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Abstract Non-perennial streams are receiving increased attention from researchers, however, suitable
methods for measuring their hydrologic connectivity remain scarce. To address this deficiency, we developed
Bayesian statistical approaches for measuring both average active stream length, and a new metric called
average communication distance. Average communication distance is a theoretical increased effective distance
that stream-borne materials must travel, given non-continuous streamflow. Because it is the product of the
inverse probability of surface water presence and stream length, the average communication distance of a
non-perennial stream segment will be greater than its actual physical length. As an application we considered
Murphy Creek, a simple non-perennial stream network in southwestern Idaho, USA. We used surface water
presence/absence data obtained in 2019, and priors for the probability of surface water, based on predictions
from an existing regional United States Geological Survey model. Average communication distance posterior
distributions revealed locations where effective stream lengths increased dramatically due to flow rarity. We
also found strong seasonal (spring, summer, fall) differences in network-level posterior distributions of both
average stream length and average communication distance. Our work demonstrates the unique perspectives
concerning network drying provided by communication distance, and demonstrates the general usefulness of
Bayesian approaches in the analysis of non-perennial streams.

Plain Language Summary We developed a new metric, communication distance, appropriate

for measuring connectivity in non-perennial stream networks. Communication distance can be considered

a theoretical potential distance that water borne material must travel in the absence of continuous surface

flow. Communication distance will be in units of measured stream length. Nonetheless, the communication
distance of a non-perennial stream segment will be greater than the actual physical length of the segment, and
this distance will increase further with increased intermittency. We developed Bayesian extensions for both
communication distance, and an existing stream length model of network connectivity. The use of a Bayesian
approach allowed: (a) explicit consideration of the variation and uncertainty in stream segment probabilities of
surface water presence, and (b) the incorporation of preexisting US Geological Survey model predictions as a
framework for Bayesian priors.

1. Introduction

Non-perennial streams comprise over half of the global river network (Messager et al., 2021), are increasing in
prevalence (Sauquet et al., 2021; Zipper et al., 2021), and strongly influence global water quantity and quality
(Datry et al., 2014). Realization of the importance of non-perennial streams to large-scale hydrological, ecolog-
ical, and biogeochemical processes has prompted increased study of these systems (Fovet et al., 2021). None-
theless, characterization of non-perennial stream spatiotemporal dynamics remains challenging (Shanafield
et al., 2021), inhibiting a clear understanding of linkages between stream drying and water quality.

1.1. Network Connectivity in Intermittent Streams

Decreased connectivity of stream segments from drying may affect water quality by preventing surface trans-
port of materials. Numerous stream connectivity metrics exist (see reviews in Ali and Roy (2010), Bracken
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et al. (2013), and Blume and Van Meerveld (2015)), due in part to myriad perspectives concerning hydrologic
connectivity (Ali & Roy, 2009). These methods, however, have limitations for describing non-perennial streams.
For example, several common measures of stream connectivity are time invariant due to their reliance on Carte-
sian grid relationships (e.g., Larsen et al., 2012; Trigg et al., 2013), or topography and drainage area (e.g., Jensco
et al.,, 2009; Prancevic & Kirchner, 2019). Thus, these measures may poorly describe non-perennial stream
networks whose extent will vary in both time and space (Bertassello et al., 2022). Further, other stream connec-
tivity measures, including those based on distances between “wet” locations (e.g., Ali & Roy, 2010; Western
et al., 2001), or spatial autocorrelation structures (e.g., Ali & Roy, 2010; Knudby & Carrera, 2005), provide only
network-scale descriptions. Thus, these methods do not consider drying patterns at the scale of individual stream
segments. This latter deficiency is particularly problematic in non-perennial streams because certain locations
may have inordinately large effects on stream networks (Godsey & Kirchner, 2014; Zipper et al., 2022). Of
particular relevance are surface flow bottlenecks, that is, stream locations where surface flows often disappear,
preventing the surficial flow of water from upstream to downstream locations.

1.2. Probabilistic Measures of Stream Connectivity

The variability of surface flow in non-perennial streams has driven the development and application of probabilis-
tic models for surface water presence, often at watershed or larger spatial scales. These approaches include hidden
Markov chain models based on stream temperature and conductivity (Arismendi et al., 2017), models for intermit-
tent stream length as a function of climatic variables (Durighetto et al., 2020), logistic models for stream persis-
tency based on intermittency sensors and geospatial and climatic data (Jensen et al., 2019; Kaplan et al., 2020),
random forest classifications from remotely sensed geographic information system data (Gonzalez-Ferreras &
Barquin, 2017; Jaeger et al., 2019; Sando & Blasch, 2015), and probabilistic consideration of the relationship
between intermittent stream length and catchment discharge (Durighetto & Botter, 2022). Importantly, Botter and
Durighetto (2020) developed a probability density function (PDF) approach to define the distribution of stream
network length, called the stream length duration curve (SLDC). A SLDC depicts the distribution of the “active”
fraction of a stream network (i.e., the network portion with surface flow), and provides the inverse of the exceed-
ance probability of the total length of active streams for any outlet discharge.

1.3. The Appeal of Bayesian Methods

The development of probabilistic approaches for considering surface flow in non-perennial streams is commend-
able. Existing work, however, generally employs a frequentist view of probability which assumes a single “true”
value for the probability of water presence at a stream segment over some timespan. This view potentially ignores
variation in diel and seasonal probabilities of stream segment water presence, and more importantly, may prevent
assessment of uncertainty and variability in probability designations. These properties, however, can be readily
considered under a Bayesian statistical approach.

Many sources of information concerning wetting and drying patterns may exist for a stream network, poten-
tially based on multiple spatiotemporal scales and sampling schema. For example, it is possible that at a single
watershed, stream surface flow has been: (a) modeled as part of subcontinent-scale research projects (e.g.,
USGS-PROSPER; Jaeger et al., 2019), (b) categorized into presence/absence outcomes at locations occasionally
visited by local agencies or researchers, and (c) measured at a small number of locations using high-frequency
intermittency sensors over days to years. Such prior information can be assimilated into Bayesian statistical
analyses to inform and refine models based on current data, for example, resistivity sensor outcomes for the
present water year. Weights for these priors, in the form of effective sample sizes (compared to current data
sample sizes), can also be assigned based on prior data quality and the agreement of measurement scales of prior
and current data. The posterior distribution represents a formal Bayesian synthesis of prior and current informa-
tion. Because it will have the form of a PDF, the posterior allows straightforward assessments of uncertainty in
modeled phenomena. The application of Bayesian methods seems particularly useful for depicting the probability
of surface water presence in non-perennial streams, given the frequent availability of prior information, and the
importance of quantifying the central tendency and variation in this parameter.

