
1. Introduction
Non-perennial streams comprise over half of the global river network (Messager et al., 2021), are increasing in 
prevalence (Sauquet et al., 2021; Zipper et al., 2021), and strongly influence global water quantity and quality 
(Datry et al., 2014). Realization of the importance of non-perennial streams to large-scale hydrological, ecolog-
ical, and biogeochemical processes has prompted increased study of these systems (Fovet et al., 2021). None-
theless, characterization of non-perennial stream spatiotemporal dynamics remains challenging (Shanafield 
et al., 2021), inhibiting a clear understanding of linkages between stream drying and water quality.

1.1. Network Connectivity in Intermittent Streams
Decreased connectivity of stream segments from drying may affect water quality by preventing surface trans-
port of materials. Numerous stream connectivity metrics exist (see reviews in Ali and Roy  (2010), Bracken 
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et al. (2013), and Blume and Van Meerveld (2015)), due in part to myriad perspectives concerning hydrologic 
connectivity (Ali & Roy, 2009). These methods, however, have limitations for describing non-perennial streams. 
For example, several common measures of stream connectivity are time invariant due to their reliance on Carte-
sian grid relationships (e.g., Larsen et al., 2012; Trigg et al., 2013), or topography and drainage area (e.g., Jensco 
et  al.,  2009; Prancevic & Kirchner,  2019). Thus, these measures may poorly describe non-perennial stream 
networks whose extent will vary in both time and space (Bertassello et al., 2022). Further, other stream connec-
tivity measures, including those based on distances between “wet” locations (e.g., Ali & Roy, 2010; Western 
et al., 2001), or spatial autocorrelation structures (e.g., Ali & Roy, 2010; Knudby & Carrera, 2005), provide only 
network-scale descriptions. Thus, these methods do not consider drying patterns at the scale of individual stream 
segments. This latter deficiency is particularly problematic in non-perennial streams because certain locations 
may have inordinately large effects on stream networks (Godsey & Kirchner,  2014; Zipper et  al.,  2022). Of 
particular relevance are surface flow bottlenecks, that is, stream locations where surface flows often disappear, 
preventing the surficial flow of water from upstream to downstream locations.

1.2. Probabilistic Measures of Stream Connectivity
The variability of surface flow in non-perennial streams has driven the development and application of probabilis-
tic models for surface water presence, often at watershed or larger spatial scales. These approaches include hidden 
Markov chain models based on stream temperature and conductivity (Arismendi et al., 2017), models for intermit-
tent stream length as a function of climatic variables (Durighetto et al., 2020), logistic models for stream persis-
tency based on intermittency sensors and geospatial and climatic data (Jensen et al., 2019; Kaplan et al., 2020), 
random forest classifications from remotely sensed geographic information system data (González-Ferreras & 
Barquín, 2017; Jaeger et al., 2019; Sando & Blasch, 2015), and probabilistic consideration of the relationship 
between intermittent stream length and catchment discharge (Durighetto & Botter, 2022). Importantly, Botter and 
Durighetto (2020) developed a probability density function (PDF) approach to define the distribution of stream 
network length, called the stream length duration curve (SLDC). A SLDC depicts the distribution of the “active” 
fraction of a stream network (i.e., the network portion with surface flow), and provides the inverse of the exceed-
ance probability of the total length of active streams for any outlet discharge.

1.3. The Appeal of Bayesian Methods
The development of probabilistic approaches for considering surface flow in non-perennial streams is commend-
able. Existing work, however, generally employs a frequentist view of probability which assumes a single “true” 
value for the probability of water presence at a stream segment over some timespan. This view potentially ignores 
variation in diel and seasonal probabilities of stream segment water presence, and more importantly, may prevent 
assessment of uncertainty and variability in probability designations. These properties, however, can be readily 
considered under a Bayesian statistical approach.
Many sources of information concerning wetting and drying patterns may exist for a stream network, poten-
tially based on multiple spatiotemporal scales and sampling schema. For example, it is possible that at a single 
watershed, stream surface flow has been: (a) modeled as part of subcontinent-scale research projects (e.g., 
USGS-PROSPER; Jaeger et al., 2019), (b) categorized into presence/absence outcomes at locations occasionally 
visited by local agencies or researchers, and (c) measured at a small number of locations using high-frequency 
intermittency sensors over days to years. Such prior information can be assimilated into Bayesian statistical 
analyses to inform and refine models based on current data, for example, resistivity sensor outcomes for the 
present water year. Weights for these priors, in the form of effective sample sizes (compared to current data 
sample sizes), can also be assigned based on prior data quality and the agreement of measurement scales of prior 
and current data. The posterior distribution represents a formal Bayesian synthesis of prior and current informa-
tion. Because it will have the form of a PDF, the posterior allows straightforward assessments of uncertainty in 
modeled phenomena. The application of Bayesian methods seems particularly useful for depicting the probability 
of surface water presence in non-perennial streams, given the frequent availability of prior information, and the 
importance of quantifying the central tendency and variation in this parameter.

1.4. Products
In this paper we develop Bayesian statistical methods to measure stream network connectivity that allow: (a) 
simultaneous consideration of global (entire network) and local (stream segment) scales, (b) explicit consideration 
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of the variability and uncertainty in the probability of surface water presence, and (c) inclusion of prior informa-
tion concerning the probability of surface water presence. We also introduce a new metric called communication 
distance that measures the theoretical effective stream length of segments as perceived by water-borne compo-
nents requiring surface water transport. This measure may improve understanding of the balance of transport, 
storage, and reaction limitations within non-perennial networks and their downstream waters, whether they dry 
or not. Bayesian application of communication distance prompted the first reported analytical derivation of the 
inverse-beta distribution (the reciprocal of the conventional beta distribution) and its moments, which we also 
provide here.

2. Theoretical Foundations
2.1. The Stream Length Duration Curve (SLDC)
In this section we briefly review the SLDC framework of Botter and Durighetto (2020), highlighting potential 
extensions and refinements. For the sake of clarity and consistency, we define a stream segment as a stream 
section bounded by nodes occurring at meaningful hydrologic locations, such as sensor sites, confluences, splits, 
sources, and sinks (Dodds & Rothman, 2000).
Let 𝑿 be a series of m Bernoulli random variables, 𝐴 𝑋1 , 𝐴 𝑋2, . . . ,𝑋𝑚 representing surface water presence or absence 
at segments in a stream network at the same point in time. Then, for the kth segment, 𝐴 𝑘 = 1, 2, 3, . . . ,𝑚 , we have:

𝑓 (𝑥𝑘) = 𝑝
𝑥𝑘

𝑘
(1 − 𝑝𝑘)

1−𝑥𝑘 (1)

where pk is the probability that the kth segment is wet, and

𝑥𝑘 =

⎧

⎪

⎨

⎪

⎩

1 if the stream segment is wet

0 if the stream segment is dry
. (2)

The mean and variance of Xk are

𝐸(𝑋𝑘) = 𝑝𝑘, and (3)

Var(𝑋𝑘) = (1 − 𝑝𝑘)𝑝𝑘. (4)

Jointly, X is a multivariate Bernoulli random variable, with PDF (Dai et al., 2013):

