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A New Inexact Proximal Linear Algorithm

With Adaptive Stopping Criteria for Robust

Phase Retrieval
Zhong Zheng , Shiqian Ma , and Lingzhou Xue

Abstract—This paper considers the robust phase retrieval
problem, which can be cast as a nonsmooth and nonconvex
optimization problem. We propose a new inexact proximal
linear algorithm with the subproblem being solved inexactly.
Our contributions are two adaptive stopping criteria for the
subproblem. The convergence behavior of the proposed methods
is analyzed. Through experiments on both synthetic and real
datasets, we demonstrate that our methods are much more
efficient than existing methods, such as the original proximal
linear algorithm and the subgradient method.

Index Terms—Robust phase retrieval (RPR), nonconvex and
nonsmooth optimization, proximal linear algorithm, complexity,
sharpness.

I. INTRODUCTION

P
HASE retrieval aims to recover a signal from intensity-

based or magnitude-based measurements. It finds various

applications in different fields, including X-ray crystallography

[1], optics [2], array and high-power coherent diffractive imag-

ing [3], astronomy [4] and microscopy [5]. Mathematically,

phase retrieval tries to find the true signal vectors x� or −x�

in R
n from a set of magnitude measurements:

bi = (a�i x�)
2, for i= 1, 2, . . . ,m, (1)

where ai ∈ R
n and bi ≥ 0, i= 1, 2, . . . ,m. Directly solving the

equations leads to an NP-hard problem [6], and nonconvex

algorithms based on different designs of objective functions

have been well studied in the literature, including Wirtinger

flow [7], truncated Wirtinger flow [8], truncated amplitude flow

[9], reshaped Wirtinger flow [10], etc.
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In this paper, we focus on the robust phase retrieval (RPR)

problem [11], which considers the case where bi contains noise

due to measurement errors of equipment. That is,

bi =

{

(a�i x�)
2, i ∈ I1,

ξi, i ∈ I2,
(2)

in which I1

⋃

I2 = {1, 2 . . . ,m}, I1 ∩ I2 = ∅, and ξi denotes a

random noise. [11] proposed to formulate RPR as the following

optimization problem:

min
x∈Rn

F (x) :=
1

m

m
∑

i=1

∣

∣(a�i x)
2 − bi

∣

∣ . (3)

It is demonstrated in [11] that using (3) for RPR possesses better

recoverability compared to the median truncated Wirtinger flow

algorithm [12] based on the �2-loss.

Solving (3) is challenging because it is a nonconvex and non-

smooth optimization problem. In [13], the authors proposed the

subgradient method to solve it. This method requires geometri-

cally decaying step size, and it is unclear how to schedule this

kind of step size in practice. [11] proposed to use the proximal

linear (PL) algorithm to solve (3). For ease of presentation, we

rewrite (3) as

min
x∈Rn

F (x) = h(c(x)) =
1

m

∥

∥|Ax|2 − b
∥

∥

1
, (4)

where Ax=[〈a1, x〉, . . . , 〈am, x〉]�, b=[b1, . . . , bm]�, h(z) :=
1
m
‖z‖1, and c(x) := |Ax|2 − b is a smooth map in which | · |2

is element-wise square. One typical iteration of the PL algo-

rithm is

xk+1 ≈ argmin
x∈Rn

Ft(x;x
k), (5)

where t > 0 is the step size,

F (z; y) := h(c(y) +∇c(y)(z − y)), (6)

Ft(z; y) := F (z; y) +
1

2t
‖z − y‖22, (7)

∇c denotes the Jacobian of c, and “≈” means that the subprob-

lem is solved inexactly. The subproblem (5) is convex and can

be solved by various methods such as the proximal operator

graph splitting (POGS) algorithm used in [11]. The PL method

has drawn lots of attention recently. It has been studied by [14],

[15], [16] and applied to solving many important applications
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such as RPR [11], robust matrix recovery [17], [18], and sparse

spectral clustering [19]. The subproblem (5) is usually solved

inexactly for practical concerns. As pointed out in [11], the PL

implemented in [11] is much slower than the median truncated

Wirtinger flow method. We found that this is mainly due to

their stopping criterion for solving the subproblem (5), which

unnecessarily solves (5) to very high accuracy in the early stage

of the algorithm. Moreover, we found that the POGS algorithm

used in [11] is ineffective in solving the subproblem (5). In this

paper, we propose adaptive stopping criteria for inexactly solv-

ing (5) with the fast iterative shrinkage-thresholding algorithm

(FISTA) [20], [21], [22]. We found that our new inexact PL

(IPL) with the adaptive stopping criteria greatly outperforms ex-

isting implementations of PL methods [11] for solving RPR (4).

Our Contributions. In this paper, we propose two new

adaptive stopping criteria for inexactly solving (5). The first one

ensures that (5) is solved to a relatively low accuracy:

(LACC) Ft(x
k+1;xk)− min

x∈Rn

Ft(x;x
k)

≤ ρl
(

Ft(x
k;xk)− Ft(x

k+1;xk)
)

, ρl > 0, (8)

and the second one ensures that (5) is solved to a relatively high

accuracy:

(HACC) Ft(x
k+1;xk)− min

x∈Rn

Ft(x;x
k)

≤ ρh
2t

‖xk+1 − xk‖22, 0< ρh < 1/4. (9)

Here, ρl and ρh are given constants. Similar to the proximal

bundle method [23] for nonsmooth convex problems, (LACC)

and (HACC) are designed to ensure the sufficient decrease of

the objective function for the nonsmooth and nonconvex RPR

problem. Note that both (LACC) and (HACC) are only used

theoretically because minx∈Rn Ft(x;x
k) is not available. Later

we will propose more practical stopping criteria that can guar-

antee (LACC) and (HACC). The connections of our approach

to existing work are listed below.

(a) Our (LACC) condition coincides with the inexact stop-

ping criterion proposed in [24], [25], [26] for the proxi-

mal gradient method. In these papers, the authors focus

on a different optimization problem

min
x∈Rn

f0(x) := f1(x) + f2(x),

in which f1 is a smooth function, and f2 is a proper,

convex, and lower semi-continuous function. One typical

iteration of their algorithms can be written as

yk+1 ≈ min
x∈Rn

f0k(x) = f1(x
k) + (x− xk)

�∇f1(x
k)

+ f2(x) +
1

2
(x− xk)�Hk(x− xk), (10a)

xk+1 = xk + λk(y
k+1 − xk), (10b)

where Hk ∈ R
n×n is a positive semi-definite matrix and

λk ∈ [0, 1] is a step size. The stopping criterion for inex-

actly solving (10a) proposed in [24], [25], [26] is

f0k(y
k+1)− f̃0k ≤ η

(

f0k(x
k)− f̃0k

)

, (11)

where f̃0k =minx∈Rn f0k(x) and η ∈ (0, 1). We note

that this is the same as our (LACC). Therefore, our

(LACC) is essentially an extension of (11) from the

proximal gradient method to the proximal linear method.

(b) To the best of our knowledge, our (HACC) criterion is

new and serves as a good alternative to (LACC). From

our numerical experiments, we found that (HACC) works

comparably with (LACC), and we believe that it can be

useful for other applications.

(c) We analyze the overall complexity and the local conver-

gence of our IPL algorithm for solving RPR under the

sharpness condition. To the best of our knowledge, this

is the first time such results have been obtained under the

sharpness condition.

(d) We propose to solve (5) inexactly using FISTA [20], [21],

[22], which uses easily verifiable stopping conditions that

can guarantee (LACC) and (HACC). Through extensive

numerical experiments, we demonstrate that our IPL with

the new stopping criteria significantly outperforms exist-

ing algorithms for solving RPR.

Organization. The rest of this paper is organized as follows.