1.4. Products

In this paper we develop Bayesian statistical methods to measure stream network connectivity that allow: (a)
simultaneous consideration of global (entire network) and local (stream segment) scales, (b) explicit consideration
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of the variability and uncertainty in the probability of surface water presence, and (c) inclusion of prior informa-
tion concerning the probability of surface water presence. We also introduce a new metric called communication
distance that measures the theoretical effective stream length of segments as perceived by water-borne compo-
nents requiring surface water transport. This measure may improve understanding of the balance of transport,
storage, and reaction limitations within non-perennial networks and their downstream waters, whether they dry
or not. Bayesian application of communication distance prompted the first reported analytical derivation of the
inverse-beta distribution (the reciprocal of the conventional beta distribution) and its moments, which we also
provide here.

2. Theoretical Foundations
2.1. The Stream Length Duration Curve (SLDC)

In this section we briefly review the SLDC framework of Botter and Durighetto (2020), highlighting potential
extensions and refinements. For the sake of clarity and consistency, we define a stream segment as a stream
section bounded by nodes occurring at meaningful hydrologic locations, such as sensor sites, confluences, splits,
sources, and sinks (Dodds & Rothman, 2000).

Let X be a series of m Bernoulli random variables, X1, X», ..., X,,representing surface water presence or absence
at segments in a stream network at the same point in time. Then, for the kth segment, k = 1.2.3.....m, we have:

) =p(l—p)' ™% (1

where p, is the probability that the kth segment is wet, and

1 if the stream segment is wet
Xk =

@

0 ifthe stream segmentis dry
The mean and variance of X, are

E(Xi) = pr,and 3)
Var(X«) = (1 — pi)px. )

Jointly, X is a multivariate Bernoulli random variable, with PDF (Dai et al., 2013):

I, (1=x¢) x; T, (1-x, 1-x )x [T (1-x, Xk
f(x)=p0,(;"i{,(0 k)pl,lo,.ﬁ)_( k)p((),l,“.l,?) & k).“pl.lk,ul.,l" ®)

where p,,. . is the joint probability of X, = a, X, = b, X; = ¢, ..., X,, = z, and x = (x,,X,,...x,,) is a realization of X.

Let Al be a vector of individual stream lengths for the full set of stream segments: Al = Al,Al,,...,Al , corre-
sponding to binary surface water presence/absence outcomes in X. Then, the dot product (sum of element-wise
vector products), is a random variable, L, representing wetted stream network length:

L=X «Al (6)

The resulting mean wetted stream network length is

E(L) =) pelly, ™

k=1

and the wetted stream network length variance is

m m

Var(L) = Y Z Cov(L;, L;). ®)

i=1 i=l

where L, = X;Al,, L; = X;Al;, and Cov(L;,L,) denotes the covariance between stream lengths L; and L. Note that for

k=1i=j, Cov(L,,L,) is the kth segment variance, Var(Ly) = Ali[pk(l — pi)]. This term will be the kth diagonal
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entry in the variance covariance matrix for L, denoted X,. We refer to the approach defined in Equations 1-8
as Bernoulli stream length due to its reliance on multivariate Bernoulli random variables. That is, Equation 7
denotes the mean Bernoulli stream network length, or the average length of the stream network that is wet, and
Equation 8 represents the variance of Bernoulli stream network length.

Following Botter and Durighetto (2020), we recommend that all ps be estimated using arithmetic means:
P =n~' Y x4, where x; denotes Bernoulli surface water presence/absence data, taken over # trials, from the k th
segment. Thus, we use X to represent a multivariate Bernoulli random variable describing the presence/absence
of surface water across the m segments in space, that is, X = (X1, X2, ... X,»), X to represent a realization of X at
one particular moment in time x = (x1, X2, ... Xn), and X to denote multiple Bernoulli (i.e., binomial) outcomes
from the kth segment over time: X = (Xk.1, Xk2, ... Xrn). As noted above, for individual time events, xx € {0, 1}.

Entries in £ can be estimated with conventional method of moments-based variance and covariance estimators
(see Aho (2014)), using observed data, although correlations (standardized covariances) for any segments i and
i should have the bounds (Botter & Durighetto, 2020):

max pil —pi)

prx = ([P POy ©)
7 pi(1 =p))
where p; < p,, and
B
i DjDi
pin= () > -1 (10)
! ((1 - pii(l —Pj)>

where f=1/2if p, + p; < 1 and f = —1/2 otherwise. Generalized covariance frameworks appropriate for stream
networks can also be applied (see Cressie et al. (2006) and Ver Hoef et al. (2006)).

Botter and Durighetto (2020) present the distribution of L in terms of exceedance probabilities (one minus the
cumulative distribution function of L). The inverse of this sigmoidal function represents the final form of the
SLDC, in reflection of the widely used flow duration curve (Castellarin et al., 2004).

2.2. Communication Distance

The concept of Bernoulli stream length is informative at a network scale. However, it may be less useful for
describing internodal communication and transportation of materials. For example, for spatially adjacent nodes
u and v, the drying of the connecting stream segment means that the distance from u to v with respect to surface
transport of flow-borne organisms and resources has become infinite, although the Bernoulli stream length for
the segment is zero. To measure resource transport constraints within stream networks we propose a new metric,
communication distance.

Following Botter and Durighetto (2020) we represent stream segment lengths using Al, € {Al,AL,...,Al },
and corresponding probabilities for surface water presence as p, € {p,,p,.....p,,}- The average communication
distance of the kth segment, measured in the units provided in Al,, is:

_ AL
145

Ci an

Because it is the product of reciprocal probability and stream length, C, describes the average effective stream
segment length (as perceived by surface water-borne components) required for passage through the kth segment,
in units of measured stream length given in Al,.

The average network level communication distance is:

c=Ya (12)

k=1

Given all px = 1, the network communication distance will equal the network Bernoulli stream length, which in
m

this case will be Y, Aly. Given any px = 0, the network communication distance becomes o . Clearly, however, to
k=1
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be correctly defined as stream segments in a network, Vpi > 0 over an extended time span, making C < «. Thus,

m

for 0 < px < 1, the network average communication distance will be ), Aly < C < «.

k=1
In non-perennial streams, C, can be viewed as the average effective length of the kth segment after acknowledg-
ing intermittency. We propose that potential bottleneck locations in a network can be identified by examining
differences between the segment wetted instream length (the communication distance of the segment if it were
perennial) and the mean communication distance for the segment. This difference measures the increased average
distance required for segment travel as a result of intermittency.