𝑓 (𝒙) = 𝑝

∏𝑚

𝑘=1(1−𝑥𝑘)
0,0,. . . ,0

𝑝
𝑥1

∏𝑚

𝑘=2(1−𝑥𝑘)
1,0,. . . ,0

𝑝
(1−𝑥1)𝑥2

∏𝑚

𝑘=3(1−𝑥𝑘)
0,1,. . . ,0

⋯𝑝

∏𝑚

𝑘=1
𝑥𝑘

1,1,. . . ,1
. (5)

where pabc..z is the joint probability of X1 = a, X2 = b, X3 = c, …, Xm = z, and x = (x1,x2,…xm) is a realization of X.
Let Δl be a vector of individual stream lengths for the full set of stream segments: Δl = Δl1,Δl2,…,Δlm, corre-
sponding to binary surface water presence/absence outcomes in X. Then, the dot product (sum of element-wise 
vector products), is a random variable, L, representing wetted stream network length:

𝐿 = 𝑿 ∙ Δ𝑙. (6)

The resulting mean wetted stream network length is

𝐸(𝐿) =

𝑚
∑

𝑘=1

𝑝𝑘Δ𝑙𝑘, (7)

and the wetted stream network length variance is

Var(𝐿) =

𝑚
∑

𝑖=1

𝑚
∑

𝑗=1

Cov(𝐿𝑖,𝐿𝑗). (8)

where Li = Xi∆li, Lj = Xj∆lj, and Cov(Li,Lj) denotes the covariance between stream lengths Li and Lj. Note that for 
k = i = j, Cov(Lk,Lk) is the kth segment variance, Var(𝐿𝑘) = Δ𝑙2

𝑘
[𝑝𝑘(1 − 𝑝𝑘)] . This term will be the kth diagonal 
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entry in the variance covariance matrix for L, denoted ΣL. We refer to the approach defined in Equations 1–8 
as Bernoulli stream length due to its reliance on multivariate Bernoulli random variables. That is, Equation 7 
denotes the mean Bernoulli stream network length, or the average length of the stream network that is wet, and 
Equation 8 represents the variance of Bernoulli stream network length.
Following Botter and Durighetto  (2020), we recommend that all 𝐴 𝑝𝑘𝑠 be estimated using arithmetic means: 

𝐴 𝑝̂𝑘 = 𝑛−1
∑

𝒙𝑘 , where 𝒙𝑘 denotes Bernoulli surface water presence/absence data, taken over n trials, from the 𝐴 𝑘 th 
segment. Thus, we use X to represent a multivariate Bernoulli random variable describing the presence/absence 
of surface water across the m segments in space, that is, 𝑿 = (𝑋1,𝑋2, . . .𝑋𝑚) , x to represent a realization of X at 
one particular moment in time 𝒙 = (𝑥1, 𝑥2, . . .𝑥𝑚) , and 𝒙𝑘 to denote multiple Bernoulli (i.e., binomial) outcomes 
from the kth segment over time: 𝒙𝑘 = (𝑥𝑘,1, 𝑥𝑘,2, . . .𝑥𝑘,𝑛) . As noted above, for individual time events, 𝐴 𝑥𝑘 ∈ {0, 1}.

Entries in Σ𝑳 can be estimated with conventional method of moments-based variance and covariance estimators 
(see Aho (2014)), using observed data, although correlations (standardized covariances) for any segments 𝐴 𝑖  and 

𝐴 𝑗 should have the bounds (Botter & Durighetto, 2020):

𝜌
max
𝑖,𝑗

=

√

𝑝𝑗(1 − 𝑝𝑖)

𝑝𝑖(1 − 𝑝𝑗)
≤ 1 (9)

where pj ≤ pi, and

𝜌
min
𝑖,𝑗

=

(

𝑝𝑗𝑝𝑖

(1 − 𝑝𝑖)𝑖(1 − 𝑝𝑗)

)𝛽

≥ −1 (10)

where β = 1/2 if pi + pj ≤ 1 and β = −1/2 otherwise. Generalized covariance frameworks appropriate for stream 
networks can also be applied (see Cressie et al. (2006) and Ver Hoef et al. (2006)).
Botter and Durighetto (2020) present the distribution of L in terms of exceedance probabilities (one minus the 
cumulative distribution function of L). The inverse of this sigmoidal function represents the final form of the 
SLDC, in reflection of the widely used flow duration curve (Castellarin et al., 2004).

2.2. Communication Distance
The concept of Bernoulli stream length is informative at a network scale. However, it may be less useful for 
describing internodal communication and transportation of materials. For example, for spatially adjacent nodes 
u and v, the drying of the connecting stream segment means that the distance from u to v with respect to surface 
transport of flow-borne organisms and resources has become infinite, although the Bernoulli stream length for 
the segment is zero. To measure resource transport constraints within stream networks we propose a new metric, 
communication distance.
Following Botter and Durighetto  (2020) we represent stream segment lengths using Δlk  ∈  {Δl1,Δl2,…,Δlm}, 
and corresponding probabilities for surface water presence as pk ∈ {p1,p2,…,pm}. The average communication 
distance of the kth segment, measured in the units provided in Δlk, is:

𝐶𝑘 =
Δ𝑙𝑘

𝑝𝑘
 (11)

Because it is the product of reciprocal probability and stream length, Ck describes the average effective stream 
segment length (as perceived by surface water-borne components) required for passage through the kth segment, 
in units of measured stream length given in Δlk.
The average network level communication distance is:

𝐶 =

𝑚
∑

𝑘=1

𝐶𝑘. (12)

Given all 𝐴 𝑝𝑘 = 1 , the network communication distance will equal the network Bernoulli stream length, which in 
this case will be 

𝑚
∑

𝑘=1

Δ𝑙𝑘 . Given any 𝐴 𝑝𝑘 = 0 , the network communication distance becomes ∞ . Clearly, however, to 
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be correctly defined as stream segments in a network, ∀𝑝𝑘 > 0 over an extended time span, making 𝐴 𝐶 < ∞ . Thus, 
for 0 < 𝑝𝑘 ≤ 1 , the network average communication distance will be 

𝑚
∑

𝑘=1

Δ𝑙𝑘  ≤ 𝐴 𝐶 < ∞ .

In non-perennial streams, Ck can be viewed as the average effective length of the kth segment after acknowledg-
ing intermittency. We propose that potential bottleneck locations in a network can be identified by examining 
differences between the segment wetted instream length (the communication distance of the segment if it were 
perennial) and the mean communication distance for the segment. This difference measures the increased average 
distance required for segment travel as a result of intermittency.

Bernoulli stream length and communication distance both provide potentially useful summaries of non-perennial 
stream length that acknowledge random variability in the presence of water at stream segments. However, like 
other current probabilistic considerations of non-perennial streams, the parameter pk is defined (in the context of 
Equation 1) to be a fixed numeric constant, as is conventional under the frequentist paradigm. Below we consider 
formal Bayesian approaches for modeling the probability of the presence of surface water in non-perennial 
streams as a random variable.