In Section II, we propose the main framework of our inexact

proximal linear algorithm with two new adaptive stopping cri-

teria for the subproblem. We establish its iteration complexity

for obtaining an ε-stationary point and its local convergence

under the sharpness condition. Connections with some existing

methods are also discussed. In Section III, we discuss how to

adapt the FISTA to solve the subproblem inexactly. We also

establish the overall complexity of FISTA – the total number

of iterations of the FISTA – in order to obtain an ε-optimal

solution under the sharpness condition. In Section IV, we show

the numerical results on both synthetic and real datasets to

demonstrate the advantage of the proposed methods over some

existing methods. The proofs for all the theorems and lemmas

are given in Section V. Finally, we include some concluding

remarks in Section VI.

II. IPL AND ITS CONVERGENCE ANALYSIS

In this section, we introduce our IPL algorithm for solving the

RPR (4) with the inexact stopping criteria (LACC) and (HACC)

for the subproblem (5) and analyze its convergence. We will

discuss the FISTA for solving (5) that guarantees (LACC) and

(HACC) in the next section.

We first follow [15] to introduce some notation. Let

St(y) := argmin
x∈Rn

Ft(x; y),

·(x; y) := Ft(x; y)− Ft(St(y); y),

where Ft(z; y) is defined in (7). We will also use the notation

L=
2

m
‖A‖22 =

2

m

∥

∥

∥

∥

∥

m
∑

i=1

aia
�
i

∥

∥

∥

∥

∥

2

.

A Meta Algorithm of our IPL is summarized in Algorithm 1.

We again emphasize that Algorithm 1 cannot be implemented

because minx∈Rn Ft(x;x
k) is not available, and we will dis-

cuss practical versions of it in the next section.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on February 28,2024 at 01:57:55 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG et al.: NEW INEXACT PROXIMAL LINEAR ALGORITHM WITH ADAPTIVE STOPPING CRITERIA FOR RPR 1083

Algorithm 1 IPL – A Meta Algorithm

Input: Initial point x0, step size t= 1/L, parameters ρl > 0
and ρh ∈ (0, 1/4)
for k = 0, 1, . . . , do

Obtain xk+1 by inexactly solving (5) with one of the

following stopping criteria:

Option 1: (LACC), i.e., (8)

Option 2: (HACC), i.e., (9)

end for

A. Convergence Under General Settings

In this subsection, we analyze the convergence rate of IPL

(Algorithm 1) for obtaining an ε-stationary point of (4) under

the general settings when the sharpness condition may not hold.

We use the definition of ε-stationary point as introduced in [15].

Definition 1: We call x̃ an ε-stationary point of (4) if the

following inequality holds:

‖Gt(x̃)‖2 ≤ ε, (12)

where Gt(x) is the proximal gradient which is defined as:

Gt(x) = t−1 (x− St(x)) . (13)

Our convergence rate result of Algorithm 1 is given in The-

orem 1, and the proof is given in Section V.

Theorem 1: Denote F � = infx∈Rn F (x). For Algorithm 1

with t= 1/L, the following conclusion holds.

(a) When (LACC) holds with ρl > 0 for any k ∈ N, we can

find an ε-stationary point in
⌊

2(1 + ρl)(F (x0)− F �)

tε2

⌋

iterations for any ε > 0.

(b) When (HACC) holds with 0< ρh < 1/4 for any k ∈ N,

we can find an ε-stationary point in
⌊

2(1−√
ρh)

2(F (x0)− F �)

(1− 2
√
ρh)tε2

⌋

iterations for any ε > 0.

Theorem 1 shows that IPL finds an ε-stationary point in

O(1/ε2) main iterations with the adaptive IPL stopping con-

ditions. Moreover, Theorem 1 achieves the best known conver-

gence rate for PL in [15]. We should point out that we use two

adaptive stopping criteria for the subproblem, but [15] requires

solving the subproblem (5) exactly (see their Proposition 3)

or using their pre-determined subproblem accuracy conditions

(see their Theorem 5.2).

B. Local Convergence Under Sharpness Assumption

In this subsection, we analyze the local convergence of IPL

(Algorithm 1) to the global optimal solution under the sharp-

ness condition.

Assumption 1 (Sharpness): There exists a constant λs > 0
such that the following inequality holds for any x ∈ R

n:

F (x)− F (x�)≥ λs∆(x), (14)

where ∆(x) := min{‖x− x�‖2, ‖x+ x�‖2}.

[11] proved that the sharpness condition (Assumption 1) is

satisfied by the RPR (4) with high probability under certain

mild conditions.

Another assumption is about the closeness between the initial

point and the optimal solution, which can be guaranteed by the

modified spectral initialization (see Algorithm 3 in [11]) with

high probability under some mild conditions.

Assumption 2: Under Assumption 1, we assume that the ini-

tial point x0 in Algorithm 1 satisfies the following inequalities.

(a) If (LACC) is chosen in Algorithm 1, then we assume

x0 satisfies

F (x0)− F (x�)≤ λ2
s/(2L). (15)

(b) If (HACC) is chosen in Algorithm 1, then we assume

x0 satisfies

∆(x0)≤ λs(1− 4ρh)

2(1− 3ρh)L
. (16)

We now define the ε-optimal solution to RPR (4).

Definition 2: We call x̄ an ε-optimal solution to RPR (4), if

∆(x̄)≤ ε.
Now we are ready to show in Theorem 2 that, in terms of

main iteration number, (LACC) leads to local linear conver-

gence and (HACC) leads to local quadratic convergence.

Theorem 2: Let t= 1
L

and suppose that Assumption 1 holds.

For the sequence {xk}∞k=0 generated by Algorithm 1, we have

the following conclusions.

(a) (Low Accuracy) When (15) holds and (8) holds with ρl >
0 for any k ∈ N, we have

∆(xk)≤ F (x0)− F (x�)

λs

(

1 + 4ρl
2 + 4ρl

)k

, ∀k ∈ N.

(b) (High Accuracy) When (16) holds and (9) holds with 0<
ρh < 1/4 for any k ∈ N, we have

∆(xk)≤ λs(1− 4ρh)

L(1− 3ρh)
¸2

k

, ∀k ∈ N,

where ¸ := L∆(x0)(1−3ρh)
λs(1−4ρh)

.

Theorem 2 shows that, with a good initialization, using

(LACC) finds an ε-optimal solution to (4) within O(log 1
ε
)

iterations, which is a linear rate, and using (HACC) finds an

ε-optimal solution to (4) within O(log log 1
ε
) iterations, which

is a quadratic rate.

C. Related Work

There are two closely related works that need to be discussed

here. [11] studied the PL algorithm for solving RPR (4), and

established its local quadratic convergence under the sharpness

condition. But their theoretical analysis requires the subproblem

(5) to be solved exactly. In practice, [11] proposed to use POGS

[27], which is a variant of the alternating direction method of

multipliers (ADMM), to solve (5) inexactly. However, they did

not provide any convergence analysis for the algorithm when

the subproblem (5) is solved inexactly by POGS. [15] also con-

sidered solving (4) for obtaining an ε-stationary point as defined
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in Definition 1.1 Indeed, several algorithms were proposed and

analyzed in [15]. In particular, a practical algorithm proposed

by [15] uses FISTA [20], [21], [22] to inexactly solve

min
λ∈Rm

φk,ν(λ) =
t

2
‖xk/t−∇c(xk)�λ‖22

− λ�(c(xk)−∇c(xk)xk) + (hν)
�(λ),

which is the dual problem of a smoothed version of (5). Here

(hν)
�(·) is the Fenchel conjugate of hν , and hν is the Moreau

envelope of h, which is defined as

hν(λ) = inf
λ′∈Rm

h(λ′) +
1

2ν
‖λ′ − λ‖22.

[15] proposed to terminate the FISTA when

dist(0; ∂φk,ν(λ
k+1))≤ 1

Lh(k+1)2 , and then update xk by

xk+1 = xk − t∇c(xk)�λk+1. The authors established the

overall complexity of this algorithm for suitably chosen

parameters t and ν. Compared to [15], we use adaptive

stopping criteria and provide a better convergence rate based

on Assumption 1.

