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The COVID-19 pandemic has dramatically transformed human mobility patterns. Therefore, human mobility prediction for
the “new normal” is crucial to infrastructure redesign, emergency management, and urban planning post the pandemic. This
paper aims to predict people’s number of visits to various locations in New York City using COVID and mobility data in the
past two years. To quantitatively model the impact of COVID cases on human mobility patterns and predict mobility patterns
across the pandemic period, this paper develops a model CCAAT-GCN (Cross- and Context-Attention based Spatial-Temporal
Graph Convolutional Networks). The proposed model is validated using SafeGraph data in New York City from August
2020 to April 2022. A rich set of baselines are performed to demonstrate the performance of our proposed model. Results
demonstrate the superior performance of our proposed method. Also, the attention matrix learned by our model exhibits
a strong alignment with the COVID-19 situation and the points of interest within the geographic region. This alignment
suggests that the model effectively captures the intricate relationships between COVID-19 case rates and human mobility
patterns. The developed model and findings can offer insights into the mobility pattern prediction for future disruptive events
and pandemics, so as to assist with emergency preparedness for planners, decision-makers and policymakers.

CCS Concepts: « Computing methodologies — Spatial and physical reasoning; Temporal reasoning; « Information
systems — Location based services.

Additional Key Words and Phrases: Human Mobility Prediction, COVID-19, Cross-attention, Context-aware Attention, Graph
Neural Network, Graph Convolution.

1 Introduction

The COVID-19 pandemic has dramatically transformed human mobility patterns, including the type of visited
locations, check-in time of locations, and preference over origin-destination distances [26]. Such a trend conse-
quently induces a shift in travel mode choice, like the rising trend in telecommuting [27] and constantly lower
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subway ridership [52]. Therefore, human mobility prediction for the “new normal” is crucial to infrastructure
redesign, emergency management, and urban planning post the pandemic.

How do we predict a nonstationary spatiotemporal pattern, given that the “new" normal demonstrates a quite
different pattern from the “old" normal? To tackle such a challenge, we need to rely on nonstationary features
such as COVID cases. This paper aims to predict people’s number of visits to various locations in New York
City using various data in the past two years. The developed model and findings can offer insights into the
mobility pattern prediction for future disruptive events and pandemics, which will in turn assist with emergency
preparedness for transportation planners, decision-makers and policymakers.

Some studies on COVID-19 focus on predicting the evolution of the pandemic without accounting for the
underlying mobility patterns [6, 49, 54, 61]. However, pandemic evolution and human mobility are highly
correlated. A majority of studies have examined the impact of human mobility on the pandemic case number.
Reversely, COVID cases also affect people’s travel desire, thus impacting overall visitation frequencies to various
places [4, 7-9, 20, 25, 35, 62]. Statistical analysis accompanied by data visualization [62] demonstrates strong
evidence for the impact of COVID cases on mobility. For example, the impact of COVID-19 on human mobility
patterns is analyzed in New York City using statistical analysis and spatial visualization [20]. Comparing the
number of visits in 2019 and 2020, this study finds that there is a strong correlation between the number of visits
and the trend of the newly reported COVID-19 cases. It finds that most locations have the lowest numbers of
visits in the first half of April 2020, when COVID-19 explodes.

The aforementioned studies primarily use statistical analysis to investigate the COVID-19 impact on human
mobility. However, little research has been done to quantitatively model the influence of COVID-19 cases on
human mobility patterns. A quantitative model is essential for simulating different scenarios and assessing the
potential pandemic impact on human mobility patterns. This allows for the exploration of various hypothetical
situations, enabling researchers to project potential pandemic challenges and develop strategies for similar
situations in the future [5].

To quantitatively model the impact of COVID cases on human mobility patterns and predict mobility patterns
in time and space, this paper develops a deep learning model, namely, Cross- and Context-Aware Attention based
Spatial-Temporal Graph Convolutional Networks (CCAAT-GCN). Graph convolutional networks (GCN) capture
the spatial evolution of the number of visits to each location. Attention mechanism, including temporal and
spatial attention, aims to model the intricate relationships and patterns in the data. Temporal attention captures
the temporal dependencies and variations over time, while spatial attention captures the spatial interactions and
dependencies among different locations. Building upon the GCN framework, the cross-attention module specifi-
cally models the correlation between COVID-19 cases and the number of visits, allowing for a comprehensive
understanding of their mutual influence. Moreover, the context-attention module learns to incorporate relevant
contextual features, such as regional demographics or socioeconomic factors, to enhance the prediction accuracy
and interpretability of the model. The proposed model is validated using SafeGraph data! in New York City from
August 2020 to April 2022.

The rest of this paper is organized as follows. Section 2 presents the related work and highlights our con-
tributions. Section 3 provides the problem statement. Section 4 fleshes out the framework of our proposed
CCAAT-GCN. Section 5 introduces the COVID-19 and mobility datasets. Section 6 details the experiments and
presents the results. Section. 7 concludes our work and projects future research directions.

2 Related Work

In this section, we first introduce the approaches developed for human mobility prediction, including the time-
series methods, Markov-based methods, deep-learning based methods, and graph neural networks. Then, we will
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point out the limitations of existing studies and identify research gaps. The contribution of this paper will be
highlighted thereafter.

2.1 Time-series methods.

The time-series method is a statistical technique that is commonly used to analyze and model data that is collected
over a period of time. This method involves examining and interpreting the patterns and trends present in the
data to make forecasts and predictions about future values. These methods include Autogressive (AR), Moving
Average (MA), and Autogressive Integrated Moving Average (ARIMA) [41]. In [12], a multivariate nonlinear time
series model is used to predict social interactions. In [32], an improved ARIMA-based method is proposed to
predict the human mobility in the hotspots. The improved ARIMA combines ARIMA with a prior distribution of
the passenger’s locations, achieving better prediction accuracy than the original ARIMA. In [53], a time-series
based method that uses Gibbs sampling is proposed to predict future human locations. [28] proposes to use a
seasonal ARIMA model to predict human mobility.

2.2  Markov-based methods

Markov-based methods are a type of probabilistic model that predicts the future states of a system based on its
current state. This kind of method assumes that the probability of moving from one state to another depends
only on the current state and not on any of the previous states. [46] applies Markov predictors to predict the next
location with extensive Wi-Fi mobility data. O(0) Markov predictors are used, that is, this model simply returns
the most frequently seen locations from historical trajectories. [44] applies the Hidden Markov Model (HMM)
to predict the human mobility trajectory, with self-adaptive parameters that change according to the objects’
moving speed. A multilevel Markov-based approach to predict the future location of people, the effectiveness
of which is verified by geotagged tweets data. A hybrid Markov-based model is proposed in [45] to predict the
next location, which considers the spatio-temporal similarity of human mobility patterns. [50] propose a hidden
Markov model to extract travellers’ activity patterns.