2.3. Modeling the Probability of Surface Water—Bayesian Extensions to Bernoulli Stream Length and 
Communication Distance
2.3.1. The Probability of Surface Water as a Random Variable
Several approaches can be used to represent the probability of surface water presence at the kth segment as a 
random variable, θk, over some user-defined timescale, for example, daily, weekly, monthly, seasonally, annually. 
Because it is highly modifiable and bounded by [0,1], a widely used distributional model for probability is the 
beta PDF. If θk ∼ BETA(α,β), where α,β > 0, and θk ∈ [0,1], it will have the PDF:

𝑓 (𝜃𝑘) =
Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
𝜃
𝛼−1
𝑘

(1 − 𝜃𝑘)
𝛽−1

. (13)

Other PDFs with [0,1] bounds include the triangular distribution, the two-sided power distribution, and the gener-
alized trapezoidal distribution (see Kotz and van Dorp (2004)). In principle, any of these PDFs can replace beta 
distributions in analyses described here. These alternatives, however, are not members of the exponential family 
of distributions (Pitman,  1936), and may be non-differentiable, limiting their straightforward applicability in 
analyses. For example, they cannot serve as conjugate priors in Bayesian analyses (see below). A comparison of 
the usefulness of a large number of strictly bounded PDFs for modeling the probability of stream surface water 
presence is currently under development by the first author.

It is possible to define θk as a beta random variable with a mean defined to be some stipulated or estimated prior 
probability of surface water presence, 𝐴 𝑝̃𝑘 . Among other possibilities, the quantity 𝐴 𝑝̃𝑘 can be based on pilot data 
sets, or surveys, or existing maps expressing outcomes from surficial water models. Specifically, let

𝜃𝑘 ∼ BETA(𝛼, 𝛽 = 𝑡𝛼) (14)

for some α > 0, where 1

1+𝑡
 is equal to the stipulated prior probability, 𝐴 𝑝̃𝑘 , then 𝐴 𝑡 =

1−𝑝̃𝑘

𝑝̃𝑘

 , and 𝐴 𝐸(𝜃𝑘) =
𝛼

𝛼+𝛽
= 𝑝̃𝑘 .

2.3.2. The Posterior Distribution of the Probability of Surface Water
Given background from Section  2.3.1, we now consider the random variable θk within the formal Bayesian 
framework:

𝑓 (𝜃𝑘|𝒙𝑘) ∝ 𝑓 (𝒙𝑘|𝜃𝑘)𝑓 (𝜃𝑘) (15)

where f(θk|xk) is the posterior density function for the probability of surface water at the kth stream segment given 
n observed binary presence/absence outcomes from the kth segment, where, as before, xk = (xk,1,xk,2,…xk,n), 
f(xk|θk) is the likelihood function for the kth segment, and f(θk) is the kth prior density function.

A Bayesian model for θk, whose current data are sums of n Bernoulli trials for stream segment water presence/
absence (i.e., Equation 2), would use a binomial likelihood function, resulting in, xk|θk ∼ BIN(n,θk). Under this 
framework, a beta distribution is often employed as a prior for θk; that is, θk ∼ BETA(α,β). This is because the 
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beta PDF is the only possible conjugate prior for a binomial likelihood function. Conjugacy results in the poste-
rior and prior being members of the same distributional family. Thus, for the current case, both would be beta 
distributions. Conjugacy is useful in Bayesian applications because the prior is interpretable as additional data, 
and the resulting posterior distribution will have a known parametric form (Gelman et al., 2014, p. 34). The 
latter characteristic allows straightforward summarization of the posterior, and diminishes the need for complex 
numerical procedures, including Markov Chain Monte Carlo simulation. Beta priors allow a wide variety of both 
non-informative and informative frameworks for θk, as described below.

Non-informative priors, often called flat or diffuse priors, express only general information about a random vari-
able under consideration, with the goal of “letting the data speak for themselves” (Gelman et al., 2014). Conven-
tional non-informative beta priors include BETA(1,1), BETA(0.5, 0.5), that is, the Jeffreys prior (Jeffreys, 1946), 
and BETA (0, 0). All three distributions attribute equal degrees of belief to wet and dry stream outcomes. Indeed, 
BETA(1,1) is equivalent to a continuous uniform distribution in [0,1] and will give equal densities (of one) to all 
possible probabilities of surface water presence. The three distributions, however, have different prior effective 
sample sizes.

The prior effective sample size—a characteristic of all prior distributions—defines the effect of the prior on the 
posterior compared to the current data, relative to the current data sample size, n. The effective sample size for a 
beta prior is the sum of its hyperparameters, α and β (Morita et al., 2008). Thus, the prior distribution, BETA(0, 
0), will have an effective sample size of zero, and its application will result in a beta posterior whose mean will 
equal the sample mean of current binomial data. Note that, to obtain a proper posterior (one with a finite integral), 
use of BETA(0, 0) requires that surface water presence and surface water absence outcomes are both observed 
at least once in current data. The prior distribution BETA(1,1) would weight current data relative to the prior by 
a factor of n/2, whereas BETA(0.5, 0.5) would weight current data relative to the prior by a factor of n/1. Thus, 
relative confidence in current data and prior data can be used to guide the parametrization of prior distributions.

Informative prior distributions should generate reasonable outcomes for a random variable under consideration, 
based on knowledge (and uncertainty) concerning that variable (Gelman et al., 2014). Informative beta priors can 
be specified, depending on the availability and quality of prior information extraneous to current data used in 
the likelihood. For example, as noted above, an informative beta prior can be constructed in which E(θk) equals a 
prior designation for the probability of surface water presence at the kth segment, 𝐴 𝑝̃𝑘 (Equation 14). As noted in 
the previous paragraph, beta hyperparameters can be further modified to ensure that the prior has an appropriate 
effective sample size. Our approach for these implementations is fully described in Section 3.2.2.

2.3.3. The Posterior Distribution of Bernoulli Stream Length
Given beta priors and binomial likelihoods, the posterior density function of the probability of surface water 
presence at the kth segment will have the form θk|xk ∼ BETA(α + ∑xk,β + n − ∑xk) where α and β are the hyper-
parameter values defined for the beta prior distribution. Under linear transformation, the posterior distribution for 
the average Bernoulli length of the kth segment can be obtained by multiplying the θk|xk posterior by the constant 
Δlk. That is,

𝐸(𝐿𝑘) = (𝜃𝑘|𝒙𝑘) ⋅ Δ𝑙𝑘 (16)

The posterior distribution of average Bernoulli stream lengths for the entire network can be obtained by taking 
the sum of the product E(𝐴 𝜃𝑘|𝒙𝑘 ) ⋅ Δ𝑙𝑘 , across all segments (cf. Eq. 5 in Botter and Durighetto (2020)). That is,

𝐸(𝐿) =

𝑚
∑

𝑘=1

𝐸(𝜃𝑘|𝒙𝑘) ⋅ Δ𝑙𝑘 (17)

Determining the posterior distributions of communication distance at the segment or network scale, E(Ck) and 
E(C), respectively, is less straightforward. This is because the derivation requires multiplication of the kth stream 
length by the reciprocal (multiplicative inverse) of the kth beta posterior.

2.3.4. The Inverse-Beta Distribution
If θk follows a beta distribution, then 𝐴 𝜃−1

𝑘
 will follow an inverse-beta distribution. This PDF has not been previ-

ously derived, although as a practical matter it is straightforward to obtain inverse-beta outcomes from existing 
computer algorithms (e.g., 1/rbeta() in the R computational environment). The inverse beta PDF is distinct 
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from the beta prime distribution, also called the inverted beta distribution, which is used to represent the distri-
bution of odds, that is, a probability divided by its complement (Johnson et al., 1995).

