISTA for obtaining an e-optimal solution is thus given
by J(e) = Zf:‘o_l Ji, which equals the times that we call (22).
Now we are ready to give the overall complexity of IPL+FISTA
in Theorem 3.
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Theorem 3: Lett = 1/L,t); = (tHBkH%)*l and suppose that
Assumption 1 holds.
(a) (Low Accuracy) For the overall complexity of Algorithm
1, when using Algorithm 2 with option (23) with p; > 0,
for any 2° € R” that satisfies A(2°) < E;, we have

J(e) < Ey/e, Ve > 0. (25)

Here Eq, F5 are positive constants that only depend on
{a;} 1, {bi}™ 1, T4, As, L and py, and they will be spec-
ified later in the proof.

(b) (High Accuracy) For the overall complexity of Algo-
rithm 1, when using Algorithm 2 with option (24) with
pn € (0,1/4), there exist positive constants E5, Fy, and
{e;}52, withe; > €;41,Vi € Ny and lim;_, o €; = 0 such
that if A(2°) < Fj, then

J(€ei) < Eyfe;,Vie Ny, (26)

Here E3, E4 only depend on {a; }7,, {b; } 1, Tuy Asy L
and pp, {€;}52, depends on {A(x%)}5°, and they will
be specified later in the proof. Note that (26) implies that
the worst-case overall complexity might be higher than
O(1/€) — see the explanation below for more details.

Theorem 3 shows that under the (LACC-FISTA) stopping
criterion, we need O(1/e) iterations to find an e-optimal so-
lution, and under the (HACC-FISTA) stopping criterion, we
have the same rate with regard to a countable positive sequence
that decreases to zero. Theorem 3 provides better theoretical
rates compared to O(1/€®) in [15]. Moreover, the results in
Theorem 3 are about the convergence to e-optimal solution,
while the results in [15] are for convergence to e-stationary
point. Our results require the sharpness condition, which was
not assumed in [15].

For (b) in Theorem 3, we can only find a countable se-
quence of diminishing ¢;’s to show the O(1/¢; ) rate. We cannot
show the O(1/¢) rate for any fixed € > 0. This is because of
the local quadratic convergence under (HACC) shown in (b)
of Theorem 3. For instance, if our initial point 2° satisfies
A(2°) = 2¢ > ¢, under the (HACC), the quadratic convergence
result in Theorem 3 (b) implies that A(z1) < Ce? < € for some
constant C' > 0 when ¢ is sufficiently small. Therefore, IPL
finds an e-optimal stationary point with only one main iteration.
However, Lemma 15(b) indicates that J(e) = Jy = O(1/€?).
Therefore, the overall complexity may become O(1/€?), which
is higher than O(1/¢).

IV. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to com-
pare our IPL method with existing methods for solving the
RPR problem (4). Readers can find the code and datasets to
replicate the experiments in this section via https://github.com/
zhengzhongpku/IPL-code-share. The algorithms that we test
include the following ones.

(i) PL: The original proximal linear algorithm proposed by
[11] where the subproblem (5) is solved by POGS [27].
POGS terminates when both the primal residual and the
dual residual are small enough. In their code, the authors
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[11] implemented a two-stage trick that uses a relatively
larger tolerance in early iterations and a smaller tolerance
in later iterations to terminate the POGS. In our compar-
ison, we use all the default parameters set by the authors
in their code”.

Subgradient method. The subgradient method with ge-
ometrically decaying step sizes was proposed by [13],
and they used this algorithm to solve the RPR (4). One
typical iteration of this algorithm is

bt =gk — )\oquk/”@cﬂ% k=0,

(ii)

27

in which A\g >0,¢ € (0,1) are hyper-parameters and
&=13" 2a) Fsign((a] 2%)% — b;).
IPL-FISTA-Low, IPL-FISTA-High: our IPL+FISTA
algorithm with stopping criteria (LACC-FISTA) and
(HACC-FISTA) in Algorithm 2, respectively, and we
also used the Armijo backtracking line search discussed
in Remark 1.

The initial point for all the tested algorithms is generated by
the spectral initialization given in Algorithm 3 in [11]. All the
code is run on a server with Intel Xeon E5-2650v4 (2.2GHz).
Each task is limited to a single core — no multi-threading is used.