2.3 Deep-learning based methods

In this section, we introduce the deep learning models that are used before the emergence of graph neural
networks. These models have proven their ability to capture human mobility patterns. They also serve as the
components of the graph neural networks to be covered in the next subsection.

RNN. Recurrent neural networks (RNN) have emerged as a powerful computational model capable of capturing
temporal dependencies in sequential data, making them well-suited for forecasting human mobility patterns.
Long short-term memory (LSTM) and gated recurrent unit (GRU) are widely used recurrent units. [37] proposes
a two-layer LSTM network to predict traffic flow. In [15], multiple GRUs are stacked to capture long-range
dependencies in mobility trajectories. [15] incorporates a learnable user embedding into the LSTM to consider
users preferences while predicting human mobility.

CNN. Convolutional neural network (CNN) has been applied to a variety of applications such as image
segmentation [23], etc. It is mainly used to capture the spatial correlations within different locations. Limited by
the convolution operator, it can only be used for grid-distributed data. [71] divides the geolocations as grids so
that CNN can be used to capture the spatial patterns for mobility prediction. [16] embeds the human trajectories
into feature matrices, where the CNN can be used. Despite the limitation, several variants of CNN have been
applied to human mobility prediction. A variant of CNN, Gated Temporal Convolutional Networks (Gated TCN)
[3] is used to capture the temporal pattern. Gated TCN is a deep learning architecture that has been proposed for
modeling sequential data with long-term dependencies. The model is based on the idea of dilated convolutions,
which enables the network to effectively capture both short-term and long-term patterns in the data.
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Attention. Attention mechanisms [13, 15, 17, 33, 34] have become a popular technique in machine learning
and natural language processing (NLP) [38-40] in recent years. Attention mechanisms allow neural networks
to selectively focus on parts of the input data that are most relevant to the task at hand. This selective focus is
achieved by assigning weights to different parts of the input data, which are then used to compute a weighted sum
of the input data. [15] combines the attention mechnism with recurrent networks for mobility prediction, where
historical trajectories are handled by the attention mechanism to extract mobility patterns, and a GRU handles
current trajectories. [17] proposes a variational attention model to predict human mobility. The variational
encoding captures latent features of recent mobility, followed by an attention mechanism to learn the attention
on the historical latent features. [13] proposes a decentralized attention-based human mobility prediction method,
allowing more efficient training for personalized prediction. Those attention mechanisms only use the historical
mobility data to predict its future values, and thus are also called self-attentions.

2.4  Graph Neural Networks

With the rapid development of deep learning, graph neural networks (GNN) have emerged as a powerful tool in
modeling spatial and temporal patterns in human mobility [42]. In this newly emerged domain, spatial-temporal
graph neural network has shown its effectiveness in this task, and becomes the state-of-the-art genre of this
method. We summarize those methods in Table 1. As most works explicitly split their models as spatial and
temporal components, we follow the same manner and explain each component separately.

For the spatial components, most studies adopt the Graph Convolutional Network (GCN) [2, 6, 10, 11, 18, 19,
21, 22, 24, 29, 31, 54, 58, 61, 64, 65, 74-76], which is a powerful framework for analyzing and processing graph-
structured data. While CNN excels in grid-like data such as images, GCNs offer a specialized approach to capture
and model complex relationships within graph data such as molecular [67-69]. GCNs leverage the connectivity
patterns of nodes in a graph to propagate information and extract meaningful features. By employing localized
and adaptive filters, GCNs can effectively capture both local and global structural information from the graph. This
makes GCNs well-suited for human mobility prediction. From Table 1, we can see that many studies combine GCN
with self-attention to capture the spatial patterns [11, 19, 29, 54, 65]. When integrating self-attention mechanisms
into GCNss for capturing spatial patterns in human mobility prediction, a common approach is to employ the
Graph Attention Network (GAT) architecture [51]. In the GAT model, attention mechanisms are incorporated to
assign importance weights to different nodes in the graph based on their relevance to the prediction task. This is
achieved by computing attention scores that reflect the importance of each region’s neighbourhood in relation
to the central region. The attention scores are then used to weigh the feature representations of neighbouring
regions during prediction.

For the temporal components, the most used method is the Gated TCN [6, 18, 29, 31, 58, 64]. By leveraging
dilated convolutions and gate mechanisms, Gated TCNs can effectively capture both short-term and long-term
temporal patterns in human mobility data. The dilated convolutions allow the network to process a wide range
of temporal contexts, while the gate mechanisms enable the network to focus on relevant temporal features
and disregard noise or irrelevant information. Similar to the spatial components, self-attention can also be
incorporated into Gated TCN to capture the temporal mobility pattern [18, 29]. By applying self-attention after
the temporal convolutions in the Gated TCN, the attention mechanism assigns attention weights to different
temporal features, allowing the model to focus on relevant information and capture intricate temporal patterns.
The attention weights are calculated based on the relationships between different time steps, enabling the model
to assign higher weights to important time steps.

2.5 Contributions of this paper

Those methods, however, have two main drawbacks:
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Table 1. GNN-based methods for human mobility prediction.

Model Spatial Component Temporal Component
STGCN [64] GCN Gated TCN
MepoGNN [6] GCN Gated TCN
SAB-GNN [61] GCN LSTM
AGCRN [2] GCN GRU
STFGNN [31] GCN Gated TCN
HGCN [18] GCN self attention + Gated TCN
Graph WaveNet [58] GCN Gated TCN
GMAN [72] self-attention self-attention
STGAT [57] self-attention Gated TCN
HGARN [48] self-attention self-attention + LSTM
RSTAG [73] self-attention RNN
MobTCast [59] self-attention self-attention
TERMCast [60] self-attention self-attention
AST-GAT [30] self-attention LSTM
FTGP [14] self-attention LSTM
GTA [70] self-attention LSTM
G-SWaN [43] self-attention Gated TCN
EAST-Net [55] self-attention + GCN RNN
Att-MED [1] self-attention + GCN LSTM
STAG-GCN [36] self-attention + GCN self-attention + Gated TCN
GCDAN [11] self-attention + GCN self-attention
STAR [65] self-attention + GCN self-attention
CausalGNN [54] self-attention + GCN RNN
DSTAGNN [29] self-attention + GCN self-attention + Gated TCN
ASTGCN [19] self-attention + GCN self-attention

self-, cross-, and context-aware self- and cross-attention

This paper attention + GCN + TCN

o Lack of interpretability. Existing modeling methods, such as attention-based GNNS, prioritize predic-
tion accuracy and lack interpretability. However, an interpretable model is crucial in understanding the
relationship between COVID-19 and mobility patterns while also making accurate predictions.