Let 𝐴 𝜃𝑘 ∼ BETA(𝛼, 𝛽) with 𝐴 𝛼, 𝛽 > 0 , then 𝐴 𝜃−1
𝑘

∼ BETA

−1(𝛼, 𝛽) with PDF:

𝑓
(

𝜃
−1
𝑘

)

=
Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)

(

1

𝜃−1
𝑘

)𝛼+1(

1 −
1

𝜃−1
𝑘

)𝛽−1

, (18)

with mean, for 𝐴 𝛼 > 1 ,

𝐸
(

𝜃
−1
𝑘

)

=
𝛼 + 𝛽 − 1

𝛼 − 1
, (19)

and variance, for 𝐴 𝛼 > 2 ,

Var
(

𝜃
−1
𝑘

)

=
𝛽(𝛼 + 𝛽 − 1)

(𝛼 − 1)2(𝛼 − 2)
. (20)

As suggested above, the inverse beta distribution can be used to represent distributions of reciprocal probabilities 
which will occur in [1, ∞), given probabilities in [1, 0). Reciprocal probabilities are useful for measuring the 
rarity of outcomes. Specifically, the reciprocal probability, r, for an outcome A, indicates that there is a 1 in r 
chance that A will occur. For instance, if the probability of surface water presence a stream segment is 0.01, then 
one would expect that surface water will occur in 1 of 100 cases, because r = 1/0.01 = 100, and that surface water 
at the segment would be 100 times rarer than at a perennial segment. Under this framework, Equations 19 and 20 
represent the mean level of surface water rarity and the variance of surface water rarity for the kth stream segment, 
respectively. Mathematical derivations of the inverse-beta distribution and its moments are given in Section S1 
in Supporting Information S1.

2.3.5. The Posterior Distribution of Average Communication Distance
Let (𝜃𝑘|𝒙𝑘)

−1 be an inverse beta posterior distribution representing the reciprocal probability of surface water 
presence at the kth stream segment, then the posterior mean communication distance for the k th segment is:

𝐸(𝐶𝑘) = 𝐸
[

(𝜃𝑘|𝒙𝑘)
−1
]

Δ𝑙𝑘, (21)

and posterior communication distance variance of the kth segment is:

Var(𝐶𝑘) = Var
[

(𝜃𝑘|𝒙𝑘)
−1
]

Δ𝑙2
𝑘
. (22)

In this Bayesian context, E(Ck) can be viewed as the average effective stream length of the kth segment, based on 
both current data and prior information. Thus, E(Ck) can be compared to the segment's wetted instream length 
(the actual physical length of the segment) to obtain an inductive measure of increased mean effective stream 
length due to intermittency.

The posterior average network communication distance is:

𝐸(𝐶) =

𝑚
∑

𝑘=1

𝐸
[

(𝜃𝑘|𝒙𝑘)
−1
]

Δ𝑙𝑘. (23)

and the posterior communication distance variance of the entire network is:

Var(𝐶) =

𝑚
∑

𝑖=1

𝑚
∑

𝑗=1

Cov(𝐶𝑖,𝐶𝑗) (24)

where Cov(Ci,Cj) denotes the covariance between communication distances Ci and Cj. For k = i = j, Cov(Ck,Ck) is 
the kth marginal variance, Var(Ck). We now demonstrate the use of these metrics with an example from the north 
central Rocky Mountains, USA.
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3. Materials and Methods
3.1. Field Site and Field Methods
We derived Bernoulli stream length and communication distance summaries for Murphy Creek, a simple 
drainage system within the larger Reynolds Creek experimental watershed in the Owyhee Mountains of south-
western Idaho, USA (see Warix et  al.  (2021)). Measures of surface water presence were made at 25 nodes, 
corresponding to 24 stream segments, every 15 min from 3 June 2019 to 2 September 2019, resulting in 11,623 
repeated measures for each node (Figure 1). Missing data points, which occurred to varying levels at 16 nodes 
(Figure 1), constituted less than 5% of all possible time series measures. In agreement with our definition of 
stream segments, we designated additional (un-instrumented) nodes at the outlet and at two stream sources, 
resulting in a total of 27 nodes and 26 segments. At 21 nodes, surface water presence was measured with sensors 
(Onset HOBO Pendant/Light 64 K Datalogger sensors (UA002-64; Figure 1) that were modified to detect resis-
tivity (Chapin et al., 2014). The resistivity sensors were placed in the deepest part of the channel and installed so 
that the two pole electrodes were touching the stream bed, allowing detection of the presence or absence of water 
at the lowest of flow conditions. At the other four instrumented sites, water levels (Onset Hobologger, U-20) and 
specific conductance (Onset Hobologger, U-24) were measured at 15-min intervals for baseflow monitoring, also 
allowing detection of the absence of stream surface water (Figure 1). Additional details can be found in Warix 
et al. (2021).

Figure 1. Instrumentation of the Murphy Creek sub-watershed in 2019 (outlet coordinates: 43.25607°N, −116.8186°W) and 
summary of surface water presence at each sensor. Note that missing data points occurred for some nodes over the span of 
sampling.
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3.2. Statistical Methods
We created inferential models of Bernoulli stream length and network communication distance at Murphy Creek 
based on the entirety of the sampling period (3 June 2019–2 September 2019), and on three seasonal subsets: 
spring (3 June 2019–10 July 2019), summer (11 July 2019–14 August 2019), and fall (15 August 2019–2 Septem-
ber 2019). Seasonal cutoffs were established at dates representing approximate change points in precipitation and 
temperature based on long-term (1964–1996) climate data for the study area (Hanson et al., 2001), for days of the 
year corresponding to the 2019 sampling period (early June to early October).

3.2.1. Estimating Stream Segment Surface Water Presence/Absence
The translation of point measurements of surface flow presence/absence at sensor locations to stream segment 
surface flow presence/absence is a potentially difficult and contentious process. We can consider four general 
approaches. Under approaches one and two a sensor is defined as a node of its corresponding segment and 
represents singly, the stream segment surface flow presence/absence between itself and the node immediately 
upstream (approach 1) or downstream (approach 2). Under approach three, a pair of neighboring sensors, which 
are placed at the upstream and downstream ends of a stream segment, serve as the segment nodes, and surface 
flow presence/absence responses from both sensors are considered when defining segment surface flow pres-
ence/absence. Under approach four, a sensor is not assumed to be a segment node, but instead fully represents a 
segment that is bounded by unmeasured nodes halfway between each sensor (e.g., Botter & Durighetto, 2020). 
Approaches one, two, and four are straightforward, allow clear translation to a binary Bernoulli process, and 
produce data that can be used directly in Bayesian approaches described in Section 3.2.2.