III. FISTA FOR SOLVING THE SUBPROBLEM INEXACTLY

In this section, we propose to use the FISTA to inexactly

solve (5) with more practical stopping criteria that guarantee

(LACC) and (HACC). Therefore, the convergence results (The-

orems 1 and 2) in Section II still apply here.

For simplicity, we let t= 1/L throughout this section and

rewrite (5) as follows.

min
z∈Rn

Hk(z) =
1

2t
‖z‖22 + ‖Bkz − dk‖1, (17)

where we denote z = x− xk, Bk = 2
m

diag(Axk)A, and dk =
1
m

(

b− (Axk)2
)

. As a result, (LACC) and (HACC) can be

rewritten respectively as

Hk(zk)− min
z∈Rn

Hk(z)≤ ρl (Hk(0)−Hk(zk)) , ρl ≥ 0, (18)

and

Hk(zk)− min
z∈Rn

Hk(z)≤
ρh
2t

‖zk‖22, 0≤ ρh < 1/4. (19)

In IPL, we set xk+1 = xk + zk, where zk satisfies either (18)

or (19). The dual problem of (17) is

max
λ∈Rm,‖λ‖∞≤1

Dk(λ) =− t

2

∥

∥B�
k λ

∥

∥

2

2
− λ�dk. (20)

From weak duality, we know that

Dk(λ)≤Hk(z), ∀z ∈ R
n, and ‖λ‖∞ ≤ 1. (21)

Therefore, Dk(λ) can serve as a lower bound for minz Hk(z),
and we can obtain verifiable stopping criteria that are sufficient

conditions for (18) and (19). This leads to our inexact FISTA

for solving (17), which is summarized in Algorithm 2. Here we

define zk(λ) =−tB�
k λ.

1The authors of [15] actually considered solving a more general problem
minx g(x) + h(c(x)). Here, for simplicity, we assume that g = 0 and this
does not affect the discussion.

Algorithm 2 FISTA for Solving (20)

Input: λ0 ∈ R
m satisfying ‖λ0‖∞ ≤ 1. λ0

a = λ0
b = λ0

c = λ0,

γ0 = 1, ρl > 0 and ρh ∈ (0, 1/4).
for j = 0, 1, 2 . . . do

λj+1
c = (1− γj)λ

j
a + γjλ

j
b,

λj+1
b = argmin

‖λ‖∞≤1

γj
2tkj

‖λ− λj+1
c ‖22

+ (λ− λj+1
c )�

(

tBkB
�
k λj+1

c + dk
)

, tkj > 0,
(22)

λj+1
a = (1− γj)λ

j
a + γjλ

j+1
b ,

γj+1 = 2/
(

1 +
√

1 + 4/γ2
j

)

,

Terminate if one of the following stopping criteria is sat-

isfied:

(LACC-FISTA) Hk(zk(λ
j+1
a ))−Dk(λ

j+1
a ))

≤ ρl(Hk(0)−Hk(zk(λ
j+1
a ))), (23)

(HACC-FISTA) Hk(zk(λ
j+1
a ))−Dk(λ

j+1
a ))

≤ ρh
2t

‖zk(λj+1
a )‖22. (24)

end for

Output: λk = λj+1
a , zk =−tB�

k λk, xk+1 = xk + zk.

Remark 1: Here we remark on the step size tkj in (22). It

can be chosen as
(

tL2
k

)−1
for some Lk ≥ ‖Bk‖2 or chosen by

the Armijo backtracking line search. More specifically, suppose

that we have an initial step size tk(−1) > 0. Given the step size

tk(j−1), j ≥ 0, denote

λj+1
b,ts

= argmin
λ∈Rm,‖λ‖∞≤1

γj
2ts

‖λ− λj+1
c ‖22

+ (λ− λj+1
c )�

(

tBkB
�
k λj+1

c + dk
)

,

and

λj+1
a,ts

= (1− γj)λ
j
a + γjλ

j+1
b,ts

tkj can be selected as

tkj =max

{

ts|ts = 2−stk(j−1), s ∈ N,

1

2ts
‖λj+1

a,ts
− λj+1

c ‖22 ≥
t

2
‖B�

k λj+1
a,ts

−B�
k λj+1

c ‖22
}

.

We now discuss the overall complexity of the IPL (Algo-

rithm 1) with the subproblem (5) solved inexactly by FISTA

(Algorithm 2). For ease of presentation, we denote this algo-

rithm as IPL+FISTA. We assume that IPL is terminated af-

ter Kε iterations, when an ε-optimal solution is found, i.e.,

∆(xKε)≤ ε,∆(xKε−1)> ε. We use Jk, k ≥ 0 to denote the

number of iterations of FISTA when it is called in the k-th

iteration (getting xk+1 from xk) of IPL. The overall complexity

of IPL+FISTA for obtaining an ε-optimal solution is thus given

by J(ε) =
∑Kε−1

k=0 Jk, which equals the times that we call (22).

Now we are ready to give the overall complexity of IPL+FISTA

in Theorem 3.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on February 28,2024 at 01:57:55 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG et al.: NEW INEXACT PROXIMAL LINEAR ALGORITHM WITH ADAPTIVE STOPPING CRITERIA FOR RPR 1085

Theorem 3: Let t= 1/L, tkj =
(

t‖Bk‖22
)−1

and suppose that

Assumption 1 holds.

(a) (Low Accuracy) For the overall complexity of Algorithm

1, when using Algorithm 2 with option (23) with ρl > 0,

for any x0 ∈ R
n that satisfies ∆(x0)≤ E1, we have

J(ε)≤ E2/ε, ∀ε > 0. (25)

Here E1, E2 are positive constants that only depend on

{ai}mi=1, {bi}mi=1, x�, λs, L and ρl, and they will be spec-

ified later in the proof.

(b) (High Accuracy) For the overall complexity of Algo-

rithm 1, when using Algorithm 2 with option (24) with

ρh ∈ (0, 1/4), there exist positive constants E3, E4, and

{εi}∞i=1 with εi > εi+1, ∀i ∈ N+ and limi→∞ εi = 0 such

that if ∆(x0)≤ E3, then

J(εi)≤ E4/εi, ∀i ∈ N+. (26)

Here E3, E4 only depend on {ai}mi=1, {bi}mi=1, x�, λs, L
and ρh, {εi}∞i=1 depends on {∆(xi)}∞i=1 and they will

be specified later in the proof. Note that (26) implies that

the worst-case overall complexity might be higher than

O(1/ε) – see the explanation below for more details.

Theorem 3 shows that under the (LACC-FISTA) stopping

criterion, we need O(1/ε) iterations to find an ε-optimal so-

lution, and under the (HACC-FISTA) stopping criterion, we

have the same rate with regard to a countable positive sequence

that decreases to zero. Theorem 3 provides better theoretical

rates compared to O(1/ε3) in [15]. Moreover, the results in

Theorem 3 are about the convergence to ε-optimal solution,

while the results in [15] are for convergence to ε-stationary

point. Our results require the sharpness condition, which was

not assumed in [15].

For (b) in Theorem 3, we can only find a countable se-

quence of diminishing εi’s to show the O(1/εi) rate. We cannot

show the O(1/ε) rate for any fixed ε > 0. This is because of

the local quadratic convergence under (HACC) shown in (b)

of Theorem 3. For instance, if our initial point x0 satisfies

∆(x0) = 2ε > ε, under the (HACC), the quadratic convergence

result in Theorem 3 (b) implies that ∆(x1)≤ Cε2 < ε for some

constant C > 0 when ε is sufficiently small. Therefore, IPL

finds an ε-optimal stationary point with only one main iteration.

However, Lemma 15(b) indicates that J(ε) = J0 =O(1/ε2).
Therefore, the overall complexity may become O(1/ε2), which

is higher than O(1/ε).