(iii)

A. Synthetic Data

We generate synthetic data following the same manner as
[11]. Specifically, a;’s are drawn randomly from the nor-
mal distribution N'(0, I,,). The entries of z, € {—1,1}" are
drawn randomly from discrete Bernoulli distribution. We de-
note pr, = |Ia|/m, where I is generated by random sampling
without replacement from {1,2,...,m}. &;’s for these samples
in (2) are independently drawn from Cauchy distribution, which
means that

b= & = Mtan (JU;) Ui ~ U(0,1),¥ i € T,

where M is the sample median of {(a; z,)2}7",. For a given
threshold € > 0, we call an algorithm successful if it returns an
2 such that the relative error

A)/||zel2 <e. (28)

For each combination of n,k =m/n and pg;, we randomly
generate 50 instances according to the above procedure, and we
report the success rate of the algorithm among the 50 instances.
For IPL-FISTA-Low and IPL-FISTA-High, we set p; = p, =
0.24. For the subgradient method, we set ¢ = 0.998 which is
one of the suggested choices of ¢ in [13]. Moreover, [13] did
not specify how to choose \g, and we set \g = 0.1]|2°[| as
we found that this choice gave good performance. Since we
found that in most cases, the relative error given by PL is in
the level of [107°,1073], we set e = 1072 in (28) for PL. In
our comparison, we first run PL using the default settings of the
code provided by the authors of [11]. If the returned x satisfies
(28) with e = 1073, then we claim that PL is successful, and
we terminate IPL and Subgradient method once they found an

>The code of [11] can be downloaded from https://web.stanford.edu/
~jduchi/projects/phase-retrieval-code.tgz
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Fig. 1. The comparison of success rates and CPU time on synthetic datasets
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Fig. 2. The comparison of success rates and CPU time on synthetic datasets
with pgi = 0.15 and n = 500.

iterate with a smaller objective value than the one given by PL.
If the iterate returned by PL does not satisfy (28) with e = 1073,
then we claim that PL failed, and we then terminate IPL and
Subgradient method when F(z*) — F(x,) < 10~7. The CPU
time is only reported for the successful cases for PL. The cost
of computing the spectral norm || Al|2 to obtain L is included
in the total CPU time of PL and IPL.

The simulation results corresponding to pg; = 0.05 and
Prail = 0.15 are shown in Figs. 1 and 2, where the x-axis cor-
responds to different values of m since n = 500 is fixed. From
both Figs. 1 and 2, we can see that the four algorithms have
similar success rates, but the total CPU time of IPL-FISTA-Low
and IPL-FISTA-High that includes the cost of computing the
spectral norm ||A||2 is significantly less than that of others.

B. Image Recovery

In this section, we compare the four candidate algorithms on
images in a similar manner as [11]. In particular, suppose we
have an RGB image array X, € R™*"2%3 we construct the
signal as z, = [vec(X,);0] € R™, in which n =min{2° | s €
N,2° >3nins}. Let Hy, € ﬁ{—l, 1}™*™ be the Hadamard
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Fig. 3.

A real RNA nanoparticles image.

matrix and S; € diag({—1,1}"),7=1,2,...,k is a random
diagonal matrix, and its diagonal elements are independently
distributed as discrete uniform distribution. We then let A =
%[Hnsl; H,S5...H,S;] and we know L = 2 in this case.
The advantage of such a mapping is that it mimics the fast
Fourier transform, and calculating Ay is only of time complex-
ity O(mlogm). We first examine the numerical comparisons
on a real RNA nanoparticles image® as shown in Fig. 3, and we
follow the code of [11] for the experiments on a sub-image with
n =28 We also take pgi € {0.05,0.1,0.15,0.2}, k € {3,6}
and set the noise in the same way as the synthetic datasets. For
each combination of dataset parameters, we run 50 replicates
by generating 50 different A and test all the candidate algo-
rithms. We use the same way as the synthetic datasets to define
success. For IPL, p; = p;, = 0.24. For the Subgradient method,
Ao = 0.1]|2°%]|2, ¢ = 0.998. For a replicate, if PL succeeds, the
CPU time is the time needed to reach (28).

Table I reports the median CPU time (in seconds) of the
candidate algorithms for pgy = 0.1 and m/n = 6 based on two
tolerances € = 10~! and € = 10~7. We only show the results for
this combination of pg,; and m/n because other choices give
similar results. It is noted from Table I that PL can only reach a
relative error that takes value in [1072,107], and IPL-FISTA
is much more efficient than PL and Subgradient methods.