Despite these benefits, however, we used approach three to estimate stream segment surface flow presence/
absence at Murphy Creek. We based our decision on two factors. First, unlike approach four, approach three 
reflected our definition of stream segments (Section 2.1), and provided a clear delineation of the extent of stream 
segments. Second, unlike approaches one and two, approach three allowed multiple estimation points for average 
surface water presence, based on segment locations with the greatest potential for spatial independence (Cressie 
et al., 2006). Specifically, for the kth segment with bounding nodes u and v, for the ith time frame, i = 1,2,3,…,n, 
we applied the following rule:

𝑥𝑘,𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1.0, both 𝑢 and 𝑣wet

0.0, both 𝑢 and 𝑣 dry

0.5, only one of 𝑢 or 𝑣wet

. (25)

Equation 25 can be viewed as a coarse estimator of the average probability of surface water along kth segment, 
based on segment endpoints. Marginal (individual segment) probabilities of surface water presence and covar-
iances among segments were both estimated using segment outcomes from Equation 25. Exceptions were the 
three segments associated with input and sink locations, whose extremal nodes were not instrumented (Figure 1) 
and time points with a missing datum at a single bounding node (8% of total segment observations). In this 
unusual case, surface water outcomes were based on water presence/absence outcomes at a single node (e.g., 
Botter & Durighetto,  2020). Situations with missing data at both bounding nodes, preventing application of 
Equation 25, occurred in less than 0.2% of cases.

We used the R package mipfp (Barthélemy & Suesse, 2018) to generate multivariate Bernoulli trials for water 
presence at segments based on estimated marginal segment probabilities of water presence and inter-segment 
covariances. Specifically, we generated 1,000 random multivariate Bernoulli trials, each made up of m = 26 
potentially correlated binary outcomes, representing the simultaneous presence or absence of surface stream 
flow at each of the 26 designated Murphy Creek stream segments, at a particular time. We applied this approach 
based on estimates from data over the entire sampling period, and for separate data subsets representing spring, 
summer, and fall. Our simulation approach addressed the issue of potential non-binary outcomes in Equation 25, 
and the fact that surface water presence at segments is generally positively correlated in space. Specifically, 
the approach allowed the generation of large surface water presence or absence data sets for segments, made 
up of temporally independent (random) samples representative of particular spans of time, that is, the entire 
sampling period, spring, summer, and fall, based on the estimated marginal probabilities for stream segment 
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presence and the estimated spatial dependencies of segments during those periods of time. We randomly 
sampled with replacement with the sample size n = 10 from the collections of random multivariate Bernoulli 
outcomes 10,000 times, for the entire sampling period, and for each season, and used the numbers of successes 
(i.e., the number “surface water present” outcomes) from those 10 trial simulations as multivariate binomial 
outcomes in subsequent analyses. Our stipulation, n = 10 was based on general guidelines given by Gotelli and 
Ellison (2004, p. 150) for detection of appreciable effect sizes in ecological studies. Importantly, the reliance 
of a beta posterior distribution on the current sample size (compared to the prior) can be further modified with 
a user-defined weighting constant, w, which we define in Section 3.2.2, and consider further in Section 4.4).

3.2.2. Bayesian Methodology
Under a Bayesian framework, simulated binomial data outcomes obtained from mipfp algorithms were coupled 
with beta priors to obtain beta posteriors. Informative beta priors were defined to have a mean corresponding 
to the predicted probability of surface water presence from the Probability of Streamflow Permanence model 
(PROSPER; Jaeger et al., 2019), as reported for Murphy Creek stream segments by the United States Geological 
Survey (USGS) StreamStats web-based application (USGS, 2016).

The parameterization for our priors was θk ∼ BETA(α,αt), for 𝐴 𝑡 =
1−𝑝̃𝑘

𝑝̃𝑘

 , where 𝐴 𝑝̃𝑘 was the PROSPER probability 
of surface water presence for the kth stream segment, resulting in 𝐴 𝐸(𝜃𝑘) = 𝑝̃𝑘 (Equation 14). We also required 
priors to have an effective sample size that was a fixed proportion, w, of n. That is, we let α + β = w · n. Because, 
under our parameterization, β = α · t, our weighting became α + α · t = w · n, resulting in the hyperparameters:

𝛼 = 𝑤 ⋅ 𝑛 ⋅ 𝑝̃𝑘, and 

𝛽 = 𝑤 ⋅ 𝑛(1 − 𝑝̃𝑘). (26)

Thus, the posterior distribution for the probability of surface water presence at the kth segment had the form:

𝜃𝑘|𝒙𝑘 ∼ BETA

(

𝑤 ⋅ 𝑛 ⋅ 𝑝̃𝑘 +
∑

𝒙𝑘,𝑤 ⋅ 𝑛(1 − 𝑝̃𝑘) + 𝑛 −
∑

𝒙𝑘

)

, (27)

with mean

𝐸(𝜃𝑘|𝒙𝑘) =
𝑤 ⋅ 𝑛 ⋅ 𝑝̃𝑘 +

∑

𝒙𝑘

𝑤 ⋅ 𝑛 ⋅ 𝑝̃𝑘 +𝑤 ⋅ 𝑛(1 − 𝑝̃𝑘) + 𝑛
, (28)

and variance:

Var(𝜃𝑘|𝒙𝑘) =
𝑤 ⋅ 𝑛 ⋅ 𝑝̃𝑘 +

∑

𝒙𝑘

[𝑤 ⋅ 𝑛 ⋅ 𝑝̃𝑘 +𝑤 ⋅ 𝑛(1 − 𝑝̃𝑘) + 𝑛]2
⋅

𝑤 ⋅ 𝑛 ⋅ (1 − 𝑝̃𝑘) + 𝑛 −
∑

𝒙𝑘

𝑤 ⋅ 𝑛 ⋅ 𝑝̃𝑘 +𝑤 ⋅ 𝑛(1 − 𝑝̃𝑘) + 𝑛 + 1
 (29)

The sum of the products of the beta posterior means and respective segment lengths across all m segments, 
∑𝑚

𝑘=1 𝐸(𝜃𝑘|𝒙𝑘) ⋅ ∆𝑙𝑘, defined a posterior distribution outcome for mean Bernoulli stream length, 𝐴 𝐸(𝐿) 
(Equation 17).

The inverse-beta posterior distribution for reciprocal probability of surface water presence at the kth segment was:

(𝜃𝑘|𝒙𝑘)
−1 ∼ BETA

−1
(

𝑤 ⋅ 𝑛 ⋅ 𝑝̃𝑘 +
∑

𝒙𝑘,𝑤 ⋅ 𝑛(1 − 𝑝̃𝑘) + 𝑛 −
∑

𝒙𝑘

)

. (30)

Thus, the mean of the kth inverse-beta posterior was:

𝐸
[

(𝜃𝑘|𝒙𝑘)
−1
]

=
𝑤 ⋅ 𝑛 ⋅ 𝑝̃𝑘 +

∑

𝒙𝑘 +𝑤 ⋅ 𝑛(1 − 𝑝̃𝑘) + 𝑛 −
∑

𝒙𝑘 − 1

𝑤 ⋅ 𝑛 ⋅ 𝑝̃𝑘 +
∑

𝒙𝑘 − 1
 (31)

and the variance of the kth inverse-beta posterior was:

Var[(𝜃𝑘|𝒙𝑘)−1
]
=

𝑤 ⋅ 𝑛 ⋅ 𝑝̃𝑘 +
∑𝒙𝑘 +𝑤 ⋅ 𝑛 ⋅ (1 − 𝑝̃𝑘) + 𝑛 −∑𝒙𝑘 − 1

𝑤 ⋅ 𝑛 ⋅ 𝑝̃𝑘 +
∑𝒙𝑘 − 1

⋅

𝑤 ⋅ 𝑛 ⋅ (1 − 𝑝̃𝑘) + 𝑛 −∑𝒙𝑘[
𝑤 ⋅ 𝑛 ⋅ 𝑝̃𝑘 +

∑𝒙𝑘 − 1
][
𝑤 ⋅ 𝑛 ⋅ 𝑝̃𝑘 +

∑𝒙𝑘 − 2
]

