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© The Author(s), 2024 Trapping metal ions in an ice cube and letting them slowly melt in a reducing

agent solution is the simplest way to control the nanostructure. Enhancement
of charge transfer and transportation of ions by Cu,O nanoparticles was shown
by cyclic voltammetry and electrochemical impedance spectroscopy measure-
ments. In addition, nanoparticles exhibited higher current densities, the lowest
onset potential, and the Tafel slope than others. The Cu,O electrocatalyst (nano-
particles) demonstrated the Faraday efficiencies (FEs) of CO, CH,, and C,H, up
to 11.90, 76.61, and 1.87%, respectively, at —0.30 V versus reference hydrogen
electrode, which was relatively higher FEs than other morphologies/sizes. It is
mainly attributed to nano-sized, more active sites and oxygen vacancy. In addi-
tion, it demonstrated stability over 11 h without any decay of current density.
The mechanism related to morphology tuning and electrochemical CO, reduction
reaction was explained. This work provides a possible way to fabricate the differ-
ent morphologies/sizes of Cu,O at low-temperature chemical reduction methods
for obtaining the CO, CH, and C,H¢ products from CO,

Introduction converting CO, to solve these issues. Among them,

CO, conversion is the most prominent route because it
The world’s energy consumption is extremely depend-  can transmute CO, into fuels and useful chemicals [6].
ent upon fossil fuels, which causes energy shortages  The electrochemical CO, reduction reaction (CO,RR)
and environmental problem issues via CO, gas emis-  is one of the most promising strategies in CO, con-

sion [1-5]. Researchers focus on capturing, storing, and  version technique because of green technology and
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controllable reduction potential/reaction tempera-
ture under ambient conditions [7]. Recently, Cu-based
electrocatalysts have been widely applied for CO,RR
because of several advantages such as low cost, inter-
mediate binding energy for adsorbed CO (*CO), high
yield of multi-carbon products, low overpotential, dif-
ferent oxidation states, non-toxic, competing hydrogen
evolution reaction, and their stability [8, 9].

Copper oxide (Cu,0) is considered a superior elec-
trocatalyst for CO,RR among Cu-based materials
because of its ability to trap the subsurface oxygen,
kinetically favorable, enhancement of *CO binding,
and higher C1/C2 selectivity [10]. Various strategies
(facet, defect, morphology, and heterostructure) have
been applied to enhance the electrochemical CO,RR
performances. Among these strategies, morphology-
controlled is a perfect way to increase the electro-
chemical CO,RR for obtaining C1/C2 products because
it can control selectivity and stability [11]. Different
synthesis techniques (electrochemical deposition,
chemical deposition, chemical reduction, and ther-
mal treatment) have recently been used [12]. However,
low-temperature fabrication of morphology-control-
lable Cu,0 for electrochemical CO, reduction has not
been reported yet. The low-temperature fabrication
technique via ice melting can effectively control the
release of reactants, nucleation, and agglomeration of
particles in aqueous solution [13]. So, tuning the mor-
phology (shape/size) by low-temperature technique is
the perfect option to boost the electrochemical CO,RR
performances of Cu,O towards producing useful fuels
[14].

In the present work, different morphologies/sizes of
Cu,0O were synthesized by a simple low-temperature
chemical reduction method via ice melting using a
strong reducing agent. The variation of precursor con-
centrations has been applied to control the morpholo-
gies/sizes of Cu,O. The samples were characterized
by X-ray diffraction (XRD), field-emission scanning
electron microscopy (FESEM), transmission electron
microscopy (TEM), and X-ray photoelectron spec-
troscopy (XPS) measurements. The electrochemical
measurements (cyclic voltammetry, electrochemical
impedance spectroscopy, linear sweep voltammetry,
and chronoamperometry) of samples were obtained
by using an H-type cell for electrochemical CO,RR.
Tafel plots, detection of gaseous products, Faradic
efficiencies (FEs), and possible mechanism of CO,RR
were explained.

@ Springer

Experimental
Catalyst synthesis

The chemicals used were of analytical grade and were
used without further purification. 0.1 mm thickness
copper foil was purchased from Merck, Germany.
Copper nitrate trihydrate [Cu(NO;),.3H,0] was pur-
chased from Acro’s Organic, Poland. Sodium borohy-
dride (NaBH,) was purchased from Spectrum Chemi-
cal MFG Corp, California, and ethanol [C,H5;OH, (95%
pure)] was purchased from VWR Chemicals, Canada.
The samples were synthesized using a low-tempera-
ture chemical reduction method using one-pot syn-
thesis. The main advantage of this method is that it
enables the tuning of particles’ morphology by slowly
releasing Cu ions in the solution because of the slow
release of metal ions during the melting of the ice cube
compared to other solution-based methods [13]. It was
carried out by forming an ice cube of Cu(NO;),.3H,0
solution. Cu(NO;),.3H,0 was weighed and dissolved
in 100 mL of distilled water. Different concentrations
of Cu(NO,),.3H,0 (0.02 M, 0.1 M, and 0.5 M) were
used for the synthesis. During synthesis, the pH of
the solution was 4.4. The as-prepared ice cubes were
added to NaBH, solution (0.01 M) in 100 mL ethanol.
The sample was collected after 60 min and washed
with distilled water and ethanol several times to
remove the impurities. The obtained powders were
dried and ground using mortar and piston. The cata-
lysts were named Cu,0O-1, Cu,0-2, and Cu,O-3 for
0.02 M, 0.1 M, and 0.5 M concentrations of Cu salt,
respectively. The schematic illustration of Cu,O syn-
thesis is shown in Fig. S1.