Additional experimental results are reported in Table II for
comparing CPU time for the four candidate algorithms. We pro-
vide four images with n being at most 222, The experiments use
the same m/n and pr,;, and the CPU time based on ten replica-
tions is reported in the form of “median (Interquartile Range)”.
Subgradient method, IPL-FISTA-Low and IPL-FISTA-High
are terminated with tolerance € = 10~7. We can see that PL

3https://visualsonline.cancer.gov/details.cfm?imageid=11167
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TABLE I
THE COMPARISON OF THE MEDIAN CPU TIME
IN SECONDS FOR RNA IMAGE RECOVERY

e=01 [ e=10"7
PL 3166.93 NA
Subgradient 88.14 659.64
IPL-FISTA-Low 6.01 218.14
IPL-FISTA-High 48.56 175.60
TABLE II

THE COMPARISON OF THE MEDIAN CPU TIME IN HOURS WITH
THE INTERQUARTILE RANGE (IQR) IN THE PARENTHESES FOR
MULTIPLE IMAGE RECOVERY TASKS

RNA (n = 222) Hubble? (n = 222)
PL > 10 > 10
Subgradient 439 (0.29) 472 (0.27)
IPL-FISTA-Low | 1.65 (0.41) 2.07 (0.14)
IPL-FISTA-High 1.30 (0.08) 1.26 (0.06)

James Web> (n = 22T) | Penn State® (n = 222)
PL > 10 > 10
Subgradient 1.86 (0.14) 4.834 (0.66)
IPL-FISTA-Low | 0.90 (0.21) 2.23 (0.16)
IPL-FISTA-High | 0.56 (0.09) 1.41 (0.21)

cannot terminate within 10 hours, and IPL-FISTA still enjoys
the best efficiency.

V. PROOFS
A. Proof of Theorem 1

Before proceeding, we first present some lemmas.

Lemma 1 (Weak Convexity): (Discussion of Condition C2
in [11]) The following inequalities hold for any z,y € R", and
L= Z[lA[3.

L
() = Fa;y)| < S le = yl3, (29)

F(a) < Fia;y), V< . (30)

Lemma 2 (see, e.g., equation (5.2) in [15]): The following
inequality holds for any 0 < ¢ <1/L and z,y € R™.

F@)~ Fly) +ela)> oo - S@l3 6D

The following lemma studies one iteration of our IPL algo-
rithm (as summarized in Algorithm 1).

Lemma 3: If 0 <t < %, we have the following inequalities.

(a) When the low accuracy condition (8) is satisfied, we have

F(a*) = F(a") > ———— 2" = 5:(=")|13. (32
(@5) = P 2 gl = i3 62
(b) When the high accuracy condition (9) is satisfied,
we have
1—2\/pn
F k _F k+1 > k_S k 2.
(@) = ) 2 = et — sl

(33)

“https://www.nasa.gov/image-feature/goddard/2017/hubble-hones-in-on-a-
hypergiants-home

Shttps://www.nasa.gov/webbfirstimages

Ohttps://www.britannica.com/topic/Pennsylvania-State-University
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Proof of Lemma 3: We first prove part (a) of Lemma 3
and then prove part (b) of Lemma 3.
(a) Letting x = z* and y = 2! in (31), we have

1 ,
F(a*) = P = oo = Sy(ah) | — e(a+52%)

> %ka _ St(xk)Hg _ Pl(F(.rk) . F(xk+1))7

where the second inequality follows from (8) and (30). This
proves (32) in Lemma 3(a).

(b) When (9) holds, since Fy(-;2*) is %-strongly convex,
we have

y 1
Dol — a3 2 e (@ sah) 2 b - Si@b) 3. 34)

Let u = zF — k1 v = 2F+1 — G, (2*). From (34) we have

pullull3 > |[v]3, (35)
and
[+ vll5 — (1= v/pn)?|ull3
= (2v/pn — pu)llull3 + 2uT v + [|v[f3
> Von(2 = o) lullz = 2||ull2l|v]l2 + [lv]l3
= (Vprllull2 = llvfl2) ((2 = Ver)l[ull2 — [Jv]l2)
>0, (36)

where the first inequality is from the Cauchy-Schwarz inequal-
ity, and the second inequality follows from (35) and the fact that
pn € (0,1/4). Therefore, from (34) and (36) we have

€(xk+1; Ik) < %sz o Ik+1||§

Ph k kyp12
K -5
= 2t(1 — m)g ||.’E t(x )”2)
which, together with (31), yields
F(wk) _ F(.’Ek+1)
1
> o ll2* = S @3 — e(@+ 2h)
1 Ph
> gk — S kNij2 k _ S ky|12
= 2t||x t(x )HQ 2t(1 o \//Th)QH‘T t(x )”2
1 —2\/pn
= o s [l = Su(@®)5.
2t(1 — /pn)
This proves (33) in Lemma 3(b).
Therefore, the proof of Lemma 3 is complete. 0