o Lack of contextual features. Most previous studies on modeling human mobility patterns during COVID-19
are autoregressive, in the sense that they only use historical mobility data to predict the future. These
studies have neglected to incorporate contextual features, such as information about regional population
and income, which may hold valuable insights that affect mobility patterns during the pandemic. However,
as these static context features remain constant over time, integrating them into dynamic mobility data
poses a non-trivial challenge. In an effort to address this problem, [71] concatenates the static context with
the dynamic traffic feature and feeds the concatenated vector directly into the model. However, as the static
context remains unchanged over time, this simple concatenation method can hinder the training process,
because the model must learn to distinguish between the dynamic and static features.

ACM Trans. Spatial Algorithms Syst.
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Our proposed CCAAT-GCN integrates spatial and temporal information into a graph-based framework that
captures the complex interdependencies between different regions and periods. Specifically, it uses the cross-
attention mechanism to model the mutual influence between the COVID-19 pandemic and human mobility,
where the calculated cross-attention scores serve to interpret this mutual influence. Additionally, we use the
context-aware attention mechanism to better incorporate static information, such as regional income, population,
and points of interest (POI) in predicting the mobility dynamic patterns. Furthermore, we ensemble multiple
adjacency matrices together to better capture the spatial patterns. Those adjacency matrices include both the
static ones that are calculated based on distance or inter-nodal correlations, together with the adaptive ones that
are learned by our proposed model. We evaluate our approach on a large-scale mobility dataset, the SafeGraph
dataset, during the COVID-19 pandemic.

The main contributions can be summarized as follows:

(1) We introduce a novel framework of CCAAT-GCN for mobility prediction considering COVID-19 impact,
and use a real-world dataset for validation.

(2) We propose to use cross-attention mechanism to enhance model interpretability by explicitly modeling the
mutual influence between COVID-19 and human mobility. Learning the interaction between these two
critical factors can provide interpretable insights into the relationships between COVID-19 dynamics and
mobility patterns, enabling a more nuanced understanding of the mutual interaction between public health
and mobility movement.

(3) We further increase the model interpretability by using the context-aware attention mechanism. By
attending to relevant contextual information, such as regional population and income, it enables a better
representation of the underlying social and economic factors that influence human mobility.

3  Problem Statement

In this section, we formally formulate the problem of predicting human mobility considering the COVID-19
pandemic. Before that, we first define the preliminaries.

Traffic Networks. We define the traffic network as an undirected graph G = (V,E, A). V = {vi}ﬁ | Tepresents
the set of nodes, where N = |V| as the number of nodes; E represents the set of edges; A € RNXN denotes the
adjacency, which is a square matrix that describes the relationships between the nodes in the graph. In A, each
row and column corresponds to a node in the graph, and the entries A;; in the matrix indicate the presence or
absence of edges between the nodes.

Dynamic and Contextual Features. We use x: € R to denote the dynamic feature, i.e., features changing
according to time, where i € {1,-- N} and F is the length of the feature. The dynamic feature used in this paper
includes the COVID-19 case rates and regional number of visits. Apart from the dynamic features, each node also
has static features that do not change over time. Although constant, those static features can serve as the context
for model prediction. To distinguish between the dynamic and static features, in the remainder of this paper, we
use feature to stand for the dynamic feature, and context to account for the static feature. We use ¢ € R to
denote the context, where i € {1,---, N} and C is the length of the context vector for each node. The context used
in this paper includes regional population, average income, and points of interest (POI). After defining the feature
and context for each node, we use X; = (x%, x%, . ,thV)T € RV*F {0 denote the values of all nodal features at
time ¢, where T stands for the vector transpose to make it a column vector, and C = (c!,c?,---,cN)T e RN*C to
denote the all the nodal context.

Problem. With all preliminaries introduced above, we are ready to define the problem of predicting human
mobility, i.e., the future regional number of visits. Given the historical nodal feature of previous 7 time window,
X(t-r+1): = [Xi—r41, -+, X;], and the nodal context C, we aim to learn a function f to predict the future 7’-length
mobility sequence Y (y41):(r+r) = [Yeat, -+ Y(): (40 |-
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Fig. 1. Framework of the proposed CCAAT-GCN.

[X(tfr+l):t;c] i’ Y(t+1):(t+r’): (1)
where Yt = (y}, - - - yN) stands for all the nodal numbers of visits; y! € R is the number of visit of node i at time
t,with i € {1,---, N}. To better distinguish between the mobility and the COVID-19 case rates, we use X;”"b
and X¢°° to represent the mobility and COVID-19 case rates, respectively, where X°? and X¢°° € RN*!, and
X, = [X;""b;Xf"”]. Thus, Eq. 2 can be revised as:

b f b
[erll“lr+1):t;x?t)fr+l):t;c] - [X?ll‘il):(ﬁr')]’ (2)

where XE’;{”TH): ,and XE?ET+1): , € RNXIX7 are the future mobility and COVID-19 case rates, respectively.

4  Methodology
4.1 Overview of CCAAT-GCN

The framework of CCAAT-GCN is shown in Fig. 1. Now we will introduce the overview of this framework from
top to bottom and from left to right. In the upper left, the contextual features include POI, income, and population
of each ZIP code region, forming a contextual feature graph that does not change through time. The contextual
feature graph is then fed into the context-aware attention component in the spatial-temporal block (ST Block).
In the middle, the dynamic features include weekly confirmed case rates and mobility data, each forming a
spatial-temporal tensor. These two dynamic features are fed into the cross-attention component (CrosAtt), which
is followed by a series of ST Blocks. Each ST Block consists of a temporal attention component (TAtt), a spatial
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attention component (SAtt), a context-aware attention component (CtxtAtt), a GCN, and a temporal convolutional
layer (TConv). The ST Blocks are followed by a 1D-convolutional layer (Con1d) for the final transformation, after
which the future mobility data is predicted. At the bottom, the Multigraph considers three different metrics and
generates three different adjacency matrices. Then, the averaged adjacent matrix is fed into the GCN of the ST
Block to conduct a K-order Chebyshev polynomial approximation.