IV. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to com-

pare our IPL method with existing methods for solving the

RPR problem (4). Readers can find the code and datasets to

replicate the experiments in this section via https://github.com/

zhengzhongpku/IPL-code-share. The algorithms that we test

include the following ones.

(i) PL: The original proximal linear algorithm proposed by

[11] where the subproblem (5) is solved by POGS [27].

POGS terminates when both the primal residual and the

dual residual are small enough. In their code, the authors

[11] implemented a two-stage trick that uses a relatively

larger tolerance in early iterations and a smaller tolerance

in later iterations to terminate the POGS. In our compar-

ison, we use all the default parameters set by the authors

in their code2.

(ii) Subgradient method. The subgradient method with ge-

ometrically decaying step sizes was proposed by [13],

and they used this algorithm to solve the RPR (4). One

typical iteration of this algorithm is

xk+1 = xk − λ0q
kξk/‖ξk‖2, k ≥ 0, (27)

in which λ0 > 0, q ∈ (0, 1) are hyper-parameters and

ξk = 1
n

∑m

i=1 2a
�
i x

ksign((a�i x
k)2 − bi).

(iii) IPL-FISTA-Low, IPL-FISTA-High: our IPL+FISTA

algorithm with stopping criteria (LACC-FISTA) and

(HACC-FISTA) in Algorithm 2, respectively, and we

also used the Armijo backtracking line search discussed

in Remark 1.

The initial point for all the tested algorithms is generated by

the spectral initialization given in Algorithm 3 in [11]. All the

code is run on a server with Intel Xeon E5-2650v4 (2.2GHz).

Each task is limited to a single core – no multi-threading is used.

A. Synthetic Data

We generate synthetic data following the same manner as

[11]. Specifically, ai’s are drawn randomly from the nor-

mal distribution N (0, In). The entries of x� ∈ {−1, 1}n are

drawn randomly from discrete Bernoulli distribution. We de-

note pfail = |I2|/m, where I2 is generated by random sampling

without replacement from {1, 2, . . . ,m}. ξi’s for these samples

in (2) are independently drawn from Cauchy distribution, which

means that

bi = ξi = M̃ tan
(π

2
Ui

)

, Ui ∼ U(0, 1), ∀ i ∈ I2,

where M̃ is the sample median of {(a�i x�)
2}mi=1. For a given

threshold ε > 0, we call an algorithm successful if it returns an

x such that the relative error

∆(x)/‖x�‖2 ≤ ε. (28)

For each combination of n, k =m/n and pfail, we randomly

generate 50 instances according to the above procedure, and we

report the success rate of the algorithm among the 50 instances.

For IPL-FISTA-Low and IPL-FISTA-High, we set ρl = ρh =
0.24. For the subgradient method, we set q = 0.998 which is

one of the suggested choices of q in [13]. Moreover, [13] did

not specify how to choose λ0, and we set λ0 = 0.1‖x0‖2 as

we found that this choice gave good performance. Since we

found that in most cases, the relative error given by PL is in

the level of [10−5, 10−3], we set ε= 10−3 in (28) for PL. In

our comparison, we first run PL using the default settings of the

code provided by the authors of [11]. If the returned x satisfies

(28) with ε= 10−3, then we claim that PL is successful, and

we terminate IPL and Subgradient method once they found an

2The code of [11] can be downloaded from https://web.stanford.edu/
~jduchi/projects/phase-retrieval-code.tgz
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Fig. 1. The comparison of success rates and CPU time on synthetic datasets
with pfail = 0.05 and n= 500.

Fig. 2. The comparison of success rates and CPU time on synthetic datasets
with pfail = 0.15 and n= 500.

iterate with a smaller objective value than the one given by PL.

If the iterate returned by PL does not satisfy (28) with ε= 10−3,

then we claim that PL failed, and we then terminate IPL and

Subgradient method when F (xk)− F (x�)≤ 10−7. The CPU

time is only reported for the successful cases for PL. The cost

of computing the spectral norm ‖A‖2 to obtain L is included

in the total CPU time of PL and IPL.

The simulation results corresponding to pfail = 0.05 and

pfail = 0.15 are shown in Figs. 1 and 2, where the x-axis cor-

responds to different values of m since n= 500 is fixed. From

both Figs. 1 and 2, we can see that the four algorithms have

similar success rates, but the total CPU time of IPL-FISTA-Low

and IPL-FISTA-High that includes the cost of computing the

spectral norm ‖A‖2 is significantly less than that of others.

B. Image Recovery

In this section, we compare the four candidate algorithms on

images in a similar manner as [11]. In particular, suppose we

have an RGB image array X� ∈ R
n1×n2×3, we construct the

signal as x� = [vec(X�); 0] ∈ R
n, in which n=min{2s | s ∈

N, 2s ≥ 3n1n2}. Let Hn ∈ 1√
n
{−1, 1}n×n be the Hadamard

Fig. 3. A real RNA nanoparticles image.

matrix and Sj ∈ diag({−1, 1}n), j = 1, 2, . . . , k is a random

diagonal matrix, and its diagonal elements are independently

distributed as discrete uniform distribution. We then let A=√
m√
k
[HnS1;HnS2 . . . HnSk] and we know L= 2 in this case.

The advantage of such a mapping is that it mimics the fast

Fourier transform, and calculating Ay is only of time complex-

ity O(m logm). We first examine the numerical comparisons

on a real RNA nanoparticles image3 as shown in Fig. 3, and we

follow the code of [11] for the experiments on a sub-image with

n= 218. We also take pfail ∈ {0.05, 0.1, 0.15, 0.2}, k ∈ {3, 6}
and set the noise in the same way as the synthetic datasets. For

each combination of dataset parameters, we run 50 replicates

by generating 50 different A and test all the candidate algo-

rithms. We use the same way as the synthetic datasets to define

success. For IPL, ρl = ρh = 0.24. For the Subgradient method,

λ0 = 0.1‖x0‖2, q = 0.998. For a replicate, if PL succeeds, the

CPU time is the time needed to reach (28).

Table I reports the median CPU time (in seconds) of the

candidate algorithms for pfail = 0.1 and m/n= 6 based on two

tolerances ε= 10−1 and ε= 10−7. We only show the results for

this combination of pfail and m/n because other choices give

similar results. It is noted from Table I that PL can only reach a

relative error that takes value in [10−2, 10−1], and IPL-FISTA

is much more efficient than PL and Subgradient methods.

Additional experimental results are reported in Table II for

comparing CPU time for the four candidate algorithms. We pro-

vide four images with n being at most 222. The experiments use

the same m/n and pfail, and the CPU time based on ten replica-

tions is reported in the form of “median (Interquartile Range)”.

Subgradient method, IPL-FISTA-Low and IPL-FISTA-High

are terminated with tolerance ε= 10−7. We can see that PL

3https://visualsonline.cancer.gov/details.cfm?imageid=11167
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TABLE I
THE COMPARISON OF THE MEDIAN CPU TIME

IN SECONDS FOR RNA IMAGE RECOVERY

ε= 0.1 ε= 10−7

PL 3166.93 NA

Subgradient 88.14 659.64

IPL-FISTA-Low 6.01 218.14

IPL-FISTA-High 48.56 175.60

TABLE II
THE COMPARISON OF THE MEDIAN CPU TIME IN HOURS WITH

THE INTERQUARTILE RANGE (IQR) IN THE PARENTHESES FOR

MULTIPLE IMAGE RECOVERY TASKS

RNA (n= 222) Hubble4 (n= 222)

PL > 10 > 10
Subgradient 4.39 (0.24) 4.72 (0.27)

IPL-FISTA-Low 1.65 (0.41) 2.07 (0.14)

IPL-FISTA-High 1.30 (0.08) 1.26 (0.06)

James Web5 (n= 221) Penn State6 (n= 222)

PL > 10 > 10
Subgradient 1.86 (0.14) 4.84 (0.66)

IPL-FISTA-Low 0.90 (0.21) 2.23 (0.16)

IPL-FISTA-High 0.56 (0.09) 1.41 (0.21)

cannot terminate within 10 hours, and IPL-FISTA still enjoys

the best efficiency.