Now we are ready to prove Theorem 1.
Proof of Theorem 1: We will prove (a) and (b) together.
Both (32) and (33) indicate that {z*} generated by Algorithm 1
satisfies

F(a®) = F(a1) = Bt]|Ge(+")]3,

in which 8 > 0 is a constant that 5 = 1/(2(1 + p;)) for LACC

and 8= (1 —2,/pn)/(2(1 — \/pr)?) for HACC. Letting F* =
inf ern F(z), we have

Kop—1

F(a%) —F* > " Bt]Gi ()3
k=0

> ﬂtKo min

0<k<Ko—

G )13
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Then, our IPL (Algorithm 1) finds an e-stationary point to RPR
(4) in
F(20) — F*
Bte?

iterations. Therefore, the proof of both (a) and (b) in Theorem 1
is complete. O
B. Proof of Theorem 2

To prove Theorem 2, we need the following lemmas.
Lemma 4 (Part of the Proof for Theorem 1 in [11]): Let
t=1/L. For any ¥ 2*+! € R", we have

L
F@*h) = F(e.) + e = a3

< L||z* — z, |3 4 2e(a*HL, 2F), 37)
which also holds if we replace x, by —x,.
Proof of Lemma 4: We have
L
Sl — Sy 3
L
> 7l =25 - IISt(x'“) — a3
L
> ZHx* — P2 - E(xkﬂ;xk). (38)
where the first inequality follows from the Cauchy-Schwarz
inequality and the second one is from the convexity of || - |3.
We then have
F($k+1)
k+1. .k L, k1
< F(a*ah) + St — o3
= F(Si(2"); 2" ) e(z"*; zh)
L
< Flasab) + 5ot — 2l — 2l — ()3
+ 8($k+1; k)
L
< F(w) + Lla® = 2l = S e = Si(ab)|I3 + (24 2h),

where the first and the last inequalities are from (29), and the
second inequality is from the strong convexity of Fj(-;z¥).
Combining this inequality with (38) yields (37). It is easy to
find that all the proofs still hold if we replace x, with —x,.
Therefore, the proof of Lemma 4 is complete. O

Lemma 5: (One-step progress). Let t = 1/L and suppose that
Assumption 1 holds.

(a) (Low accuracy condition) When (8) is satisfied for some

p1 > 0, we have

(1+2p1) (F(a"*) = F(a.))

<2p(F(z*) — F(z,)) + L(A(z"))%. (39)
If we also have F(2*)— F(x,)<\2/(2L), then
we have
(1+20) (F(e*) - F(a.))
<(3+2) P =P @)

(b) (High accuracy condition) When (9) is satisfied, we have

LLLZ300) (g

AA(2FH) <
)< )

(41)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Proof of Lemma 5: We first prove part (a) of Lemma 5
and then prove part (b) of Lemma 5.
(a) When the low accuracy condition (8) holds, from (30) we
have
e(zP 2k < py(Fy(aF; ) — Fy(a®th 2b))
< pi(F(a*) = F(a*),

which, combining with (37), yields

L
(1+200) (F(™1) = F(z.)) + ll" = a3
<2p; (F(a*) — F(x,)) + L]|a"* — 2|3

Discarding the term £ ||z**! — |3, we get

(1+2p) (F(z") — F(z,))
<2p (F(z") = F(a.)) + L]ja* — 2.3.
Since (37) also holds when x, is replaced by —z,, we also have
(1+2p) (F(@*H) - F(a.)
<2p (F(2") = F(a)) + L]ja* + 2.3

This proves (39). (40) holds because of Assumption 1. Hence,
it proves part (a) of Lemma 5.
(b) When the high accuracy condition (9) holds, we have
2e(xF L k)

<pnL|z* -z

k+1 2 k 2
T — o, ¥ — x,
<ot Lot 2l
4ph 1- 4ph
where the second inequality is from the Cauchy-Schwarz in-
equality. Combining with (37), we have

k+1||%

1—3pn)L
Fa*) - Fa) « G200 o,
Similarly, replacing =, by —z,, we have
1—3pn)L
Pt - F) < SR e
1 —4pp

Combining the above two inequalities with Assumption 1 yields
(41), which proves part (b) of Lemma 5.
Therefore, the proof of Lemma 5 is complete. O
Now we are ready to give the proof of Theorem 2.
Proof of Theorem 2: (a) We will prove that for any k£ € N,

1+4p\"
Fa*) — Fa,) < (F(2°) - F 42
(@) = Fle) < () - Fw) (542 ) @2
by induction, which immediately leads to the conclusion of (a)
by Assumption 1. First, (42) clearly holds for £ = 0. Now we
assume that it holds for k. For k + 1, since (15) holds, we have

F(@*) = F(z.)

k
< (F6") - Flo)) (52 )
< F(a") - Flz.)
<3/(2L).