In the remainder of this section, we will first introduce the details of all the attention mechanisms mentioned
in Fig. 1. Then, we will introduce the details of the ST Blocks and the Multigraph. The loss function will follow.

4.2 Attention Module

We introduce the attention mechanisms in the order of appearance in Fig. 1, which are cross-attention, temporal
attention, context-aware attention and spatial attention.

4.2.1 Cross-Attention. Cross-attention (or cross-modal attention) mechanism [47] is a technique used in deep
learning models to capture the relationship between inputs from two different modes, e.g., images and audio. It
allows the model to learn how to selectively attend to different parts of the inputs, which can be useful in tasks
such as natural language processing, computer vision, and speech recognition.

Mathematically, given the mobility feature X’(’t’o_bﬁl): , € RNXIXT and the confirmed COVID-19 cases feature

Xf;’fﬂl):t € RNXIXT e first calculate their embeddings Z™°? and Z%? € RN*"*T using the self-attention
mechanisms as follows,

(t—7+1):t (t=r+1):t €T (t—7+1):t (3)
700 — ooftmax ((Xcov Qér)TXCOU Kér) (Xcou \'4 T

(t—7+1):t " cr

{ Zmob = softmax ((Xmob ch)TXmUb K ) (Xmob Vcr)T

(t—7+1):t (t—7+1):t

where Q.,, Q’., K¢, K.,, Ve, and V/, € R" are learnable matrices, with h being the dimension of the embedding;
Q, K and V stands for queries, keys and values, respectively; the transpose operation is imposed on the second
and third dimensions, i.e. the hidden and temporal dimensions; the softmax function normalizes the similarity
scores into a probability distribution over the keys;

The embeddings Z™°" and Z°°° are then used to calculate the cross-attention:

Emob—cov — ¢oftmay (ZmUb(va)T Zcov

{ i Yoo 7 @
b _ Zcuv(zmo ) b M

EZ09=mo0 = softmax (T) zme

These two cross attentions are summed to get the final cross attention output: E,, = Emob—cov 4 Eeoo—mob ¢
RNXPXT 1n this way, the cross-attention mechanism allows a model to selectively attend to different parts of the
input and output sequences, depending on the context of the current query. The final cross-attention output is

then fed into the temporal attention component.
4.2.2  Temporal attention. We revise the framework of calculating temporal attention E, € RN*"*7 in [19] by
adding the learned cross-attention E., into the framework. The equation is shown below,
E; = (UlEcr)TUZ (USEcr) (5)
E, = E, - softmax (-0 (E, +b;)) V, °

where V,, b, e R7**, U; e RN, U, € RPN and U; € R" are learnable parameters; o is the sigmoid function. The
first step in the calculation of the temporal attention involves transforming the cross-attention matrix E., using
learnable parameters U;, U,, and Us. This transformation, denoted as E}, captures the interdependencies among
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different temporal slices of the data. To obtain the final temporal attention matrix E;, we calculate the dot product
between the learnable parameter V, and the transformed sum from the previous step. We then apply the softmax
function to normalize the attention scores across all temporal slices, ensuring that the weights sum up to one.

4.2.3 Context Attention. Context-attention mechanism [66] is a technique used in deep learning models to
improve the performance of natural language processing tasks, such as machine translation and text summa-
rization. The attention mechanism allows the model to selectively focus on specific parts of the input, while
the context-attention mechanism takes into account the context of the input in order to further improve the
model’s attentional capacity. This mechanism assigns different weights to different parts of the input based on
their relevance to the context, allowing the model to better capture the meaning of the input and produce more
accurate predictions. For example, in the task of machine translation, the context-attention mechanism can be
used to weigh different words in the source sentence according to their importance to the translation of the
target sentence. Overall, the context-attention mechanism is a powerful tool for improving the accuracy and
interpretability of deep learning models in natural language processing tasks. First, the context feature embedding
Z¢t € RN* is calculated as

Z°* = MLP(C), (6)
where MLP is the multiple-layer perceptron. Then context attention matrix E.; € RNV can be calculated as

(7)

th thK T
E.; = softmax (M) ,

vh

where Q.; and K,; € R"*h are learnable matrices.

4.2.4 Spatial attention. We revise the framework of calculating temporal attention in [19] by adding the learned
context-aware attention E.; into the framework. The equation is shown below,

E{ = (EM)" Mz (E,Ms) - Ec, ®)
E; = softmax (o (E} +bs)) Vs °

where Vi, by € RV*N M; € R%, M, € R"*7 and M3 € R" are learnable parameters. We first transform the
temporal attention matrix E; using the learnable parameters M;, My, and M;. This transformation, denoted as Ef,
captures the spatial dependencies between different locations at the same temporal slice, while considering the
contextual information E.;. Next, we apply a sigmoid activation function o to the sum of E} and a bias term by.
This step enhances the discriminative power of the attention mechanism by assigning importance weights to
different spatial features based on their relevance to the prediction task. We then apply the softmax function to
normalize the attention scores.

In contrast to conventional methods of calculating spatial attention, we incorporate both cross-attention E,,
(previously utilized for calculating E;) and context-aware attention E;. In our experiments, we will demonstrate
how this integration of cross- and context-aware attention aids in learning an interpretable attention matrix.

4.3 Multigraph Module

The complex spatial features of human mobility cannot be captured completely by relying on a single graph,
thus we propose a Multigraph mechanism. This subsection defines the adjacency matrix to characterize the
spatial-temporal relationship of human mobility from multiple perspectives, including inter-regional distance
and correlation. There are several metrics for calculating the adjacency matrices, such as distance, travel time,
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origin-destination, dynamic-time-warping [63], connectivity and contextual similarity [56]. Among these metrics,
distance, correlation and dynamic-time-warping are the most used ones, and thus are used in this paper.

4.3.1 Distance-based graph. We use the inter-nodal distance to compute the adjacency matrix of the distance of
the distance-based graph [64]. The equation is depicted as follows,
2

&, o 2,
_0_27) i # j and exp (—g—j) > e, ©)

where d;; is the distance between regions i and j; o2 and € are thresholds to control the distribution and sparsity
of matrix Apss. We use the centroids of the regions to calculate their distance.

exp
(Aprs)ij = (
0, otherwise

4.3.2  Correlation-based graph. We use Pearson correlation coefficient [71] between time series mobility data of
a node pair to calculate the nodal correlation. We use Acor to denote the adjacent matrix of the correlation-based
graph, which is depicted as

Y- %) (x] - %)

JEE G - 2L (] <30

where xi represents the nodal feature of region i at time ¢; T is the historical time interval.