V. PROOFS

A. Proof of Theorem 1

Before proceeding, we first present some lemmas.

Lemma 1 (Weak Convexity): (Discussion of Condition C2

in [11]) The following inequalities hold for any x, y ∈ R
n, and

L= 2
m
‖A‖22.

|F (x)− F (x; y)| ≤ L

2
‖x− y‖22, (29)

F (x)≤ Ft(x; y), ∀ t≤ 1

L
. (30)

Lemma 2 (see, e.g., equation (5.2) in [15]): The following

inequality holds for any 0< t≤ 1/L and x, y ∈ R
n.

F (x)− F (y) + ·(y;x)≥ 1

2t
‖x− St(x)‖22. (31)

The following lemma studies one iteration of our IPL algo-

rithm (as summarized in Algorithm 1).

Lemma 3: If 0< t≤ 1
L

, we have the following inequalities.

(a) When the low accuracy condition (8) is satisfied, we have

F (xk)− F (xk+1)≥ 1

2(1 + ρl)t
‖xk − St(x

k)‖22. (32)

(b) When the high accuracy condition (9) is satisfied,

we have

F (xk)− F (xk+1)≥ 1− 2
√
ρh

2t(1−√
ρh)2

‖xk − St(x
k)‖22.

(33)

4https://www.nasa.gov/image-feature/goddard/2017/hubble-hones-in-on-a-
hypergiants-home

5https://www.nasa.gov/webbfirstimages
6https://www.britannica.com/topic/Pennsylvania-State-University

Proof of Lemma 3: We first prove part (a) of Lemma 3

and then prove part (b) of Lemma 3.

(a) Letting x= xk and y = xk+1 in (31), we have

F (xk)− F (xk+1)≥ 1

2t
‖xk − St(x

k)‖22 − ·(xk+1;xk)

≥ 1

2t
‖xk − St(x

k)‖22 − ρl(F (xk)− F (xk+1)),

where the second inequality follows from (8) and (30). This

proves (32) in Lemma 3(a).

(b) When (9) holds, since Ft(·;xk) is 1
t
-strongly convex,

we have

ρh
2t

‖xk−xk+1‖22≥·(xk+1;xk)≥ 1

2t
‖xk+1−St(x

k)‖22. (34)

Let u= xk − xk+1, v = xk+1 − St(x
k). From (34) we have

ρh‖u‖22 ≥ ‖v‖22, (35)

and

‖u+ v‖22 − (1−√
ρh)

2‖u‖22
= (2

√
ρh − ρh)‖u‖22 + 2u�v + ‖v‖22

≥√
ρh(2−

√
ρh)‖u‖22 − 2‖u‖2‖v‖2 + ‖v‖22

= (
√
ρh‖u‖2 − ‖v‖2) ((2−

√
ρh)‖u‖2 − ‖v‖2)

≥ 0, (36)

where the first inequality is from the Cauchy-Schwarz inequal-

ity, and the second inequality follows from (35) and the fact that

ρh ∈ (0, 1/4). Therefore, from (34) and (36) we have

·(xk+1;xk)≤ ρh
2t

‖xk − xk+1‖22
≤ ρh

2t(1−√
ρh)2

‖xk − St(x
k)‖22,

which, together with (31), yields

F (xk)− F (xk+1)

≥ 1

2t
‖xk − St(x

k)‖22 − ·(xk+1;xk)

≥ 1

2t
‖xk − St(x

k)‖22 −
ρh

2t(1−√
ρh)2

‖xk − St(x
k)‖22

=
1− 2

√
ρh

2t(1−√
ρh)2

‖xk − St(x
k)‖22.

This proves (33) in Lemma 3(b).

Therefore, the proof of Lemma 3 is complete.

Now we are ready to prove Theorem 1.

Proof of Theorem 1: We will prove (a) and (b) together.

Both (32) and (33) indicate that {xk} generated by Algorithm 1

satisfies

F (xk)− F (xk+1)≥ βt‖Gt(x
k)‖22,

in which β > 0 is a constant that β = 1/(2(1 + ρl)) for LACC

and β = (1− 2
√
ρh)/(2(1−√

ρh)
2) for HACC. Letting F � =

infx∈Rn F (x), we have

F (x0)− F � ≥
K0−1
∑

k=0

βt‖Gt(x
k)‖22

≥ βtK0 min
0≤k≤K0−1

‖Gt(x
k)‖22.
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Then, our IPL (Algorithm 1) finds an ε-stationary point to RPR

(4) in
⌊

F (x0)− F �

βtε2

⌋

iterations. Therefore, the proof of both (a) and (b) in Theorem 1

is complete.

B. Proof of Theorem 2

To prove Theorem 2, we need the following lemmas.

Lemma 4 (Part of the Proof for Theorem 1 in [11]): Let

t= 1/L. For any xk, xk+1 ∈ R
n, we have

F (xk+1)− F (x�) +
L

4
‖xk+1 − x�‖22

≤ L‖xk − x�‖22 + 2·(xk+1, xk), (37)

which also holds if we replace x� by −x�.

Proof of Lemma 4: We have

L

2
‖x� − St(x

k)‖22

≥ L

4
‖x� − xk+1‖22 −

L

2
‖St(x

k)− xk+1‖22

≥ L

4
‖x� − xk+1‖22 − ·(xk+1;xk). (38)

where the first inequality follows from the Cauchy-Schwarz

inequality and the second one is from the convexity of ‖ · ‖22.

We then have

F (xk+1)

≤ F (xk+1;xk) +
L

2
‖xk − xk+1‖22

= Ft(St(x
k);xk) + ·(xk+1;xk)

≤ F (x�;x
k) +

L

2
‖xk − x�‖22 −

L

2
‖x� − St(x

k)‖22
+ ·(xk+1;xk)

≤ F (x�) + L‖xk − x�‖22 −
L

2
‖x� − St(x

k)‖22 + ·(xk+1;xk),

where the first and the last inequalities are from (29), and the

second inequality is from the strong convexity of Ft(·;xk).
Combining this inequality with (38) yields (37). It is easy to

find that all the proofs still hold if we replace x� with −x�.

Therefore, the proof of Lemma 4 is complete.

Lemma 5: (One-step progress). Let t= 1/L and suppose that

Assumption 1 holds.

(a) (Low accuracy condition) When (8) is satisfied for some

ρl ≥ 0, we have

(1 + 2ρl)
(

F (xk+1)− F (x�)
)

≤ 2ρl(F (xk)− F (x�)) + L(∆(xk))2. (39)

If we also have F (xk)− F (x�)≤ λ2
s/(2L), then

we have

(1 + 2ρl)
(

F (xk+1)− F (x�)
)

≤
(

1

2
+ 2ρl

)

(F (xk)− F (x�)). (40)

(b) (High accuracy condition) When (9) is satisfied, we have

λs∆(xk+1)≤ L(1− 3ρh)

(1− 4ρh)
(∆(xk))2. (41)

Proof of Lemma 5: We first prove part (a) of Lemma 5

and then prove part (b) of Lemma 5.

(a) When the low accuracy condition (8) holds, from (30) we

have

·(xk+1;xk)≤ ρl(Ft(x
k;xk)− Ft(x

k+1;xk))

≤ ρl(F (xk)− F (xk+1)),

which, combining with (37), yields

(1 + 2ρl)
(

F (xk+1)− F (x�)
)

+
L

4
‖xk+1 − x�‖22

≤ 2ρl
(

F (xk)− F (x�)
)

+ L‖xk − x�‖22.
Discarding the term L

4 ‖xk+1 − x�‖22, we get

(1 + 2ρl)
(

F (xk+1)− F (x�)
)

≤ 2ρl
(

F (xk)− F (x�)
)

+ L‖xk − x�‖22.
Since (37) also holds when x� is replaced by −x�, we also have

(1 + 2ρl)
(

F (xk+1)− F (x�)
)

≤ 2ρl
(

F (xk)− F (x�)
)

+ L‖xk + x�‖22.
This proves (39). (40) holds because of Assumption 1. Hence,

it proves part (a) of Lemma 5.