Bernoulli stream length and communication distance both provide potentially useful summaries of non-perennial
stream length that acknowledge random variability in the presence of water at stream segments. However, like
other current probabilistic considerations of non-perennial streams, the parameter p, is defined (in the context of
Equation 1) to be a fixed numeric constant, as is conventional under the frequentist paradigm. Below we consider
formal Bayesian approaches for modeling the probability of the presence of surface water in non-perennial
streams as a random variable.

2.3. Modeling the Probability of Surface Water—Bayesian Extensions to Bernoulli Stream Length and
Communication Distance

2.3.1. The Probability of Surface Water as a Random Variable

Several approaches can be used to represent the probability of surface water presence at the kth segment as a
random variable, 6,, over some user-defined timescale, for example, daily, weekly, monthly, seasonally, annually.
Because it is highly modifiable and bounded by [0,1], a widely used distributional model for probability is the
beta PDF. If §, ~ BETA(a,f), where a,f > 0, and 6, € [0,1], it will have the PDF:

(o + p)

a-171 _ p y\p-1
rarg x0T (13)

f ) =
Other PDFs with [0,1] bounds include the triangular distribution, the two-sided power distribution, and the gener-
alized trapezoidal distribution (see Kotz and van Dorp (2004)). In principle, any of these PDFs can replace beta
distributions in analyses described here. These alternatives, however, are not members of the exponential family
of distributions (Pitman, 1936), and may be non-differentiable, limiting their straightforward applicability in
analyses. For example, they cannot serve as conjugate priors in Bayesian analyses (see below). A comparison of
the usefulness of a large number of strictly bounded PDFs for modeling the probability of stream surface water
presence is currently under development by the first author.

It is possible to define 6, as a beta random variable with a mean defined to be some stipulated or estimated prior
probability of surface water presence, pr. Among other possibilities, the quantity px can be based on pilot data
sets, or surveys, or existing maps expressing outcomes from surficial water models. Specifically, let

0 ~ BETA(a, f = 1) (14)

for some a > 0, where 1%: is equal to the stipulated prior probability, pk, then t = I;—ﬁk, and E(6k) = a:—ﬂ = pk.
k

2.3.2. The Posterior Distribution of the Probability of Surface Water

Given background from Section 2.3.1, we now consider the random variable §, within the formal Bayesian
framework:

S (Ok|xi) o f(xi|Ok) f(Or) (15)

where f(6,lx,) is the posterior density function for the probability of surface water at the kth stream segment given
n observed binary presence/absence outcomes from the kth segment, where, as before, xk = (xk,1.xk,2,...xk,n),
f(x,16) is the likelihood function for the kth segment, and f{(6),) is the kth prior density function.

A Bayesian model for 6,, whose current data are sums of n Bernoulli trials for stream segment water presence/
absence (i.e., Equation 2), would use a binomial likelihood function, resulting in, x,16, ~ BIN(n,6,). Under this
framework, a beta distribution is often employed as a prior for 6,; that is, 8, ~ BETA(a,p). This is because the
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beta PDF is the only possible conjugate prior for a binomial likelihood function. Conjugacy results in the poste-
rior and prior being members of the same distributional family. Thus, for the current case, both would be beta
distributions. Conjugacy is useful in Bayesian applications because the prior is interpretable as additional data,
and the resulting posterior distribution will have a known parametric form (Gelman et al., 2014, p. 34). The
latter characteristic allows straightforward summarization of the posterior, and diminishes the need for complex
numerical procedures, including Markov Chain Monte Carlo simulation. Beta priors allow a wide variety of both
non-informative and informative frameworks for 6,, as described below.

Non-informative priors, often called flat or diffuse priors, express only general information about a random vari-
able under consideration, with the goal of “letting the data speak for themselves” (Gelman et al., 2014). Conven-
tional non-informative beta priors include BETA(1,1), BETA(0.5, 0.5), that is, the Jeffreys prior (Jeffreys, 1946),
and BETA (0, 0). All three distributions attribute equal degrees of belief to wet and dry stream outcomes. Indeed,
BETAC(1,1) is equivalent to a continuous uniform distribution in [0,1] and will give equal densities (of one) to all
possible probabilities of surface water presence. The three distributions, however, have different prior effective
sample sizes.

The prior effective sample size—a characteristic of all prior distributions—defines the effect of the prior on the
posterior compared to the current data, relative to the current data sample size, n. The effective sample size for a
beta prior is the sum of its hyperparameters, @ and # (Morita et al., 2008). Thus, the prior distribution, BETA(O,
0), will have an effective sample size of zero, and its application will result in a beta posterior whose mean will
equal the sample mean of current binomial data. Note that, to obtain a proper posterior (one with a finite integral),
use of BETA(O, 0) requires that surface water presence and surface water absence outcomes are both observed
at least once in current data. The prior distribution BETA(1,1) would weight current data relative to the prior by
a factor of n/2, whereas BETA(0.5, 0.5) would weight current data relative to the prior by a factor of /1. Thus,
relative confidence in current data and prior data can be used to guide the parametrization of prior distributions.

Informative prior distributions should generate reasonable outcomes for a random variable under consideration,
based on knowledge (and uncertainty) concerning that variable (Gelman et al., 2014). Informative beta priors can
be specified, depending on the availability and quality of prior information extraneous to current data used in
the likelihood. For example, as noted above, an informative beta prior can be constructed in which E(6,) equals a
prior designation for the probability of surface water presence at the kth segment, pr (Equation 14). As noted in
the previous paragraph, beta hyperparameters can be further modified to ensure that the prior has an appropriate
effective sample size. Our approach for these implementations is fully described in Section 3.2.2.

2.3.3. The Posterior Distribution of Bernoulli Stream Length

Given beta priors and binomial likelihoods, the posterior density function of the probability of surface water
presence at the kth segment will have the form 6,lx, ~ BETA(a + Y x,.f + n — Y.x,) where a and f§ are the hyper-
parameter values defined for the beta prior distribution. Under linear transformation, the posterior distribution for
the average Bernoulli length of the kth segment can be obtained by multiplying the 6,lx, posterior by the constant
Al,. That is,

E(Li) = (Oxlx) - Al (16)

The posterior distribution of average Bernoulli stream lengths for the entire network can be obtained by taking
the sum of the product E(0x|xx) - Aly, across all segments (cf. Eq. 5 in Botter and Durighetto (2020)). That is,

E(L) = ) E(Olxc) - Al an

k=1

Determining the posterior distributions of communication distance at the segment or network scale, £(C,) and
E(C), respectively, is less straightforward. This is because the derivation requires multiplication of the kth stream
length by the reciprocal (multiplicative inverse) of the kth beta posterior.