(Acor)ij = , (10)

4.3.3 Dynamic-time-warping based graph. Dynamic Time Warping (DTW) is an algorithm for comparing and
aligning time series data [31]. It measures the similarity between two sequences by finding the optimal alignment
that minimizes the total distance between corresponding points. The algorithm calculates a distance matrix using
the Euclidean or other distance measure and then applies dynamic programming to find the optimal alignment
path.

By computing the DTW between each node’s temporal sequences in mobility data, we can obtain a graph that
represents temporal correlations. The DTW-based adjacency matrix, denoted as Aprw, is calculated as

(Aprw)ij = dij + min{(Aprw)i-1,j, (ApTw)ij-1, (ADTW)i-1,j-1} (11)
where each entry of the adjacent matrix represents the accumulated distance at position (i, j); the minimum
value among the three neighbouring regions is used to update the matrix.

Finally, the adjacency matrix of the Multigraph, denoted as Apyr, is calculated by averaging the above-
mentioned adjacency matrices Ayyr = (Aprs + Acor + Aptw)/3

4.4  Graph Convolutional Network

We follow [64] to conduct convolution along the graph using both the adjacent matrices from spatial attention E
and Multigraph Apyr. Given the adjacency matrix of the Multigraph Ay, we define the normalized Laplacian
matrix of the Multigraph as L = I — D™V2A;;D™Y2 € RN*N swhere I is a unit matrix and D is a diagonal
degree matrix with D;; = ¥ ;(AmuL)ij- We use the K-order Chebyshev polynomials to approximate the graph
convolution operator #¢g as follows:

K-1
g0+ x =go(L)x = ) 6k (Tu(D) O By ) x, (12
k=0

where the parameter § € RX is the polynomial coefficients vector; Es is the spatial attention matrix; © is the
Hadamard product; L = %L — I, with Apyax being the maximum eigenvalue of the Laplacian matrix. The recursive
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definition of the Chebyshev polynomial is Ty (x) = 2xTj_1 (x) — Tx—2(x), where To(x) = 1 and Ty (x) = x. Using the
K-order Chebyshev polynomials approximation, each node is updated by the information of the K neighbouring
nodes.

Once the graph convolution operations have successfully captured the information from neighbouring nodes
in the spatial dimension, we further enhance the node’s signal by stacking a standard convolution layer in the
temporal dimension. This step allows us to merge the information obtained from neighbouring time slices and
update the node’s signal accordingly. A final 1xD convolution with a non-linearity neural network is involved to

get the final prediction X’Zﬁi ) We use the mean squared error (MSE) as our loss function:
b ymob 2
||X7[uif+1):l - X’(r;071+1):l ”
- Nt ’ (13)
where || - ||? is the Ly norm.

5 Data

To thoroughly evaluate the proposed CCAAT-GCN, we conduct extensive experiments on five data sets that are
collected from three different cities. Z-score method for normalization. Statistics of these datasets are summarized
in Table.

(1) NYC SafeGraph dataset collects location data from mobile devices through apps installed on users’ phones,
which provides detailed information on the movement of people between different locations, including
residential, commercial, and recreational areas. The dataset covers a large geographical area and is available
at a high spatial and temporal resolution. We aggregate the SafeGraph data into a weekly time frame, as it
provides a good balance between granularity and data availability. The weekly resolution also aligns well
with the weekly reporting frequency of the COVID-19 case data.

(2) NYC Taxi data commonly used in data science and machine learning, contains detailed trip records from
taxis operating in New York City. Typically provided by the New York City Taxi and Limousine Commission,
the process data contains inflow and outflow in each region. We use the historical inflow and outflow data
to predict the feature inflow.

(3) NYC bike dataset includes station ID, bicycle pick-up station, pick-up time, drop-off station, and drop-off
time. Additionally, this data can be converted into inflow and outflow information. We primarily utilize
this inflow and outflow data to predict future inflow patterns.

(4) PeMS04 and PeMS08 datasets consist of data from highway sensors in various regions of California,
collected every 5 minutes through loop detectors. These open datasets are predominantly used for traffic
prediction. In our study, we utilize the historical traffic flow data from these datasets to predict future traffic
patterns.

In addition to the mobility, we also utilize contextual information to aid prediction. This contextual information
is also used for the explanation and interpretation of the relation between the contextual information and the
prediction. Our contextual information includes:

(1) For NYC datasets, including SafeGraph, NYC bike and NYC taxi, contextual information contains income,
population, weekly precipitation, and point-of-interests (POI). Specifically, we additionally use COVID-19
data to accompany the SafeGraph dataset. The CDC data provides weekly counts of COVID-19 confirmed
cases, hospitalizations, and deaths across different regions in the United States. We only use confirmed
cases because our early experiments found that adding hospitalizations and deaths did not significantly
improve prediction accuracy. This is due to the high correlation among these three features, which contain
nearly the same semantic information. To avoid unnecessary complications, we chose to include only one of
them. We selected confirmed cases because they are the antecedent variable leading to hospitalizations and
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Table 2. Summary of datasets
SafeGraph Taxi Bike PeMS04 PeMS08
City NYC NYC NYC Bay Area, CA Riverside
Area, CA
# nodes 172 263 128 307 170
# time steps 90 2184 3023 16992 17856
Time interval 1 week 30 minutes 1 hour 5 minutes 5 minutes
Time Span 2020/08/03 - 2014/04/01 - 2015 01/01 - 2020/01/01 - 2020/01/01 -
2022/04/25 2014/09/30 2015 /03/01 2020/01/31 2020/01/31

@)

deaths. We combine the CDC data with the SafeGraph data to investigate the relationship between human
mobility patterns and COVID-19 outbreaks. These features are used as they are recognized as common
impacting factors for human mobility patterns.

For the PeMS 04 and 08 datasets, we use historical speed and occupancy data as additional context in
predicting future traffic flow. Like traffic flow data, speed and occupancy are recorded every 5 minutes via
loop detectors. We also incorporate daily-aggregated features for context, including Vehicle Miles Traveled
(VMT), Travel Time Index (TTI), counts of daily road incidents, and lane closures. VMT represents the total
mileage by vehicles divided by the population, derived from all loop detectors, while TTI compares travel
time during peak periods to free-flow conditions. We select these features because they are highly related
to the concurrent road safety and congestion conditions, and thus are assumed to have high impacts on the
mobility patterns.