 (32)
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The sum of the products of the inverse-beta posterior means and respective segment lengths, ∑𝑚

𝑘=1 𝐸
[

(𝜃𝑘|𝒙𝑘)
−1
]

⋅ ∆𝑙𝑘, 
was used to define a posterior outcome for 𝐴 𝐸(𝐶) (Equation 23), allowing expansion to a network scale.
Designation of w is an important decision. For our application, we weighted the beta priors so that they would 
have 50% of the weight of the sample data and, as noted above, let the current sample size be 10 random draws 
from a multivariate Bernoulli distribution simulated from 2019 field data (cf. Gotelli & Ellison, 2004). That is, 
for Equations 26–32 above, we let w = 0.5, n = 10, and, thus ∑xk ∈ {0,1,2,…,10}.
Our choice of w = 0.5 was driven in part by parameter constraints of the inverse-beta posteriors used to calcu-
late average seasonal communication distances. In particular, infinitely large means for inverse-beta posteriors 
occurred when zeroes (surface water absences) occurred for all 10 random Bernoulli observations for a segment 
during drier seasons when the corresponding PROSPER probability of segment surface water presence was 0.21 
(the minimum PROSPER probability for the catchment) and the weighting level was w ≤ 0.47 (Section S2 in 
Supporting Information S1). Larger current data sample sizes, n, and/or larger prior mean probabilities of stream 
presence allow greater flexibility for prior weight choices when no surface water is observed in current data (see 
Section S2 in Supporting Information S1). Undefined posterior means will not occur for Bayesian extensions of 
Bernoulli stream length for any w > 0. Nonetheless, the same prior weight (w = 0.5) was used for both commu-
nication distance and Bernoulli stream length to facilitate comparison of results under these two approaches.

3.3. Software
The R statistical environment (R Core Team, 2022) was used for all analyses with reliance on the package stream-
DAG (Aho,  2023; Aho et  al.,  2023a,  2023b), which allowed derivation of stream segment presence/absence 
outcomes from node data, and straightforward computation of Bernoulli stream length and communication 
distance posteriors, and the package mipfp (Barthélemy & Suesse, 2018) for simulation of multivariate Bernoulli 
outcomes. Several spatial and graphics packages, including sf (Pebesma, 2018), ggspatial (Dunnington, 2021), 
cowplot (Wilke, 2020), ggplot2 (Wickham, 2016), and gridGraphics (Murrell & Wen, 2020) were used to visu-
alize the results.

4. Results
4.1. Comparison of Prior, Current, and Posterior Probabilities of Surface Water Presence
Estimates for the probability of surface water presence based on data from the entirety of the 2019 field season, 

𝐴 𝑝̂𝑘 , differed considerably from designated prior distribution means, 𝐴 𝑝̃𝑘 , for some stream segments. Specifically, 
PROSPER probabilities for surface water presence were limited to the range 0.21–0.32 (Figure 2a), whereas field 
observations in 2019 included reaches that were (nearly) always wet or dry (Figure 2b). By definition, posterior 
distributions for the probability of surface water presence (Figure 2c) were a compromise between the PROSPER 
priors and current (2019) observations (Aho, 2014; Gelman et al., 2014).

4.2. Quantifying Uncertainty in Reach-Scale Wet/Dry Predictions: Posterior Distributions for the 
Probability of Surface Water for Individual Segments
Our approach allowed summaries of both intra-segment central tendency and (for the first time) the variability in 
the probability of surface water presence at segments (Figure 3). Posterior beta distributions of segments closer 
to the outlet generally had larger mean values, indicating high average probabilities of surface water presence 
(Figures 3a and 3b). Segments near the top and bottom of the network had smaller posterior variances for different 
reasons (Figure 3b). Posterior distributions variances of segments near the outlet, for example, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑀91 𝑂𝑈𝑇 , were 
smaller because surface water was generally present at these locations, whereas segment posteriors near inputs, 
for example, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐼𝑁𝑆𝑀1993 , had smaller variances because surface water was generally absent (Figure 3b). Crit-
ically, posterior distributions for segments near the middle of the stream were platykurtic with relatively large 
variances.

4.3. Rarity of Surface Water at Segments: Posterior Distributions for the Reciprocal Probability of 
Surface Water Presence for Individual Segments
Distributional differences between segments were even more pronounced when examining the rarity of flows. 
The distinctiveness of rarity responses was evident in the dramatic segment to segment variation in the symmetry 
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and kurtosis of inverse-beta posteriors (Figure 4). Segment distributions near the top of the network, for example, 
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐼𝑁_𝑆𝑀1993 , ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑀1993𝑀1951 , were platykurtic with relatively large means, indicating that, on average, surface 
water was rare, whereas segment distributions near the outlet were leptokurtic, with much of the probability mass 
near one, indicating the segment resembled a perennial stream segment.

4.4. Identifying Bottleneck Locations: Posterior Distributions of Mean Communication Distance for 
Individual Segments
Large differences in wetted instream length and average posterior mean communication distance were evident 
for segments near the top of the network, indicating strong bottlenecking propensities. This was particularly true 
for segment ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐼𝑁𝑆𝑀1993 whose average communication distance was more than 2,000 m larger than its wetted 
length (Figure 5). Locations near the outlet with uncharacteristically large increases in mean effective stream 
length included both ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑀823𝑀759 and ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑀380𝑀233 (Figure 5).

4.5. Assessing Network-Scale Effects: Comparison of Mean Bernoulli Network Length, L, and Network 
Communication Distance, C, Over Seasons
Seasonal comparisons of network responses revealed differences in perspectives provided by network length and 
communication distance. The distributions of both average stream length and average communication distance 
changed dramatically in the spring, summer and fall (Figure 6). Greater distinctions, however, were evident for 

Figure 2. Spatially distributed probabilities of stream surface water presence at Murphy Creek. Flow proceeds from left 
to right (W to E) (see Figure 1). Panel (a) depicts stream flow presence probabilities from the USGS-PROSPER model, 
which were used to define means for beta distribution priors in Bayesian analyses. Panel (b) shows probabilities based on 
surface water data for the entire 2019 sampling period: 3 June 2019–2 September 2019. Panel (c), is based on information 
from both panels (a, b). Specifically, beta priors for segments whose means were predicted by the USGS-PROSPER model 
were coupled with binomial likelihoods based on current (simulated) data from multivariate Bernoulli distributions whose 
covariance parameters were estimated from data from the entire 2019 sampling period.
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the distributions of E(C) compared to E(L). Specifically, while the posterior distributions of E(L) were symmetric 
across seasons (Figure 6b), posterior distributions of E(C) were highly complex and asymmetric (Figure 6c). For 
example, the spring posterior distribution of E(C) was multimodal, while the summer and fall posteriors for E(C) 
were strongly platykurtic and negatively skewed, respectively (Figure 6c). Note that variances of seasonal distri-
butions of mean Bernoulli network length based on current (simulated multivariate Bernoulli) data (Figure 6a) 
were much larger than posterior seasonal distributions of mean Bernoulli network length (Figure 6b), because of 
the application of reasonable informative priors for θk.