2.3.4. The Inverse-Beta Distribution

If 6, follows a beta distribution, then ;' will follow an inverse-beta distribution. This PDF has not been previ-
ously derived, although as a practical matter it is straightforward to obtain inverse-beta outcomes from existing
computer algorithms (e.g., 1/rbeta() in the R computational environment). The inverse beta PDF is distinct
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from the beta prime distribution, also called the inverted beta distribution, which is used to represent the distri-
bution of odds, that is, a probability divided by its complement (Johnson et al., 1995).

Let 0x ~ BETA(a, f) with @. 8 > 0, then 6, ~ BETA™!(a, #) with PDF:

a+l p-1
Ly _fexp (T
f(ek)‘na)r(ﬁ)(ak—l) (1 9;1> ’ (49

with mean, for @ > 1,
E(6;') = ———, (19)

and variance, for a > 2,

var(o!) = KL= D (20)
(a—D(a—-2)

As suggested above, the inverse beta distribution can be used to represent distributions of reciprocal probabilities
which will occur in [1, o), given probabilities in [1, 0). Reciprocal probabilities are useful for measuring the
rarity of outcomes. Specifically, the reciprocal probability, r, for an outcome A, indicates that there is a 1 in r
chance that A will occur. For instance, if the probability of surface water presence a stream segment is 0.01, then
one would expect that surface water will occur in 1 of 100 cases, because » = 1/0.01 = 100, and that surface water
at the segment would be 100 times rarer than at a perennial segment. Under this framework, Equations 19 and 20
represent the mean level of surface water rarity and the variance of surface water rarity for the kth stream segment,
respectively. Mathematical derivations of the inverse-beta distribution and its moments are given in Section S1
in Supporting Information S1.

2.3.5. The Posterior Distribution of Average Communication Distance

Let (Bx|xx)™" be an inverse beta posterior distribution representing the reciprocal probability of surface water
presence at the kth stream segment, then the posterior mean communication distance for the k th segment is:

E(Cy) = E[(0c]x0)”"| Al @1

and posterior communication distance variance of the kth segment is:

Var(Cy) = Var|(0c|x) ™" | AL (22)

In this Bayesian context, E(C,) can be viewed as the average effective stream length of the kth segment, based on
both current data and prior information. Thus, E(C,) can be compared to the segment's wetted instream length
(the actual physical length of the segment) to obtain an inductive measure of increased mean effective stream
length due to intermittency.

The posterior average network communication distance is:

m

E(C) =) E[6:lx0) | Al. (23)

k=1

and the posterior communication distance variance of the entire network is:

m m

Var(C) = 2 Z Cov(C;, Cj) 24)

i=1 i=l

where Cov(C,,C)) denotes the covariance between communication distances C; and C;. For k =i = j, Cov(C,,C)) is
the kth marginal variance, Var(C,). We now demonstrate the use of these metrics with an example from the north
central Rocky Mountains, USA.
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Figure 1. Instrumentation of the Murphy Creek sub-watershed in 2019 (outlet coordinates: 43.25607°N, —116.8186°W) and
summary of surface water presence at each sensor. Note that missing data points occurred for some nodes over the span of
sampling.

3. Materials and Methods
3.1. Field Site and Field Methods

We derived Bernoulli stream length and communication distance summaries for Murphy Creek, a simple
drainage system within the larger Reynolds Creek experimental watershed in the Owyhee Mountains of south-
western Idaho, USA (see Warix et al. (2021)). Measures of surface water presence were made at 25 nodes,
corresponding to 24 stream segments, every 15 min from 3 June 2019 to 2 September 2019, resulting in 11,623
repeated measures for each node (Figure 1). Missing data points, which occurred to varying levels at 16 nodes
(Figure 1), constituted less than 5% of all possible time series measures. In agreement with our definition of
stream segments, we designated additional (un-instrumented) nodes at the outlet and at two stream sources,
resulting in a total of 27 nodes and 26 segments. At 21 nodes, surface water presence was measured with sensors
(Onset HOBO Pendant/Light 64 K Datalogger sensors (UA002-64; Figure 1) that were modified to detect resis-
tivity (Chapin et al., 2014). The resistivity sensors were placed in the deepest part of the channel and installed so
that the two pole electrodes were touching the stream bed, allowing detection of the presence or absence of water
at the lowest of flow conditions. At the other four instrumented sites, water levels (Onset Hobologger, U-20) and
specific conductance (Onset Hobologger, U-24) were measured at 15-min intervals for baseflow monitoring, also
allowing detection of the absence of stream surface water (Figure 1). Additional details can be found in Warix
et al. (2021).
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3.2. Statistical Methods

We created inferential models of Bernoulli stream length and network communication distance at Murphy Creek
based on the entirety of the sampling period (3 June 2019-2 September 2019), and on three seasonal subsets:
spring (3 June 2019-10 July 2019), summer (11 July 2019-14 August 2019), and fall (15 August 2019-2 Septem-
ber 2019). Seasonal cutoffs were established at dates representing approximate change points in precipitation and
temperature based on long-term (1964-1996) climate data for the study area (Hanson et al., 2001), for days of the
year corresponding to the 2019 sampling period (early June to early October).

3.2.1. Estimating Stream Segment Surface Water Presence/Absence

The translation of point measurements of surface flow presence/absence at sensor locations to stream segment
surface flow presence/absence is a potentially difficult and contentious process. We can consider four general
approaches. Under approaches one and two a sensor is defined as a node of its corresponding segment and
represents singly, the stream segment surface flow presence/absence between itself and the node immediately
upstream (approach 1) or downstream (approach 2). Under approach three, a pair of neighboring sensors, which
are placed at the upstream and downstream ends of a stream segment, serve as the segment nodes, and surface
flow presence/absence responses from both sensors are considered when defining segment surface flow pres-
ence/absence. Under approach four, a sensor is not assumed to be a segment node, but instead fully represents a
segment that is bounded by unmeasured nodes halfway between each sensor (e.g., Botter & Durighetto, 2020).
Approaches one, two, and four are straightforward, allow clear translation to a binary Bernoulli process, and
produce data that can be used directly in Bayesian approaches described in Section 3.2.2.