(b) When the high accuracy condition (9) holds, we have

2·(xk+1;xk)

≤ ρhL‖xk − xk+1‖22

≤ ρhL

(‖xk+1 − x�‖22
4ρh

+
‖xk − x�‖22
1− 4ρh

)

,

where the second inequality is from the Cauchy-Schwarz in-

equality. Combining with (37), we have

F (xk+1)− F (x�)≤
(1− 3ρh)L

1− 4ρh
‖xk − x�‖22.

Similarly, replacing x� by −x�, we have

F (xk+1)− F (x�)≤
(1− 3ρh)L

1− 4ρh
‖xk + x�‖22.

Combining the above two inequalities with Assumption 1 yields

(41), which proves part (b) of Lemma 5.

Therefore, the proof of Lemma 5 is complete.

Now we are ready to give the proof of Theorem 2.

Proof of Theorem 2: (a) We will prove that for any k ∈ N,

F (xk)− F (x�)≤
(

F (x0)− F (x�)
)

(

1 + 4ρl
2 + 4ρl

)k

(42)

by induction, which immediately leads to the conclusion of (a)

by Assumption 1. First, (42) clearly holds for k = 0. Now we

assume that it holds for k. For k + 1, since (15) holds, we have

F (xk)− F (x�)

≤
(

F (x0)− F (x�)
)

(

1 + 4ρl
2 + 4ρl

)k

≤ F (x0)− F (x�)

≤ λ2
s/(2L).

Using (40) directly proves that (42) holds when k is replaced

by k + 1. This proves part (a) of Theorem 2.
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(b) Note that (41) is equivalent to

L∆(xk+1)(1− 3ρh)

λs(1− 4ρh)
≤
(

L∆(xk)(1− 3ρh)

λs(1− 4ρh)

)2

. (43)

Since (16) holds, from (43) we know that

L∆(x1)(1− 3ρh)

λs(1− 4ρh)
≤
(

1

2

)2

.

Plug this back into (43) and work recursively, we get

L∆(xk)(1− 3ρh)

λs(1− 4ρh)
≤
(

1

2

)2k

.

Then, ∆(xk)→ 0, which together with (43) proves the

quadratic convergence in part (b) of Theorem 2.

Therefore, the proof of Theorem 2 is complete.

C. Proof of Theorem 3

Throughout this subsection, we assume that the assump-

tions in Theorem 3 hold. That is, we assume t= 1/L, tkj =
(

t‖Bk‖22
)−1

in Algorithm 2, and Assumption 1 holds. To prove

Theorem 3, we first present some lemmas.

Lemma 6 (Local Lipschitz Constant of F (x)): It holds that

sup
x,y∈Rn,∆(x)≤r,∆(y)≤r,x 
=y

|F (x)− F (y)|
‖x− y‖2

≤ L(‖x�‖2 + r).

Proof of Lemma 6: Denote u= (x− y)/‖x− y‖2 and

v = (x+ y)/‖x+ y‖2 when x+ y �= 0. v is set as 0 when

x+ y = 0.

|F (x)− F (y)| /‖x− y‖2

=
1

m‖x− y‖2

∣

∣

∣

∣

∣

m
∑

i=1

∣

∣(a�i x)
2 − bi

∣

∣−
m
∑

i=1

∣

∣(a�i y)
2 − bi

∣

∣

∣

∣

∣

∣

∣

≤ 1

m‖x− y‖2

m
∑

i=1

|(a�i x)2 − (a�i y)
2|

=
1

m‖x− y‖2

m
∑

i=1

|(a�i (x− y))(a�i (x+ y))|

= ‖x+ y‖2
1

m

m
∑

i=1

|a�i u| · |a�i v|.

Recalling that L= 2
m
‖A‖22 = 2

m
‖∑m

i=1 aia
�
i ‖2 as defined in

Algorithm 1 and noticing the fact that when ∆(x)≤ r and

∆(y)≤ r, we have ‖x+ y‖2 ≤ 2(‖x�‖2 + r), and hence we

can claim that

‖x+ y‖2
1

m

m
∑

i=1

|a�i u| × |a�i v|

≤ ‖x+ y‖2
(

u�
(

1

2m

m
∑

i=1

aia
�
i

)

u+ v�
(

1

2m

m
∑

i=1

aia
�
i

)

v

)

≤ L(‖x�‖2 + r),

which proves the desired result. Therefore, the proof of

Lemma 6 is complete.

Lemma 7: If Assumption 1 holds, then for any r ≥ 0, we have

{x ∈ R
n : ∆(x)≤ E(r)}

⊆{x ∈ R
n : F (x)− F (x�)≤ r}

⊆{x ∈ R
n : ∆(x)≤ r/λs},

in which

E(r) =

(

√

L2‖x�‖22 + 4rL− L‖x�‖2
)

/(2L). (44)

This relationship also indicates that E(r)≤ r/λs.
Proof of Lemma 7: For x ∈ R

n, if ∆(x)≤ E(r) for some

r ≥ 0, without loss of generality, we assume that ∆(x) = ‖x−
x�‖2. From Lemma 6, we have

F (x)− F (x�)≤ LE(r)(‖x�‖2 + E(r)) = r,

which proves the first inclusion. The second inclusion fol-

lows immediately from Assumption 1. Therefore, the proof of

Lemma 7 is complete.

Lemma 8 (Bound of ‖Bk‖2): For any r ≥ 0, if

supk∈N ∆(xk)≤ r, then

sup
k∈N

‖Bk‖2 ≤B(r) :=
2

m
‖A‖2(‖x�‖2 + r) max

i=1,2,...,m
‖ai‖2.

Proof of Lemma 8: Since Bk = 2
m

diag(Axk)A, we

have ‖Bk‖2 ≤ 2
m
‖Axk‖∞‖A‖2 and ‖xk‖2 ≤ ‖x�‖2 + r.

The desired result follows by using ‖Axk‖∞ ≤
(‖x�‖2 + r)maxi=1,2,...,m ‖ai‖2. Therefore, the proof of

Lemma 8 is complete.

Next, we provide Lemmas 9 and 10 to show the convergence

rate for solving the subproblem with Algorithm 2. These results

can be used for both conditions for (a) and (b).

Lemma 9: (see [20]). In the j-th iteration of Algorithm 2,

we have

max
‖λ‖∞≤1

Dk(λ)−Dk(λ
j
a)≤

tC‖Bk‖22
(j + 1)2

‖λ0 − λ�
k+1‖22

≤ tCm‖Bk‖22
(j + 1)2

, ∀j ∈ N,

where λ�
k+1 ∈ argmax‖λ‖∞≤1 Dk(λ) and C > 0 is universal

constant.

Lemma 10 (Theorem 4 in [28]): For Algorithm 2, there exist

universal positive constants C ′, C ′′ such that, when j ≥ C ′, j ∈
N, it holds

Hk(zk(λ
j
a))−Dk(λ

j
a)≤

C ′′tm‖Bk‖22
j + 1

. (45)

Proof of Lemma 10: Theorem 4 in [28] indicates that if

(j + 1)2 ≥max

{

2Ctm‖Bk‖22/t
m‖Bk‖22

,
2Ctm‖Bk‖22‖Bk‖22m

(1/t)ε2

}

=max

{

2C,
2Ct2m2‖Bk‖42

ε2

}

then we have

Hk(zk(λ
j
a))−Dk(λ

j
a)≤ ε.