Using (40) directly proves that (42) holds when k is replaced
by k + 1. This proves part (a) of Theorem 2.
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(b) Note that (41) is equivalent to

LA(z"1)(1 — 3pp) < (LA(l"k)(l - 3Ph))2 (43)
As(1—4pp) As(1—4pn)
Since (16) holds, from (43) we know that

LA(')(1 = 3pn) _ (1)
)\3(1 - 4Ph) “\2 .
Plug this back into (43) and work recursively, we get

LAEH) (1 =3pn) _ (1)
)\5(1*4Ph) —\2 .
Then, A(x*)— 0, which together with (43) proves the

quadratic convergence in part (b) of Theorem 2.
Therefore, the proof of Theorem 2 is complete. 0

C. Proof of Theorem 3

Throughout this subsection, we assume that the assump-
tions in Theorem 3 hold. That is, we assume t =1/L, t;; =

(¢l B |13 ) in Algorithm 2, and Assumption 1 holds. To prove
Theorem 3, we first present some lemmas.
Lemma 6 (Local Lipschitz Constant of F(x)):

P~ F@)l _
ool

It holds that

sup
z,yER™ A(z)<r,A(y)<r,z#y

(lzell2 +7)-

Proof of Lemma 6: Denote u= (x —y)/||x — y||2 and
v=(x+y)/|lzr+y|l2 when & +y#0. v is set as 0 when
z+y=0.

() - ( Wl =yl
= — bl — al? — ;
7m||m—y||2 g bil ;I( i y)* = bil
szw?ﬂzf(am
:mz:\(a?(af—y))(af(x+y))l

m

1
2+ ylla— > ol ul - o] v].

i=1

Recalling that L = 2[|A[3 = 2| 31" a;a; |2 as defined in
Algorithm 1 and noticing the fact that when A(x) <r and
A(y) <r, we have ||z + y||2 < 2(||z4|l2 + 7), and hence we
can claim that

1 m
I+ yla— > lal ul x
i=1

1 m
<z +yl- (”LLT <2m Zam?) utv’
i=1

< L(l|zell2 + 1),

jai" vl

2e7)

which proves the desired result. Therefore, the proof of
Lemma 6 is complete. O
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Lemma 7: If Assumption 1 holds, then for any » > 0, we have
{zeR": A(z) < E(r)}
C{x eR": F(z) — F(ax) <7}
C{r eR": A(x) <7/As},

in which

E(r) = (x/ﬂnx*% 4L - LJT*||2> /(2L).

This relationship also indicates that E(r) <r/\s.

Proof of Lemma 7: For x € R", if A(x) < E(r) for some
r > 0, without loss of generality, we assume that A(z) = ||z —
Ty ||2. From Lemma 6, we have

F(x) = F(z,) < LE(r)([[esll2 + E(r)) =,

which proves the first inclusion. The second inclusion fol-
lows immediately from Assumption 1. Therefore, the proof of
Lemma 7 is complete. 0

Lemma 8 (Bound of | Bgl|l2): For any r>0, if
supgey A(2%) < r, then

(44)

2
sup || Bell2 < B(r) := —[[All2(lzsll2 +7) _
keN m i=1

,,,,,,

Proof of Lemma 8: Since Bj, = Zdiag(Az*)A, we

have [|Bxl2 < % [[Ax*|[oc[|All2 and [lz¥[|2 < [z ]2 + 7.
The desired result follows by using |[|AzF| <
(|z«||2 + ) max;=1.2 . m |lai||2. Therefore, the proof of
Lemma 8 is complete. 0

Next, we provide Lemmas 9 and 10 to show the convergence
rate for solving the subproblem with Algorithm 2. These results
can be used for both conditions for (a) and (b).