Despite these benefits, however, we used approach three to estimate stream segment surface flow presence/
absence at Murphy Creek. We based our decision on two factors. First, unlike approach four, approach three
reflected our definition of stream segments (Section 2.1), and provided a clear delineation of the extent of stream
segments. Second, unlike approaches one and two, approach three allowed multiple estimation points for average
surface water presence, based on segment locations with the greatest potential for spatial independence (Cressie
et al., 2006). Specifically, for the kth segment with bounding nodes u and v, for the ith time frame, i = 1,2,3,...,n,
we applied the following rule:

1.0, both u and v wet
Xki =140.0, both u and v dry . (25)

0.5, only one of u or v wet

Equation 25 can be viewed as a coarse estimator of the average probability of surface water along kth segment,
based on segment endpoints. Marginal (individual segment) probabilities of surface water presence and covar-
iances among segments were both estimated using segment outcomes from Equation 25. Exceptions were the
three segments associated with input and sink locations, whose extremal nodes were not instrumented (Figure 1)
and time points with a missing datum at a single bounding node (8% of total segment observations). In this
unusual case, surface water outcomes were based on water presence/absence outcomes at a single node (e.g.,
Botter & Durighetto, 2020). Situations with missing data at both bounding nodes, preventing application of
Equation 25, occurred in less than 0.2% of cases.

We used the R package mipfp (Barthélemy & Suesse, 2018) to generate multivariate Bernoulli trials for water
presence at segments based on estimated marginal segment probabilities of water presence and inter-segment
covariances. Specifically, we generated 1,000 random multivariate Bernoulli trials, each made up of m = 26
potentially correlated binary outcomes, representing the simultaneous presence or absence of surface stream
flow at each of the 26 designated Murphy Creek stream segments, at a particular time. We applied this approach
based on estimates from data over the entire sampling period, and for separate data subsets representing spring,
summer, and fall. Our simulation approach addressed the issue of potential non-binary outcomes in Equation 25,
and the fact that surface water presence at segments is generally positively correlated in space. Specifically,
the approach allowed the generation of large surface water presence or absence data sets for segments, made
up of temporally independent (random) samples representative of particular spans of time, that is, the entire
sampling period, spring, summer, and fall, based on the estimated marginal probabilities for stream segment

AHO ET AL.

9of 21

QSUIDIT Suowwo)) aAanear) aqeardde ayy £q pauroaos a1 sa[onIe YO asn Jo so[ni 10y K1eIqi auruQ £3[IA| UO (SUOTIPUOD-pUL-SULIR) /WO KA[IM’ KIeIqIjaut[uo//:sdny) suonipuo) pue SWId], oy 23S *[#707/L0/87] uo Kreiqr auruQ L[IM ‘€ 1SHE0MMET0T/6T0T 01/10p/wod Kapim’ Areiqraurfuo sqndnSe//:sdny woiy papeofumo( ‘11 ‘€707 ‘€LOLYT61T



A7N |
NI Water Resources Research 10.1029/2023WR034513

ADVANCING EARTH
AND SPACE SCIENCES

presence and the estimated spatial dependencies of segments during those periods of time. We randomly
sampled with replacement with the sample size n = 10 from the collections of random multivariate Bernoulli
outcomes 10,000 times, for the entire sampling period, and for each season, and used the numbers of successes
(i.e., the number “surface water present” outcomes) from those 10 trial simulations as multivariate binomial
outcomes in subsequent analyses. Our stipulation, n = 10 was based on general guidelines given by Gotelli and
Ellison (2004, p. 150) for detection of appreciable effect sizes in ecological studies. Importantly, the reliance
of a beta posterior distribution on the current sample size (compared to the prior) can be further modified with
a user-defined weighting constant, w, which we define in Section 3.2.2, and consider further in Section 4.4).

3.2.2. Bayesian Methodology

Under a Bayesian framework, simulated binomial data outcomes obtained from mipfp algorithms were coupled
with beta priors to obtain beta posteriors. Informative beta priors were defined to have a mean corresponding
to the predicted probability of surface water presence from the Probability of Streamflow Permanence model
(PROSPER; Jaeger et al., 2019), as reported for Murphy Creek stream segments by the United States Geological
Survey (USGS) StreamStats web-based application (USGS, 2016).

The parameterization for our priors was 8, ~ BETA(a,at), for t = I;—ﬁ", where pr was the PROSPER probability

k

of surface water presence for the kth stream segment, resulting in E(6x) = px (Equation 14). We also required
priors to have an effective sample size that was a fixed proportion, w, of n. That is, we let a + f = w - n. Because,
under our parameterization, f = « - ¢, our weighting became a + @ - t = w - n, resulting in the hyperparameters:

a=w-n- p,and
B =w-n(l—p). (26)
Thus, the posterior distribution for the probability of surface water presence at the kth segment had the form:

Ok |xx ~ BETA(w~n~13k + Zxk,W~n(1 —P)+n— Zxk>, 27

with mean
w~n-ﬁk+2xk
w-n-pr+w-nl=p)+n

E(6k|xi) = (28)

and variance:

w-n-ﬁk+2xk w-n-(l—ﬁk)+n—2xk
(w-n-pr+w-nl=p)+n* w-n-petw-nl-p)+n+l

Var(6|xi) = (29)

The sum of the products of the beta posterior means and respective segment lengths across all m segments,
ey E(0k]xi) - Alx, defined a posterior distribution outcome for mean Bernoulli stream length, E(L)
(Equation 17).

The inverse-beta posterior distribution for reciprocal probability of surface water presence at the kth segment was:
Oclx0)™ ~ BETA™ (w-n- i+ Y xesw-n(l = o) +n = D xi ). (30)

Thus, the mean of the kth inverse-beta posterior was:

w-n-pr+yxi+w-nl—p)+n—Yxi— 1

E[Oclx0)7"] = S e

€2V

and the variance of the kth inverse-beta posterior was:

wen-pr+yxi+w-n-(1—p)+n—Yxc— 1
w-n-pe+ Y x—1 .
w-n-(1=p)+n—Y xk
[w-n-pe+Xxc—1|[w-n-pe+ Y x—2]

Var[(@c|xi)™'] =
(32)
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The sum of the products of the inverse-beta posterior means and respective segmentlengths, ZZ’: W E [(0k [xx)” ! ] - Aly,
was used to define a posterior outcome for E(C) (Equation 23), allowing expansion to a network scale.

Designation of w is an important decision. For our application, we weighted the beta priors so that they would
have 50% of the weight of the sample data and, as noted above, let the current sample size be 10 random draws
from a multivariate Bernoulli distribution simulated from 2019 field data (cf. Gotelli & Ellison, 2004). That is,
for Equations 26-32 above, we let w = 0.5, n = 10, and, thus Zxk € {0,1,2,...,10}.