Figure 3. Posterior distributions of the probability of surface water presence. Summaries are based on the entire sampling season, 3 June 2019–2 September 2019. 
Names of segment bounding nodes correspond to meter distances from the outlet. Panel (a) locates nodes along the network. Segments are colored by their posterior 
distribution mean values (see key). Larger means (darker, bluer colors) indicate segments with a higher likelihood for surface water presence. Panel (b) shows beta 
posterior distributions for each segment. Segment posterior distributions are sorted, by row, from sources to outlet and are colored based on their mean values (see key). 
Posterior means of distributions are indicated with dashed lines.
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The highly platykurtic distribution of E(C) in the summer demonstrated the possibility for good communica-
tion periods, when water was present, although the mean of the distribution of summer posterior E(C) was 
more than 10 times as large as the wetted network length (Figure 6c). The multimodality of E(C) in the spring 
occurred because of the strong surface flow persistence of all segments during early spring, resulting in a group of 
segments with smaller average communication distances, and the late spring drying of several segments, particu-
larly ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐼𝑁𝑆𝑀1993, resulting in larger average communication distances.

Figure 4. Posterior distributions of the rarity of surface water presence. Summaries are based on the entire sampling season, 3 June 2019–2 September 2019. Names 
of segment nodes correspond to meter distances from the outlet. Panel (a) locates nodes along the stream network. Segments are colored by their inverse beta posterior 
mean values (see key). Larger means (redder colors) indicate segments for which surface water is increasingly rare. Panel (b) shows inverse-beta posterior distributions 
for each segment. Segment posterior distributions are sorted, by row, from sources to outlet, and, again, are colored based on their mean values (see key). Posterior 
means of distributions are indicated with dashed lines. Note that y-axis limits differ for the last two rows of PDFs in panel (b) because of their leptokurtic shapes.
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A fall rewet period was evident for average Bernoulli stream length, as the mean wetted extent of the fall network 
was longer than the mean wetted extent of the summer network (Figures 6a and 6b). This trend was not evident, 
however, for the average communication distance posterior distribution, as larger mean communication distances 
occurred in the fall compared to the summer (Figure 6c). The probability distribution of E(C) in the fall appeared 
highly compact (Figure 6b) because of the conflation of its large range of potential outcomes (note the log-scale 
of the x-axis in Figure 6c), and the requirement that the area under a valid PDF be one.

Figure 5. Distributions of posterior communication distance means for stream segments, based on the entire sampling season, 3 June 2019–2 September 2019. For 
each plot, the left-hand (light blue) vertical dashed line denotes the fully wetted length of the segment (communication distance if the segment were perennial), whereas 
the right-hand (salmon) dashed line is the average posterior mean communication distance. The difference of these values (right minus left) is given in the top-right 
corner of each plot. Names of segment nodes correspond to meter distances from the outlet. Segment posterior distributions are sorted, by row, from sources to outlet. 
Expressions of density in plots are based on a Gaussian smoothing kernel.
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5. Discussion
We developed measures of hydrological connectivity for non-perennial streams that: (a) allowed global (network-scale) 
and local (stream segment or reach-scale) perspectives concerning hydrological connectivity, (b) quantified variabil-
ity in intra- and inter-segment surface flow presence probabilities, and (c) allowed the inclusion of prior information 
concerning probabilities of surface flow presence. Our novel contributions include Bayesian extensions of Bernoulli 
stream network length (Botter & Durighetto, 2020) and a new connectivity metric, communication distance.
Communication distance is a scaled (by stream segment length) measure of resistance to the passive transport of 
materials, for example, surface water itself, microbial organisms, and solutes, in stream networks. Because it is 
the product of reciprocal probability and stream length, the communication distance of a stream segment must 
be greater than or equal to its actual physical length. We view communication distance as a theoretical effective 
stream length (as perceived by surface water-borne components) required for passage through a segment. Specif-
ically, the effective stream length of the kth non-perennial segment will be 1/pk longer than a perennial segment 
of the same fully wetted length. Thus, the difference between the fully wetted length of the kth segment (i.e., the 
communication distance if the kth segment were perennial) and the actual average communication distance of 
kth segment can be considered a measure of increased average transport distance, as the result of intermittency 
(Figure 5).

Figure 6. Seasonal distributions of (a) observed mean network length, (b) posterior mean Bernoulli stream network length, 
and (c) posterior mean network communication distance. All figures use random outcomes from a multivariate Bernoulli 
distribution with covariance parameters estimated from 2019 data (see Section 3.2). Distributions in panels (b, c) are derived 
under a Bayesian framework in which binomial likelihoods for segments, based on current (simulated) data, are coupled 
with beta priors for segments. Panel (b) distributions are the products of the means of derived posterior beta distributions 
for segments (Equation 17) and their corresponding stream lengths. Panel (c) distributions are the products of the means of 
derived inverse posterior beta distributions for segments (Equation 23) and their corresponding stream lengths. Note the log 
scale of the x-axis in panel (c). Expressions of density in plots are based on a Gaussian smoothing kernel. The fully wetted 
stream length of Murphy Creek is denoted with a vertical dashed line in panels (a–c).

 19447973, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034513, W

iley O
nline Library on [28/07/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Water Resources Research

AHO ET AL.

10.1029/2023WR034513

17 of 21

As defined, communication distance considers neither flow rates nor variation in the constraints that govern the 
movement of particular materials in streams, as it assumes that materials of interest move freely with water. Thus, 
communication distance does not consider flow-driven nuances in material transport, including the fact that 
sediment transport is often triggered by a flow rate threshold (Pähtz et al., 2020), and microbial transport may 
require a delay for community establishment and growth following stream activation (Drummond et al., 2015).

Bayesian extensions of communication distance prompted the first reported derivation of the inverse-beta PDF, 
which can be used to represent a distribution of reciprocal probabilities of surface water presence, and directly 
consider the rarity of surface flows. This application allows inductive probabilistic consideration of impor-
tant hydrological questions. For instance: “What is the probability that the average effective length of a stream 
network will be longer during the spring compared to summer?” Or: “What is the probability that the average 
effective stream length of a non-perennial segment will become more than q times as large as a comparable 
perennial segment?”

5.1. Inverse-Beta Distribution and Communication Distance Identify Bottleneck Locations at Segments 
That Are Rarely Wet
While multiplicative inverses of each other, the beta and inverse-beta distributions allow distinctive insights 
into non-perennial stream mechanics. For example, segments at Murphy Creek that were consistently dry, for 
example, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐼𝑁𝑆𝑀1993, tended to have platykurtic posterior distributions of water rarity, with particularly large 
variances (Figure 4). On the other hand, posterior distributions of the probability of surface water presence at dry 
and wet segments had relatively small variances due to surface water generally being absent or present, respec-
tively (Figure 3).

Communication distance quantifies the inhibition of surface water transport processes, due to intermittency, 
in units of stream segment length, potentially clarifying the effects of network drying and bottlenecking. For 
instance, in the Murphy Creek network, the driest segment, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐼𝑁𝑆𝑀1993, had a posterior inverse-beta mean of 
11.6 (Figure 4b), indicating that surface water presence at the segment would be, on average, 11.6 times rarer 
than a perennial segment. The average of the communication distance posterior distribution for the segment was 
2,021 m longer than its wetted stream length (Figure 5). Thus, based on both current and prior information, we 
would conclude that the average effective stream length of the segment increased 2,021 m because of intermit-
tency. Future hydrological research may reveal the mechanics of why particular segments in the network may act 
as bottlenecks.