Here C is the constant used in Lemma 9. Specifically, by

choosing ε=
tm‖Bk‖2

2

√
2C

j+1 , we know that if j ≥ C ′ :=
√
2C−1
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holds, then (45) holds, where C ′′ =
√
2C. Therefore, the proof

of Lemma 10 is complete.

We now define some constants.

E1 =min{E
(

λ2
s/(2L)

)

, E
(

λsM1B
2(λs/(2L))/C

′)},

E2 =
(2 + 4ρl)M1B

2(λs/(2L))L(‖x�‖2 + λs/(2L))

λs

,

E3 =min{E0/2, B(E0/2)
√

M2/C ′, E(λ2
s/(2L))},

E4 = 4M2B
2(E0/2)/(3E0),

and {εi}∞i=1 = {∆(xi)}∞i=1, where M = λs

2L

(

λs

2L + ‖x�‖2
)−1

,

M1=2C ′′tm(ρl+1)/(λsρl), M2=4C ′′t2m(ρh+1)/(ρhM
2),

E0 =
λs(1−4ρh)
(1−3ρh)L

and C ′, C ′′ are universal positive constants

mentioned in Lemma 10.

We now formally state the sufficiency of (23) and (24) for (8)

and (9) in Lemma 11 so that we can use the linear and quadratic

convergence rate for main iterations.

Lemma 11: For Algorithm 2, (23) indicates (8) and (24)

indicates (9).

Proof of Lemma 11: Note that zk(λ
j+1
a ) =−tB�

k λj+1
a ,

and xk+1 = xk + zk(λ
j+1
a ). The conclusion immediately holds

because Hk(zk(λ
j+1
a )) = Ft(x

k+1;xk) and

Hk(zk(λ
j+1
a ))−Dk(λ

j+1
a ))

≥Hk(zk(λ
j+1
a ))− min

z∈Rn

Hk(z)

which is from strong duality. Therefore, the proof of Lemma 11

is complete.

Based on Lemma 11, we prove some properties induced by

conditions of Theorem 3. In particular, Lemma 12 gives the

ones induced by part (a) of Theorem 3, and Lemma 13 gives

the ones induced by part (b) of Theorem 3.

Lemma 12: Assume Assumption 1 and (8) hold for any k ∈ N

with some ρl ≥ 0. If ∆(x0)≤ E1, then for any k ∈ N, we have

F (xk)− F (x�)≤ λ2
s/(2L) (46)

and

∆(xk)≤min{λs/(2L),M1B
2(λs/(2L))/C

′}. (47)

Proof of Lemma 12: Note that E(·) defined in (44) is

monotonically increasing. Since ∆(x0)≤ E1, from Lemma 7

we have

F (x0)− F (x�)≤ λs min{λs/(2L),M1B
2(λs/(2L))/C

′}.

Therefore, we can apply (40) and it implies that

F (xk)− F (x�)≤ F (x0)− F (x�) (48)

≤ λs min{λs/(2L),M1B
2(λs/(2L))/C

′},

which proves (46). From (14), we have

λs∆(xk)≤ F (xk)− F (x�),

which leads to (47). Therefore, the proof of Lemma 12

is complete.

Lemma 13: Assume Assumption 1 and (9) hold for any k ∈ N

with some 0≤ ρh < 1/4. If ∆(x0)≤ E3, then for any k ∈ N,

(46) holds, and the following two inequalities hold

∆(xk+1)≤ 1

2
∆(xk) (49)

∆(xk)≤ E3. (50)

Proof of Lemma 13: Based on (41), we have

E0∆(xk+1)≤∆2(xk), ∀k ≥ 0. (51)

We prove (49) by induction. When k = 0, noticing that∆(x0)≤
E0/2, by (51), we have E0∆(x1)≤∆(x0)(E0/2), and there-

fore (49) holds for k = 0. We now assume that (49) holds

for k < k0 for k0 ∈ N. We then have ∆(xk0)≤∆(x0)≤ E0/2
and using (51), we have E0∆(xk0+1)≤∆(xk0)(E0/2), which

implies that (49) holds for k = k0. This completes the proof for

(49), which immediately indicates (50) for any k ≥ 0. This indi-

cates that ∆(xk)≤∆(x0)≤ E3 ≤ E(λ2
s/(2L)). By Lemma 7,

F (xk)− F (x�)≤ λ2
s/(2L), which indicates that (46) holds for

any k ≥ 0. Therefore, the proof of Lemma 13 is complete.

We can notice that a common property under conditions for

(a) or (b) is that (46) holds for any k ≥ 0, based on which, we

give Lemma 14 to show another common property.

Lemma 14: If (46) and Assumption 1 hold, then we have

λs

2L

(

λs

2L
+ ‖x�‖2

)−1

∆(xk)≤ ‖xk − St(x
k)‖2, (52)

1

2
λs∆(xk)≤ Ft(x

k;xk)− Ft

(

St(x
k);xk

)

. (53)

Proof of Lemma 14: For fixed k ≥ 0, we define x̃0 = xk

and x̃1 = St(x
k). Therefore x̃0 and x̃1 satisfy (8) (with k re-

placed by 0 and x replaced by x̃) with ρl = 0. Hence we have

λs∆(x̃0)≤ F (x̃0)− F (x�)≤ λ2
s/(2L) and

F (x̃0)− F (x̃1)

= F (x̃0)− F (x�)−
(

F (x̃1)− F (x�)
)

≥ F (x̃0)− F (x�)−
1

2

(

F (x̃0)− F (x�)
)

=
1

2
(F (x̃0)− F (x�)) (54)

where the inequality is from (40) with ρl = 0. Moreover, from

Assumption 1 we have

λs∆(x̃1)≤ F (x̃1)− F (x�)≤ (1/2)
(

F (x̃0)− F (x�)
)

≤ λ2
s/(2L),

where the second inequality can be obtained by applying (40).

Thus, we have max{∆(x̃0),∆(x̃1)} ≤ λs/(2L). So, based on

Lemma 6 and Assumption 1,

λs∆(x̃0)≤ F (x̃0)− F (x�)≤ 2
(

F (x̃0)− F (x̃1)
)

≤ 2L

(

λs

2L
+ ‖x�‖2

)

‖x̃0 − x̃1‖2, (55)

where the second inequality is from (54), and the last inequality

is from Lemma 6. (55) implies that

‖x̃0 − x̃1‖2 ≥
λs

2L

(

λs

2L
+ ‖x�‖2

)−1

∆(x̃0).
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This proves (52). To prove (53), without loss of generality,

we assume that ∆(x̃0) = ‖x̃0 − x�‖2. Using (29) and the fact

that Ft(x̃
0; x̃0) = F (x̃0) and noticing that x̃1 = St(x̃

0) is the

minimizer of Ft(·; x̃0), we have

Ft(x̃
0; x̃0)− Ft(x̃

1; x̃0)≥ F (x̃0)− Ft(x�; x̃
0)

= F (x̃0)− F (x�;x
0)− L

2
∆2(x̃0)

≥ F (x̃0)− F (x�)− L∆2(x̃0)

≥ λs∆(x̃0)− L∆2(x̃0),

where the second inequality is due to (29), and the last

inequality is due to Assumption 1. Using the fact that ∆(x̃0)≤
(F (x̃0)− F (x�))/λs ≤ λs/(2L) based on Assumption 1,

we have

Ft(x̃
0; x̃0)− Ft(x̃

1; x̃0)≥
(

λs − L
λs

2L

)

∆(x̃0) =
λs

2
∆(x̃0),

which proves (53). Therefore, the proof of Lemma 14 is

complete.

Now, we are ready to give an upper bound for Jk.

Lemma 15: Assume that Assumption 1 holds. For Algo-

rithm 2 under either options (23) with ρl > 0 or (24) with

ρh ∈ (0, 1/4), for any k ∈ N, if (46) holds, the following state-

ments hold.