Our choice of w = 0.5 was driven in part by parameter constraints of the inverse-beta posteriors used to calcu-
late average seasonal communication distances. In particular, infinitely large means for inverse-beta posteriors
occurred when zeroes (surface water absences) occurred for all 10 random Bernoulli observations for a segment
during drier seasons when the corresponding PROSPER probability of segment surface water presence was 0.21
(the minimum PROSPER probability for the catchment) and the weighting level was w < 0.47 (Section S2 in
Supporting Information S1). Larger current data sample sizes, n, and/or larger prior mean probabilities of stream
presence allow greater flexibility for prior weight choices when no surface water is observed in current data (see
Section S2 in Supporting Information S1). Undefined posterior means will not occur for Bayesian extensions of
Bernoulli stream length for any w > 0. Nonetheless, the same prior weight (w = 0.5) was used for both commu-
nication distance and Bernoulli stream length to facilitate comparison of results under these two approaches.

3.3. Software

The R statistical environment (R Core Team, 2022) was used for all analyses with reliance on the package stream-
DAG (Aho, 2023; Aho et al., 2023a, 2023b), which allowed derivation of stream segment presence/absence
outcomes from node data, and straightforward computation of Bernoulli stream length and communication
distance posteriors, and the package mipfp (Barthélemy & Suesse, 2018) for simulation of multivariate Bernoulli
outcomes. Several spatial and graphics packages, including sf (Pebesma, 2018), ggspatial (Dunnington, 2021),
cowplot (Wilke, 2020), ggplot2 (Wickham, 2016), and gridGraphics (Murrell & Wen, 2020) were used to visu-
alize the results.

4. Results
4.1. Comparison of Prior, Current, and Posterior Probabilities of Surface Water Presence

Estimates for the probability of surface water presence based on data from the entirety of the 2019 field season,
P«, differed considerably from designated prior distribution means, px, for some stream segments. Specifically,
PROSPER probabilities for surface water presence were limited to the range 0.21-0.32 (Figure 2a), whereas field
observations in 2019 included reaches that were (nearly) always wet or dry (Figure 2b). By definition, posterior
distributions for the probability of surface water presence (Figure 2¢) were a compromise between the PROSPER
priors and current (2019) observations (Aho, 2014; Gelman et al., 2014).

4.2. Quantifying Uncertainty in Reach-Scale Wet/Dry Predictions: Posterior Distributions for the
Probability of Surface Water for Individual Segments

Our approach allowed summaries of both intra-segment central tendency and (for the first time) the variability in
the probability of surface water presence at segments (Figure 3). Posterior beta distributions of segments closer
to the outlet generally had larger mean values, indicating high average probabilities of surface water presence
(Figures 3a and 3b). Segments near the top and bottom of the network had smaller posterior variances for different
reasons (Figure 3b). Posterior distributions variances of segments near the outlet, for example, M91 OUT . were
smaller because surface water was generally present at these locations, whereas segment posteriors near inputs,
for example, I N.S M 1993, had smaller variances because surface water was generally absent (Figure 3b). Crit-
ically, posterior distributions for segments near the middle of the stream were platykurtic with relatively large
variances.

4.3. Rarity of Surface Water at Segments: Posterior Distributions for the Reciprocal Probability of
Surface Water Presence for Individual Segments

Distributional differences between segments were even more pronounced when examining the rarity of flows.
The distinctiveness of rarity responses was evident in the dramatic segment to segment variation in the symmetry
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Figure 2. Spatially distributed probabilities of stream surface water presence at Murphy Creek. Flow proceeds from left
to right (W to E) (see Figure 1). Panel (a) depicts stream flow presence probabilities from the USGS-PROSPER model,
which were used to define means for beta distribution priors in Bayesian analyses. Panel (b) shows probabilities based on
surface water data for the entire 2019 sampling period: 3 June 2019-2 September 2019. Panel (c), is based on information
from both panels (a, b). Specifically, beta priors for segments whose means were predicted by the USGS-PROSPER model
were coupled with binomial likelihoods based on current (simulated) data from multivariate Bernoulli distributions whose
covariance parameters were estimated from data from the entire 2019 sampling period.
and kurtosis of inverse-beta posteriors (Figure 4). Segment distributions near the top of the network, for example,
IN S M1993, M 1993 M 1951, were platykurtic with relatively large means, indicating that, on average, surface
water was rare, whereas segment distributions near the outlet were leptokurtic, with much of the probability mass
near one, indicating the segment resembled a perennial stream segment.
4.4. Identifying Bottleneck Locations: Posterior Distributions of Mean Communication Distance for
Individual Segments
Large differences in wetted instream length and average posterior mean communication distance were evident
for segments near the top of the network, indicating strong bottlenecking propensities. This was particularly true
for segment I N.S M 1993 whose average communication distance was more than 2,000 m larger than its wetted
length (Figure 5). Locations near the outlet with uncharacteristically large increases in mean effective stream
length included both M823 M759 and M 380 M 233 (Figure 5).
4.5. Assessing Network-Scale Effects: Comparison of Mean Bernoulli Network Length, L, and Network
Communication Distance, C, Over Seasons
Seasonal comparisons of network responses revealed differences in perspectives provided by network length and
communication distance. The distributions of both average stream length and average communication distance
changed dramatically in the spring, summer and fall (Figure 6). Greater distinctions, however, were evident for
AHO ET AL. 12 of 21
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Figure 3. Posterior distributions of the probability of surface water presence. Summaries are based on the entire sampling season, 3 June 2019-2 September 2019.
Names of segment bounding nodes correspond to meter distances from the outlet. Panel (a) locates nodes along the network. Segments are colored by their posterior
distribution mean values (see key). Larger means (darker, bluer colors) indicate segments with a higher likelihood for surface water presence. Panel (b) shows beta
posterior distributions for each segment. Segment posterior distributions are sorted, by row, from sources to outlet and are colored based on their mean values (see key).
Posterior means of distributions are indicated with dashed lines.

the distributions of E(C) compared to E(L). Specifically, while the posterior distributions of E(L) were symmetric
across seasons (Figure 6b), posterior distributions of E(C) were highly complex and asymmetric (Figure 6¢). For
example, the spring posterior distribution of £(C) was multimodal, while the summer and fall posteriors for E(C)
were strongly platykurtic and negatively skewed, respectively (Figure 6¢). Note that variances of seasonal distri-
butions of mean Bernoulli network length based on current (simulated multivariate Bernoulli) data (Figure 6a)
were much larger than posterior seasonal distributions of mean Bernoulli network length (Figure 6b), because of
the application of reasonable informative priors for §,.
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Figure 4. Posterior distributions of the rarity of surface water presence. Summaries are based on the entire sampling season, 3 June 2019-2 September 2019. Names
of segment nodes correspond to meter distances from the outlet. Panel (a) locates nodes along the stream network. Segments are colored by their inverse beta posterior
mean values (see key). Larger means (redder colors) indicate segments for which surface water is increasingly rare. Panel (b) shows inverse-beta posterior distributions
for each segment. Segment posterior distributions are sorted, by row, from sources to outlet, and, again, are colored based on their mean values (see key). Posterior
means of distributions are indicated with dashed lines. Note that y-axis limits differ for the last two rows of PDFs in panel (b) because of their leptokurtic shapes.