6 Experiment Results

In this section, we first introduce our experiment setting, including baselines and evaluation metrics. Then we
will present the results with our proposed model versus baselines using the real-world dataset mentioned in
Sec. 5.

Baselines and Evaluation Metrics. We compare our model with the following baselines.

ASTGCN. The Attention-based Spatial-temporal Graph Convolutional Network (ASTGCN) is a powerful
deep learning model designed to capture both spatial and temporal dependencies in graph-structured data.
STGCN. The Spatial-temporal Graph Convolutional Network (STGCN) model is composed of several
spatial-temporal convolutional blocks and one fully-connected output layer. In each spatial-temporal
convolutional block, there are two gated sequential convolution layers for capturing temporal dependency
and one spatial graph convolution layer in between for capturing spatial dependency and this is like the
“sandwich” structure.

GraphWaveNet. GraphWaveNet is a graph convolutional neural network (GCN)-based model for graph
classification tasks that utilize a WaveNet architecture for encoding graph signals. It operates on the graph
in the spectral domain, using a variant of the graph Fourier transform to transform node features into a
graph spectral domain representation.

STFGCN. The Spatial-temporal Fusion Graph Convolutional Network (STFGCN) is a deep learning model
designed specifically to capture spatial and temporal patterns in graph-structured data. STFGCN combines
the power of graph convolutions and temporal fusion techniques to effectively model and predict the
number of visits.

LSTM. A vanilla temporal LSTM.
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o Historical Average (HA). The historical average numbers of visits are used as the prediction
of the corresponding future number of visits.

o Autoregressive (AR). The standard autoregression model.
The mean absolute error (MAE), the root mean squared error (RMSE), and the relative error (RE) are used to
measure the performance of models.

Experiment Settings. The historical time window size 7 = 3. The learning rate is 0.0001. Batchsize is set to 16.

We use a 0.1 dropout rate in the attention layer. The number of filters in the 1D-convolutional layer is 16. The
number of ST blocks is 4.

6.1 Performance Comparison

Table. 9 compares the performance between our model and baselines in five data sets. These results are for
prediction interval 7" = 3. More experiment results for different prediction intervals are in the appendix.

Our CCAAT-GCN model outperformed the baselines across all prediction horizons, achieving the lowest RMSE
and MAE values. This indicates that CCAAT-GCN effectively captured the complex spatiotemporal dynamics
inherent in human mobility data. The incorporation of attention mechanisms and graph convolutional operations
in CCAAT-GCN enabled it to effectively leverage both spatial and temporal information, resulting in improved
prediction accuracy.

Comparing CCAAT-GCN to the other baselines, we observed that HA and AR, which rely solely on historical
averages or autoregressive models, demonstrated relatively poor performance. LSTM, a popular recurrent neural
network, showed competitive results but was outperformed by CCAAT-GCN. STGCN, STFGCN, Graph WaveNet,
and ASTGCN, which incorporate spatial and temporal dependencies, achieved comparable performance, but
CCAAT-GCN consistently exhibited superior accuracy.

The results emphasize the effectiveness of our proposed CCAAT-GCN model in capturing and predicting
human mobility patterns. The combination of attention mechanisms and graph convolutional operations within
CCAAT-GCN enables comprehensive modeling of the spatial and temporal aspects of the data, leading to more
accurate and reliable predictions.

Table 3. Evaluation of different models using real-world mobility data in five data sets

Method SafeGraph NYC Taxi NYC Bike PeMS 04 PeMS 08
RMSE- MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
HA 1988.15 1011.45 36.25 28.41 19.85 15.68 40.86 30.26 35.15 24.43
AR 1157.28 687.55 34.94 28.51 18.43 14.52 38.34 27.95 33.52 23.09
LSTM 1279.61 679.85  31.42 23.89 16.58 12.37 31.08 24.44 31.08 19.13
STGCN 955.79 505.61 27.94 21.19 14.95 10.78 31.13 22.68 26.50 15.26
STFGCN 994.65 430.67  24.88 18.98 13.58 9.43 28.09 18.68 23.41 13.54
Graph WaveNet 980.12  467.23 29.20 19.66 14.87 10.52 28.45 21.23 26.62 15.55
ASTGCN 950.09 457.44  27.25 18.27 13.35 9.23 26.41 18.82 25.38 13.52

CCAAT-GCN 617.30 35349  26.21 16.16 12.97 8.67 24.66 16.82 23.02 13.09

6.2 Convergence Analysis

The convergence analysis of our proposed model is presented in Fig. 2, which illustrates the training and validation
errors as a function of the training iterations. It can be observed that both curves exhibit a gradual decrease in
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Fig. 2. Training and validation error.

error over time, indicating the model’s learning progress. After approximately 4000 epochs, the training and
validation errors reach a convergence point, suggesting that the model has effectively learned the underlying
patterns in the data. This convergence indicates that further training iterations may not significantly improve the
model’s performance or reduce the error rate. The convergence of the training and validation errors signifies the
stability and reliability of our model.

6.3 Ablation Study

To investigate the effectiveness of various components in CCAAT-GCN, Fig. 3 presents the results of ablation
studies. We evaluate the performance of our proposed CCAAT-GCN model by comparing it with three variations
that remove specific components from CCAAT-GCN. These variations include CCAAT-GCN without multigraph,
CCAAT-GCN without cross-attention, CCAAT-GCN without context-aware attention, and CCAAT-GCN without
both components. The results of the ablation study reveal that our complete CCAAT-GCN model outperformed
all the variants in terms of prediction accuracy. When comparing the performance of CCAAT-GCN without
multigraph, CCAAT-GCN without cross-attention and CCAAT-GCN without context-aware attention, it is
observed that the removal of either component resulted in decreased prediction accuracy. The integration of
these components allows the model to effectively capture and leverage relevant information from both spatial
and temporal contexts, leading to improved prediction accuracy in human mobility prediction. We can see that
context-aware attention has the most significant contribution to the model performance, followed by cross-
attention and multigraph. The paramount contribution of context-aware attention can be explained by the rich
information provided by the context data. We then delve into why the context-aware attention mechanism has
more contribution than the cross attention mechanism. The key factor the this performance difference lies in the
difference between the additional information (apart from the historical mobility) these two mechanisms utilize to
predict future mobility. The cross attention mechanism additionally uses the dynamic information of COVID-19,
which may have a high correlation with the mobility feature and thus may provide redundant information. On the
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Fig. 3. The result of the ablation study.

contrary, the context-aware attention mechanism uses the information of the context features, such as regional
income and population, aiding the model in quickly distinguishing the unique characteristics of each ZIP code.