Lemma 9: (see [20]). In the j-th iteration of Algorithm 2,
we have

iy < tCIB3 o 2
max Dyp(N\) — Dg(N A
H/\Hoo};l (M) K(Ag) < G2 [ Rz
2
<%,V'EN,
(j+1)?

where Aj,, € argmax )y <1 Dk(A) and C > 0 is universal
constant.

Lemma 10 (Theorem 4 in [28]): For Algorithm 2, there exist
universal positive constants C’, C” such that, when j > C’,j €
N, it holds
C"tm| B3

j+1 ’
Proof of Lemma 10: Theorem 4 in [28] indicates that if
X{QCtmllBklg/t 2CﬁmllBk|§||Bk||§m}
m| B3 (1/t)e?
20tm? | By }

Hi(21(N))) = Dr(N) < (45)

(G+1)?>m

2

= ma {QC

€

then we have

Hyy(2(N))) — Di(N,) < e
Here C' is the constant used in Lemma 9. Specifically, by
2/
choosing €= tm”i’“#, we know that if j > C":=+v2C —1
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holds, then (45) holds, where C” = +/2C'. Therefore, the proof
of Lemma 10 is complete. O
We now define some constants.

Ey =min{E (\/(2L)) . E (\MB*(\./(21))/C")},
(2 +4p) M1 B*(\s/(2L)) L([|4]l2 + As/(2L))
s ’
B3 =min{Ey/2, B(Ey/2)y/M/C", E(\2/(2L))}
E,=4M,B*(Ey/2)/(3Eo),

by =

and {e}2, = {A(2")}2,, where M = 25 (33 + [|l2.|2 )

=20t (p1-+1)/ (\apr). Ma=4C"m(p1, +1)/ (on M),
EO = % and C’,C" are universal positive constants
mentioned in Lemma 10.

‘We now formally state the sufficiency of (23) and (24) for (8)
and (9) in Lemma 11 so that we can use the linear and quadratic
convergence rate for main iterations.

Lemma 11: For Algorithm 2, (23) indicates (8) and (24)
indicates (9).

Proof of Lemma 11: Note that z;(M 1) = —tB] N+,
and 2%+ = ¥ 4 2, (A1), The conclusion immediately holds

because Hy (2 (AN T1)) = Fy(x*+1; 2%) and
Hi(z(N)) — De(NH)
> Hy(2(X; ")) — min H(2)

which is from strong duality. Therefore, the proof of Lemma 11
is complete. 0
Based on Lemma 11, we prove some properties induced by
conditions of Theorem 3. In particular, Lemma 12 gives the
ones induced by part (a) of Theorem 3, and Lemma 13 gives

the ones induced by part (b) of Theorem 3.
Lemma 12: Assume Assumption 1 and (8) hold for any k € N
with some p; > 0. If A(2°) < Ey, then for any k € N, we have
F(z")

— F(x,) < \?/(2L) (46)

and
A(z¥) <min{\/(2L), M1 B*(\s/(2L))/C"}.  (47)

Proof of Lemma 12: Note that E(-) defined in (44) is
monotonically increasing. Since A(xo) < Fq, from Lemma 7
we have

F(z°) — F(z,) < Asmin{\,/(2L), M1 B*(\;/(2L))/C"}.
Therefore, we can apply (40) and it implies that
F(a") — F(z,) < F(2°) — F(x,) (48)
< A\ min{\,/(2L), My BX(A,/(21))/C"},
which proves (46). From (14), we have
N A(zF

) < F(a¥) = F(x.),

which leads to (47). Therefore, the proof of Lemma 12
is complete. O
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Lemma 13: Assume Assumption 1 and (9) hold for any k € N
with some 0 < p;, < 1/4. If A(2°) < Es, then for any k € N,
(46) holds, and the following two inequalities hold

Az < %A(xk) (49)
A(z?) < Es. (50)

Proof of Lemma 13: Based on (41), we have
EoA(zF 1) < A%(zF),VE > 0. (51)

We prove (49) by induction. When k = 0, noticing that A (z%) <
Ey/2, by (51), we have EqA(z!) < A(2°)(Ey/2), and there-
fore (49) holds for k=0. We now assume that (49) holds
for k < ko for ko € N. We then have A(z*0) < A(20) < Ey/2
and using (51), we have EgA(zFo1) < A(zk0)(Ey/2), which
implies that (49) holds for k = kg. This completes the proof for
(49), which immediately indicates (50) for any k& > 0. This indi-
cates that A(2%) < A(2°) < B3 < E(\?/(2L)). By Lemma 7,
F(z%) — F(x,) < A\%/(2L), which indicates that (46) holds for
any k > 0. Therefore, the proof of Lemma 13 is complete. [J

We can notice that a common property under conditions for
(a) or (b) is that (46) holds for any k& > 0, based on which, we
give Lemma 14 to show another common property.