The highly platykurtic distribution of E(C) in the summer demonstrated the possibility for good communica-
tion periods, when water was present, although the mean of the distribution of summer posterior E(C) was
more than 10 times as large as the wetted network length (Figure 6¢). The multimodality of E(C) in the spring
occurred because of the strong surface flow persistence of all segments during early spring, resulting in a group of
segments with smaller average communication distances, and the late spring drying of several segments, particu-
larly I NS M1993. resulting in larger average communication distances.
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Figure 5. Distributions of posterior communication distance means for stream segments, based on the entire sampling season, 3 June 2019-2 September 2019. For
each plot, the left-hand (light blue) vertical dashed line denotes the fully wetted length of the segment (communication distance if the segment were perennial), whereas
the right-hand (salmon) dashed line is the average posterior mean communication distance. The difference of these values (right minus left) is given in the top-right
corner of each plot. Names of segment nodes correspond to meter distances from the outlet. Segment posterior distributions are sorted, by row, from sources to outlet.
Expressions of density in plots are based on a Gaussian smoothing kernel.

A fall rewet period was evident for average Bernoulli stream length, as the mean wetted extent of the fall network
was longer than the mean wetted extent of the summer network (Figures 6a and 6b). This trend was not evident,
however, for the average communication distance posterior distribution, as larger mean communication distances
occurred in the fall compared to the summer (Figure 6¢). The probability distribution of E(C) in the fall appeared
highly compact (Figure 6b) because of the conflation of its large range of potential outcomes (note the log-scale
of the x-axis in Figure 6c), and the requirement that the area under a valid PDF be one.
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Figure 6. Seasonal distributions of (a) observed mean network length, (b) posterior mean Bernoulli stream network length,
and (c) posterior mean network communication distance. All figures use random outcomes from a multivariate Bernoulli
distribution with covariance parameters estimated from 2019 data (see Section 3.2). Distributions in panels (b, ¢) are derived
under a Bayesian framework in which binomial likelihoods for segments, based on current (simulated) data, are coupled
with beta priors for segments. Panel (b) distributions are the products of the means of derived posterior beta distributions

for segments (Equation 17) and their corresponding stream lengths. Panel (c) distributions are the products of the means of
derived inverse posterior beta distributions for segments (Equation 23) and their corresponding stream lengths. Note the log
scale of the x-axis in panel (c). Expressions of density in plots are based on a Gaussian smoothing kernel. The fully wetted
stream length of Murphy Creek is denoted with a vertical dashed line in panels (a—c).

5. Discussion

We developed measures of hydrological connectivity for non-perennial streams that: (a) allowed global (network-scale)
and local (stream segment or reach-scale) perspectives concerning hydrological connectivity, (b) quantified variabil-
ity in intra- and inter-segment surface flow presence probabilities, and (c) allowed the inclusion of prior information
concerning probabilities of surface flow presence. Our novel contributions include Bayesian extensions of Bernoulli
stream network length (Botter & Durighetto, 2020) and a new connectivity metric, communication distance.

Communication distance is a scaled (by stream segment length) measure of resistance to the passive transport of
materials, for example, surface water itself, microbial organisms, and solutes, in stream networks. Because it is
the product of reciprocal probability and stream length, the communication distance of a stream segment must
be greater than or equal to its actual physical length. We view communication distance as a theoretical effective
stream length (as perceived by surface water-borne components) required for passage through a segment. Specif-
ically, the effective stream length of the kth non-perennial segment will be 1/p, longer than a perennial segment
of the same fully wetted length. Thus, the difference between the fully wetted length of the kth segment (i.e., the
communication distance if the kth segment were perennial) and the actual average communication distance of
kth segment can be considered a measure of increased average transport distance, as the result of intermittency
(Figure 5).
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As defined, communication distance considers neither flow rates nor variation in the constraints that govern the
movement of particular materials in streams, as it assumes that materials of interest move freely with water. Thus,
communication distance does not consider flow-driven nuances in material transport, including the fact that
sediment transport is often triggered by a flow rate threshold (P#htz et al., 2020), and microbial transport may
require a delay for community establishment and growth following stream activation (Drummond et al., 2015).

Bayesian extensions of communication distance prompted the first reported derivation of the inverse-beta PDF,
which can be used to represent a distribution of reciprocal probabilities of surface water presence, and directly
consider the rarity of surface flows. This application allows inductive probabilistic consideration of impor-
tant hydrological questions. For instance: “What is the probability that the average effective length of a stream
network will be longer during the spring compared to summer?” Or: “What is the probability that the average
effective stream length of a non-perennial segment will become more than g times as large as a comparable
perennial segment?”

5.1. Inverse-Beta Distribution and Communication Distance Identify Bottleneck Locations at Segments
That Are Rarely Wet

While multiplicative inverses of each other, the beta and inverse-beta distributions allow distinctive insights
into non-perennial stream mechanics. For example, segments at Murphy Creek that were consistently dry, for
example, I NS M 1993. tended to have platykurtic posterior distributions of water rarity, with particularly large
variances (Figure 4). On the other hand, posterior distributions of the probability of surface water presence at dry
and wet segments had relatively small variances due to surface water generally being absent or present, respec-
tively (Figure 3).

Communication distance quantifies the inhibition of surface water transport processes, due to intermittency,
in units of stream segment length, potentially clarifying the effects of network drying and bottlenecking. For
instance, in the Murphy Creek network, the driest segment, / N.S' M 1993. had a posterior inverse-beta mean of
11.6 (Figure 4b), indicating that surface water presence at the segment would be, on average, 11.6 times rarer
than a perennial segment. The average of the communication distance posterior distribution for the segment was
2,021 m longer than its wetted stream length (Figure 5). Thus, based on both current and prior information, we
would conclude that the average effective stream length of the segment increased 2,021 m because of intermit-
tency. Future hydrological research may reveal the mechanics of why particular segments in the network may act
as bottlenecks.