6.4 Visualization

Fig. 4 provides a heatmap visualization of the relative errors across different ZIP code areas on the map of New
York City. The relative error displayed in the heatmap represents the overall relative error for the 3-week-ahead
prediction. The results reveal that our CCAAT-GCN model exhibits the best performance among the compared
models, demonstrating the lowest overall relative error across various ZIP codes. This indicates that CCAAT-GCN
successfully captures the complex spatiotemporal patterns in the human mobility data, resulting in accurate
predictions across different regions of New York City. In contrast, the HA model generally exhibits relatively
higher relative error. This is likely due to the simplistic approach of calculating the historical average, which may
not be suitable for long-term predictions with non-stationary data. The HA model’s limitations in capturing the
dynamics of the human mobility patterns could explain its higher relative error compared to the other models.
While STFGCN generally performs well, there are specific regions where its performance is suboptimal. This
could be attributed to its inability to handle corner cases effectively, resulting in less accurate predictions in those
particular areas. It is worth noting that all models struggle to achieve satisfactory performance in some common
areas, such as the right-bottom corner of Staten Island. This can be attributed to the use of relative error as the
evaluation metric, which amplifies the impact of high relative error in regions with low visitation frequency. In
areas with a limited number of visits, even a slight deviation in predictions can result in a relatively high relative
error, affecting the overall performance of the models.

Fig. 5 presents a bar chart depicting the comparison between the predicted and ground-truth number of visits
in different ZIP code areas. The x-axis represents the ZIP codes, while the y-axis represents the number of
visits. The comparison is focused on our proposed CCAAT-GCN model. The bar chart demonstrates that our
CCAAT-GCN model achieves favorable results overall, accurately predicting the number of visits in various ZIP
code areas. This indicates the model’s ability to capture and learn the underlying patterns of human mobility,
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Fig. 4. Relative errors for each ZIP code.

allowing it to provide reliable predictions even in areas with a large-scale number of visits. Furthermore, this
figure helps explain the previous observation of high relative errors in specific areas. It becomes evident that the
areas with high relative errors correspond to those with very low numbers of visits. In such regions, even a slight
discrepancy between the predicted and ground-truth values can lead to a significantly high relative error, given
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Fig. 5. Prediction results of CCAAT-GCN

the small denominator. This emphasizes the challenge of accurately predicting human mobility patterns in areas
with sparse or limited visits. The bar chart highlights the effectiveness of our CCAAT-GCN model in capturing
the nuances of human mobility across different ZIP code areas, including those with varying scales of visitation.
The model’s ability to provide reliable predictions even in areas with a high number of visits contributes to its
overall performance and reinforces its suitability for human mobility prediction tasks.

Fig. 6 provides a visual representation of the time-series number of visits spanning 90 weeks, along with the
predicted number of visits for the last 20 weeks, for two selected ZIP code areas. The solid and dashed lines
represent the observed and predicted number of visits, respectively. The figure demonstrates a good agreement
between the predicted and observed number of visits, even in scenarios where the patterns of the number
of visits exhibit non-stationary behavior. This is particularly evident during the transition from the first 50
weeks to the final 20 weeks, where the number of visits displays varying patterns. The ability of our model
to accurately predict non-stationary patterns can be attributed to the utilization of cross- and context-aware
attention mechanisms. These mechanisms leverage information from multiple sources, including COVID-19 case
rates and contextual features; to enhance the training process and account for distribution shifts. By incorporating
these attention mechanisms, our model effectively captures the evolving dynamics of human mobility, enabling
accurate predictions even in the presence of changing patterns.

Fig. 7(a) illustrates a heatmap depicting the attention matrix acquired from the spatial-attention within our
CCAAT-GCN model. The x-axis and y-axis represent different ZIP codes. We can see that certain ZIP codes along
the y-axis exhibit notably high attention scores across a majority of ZIP codes along the x-axis. This observation
indicates that these specific areas play a critical role in affecting mobility patterns throughout the entire region.
This heatmap provides insights into the importance of certain areas in relation to their COVID-19 case rates when
predicting the number of visits in other areas. To better interpret the attention scores, we aggregate them along
the x-axis and plot them on the map. For comparative analysis, we also plot the 50-week aggregated COVID-19
case rates in Fig. 7(b). Two notable observations are made when comparing these two heatmaps.

(1) In Fig. 7(b), Staten Island, situated in the bottom left corner, exhibits relatively high COVID-19 case rates.
However, in Fig. 7(a), this region displays low spatial-attention scores. This discrepancy can be attributed to
the island’s geographical isolation from other areas. That is to say, despite its high case rates, the impact of
COVID-19 case rates in Staten Island on mobility patterns in other regions of New York City is limited. This
finding also underscores the capability of the cross- and context-aware-attention mechanism to discover
the underlying impact of COVID-19 on mobility, rather than solely relying on the magnitudes of case rates.
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Fig. 6. Predicted number of visits.

(2) The region with the highest attention score in Fig. 7(a), located in the King County of Brooklyn, exhibits
a relatively low COVID-19 case rate in Fig. 7(b). After investigating the POI of this region, we find that
the Kings County Hospital Center is located here together with several other healthcare facilities. This
observation suggests that, despite its lower case rates, the region encompassing Kings County Hospital
Center plays an important role in influencing mobility patterns in other areas, owing to its concentration
of healthcare facilities. Moreover, this observation serves as evidence of the cross- and context-aware
attention mechanism’s ability to identify crucial areas even in the absence of high COVID-19 case rates.

6.5 Computation Time

In Table 4, we compare the computational costs between CCAAT-GCN and selected baselines. These baselines are
selected because they all use graph neural networks as CCAAT-GCN does, ensuring a fair comparison. CCAAT-
GCN has a similar computation time as LSTM, Graph WaveNet, and ASTGCN. This comparison, especially
between LSTM and CCAAT-GCN, shows that computation time is not a major issue for CCAAT-GCN. Even
though CCAAT-GCN has a more complex network structure than LSTM, their computation costs are similar.
This is because LSTM’s recurrent network needs to generate results based on previous predictions, and thus it
takes longer to train using back-propagation-through-time. In contrast, the attention mechanism in CCAAT-GCN
allows for much faster sequential predictions in one run. While STGCN trains faster than CCAAT-GCN, STGCN
takes longer during inference as STGCN also generates results based on past predictions. The moderate training
time of our model means it is not time-consuming, and its quick inference time suits real-world applications
where fast prediction is important.