Lemma 14: If (46) and Assumption 1 hold, then we have

As

)\ -1
2L< +||w*||2> A(z") < [lz* = Sy(a)l2, (52)

) < Fy(zF; %) — Fy (St(mk);xk) .

Proof of Lemma 14: For fixed k > 0, we define #° = 2*
and z! = S;(2*). Therefore #° and Z! satisfy (8) (with & re-
placed by 0 and z replaced by ) with p; = 0. Hence we have

AA(20) < F(3°) — F(x,) < A2/(2L) and
F(2°) - F(&')
= F(i°%) — F(z,) — (F(&') - F(z,))
> F(i%) — F(z,) — % (F(3%) = F(xy))
= S(FG) ~ F(z,)) (54)

where the inequality is from (40) with p; = 0. Moreover, from
Assumption 1 we have

MNA(EY) < F(2Y) — F(xy)
<A2/(2L),

< (1/2) (F(&%) = F(x.))

where the second inequality can be obtained by applying (40).
Thus, we have max{A(z°), A(z')} < \s/(2L). So, based on
Lemma 6 and Assumption 1,

AAZY) < F(3°) = F(a,) <2(F(2°) — F(2'))
<2L (A + x*||2> 20 — &2, (55)

where the second inequality is from (54), and the last inequality
is from Lemma 6. (55) implies that

A [ As N
-l > 52 (5 +leda) A
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This proves (52). To prove (53), without loss of generality,
we assume that A(7°) = |7 — 2, ||2. Using (29) and the fact
that F;(3°;7°) = F(2°) and noticing that #' = S,(7°) is the
minimizer of F(-;2°), we have

Fi (2% 2% — Fy(2t;2°%) > F(2°) — Fy(z,; 2°)
= F() - Flaia®) - 5 8G)
> F(i%) — F(z,) — LA?*(2Y)
> \A(E%) — LA?(2Y),

where the second inequality is due to (29), and the last
inequality is due to Assumption 1. Using the fact that A(7°) <
(F(3°) — F(z4))/Xs < Xs/(2L) based on Assumption 1,
we have

Fi (2% 2% — Fy(z;2°%) > (/\S - L;\L> A(z%) = %A(fo),

which proves (53). Therefore, the proof of Lemma 14 is
complete. 0

Now, we are ready to give an upper bound for Jj.

Lemma 15: Assume that Assumption 1 holds. For Algo-
rithm 2 under either options (23) with p; >0 or (24) with
pn € (0,1/4), for any k € N, if (46) holds, the following state-
ments hold.

(a) (Low Accuracy) When using option (23), we have

[ MBil3 ]
max {A(Ik)’ C
(b) (High Accuracy) When using option (24), we have
[ M| Bil3 ]
max {AQ(gjk)’ C
Here, C’" and C” are the constants in Lemma 10 and M =

-1
25 (55 + llwall2) . My =2C"tm(py +1)/(Aspr) and My =

4C" 2 m(pn + 1)/ (pn M?).
Proof of Lemma 15: (a) By choosing

1" 2
i {max {C,, (20 tm B3 (o0 + U)H L s

i < ~1. (56)

Ji < —1. (57

pl)\sA(zk)
we have
C"tm| Byl k
— 2 < A\ A 2+ 2p;), 5
T S apaE)/ @420, 69
which, together with (45), yields that
Hi(ze(NT1) = De(N)
<A A*) /(2 4 2p1)
Pl .
< H(0) — H
<Ti, ( #(0) — min k(3)>a (60)

where the last inequality is from (53). From (60) we have
Hi(z(\) = De(A)
<1 (“H 04 + D) + H(0) -~ i 71(5) )
zeR™

<pi (Hr(0) — Hp(z:(N*1))) ,
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where the last inequality is due to (21), and this gives (23).
Therefore, (23) should have already been satisfied when (58)
holds. This proves (56) in Lemma 15(a).