(a) (Low Accuracy) When using option (23), we have

Jk ≤
⌈

max

{

M1‖Bk‖22
∆(xk)

, C ′
}⌉

− 1. (56)

(b) (High Accuracy) When using option (24), we have

Jk ≤
⌈

max

{

M2‖Bk‖22
∆2(xk)

, C ′
}⌉

− 1. (57)

Here, C ′ and C ′′ are the constants in Lemma 10 and M =
λs

2L

(

λs

2L + ‖x�‖2
)−1

, M1 = 2C ′′tm(ρl + 1)/(λsρl) and M2 =
4C ′′t2m(ρh + 1)/(ρhM

2).
Proof of Lemma 15: (a) By choosing

j =

⌈

max

{

C ′,

(

2C ′′tm‖Bk‖22(ρl + 1)

ρlλs∆(xk)

)}⌉

− 1, (58)

we have

C ′′tm‖Bk‖22
j + 2

≤ λsρl∆(xk)/(2 + 2ρl), (59)

which, together with (45), yields that

Hk(zk(λ
j+1
a ))−Dk(λ

j+1
a )

≤ λsρl∆(xk)/(2 + 2ρl)

≤ ρl
1 + ρl

(

Hk(0)− min
z∈Rn

Hk(z)

)

, (60)

where the last inequality is from (53). From (60) we have

Hk(zk(λ
j+1
a ))−Dk(λ

j+1
a )

≤ρl

(

−Hk(zk(λ
j+1
a )) +Dk(λ

j+1
a ) +Hk(0)− min

z∈Rn

Hk(z)

)

≤ρl
(

Hk(0)−Hk(zk(λ
j+1
a ))

)

,

where the last inequality is due to (21), and this gives (23).

Therefore, (23) should have already been satisfied when (58)

holds. This proves (56) in Lemma 15(a).

(b) By choosing

j =

⌈

max

{

C ′,

(

4C ′′t2m‖Bk‖22(ρh + 1)

M2ρh∆2(xk)

)}⌉

− 1, (61)

we have

C ′′tm‖Bk‖22
j + 2

≤M2ρh∆
2(xk)/ (4t(1 + ρh)) , (62)

which, together with (45), yields that

Hk(zk(λ
j+1
a ))−Dk(λ

j+1
a )

≤M2ρh∆
2(xk)/ (4t(1 + ρh))

≤ ρh‖xk − St(x
k)‖22/ (4t(1 + ρh)) , (63)

where the last inequality is from (52). Denote

zk� = argminz∈Rn Hk(z), which indicates that ‖zk�‖2 =
‖xk − St(x

k)‖2. We have

1

2t
‖zk(λj+1

a )− zk�‖22 ≤Hk(zk(λ
j+1
a ))−Dk(λ

j+1
a ),

which follows from the fact that Hk(·) is 1
t
-strongly con-

vex and (21). From (63), we have ‖zk(λj+1
a )− zk�‖22 ≤

ρh/ (2(1 + ρh)) ‖zk�‖22. So, by the Cauchy–Schwarz inequal-

ity, we have

ρh
2t

‖zk(λj+1
a )‖22 ≥

ρh
4t

‖zk�‖22 −
ρh
2t

‖zk(λj+1
a )− zk�‖22

≥ ρh‖zk�‖22/ (4t(1 + ρh)) .

Together with (63), (24) should have already been satisfied

when (61) holds. This proves (57) in Lemma 15(b).

Therefore, the proof of Lemma 15 is complete.

Next, we are ready to present the proof of Theorem 3.

Proof of Theorem 3: We first prove part (a) of Theorem 3

and then prove part (b) of Theorem 3 in what follows.

(a) Lemma 8 and (47) indicate that supk∈N ‖Bk‖2 ≤
B(λs/(2L)). Together with (46), (56), (47), we obtain

Jk ≤M1B
2(λs/(2L))/∆(xk). (64)

We now prove the desired result. If ε≥∆(x0), then J(ε) =
0 and (25) holds. If ε <∆(x0), we denote Kε as the smallest

index such that ∆(xk)> ε, ∀k ≤Kε and ∆(xKε+1)≤ ε. From

Lemma 6 we have

L(‖x�‖2 + λs/(2L))∆(xk)

≥ F (xk)− F (x�)

≥
(

F (xKε)− F (x�)
)

(

2 + 4ρl
1 + 4ρl

)Kε−k

≥ λs∆(xKε)

(

2 + 4ρl
1 + 4ρl

)Kε−k

≥ ελs

(

2 + 4ρl
1 + 4ρl

)Kε−k

, ∀ 0≤ k ≤Kε. (65)

Here we explain how these inequalities were obtained. The first

inequality follows from Lemma 6 and (47). Since (46) holds,
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(40) holds for any k ∈ N and it implies the second inequality

in (65). The third inequality in (65) follows from Assump-

tion 1 and the last inequality in (65) follows from the fact that

∆(xKε)> ε.
From (65) we know that ∀ 0≤ k ≤Kε, it holds that

∆(xk)≥ ελs

L(‖x�‖2 + λs/(2L))

(

2 + 4ρl
1 + 4ρl

)Kε−k

. (66)

Therefore, we have

J(ε) =

Kε
∑

k=0

Jk

≤
Kε
∑

k=0

M1B
2(λs/(2L))/∆(xk)

≤
Kε
∑

k=0

M1B
2( λs

2L )L(‖x�‖2 + λs/(2L))

λsε

(

2 + 4ρl
1 + 4ρl

)k−Kε

=
E2

ε(2 + 4ρ)

Kε
∑

k=0

(

2 + 4ρl
1 + 4ρl

)k−Kε

≤ E2

ε
.

where the first inequality follows from (64) and the second

inequality follows from (66). This completes the proof of The-

orem 3(a).

(b) Lemma 8 and (50) indicates that supk∈N ‖Bk‖2 ≤
B(E0/2). Together with (46), (49), (57)„

Jk ≤M2B
2(E0/2)/∆

2(xk), ∀k ≥ 0, (67)

which follows from our choice of E3 ≤B(E0/2)
√

M2/C ′

such that M2B
2(E0/2)/∆

2(xk)≥M2B
2(E0/2)/∆

2(x0)≥
C ′. Next, we prove the conclusion. We adopt the same defi-

nition of Kε as in (a) and pick {εi}∞i=1 = {∆(xi)}∞i=1 so that

Kεi = i− 1. From (51) we have

∆(xi−1)≥
√

E0εi, ∀i ∈ N. (68)

From (49) and (68) we have

∆(xk)≥ 2i−1−k
√

E0εi, ∀ 0≤ k ≤ i− 1. (69)

Finally, for any i ∈ N, we have

J(εi) =

i−1
∑

k=0

Jk ≤
i−1
∑

k=0

M2B
2(E0/2)

4i−1−kE0εi

≤ 4M2B
2(E0/2)

3E0εi
=

E4

εi
.

Here, the first inequality follows from (67) and (69), and the

second inequality follows from the fact that

i−1
∑

k=0

1

4i−1−k
≤

i−1
∑

k=−∞

1

4i−1−k
=

4

3
.

This completes the proof of Theorem 3(b).

Therefore, the proof of Theorem 3 is complete.

VI. CONCLUSION

In this paper, we proposed a new inexact proximal linear

algorithm for solving the robust phase retrieval problem. Our

contribution lies in the two adaptive stopping criteria for the

subproblem in the proximal linear algorithm. We showed that

the iteration complexity of our inexact proximal linear algo-

rithm is in the same order as the exact proximal linear algorithm.

Under the sharpness condition, we can prove the proposed

method’s local convergence. Moreover, we discussed how to

use the FISTA for solving the subproblem in our inexact prox-

imal linear algorithm and analyzed the total oracle complexity

for obtaining an ε-optimal solution under the sharpness condi-

tion. Numerical results demonstrated the superior performance

of the proposed methods over some existing methods.
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