5.2. Distinct Seasonal Variation in Active Network Length, L, and Communication Distance, C

Discrepancies in perspectives offered by network communication distance and network Bernoulli stream length
were strongly evident in seasonal analyses (Figure 6). Average network Bernoulli stream lengths were longer in
the fall compared to summer, indicating a fall rewet period (Figure 6b). This outcome is consistent with obser-
vations of increased fall discharge for the study region (McNamara et al., 2005). Evidence of a fall rewet period,
however, was not apparent in the posterior distributions of average network communication distance. Instead,
larger communication distances were more probable in the fall compared to summer. This discrepancy was due
to a marked bifurcation in the behavior of stream segments in the fall. Specifically, segments near the outlet and
wet spots near the stream center (e.g., M 716 M 624) tended to be strongly persistent (p ~ 1), driving larger wetted
network lengths and smaller communication distances. On the other hand, surface water at segments further from
the outlet was often fully absent (p =~ 0), creating potential bottlenecks. This outcome contrasted with both the
summer and spring responses, but for different reasons. In the summer, communication distance posterior vari-
ances suggested that weak and strong communication outcomes had nearly equal likelihoods for most segments,
because more segments varied from wet to dry during this period. In contrast, in the spring, strong persistency
drove smaller effective stream lengths for all segments.

Posterior mean Bernoulli stream lengths across all seasons did not approach the full wetted length of Murphy
Creek (Figure 6b), due to the moderating effect of conservative prior probabilities from the USGS-PROSPER
model (Figure 2a). The PROSPER model is intended to represent the annual probability of stream segment
presence, which in the seasonally dry U.S. intermountain west, is much lower in the summer than in the fall or
spring (Wang et al., 2009). To address potential detrimental effects of priors on predictive accuracy, one could
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decrease the weight of priors in analyses, relative to the observed (current) data, or use different priors altogether
(see Section 5.3 below).

5.3. Bayesian Analytical Considerations

The USGS-PROSPER model has been validated throughout the Pacific Northwest region. However, we found the
model to be suboptimal for our application (i.e., defining beta prior hyperparameters in Bayesian models). PROS-
PER incorporates a comprehensive suite of predictors for flow persistence including land use, land cover, soil
permeability, topographic wetness index, average maximum and minimum daily temperature, and annual precip-
itation (Jaeger et al., 2019). PROSPER model predictions, however, are not seasonally adjusted, and are intended
for regional applications rather than fine-spatial-scale predictions. We justify our use of this model to define
prior means due to: (a) the lack of a better current alternative, and (b) our view of the PROSPER predictions as
provisional long-term representations of the relative probability of surface water in stream segments at Murphy
Creek. Indeed, our work now provides an updated prior framework for future Bayesian models at the study site.

We plan on further considerations of constraints to the Bayesian analysis of non-perennial streams in future
papers. This work will include comparisons of the usefulness of a large number of strictly bounded PDFs (in
addition to the beta distribution) for describing the probability of surface water in stream segments with varying
physical properties. Other topics for consideration include the sensitivity of the posterior distributions of 8,lx,
and (6¢|xx)™" to spatiotemporal scale, sample size, and the prior weighting constant, w. A final topic of general
interest is the effect of node placement and sensor number per segment for estimating the proportion of the chan-
nel that is wetted under various settings.

5.4. Further Uncertainties and Extensions

Our model predictions concern the probability of surface water presence at stream segments which may not
reflect streamflow due to two factors. First, local ponding may lead to surface water without flow, though we
did not observe this issue at Murphy Creek during frequent site visits, likely due to its steepness. To address
this issue, researchers could combine conductivity and temperature measures (Arismendi et al., 2017). These
data could then be coupled with appropriate priors to obtain posterior distributions of the probability of stream
flow and the reciprocal probability of stream flow at stream segments. Second, surface networks inferred from
very high-resolution topography may be relatively accurate, but those delineated with coarser topographic data
that rely on a single area-based threshold (e.g., the ArcGIS Watershed Toolbox) may require ground-truthing or
further consideration, particularly in headwaters, low-gradient systems, or karst regions (Yamazaki et al., 2019).

Indeed, although our demonstration considers only surficial stream networks, our field observations suggest
that subsurface flow likely dominates Murphy Creek streamflow at certain times of year. In principle, one could
model subsurface to surface hydrologic fluxes (e.g., vertical connectivity) and/or subsurface flow using our
approaches, by considering the presence/absence of subsurface water at certain depths using an array of shallow
wells. Integration of subsurface connectivity would allow more holistic considerations of human impacts on
the water cycle, as groundwater pumping can cause streams to transitions from perennial to non-perennial flow
regimes (Zipper et al., 2022). However, the assimilation of subsurface flow information into stream connec-
tivity metrics such as communication distance is not a straightforward task due to the difficulty in measuring
subsurface flow directions, properties, and rates (Xiao et al., 2021). Furthermore, groundwater can occupy long
flowpaths, spanning years to decades (Maxwell et al., 2016), and in some settings, groundwatersheds can be
substantially larger than watersheds defined by surface topography (Huggins et al., 2023).

6. Conclusions

Nuanced characterization of a non-perennial stream requires the recognition of dynamic, potentially asynchro-
nous patterns in surface flows within the network. To help describe these properties, we considered the proba-
bility of surface water presence at non-perennial stream segments as a random variable. This approach allowed
Bayesian extensions to both an existing connectivity metric, Bernoulli stream length (Botter & Durighetto, 2020),
and a new metric called communication distance. Communication distance measures resistance to passive trans-
port processes in stream networks, in units of measured stream length. For the kth non-perennial stream segment,
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the difference of the mean of a posterior distribution of average communication distances and the fully wetted
length of the kth segment provides an inductive measure of the increased average distance required for segment
travel, as the result of intermittency. This metric may be helpful for identifying stream segments prone to network
bottlenecking. Our work demonstrates the unique connectivity perspectives afforded by communication distance,
and the general usefulness of Bayesian approaches in the analysis of non-perennial streams. Our work also reveals
the need for the additional consideration of several topics. These efforts should include comparisons of the
performance of particular PDFs as priors for the probability of surface water in stream segments, and measure-
ment of the sensitivity of the posterior distributions of (6x lx) ™" to spatiotemporal scale, sample size, and the prior
weighting constant, w.
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