(b) By choosing

| , (AC"Em|Byl3(on + 1)
o () )]

we have
CrmlBl _ o
j+2
which, together with (45), yields that
Hyy(2(N)) = DN
< M2ppA%(a®)/ (441 + pn))
< pullz® = Se(®)3/ (4t(1 + pn))
where the last inequality is from (52). Denote

Zgx = argmin, cp. Hy(z), which indicates that | zp|2 =
|lz* — Si(x*)||2. We have

WA (@) (41 + o)), (62)

(63)

1 , , ,
Ellzk()\éﬂ) — zeell3 < He(ze (M) — Di(MT),

which follows from the fact that Hy(-) is %-strongly con-
vex and (21). From (63), we have |lz;(M*11) — 24,13 <
pn/ (2(1+ pn)) || z&« 3. So, by the Cauchy—Schwarz inequal-
ity, we have
Pl e IB 2 Bkl = Sl (M) = 23
> prllzrell3/ (441 + pn)) -

Together with (63), (24) should have already been satisfied
when (61) holds. This proves (57) in Lemma 15(b).
Therefore, the proof of Lemma 15 is complete. 0
Next, we are ready to present the proof of Theorem 3.
Proof of Theorem 3: We first prove part (a) of Theorem 3
and then prove part (b) of Theorem 3 in what follows.
(a) Lemma 8 and (47) indicate that supjcy ||Bkll2 <
B(As/(2L)). Together with (46), (56), (47), we obtain

Jp < MiB*(\s/(2L))/A(zF). (64)

We now prove the desired result. If € > A(z?), then J(¢) =
0 and (25) holds. If € < A(2”), we denote K. as the smallest
index such that A(z*) > ¢, Vk < K, and A(z%<*1) < e. From
Lemma 6 we have

L(||z4ll2 + As/(2L) A(2*)
> F(z®) — F(z,)

2 4+4p\ "
2 +4p\ "
> A A(fe) | —X2
S )<1+4Pl>

2+4pl)K€k
> e, L VO<k<K. (65
> € (1+4pz (65)

Here we explain how these inequalities were obtained. The first
inequality follows from Lemma 6 and (47). Since (46) holds,
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(40) holds for any k£ € N and it implies the second inequality
in (65). The third inequality in (65) follows from Assump-
tion 1 and the last inequality in (65) follows from the fact that

A(zEe) > e.
From (65) we know that V 0 < k < K, it holds that
)\s 2+ 4pl ek
Alzh) > ¢ ( ) . (66)
U2 Tede + aoren) \T+ 4
Therefore, we have
K.
= Z T
k=0
K.
<> MB*()\/(2L))/AF)
k=0
N~ MB2GHL(xall2 + A/ (L)) (244"
o o A€ 1+ 4p;

B i 2+4p\" " _ B
€(2+4p) = \1+4p ~ e
where the first inequality follows from (64) and the second
inequality follows from (66). This completes the proof of The-
orem 3(a).

(b) Lemma 8 and (50) indicates that supjcy ||Bi|l2 <
B(E/2). Together with (46), (49), (57).,

B*(Eo/2)/ A% (a"

which follows from our choice of E5 < B(Ey/2)\/Ma/C’
such that MyB2%(Ey/2)/A%(x*) > MyB?(Ey/2)/A?(2°) >
C’. Next, we prove the conclusion. We adopt the same defi-
nition of K. as in (a) and pick {¢;}$2, = {A(z%)}22, so that
K., =i — 1. From (51) we have

Ty < My ),k >0, (67)

1> \/Eye;, Vi €N. (68)
From (49) and (68) we have
A(z?) > 27k /Eye;, VO <k <i — 1. (69)

Finally, for any 7 € N, we have

Mo B2(Ey/2)
ZJ <Z fJi—1— kEoE
< 4MQBQ(EO/2) B &
- 3Eqe¢; B €; '

Here, the first inequality follows from (67) and (69), and the
second inequality follows from the fact that

-1

1 4
24171 k —kz 47,71 Ai—1—Fk g

This completes the proof of Theorem 3(b).
Therefore, the proof of Theorem 3 is complete. O

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

VI. CONCLUSION

In this paper, we proposed a new inexact proximal linear
algorithm for solving the robust phase retrieval problem. Our
contribution lies in the two adaptive stopping criteria for the
subproblem in the proximal linear algorithm. We showed that
the iteration complexity of our inexact proximal linear algo-
rithm is in the same order as the exact proximal linear algorithm.
Under the sharpness condition, we can prove the proposed
method’s local convergence. Moreover, we discussed how to
use the FISTA for solving the subproblem in our inexact prox-
imal linear algorithm and analyzed the total oracle complexity
for obtaining an e-optimal solution under the sharpness condi-
tion. Numerical results demonstrated the superior performance
of the proposed methods over some existing methods.
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