5.2. Distinct Seasonal Variation in Active Network Length, L, and Communication Distance, C
Discrepancies in perspectives offered by network communication distance and network Bernoulli stream length 
were strongly evident in seasonal analyses (Figure 6). Average network Bernoulli stream lengths were longer in 
the fall compared to summer, indicating a fall rewet period (Figure 6b). This outcome is consistent with obser-
vations of increased fall discharge for the study region (McNamara et al., 2005). Evidence of a fall rewet period, 
however, was not apparent in the posterior distributions of average network communication distance. Instead, 
larger communication distances were more probable in the fall compared to summer. This discrepancy was due 
to a marked bifurcation in the behavior of stream segments in the fall. Specifically, segments near the outlet and 
wet spots near the stream center (e.g., ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑀716𝑀624 ) tended to be strongly persistent (𝐴 𝑝̂ ≈ 1 ), driving larger wetted 
network lengths and smaller communication distances. On the other hand, surface water at segments further from 
the outlet was often fully absent (𝐴 𝑝̂ ≈ 0 ), creating potential bottlenecks. This outcome contrasted with both the 
summer and spring responses, but for different reasons. In the summer, communication distance posterior vari-
ances suggested that weak and strong communication outcomes had nearly equal likelihoods for most segments, 
because more segments varied from wet to dry during this period. In contrast, in the spring, strong persistency 
drove smaller effective stream lengths for all segments.

Posterior mean Bernoulli stream lengths across all seasons did not approach the full wetted length of Murphy 
Creek (Figure 6b), due to the moderating effect of conservative prior probabilities from the USGS-PROSPER 
model (Figure  2a). The PROSPER model is intended to represent the annual probability of stream segment 
presence, which in the seasonally dry U.S. intermountain west, is much lower in the summer than in the fall or 
spring (Wang et al., 2009). To address potential detrimental effects of priors on predictive accuracy, one could 
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decrease the weight of priors in analyses, relative to the observed (current) data, or use different priors altogether 
(see Section 5.3 below).

5.3. Bayesian Analytical Considerations
The USGS-PROSPER model has been validated throughout the Pacific Northwest region. However, we found the 
model to be suboptimal for our application (i.e., defining beta prior hyperparameters in Bayesian models). PROS-
PER incorporates a comprehensive suite of predictors for flow persistence including land use, land cover, soil 
permeability, topographic wetness index, average maximum and minimum daily temperature, and annual precip-
itation (Jaeger et al., 2019). PROSPER model predictions, however, are not seasonally adjusted, and are intended 
for regional applications rather than fine-spatial-scale predictions. We justify our use of this model to define 
prior means due to: (a) the lack of a better current alternative, and (b) our view of the PROSPER predictions as 
provisional long-term representations of the relative probability of surface water in stream segments at Murphy 
Creek. Indeed, our work now provides an updated prior framework for future Bayesian models at the study site.

We plan on further considerations of constraints to the Bayesian analysis of non-perennial streams in future 
papers. This work will include comparisons of the usefulness of a large number of strictly bounded PDFs (in 
addition to the beta distribution) for describing the probability of surface water in stream segments with varying 
physical properties. Other topics for consideration include the sensitivity of the posterior distributions of θk|xk 
and (𝜃𝑘|𝒙𝑘)

−1 to spatiotemporal scale, sample size, and the prior weighting constant, w. A final topic of general 
interest is the effect of node placement and sensor number per segment for estimating the proportion of the chan-
nel that is wetted under various settings.

5.4. Further Uncertainties and Extensions
Our model predictions concern the probability of surface water presence at stream segments which may not 
reflect streamflow due to two factors. First, local ponding may lead to surface water without flow, though we 
did not observe this issue at Murphy Creek during frequent site visits, likely due to its steepness. To address 
this issue, researchers could combine conductivity and temperature measures (Arismendi et al., 2017). These 
data could then be coupled with appropriate priors to obtain posterior distributions of the probability of stream 
flow and the reciprocal probability of stream flow at stream segments. Second, surface networks inferred from 
very high-resolution topography may be relatively accurate, but those delineated with coarser topographic data 
that rely on a single area-based threshold (e.g., the ArcGIS Watershed Toolbox) may require ground-truthing or 
further consideration, particularly in headwaters, low-gradient systems, or karst regions (Yamazaki et al., 2019).

Indeed, although our demonstration considers only surficial stream networks, our field observations suggest 
that subsurface flow likely dominates Murphy Creek streamflow at certain times of year. In principle, one could 
model subsurface to surface hydrologic fluxes (e.g., vertical connectivity) and/or subsurface flow using our 
approaches, by considering the presence/absence of subsurface water at certain depths using an array of shallow 
wells. Integration of subsurface connectivity would allow more holistic considerations of human impacts on 
the water cycle, as groundwater pumping can cause streams to transitions from perennial to non-perennial flow 
regimes (Zipper et al., 2022). However, the assimilation of subsurface flow information into stream connec-
tivity metrics such as communication distance is not a straightforward task due to the difficulty in measuring 
subsurface flow directions, properties, and rates (Xiao et al., 2021). Furthermore, groundwater can occupy long 
flowpaths, spanning years to decades (Maxwell et al., 2016), and in some settings, groundwatersheds can be 
substantially larger than watersheds defined by surface topography (Huggins et al., 2023).

6. Conclusions
Nuanced characterization of a non-perennial stream requires the recognition of dynamic, potentially asynchro-
nous patterns in surface flows within the network. To help describe these properties, we considered the proba-
bility of surface water presence at non-perennial stream segments as a random variable. This approach allowed 
Bayesian extensions to both an existing connectivity metric, Bernoulli stream length (Botter & Durighetto, 2020), 
and a new metric called communication distance. Communication distance measures resistance to passive trans-
port processes in stream networks, in units of measured stream length. For the kth non-perennial stream segment, 
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the difference of the mean of a posterior distribution of average communication distances and the fully wetted 
length of the kth segment provides an inductive measure of the increased average distance required for segment 
travel, as the result of intermittency. This metric may be helpful for identifying stream segments prone to network 
bottlenecking. Our work demonstrates the unique connectivity perspectives afforded by communication distance, 
and the general usefulness of Bayesian approaches in the analysis of non-perennial streams. Our work also reveals 
the need for the additional consideration of several topics. These efforts should include comparisons of the 
performance of particular PDFs as priors for the probability of surface water in stream segments, and measure-
ment of the sensitivity of the posterior distributions of (𝜃𝑘|𝒙𝑘)

−1 to spatiotemporal scale, sample size, and the prior 
weighting constant, w.
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Data Availability Statement
Data for the Murphy Creek network is published in Warix et al. (2021) and codified in the R package streamDAG 
(Aho et al., 2023a, 2023b). The streamDAG package is open source, and can be downloaded from the Compre-
hensive R Archive Network. Guidance and examples of streamDAG usage are provided in Supporting Informa-
tion S1 to this manuscript, and in the vignette “Introduction to streamDAG” (Aho, 2023).
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