7 Conclusion

We developed a model CCAAT-GCN (Cross- and Context-Aware Attention based Spatial-Temporal Graph
Convolutional Network) for human mobility prediction, especially during disruptive events like COVID-19. In
the past two years during the COVID-19 pandemic, people’s mobility patterns have gone through several waves,
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Fig. 7. Visualization of the average attention matrix (a) versus average weekly COVID-19 case rates (b), both calculated
using data from 2020/08/10 to 07/26/2021.
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Table 4. The computation time for SafeGraph data set

Model Computation Time
Training (s/epoch) Inference (s)

LSTM 12.04 3.75
STGCN 5.03 2.59
STFGCN 6.87 2.63
Graph WaveNet 13.51 0.67
ASTGCN 9.14 0.53
CCAAT-GCN 13.46 0.91

aligned with the waves of COVID-19 evolution. How do we predict a nonstationary spatiotemporal pattern
using deep learning models? To tackle such a challenge, here we include the COVID case number to capture
such nonstationarity. Building upon the GCN framework, the cross-attention module specifically models the
correlation between COVID-19 cases and the number of visits, allowing for a comprehensive understanding of
their mutual influence. Moreover, the context-attention module learns to incorporate relevant contextual features,
such as regional demographics or socioeconomic factors, to enhance the prediction accuracy and interpretability
of the model.

The proposed model was validated using SafeGraph data in New York City from August 2020 to April 2022 along
with other 4 datasets. A comprehensive list of baseline models was performed, ranging from various spatiotemporal
GCN models to time-series models. The ablation study confirms the importance of the cross-attention and context-
aware attention mechanisms in our CCAAT-GCN model. The integration of these components allows the model
to effectively capture and leverage relevant information from both spatial and temporal contexts, leading to
improved prediction accuracy in human mobility prediction.

We plan to extend this work in the following aspects: (1) validate it using different datasets across various
disruptive disasters and events, like hurricanes and big events, which could transform human mobility patterns.
(2) learn the invariant structure underlying the spatiotemporal mobility patterns for generalization and transfer
learning.
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More Experiment Results

In this section we will show the complete experiments results for each dataset.
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Table 5. Evaluation of different models using the SafeGraph dataset

’ — 1 / — 2 / —
Method ‘ ! r=3
RMSE MAE RMSE MAE RMSE MAE
HA 765.73 579.96 2629.55 1471.19 1988.15 1011.45
AR 1224.02 489.39 1095.49 456.08 1157.28 687.55
LSTM 1034.8 520.97 1097.32 520.67 1279.61 679.85
STGCN 834.49 389.35 990.45 487.94 955.79 505.61
STFGCN 874.94 331.56 943.54 432.99 994.65 430.57
Graph WaveNet ~ 859.11 306.64 942.87 434.80 980.12 467.23
ASTGCN 778.98 375.88 908.56 437.24 950.09 457.44
CCAAT-GCN 398.11 182.66 453.73 253.35 617.30 353.49
Table 6. Evaluation of different models using the NYC Taxi data set
;7 _ / (A
Method =1 T =2 =3
RMSE MAE RMSE MAE RMSE MAE
HA 31.25 22.65 32.05 24.96 36.25 28.41
AR 28.42 20.44 31.32 23.44 34.94 28.51
LSTM 23.06 19.18 24.47 19.89 31.42 23.89
STGCN 18.92 13.87 22.60 18.10 27.94 21.19
STFGCN 19.20 13.62 19.84 14.14 24.88 18.98
Graph WaveNet 18.46 13.03 23.06 16.01 29.20 19.66
ASTGCN 18.13 12.97 18.17 14.77 27.25 18.27
CCAAT-GCN 15.51 11.68 17.35 13.36 26.21 16.16
Table 7. Evaluation of different models using the NYC Bike data set
4 — 1 ’ — 2 / —
Method ! ‘ r=3
RMSE MAE RMSE MAE RMSE MAE
HA 16.49 11.48 17.92 13.38 19.85 15.68
AR 15.48 10.89 16.57 12.17 18.43 14.52
LSTM 12.53 9.53 13.63 10.15 16.58 12.37
STGCN 10.37 7.54 11.34 8.89 14.95 10.78
STFGCN 9.54 6.75 10.95 7.86 13.58 9.43
Graph WaveNet 10.18 6.87 11.34 8.32 14.87 10.52
ASTGCN 9.23 6.48 10.13 7.46 13.35 9.23
CCAAT-GCN 8.34 5.87 9.56 7.02 12.97 8.67
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Table 8. Evaluation of different models using the PeMS 04 data set

’ — 1 / — 2 / —
Method ‘ ’ r=3

RMSE MAE RMSE MAE RMSE MAE
HA 39.13 23.17 40.13 27.61 40.86 30.26
AR 37.02 204 38.02 24.2 38.34 27.95
LSTM 30.35 20.35 31.35 20.62 31.08 24.44
STGCN 23.54 16.04 24.54 18.90 31.13 22.68
STFGCN 22.3 12.77 23.30 15.07 28.09 18.68
Graph WaveNet 24.49 14.58 25.49 15.82 28.45 21.23
ASTGCN 22.57 13.24 23.57 15.26 26.41 18.82
CCAAT-GCN 21.32 11.27 22.32 14.09 24.66 16.82

Table 9. Evaluation of different models using the PeMS 08 data set

! / /

Method r=1 =2 s~

RMSE MAE RMSE MAE RMSE MAE
HA 33.27 19.25 34.27 23.74 35.15 2443
AR 30.62 19.8 31.62 21.11 33.52 23.09
LSTM 25.34 17.09 26.34 18.86 31.08 19.13
STGCN 23.42 12.74 24.42 14.99 26.50 15.26
STFGCN 20.23 12.24 21.23 13.33 23.41 13.54
Graph WaveNet 22.14 11.81 23.14 14.86 26.62 15.55
ASTGCN 21.17 11.72 22.17 13.71 25.38 13.52
CCAAT-GCN 19.70 10.29 20.7 12.44 23.02 13.09
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