Material characterization

Powder X-ray diffraction (XRD) patterns were
recorded in Rigaku Miniflex 600 (20: 10-80°, step: 0.02,
and continuous: 1°/min) diffractometer. The morphol-
ogy of samples was obtained by field emission scan-
ning electron microscopy (FESEM, JEOL, JSM-IT800).
Transmission electron microscopy (TEM), high-res-
olution transmission electron microscopy (HRTEM),
and selected area diffraction patterns (SAED) images
were recorded by JEOL 2100 PLUS TEM acquired at
120 kV. The X-ray photoelectron spectroscopy (XPS)
was carried out on thermo-scientific ESCALAB™ XI
(200 eV and Al Ka). Gas chromatography (GC) (SRI
8610C) analyzed the gaseous products.



Electrochemical measurements

The electrochemical measurements were performed
in an H-type cell with a three-electrode system. The
H-type cell consists of platinum (as a counter elec-
trode), Ag/AgCl electrode (as a reference electrode
stored in 3 M KCl solution), and Cu,O (as a working
electrode) in 0.5 M KHCOj solution. The electrode was
prepared by mixing the 0.05 g of sample, and 50 uL
Nafion in 500 pL ethanol. The mixture was sonicated
for 60 min. The highly dispersed mixture was depos-
ited on the 1 cm x 1 cm copper foil and left to dry for
12 hin an oven at 60 °C. The cyclic voltammetry (CV)
of the prepared materials was measured that consists
of —0.6 V to 0.6 V potential window with a scan rate
between 40 mV/s and 100 mV/s. Similarly, the conduc-
tivity of the electrode was studied by electrochemical
impedance spectroscopy (EIS) between 0.1 Hz and
100,000 Hz. Likewise, the linear sweep voltammetry
(LSV) was studied between 0 and 0.1 V versus the
reversible hydrogen electrode (RHE) at the scan rate
of 10 mV/s. The following equation was used for the
calculation of RHE:

Erpie = Eagjagcy +0.197 +0.059pH (0.5M KHCO; ~ 8.5)

where E /a0 represents the potential against the
reference electrode, and 0.197 denotes the standard
potential of Ag/AgCl at 25 °C [15].

A 50 mL H-type electrochemical cell was used. Two
compartments (anodic and cathodic) were separated
by Nafion 117 membrane. Nafion 117 membrane was
used after treatment with 1 M H,SO, and water. The
volume of electrolyte used was 35 mL. For the satu-
ration of electrolytes, 99.99% pure CO, gas was bub-
bled in a cathodic cell compartment for 60 min with
10 sccm (standard cubic centimeters per minute) with
the help of a mass flow controller (MC-100SCCM-D,
Alicat Scientific). The outlet of the cathodic cell com-
partment was connected to GC. GC was calibrated
with a standard gas mixture (ARC3). The gaseous
products obtained during the reaction were detected
by a flame ionization detector (FID). The current-time
(it) measurements were performed at a fixed potential
of -0.30 V versus RHE (Supplementary information).
Gasses from the cell were injected into GC for 400 s,
and electrocatalytic CO,RR was evaluated. The stabil-
ity of Cu,0O-1 was performed over 11 h.

Results and discussion

Figure 1 revealed the XRD patterns of catalysts. As
observed, the peaks were assigned to cuprite Cu,O
(Pn-3m) along with strong (111) orientation (JCPDS:
05-0667) in all samples [16]. A possible reason for the
formation of Cu,O is associated with the reduction of
Cu(NO;),.3H,0 in the presence of a reducing agent
and dissolved oxygen under ambient conditions [17,
18]. However, a small peak was observed at 38° (20),
which suggests the presence of a trace amount of CuO
(JCPDS: 45-0937) in Cu,O-1 [18]. It may be related to
Cu(I) oxidation during the synthesis [19]. In addition,
a very low intense peak was found at 42° (20), which
indicates the existence of a metallic copper (JCPDS:
04-0836) phase in Cu,0-3 [20]. The result suggests
that a high concentration of precursor favors the small
quantity of Cu (0) in the sample. Besides phases, the
crystallite size of samples was calculated based on
Scherrer’s equation based on (111) diffraction peak.
It was found that the crystallite size of Cu,0-1(1.77
nm) is smaller than the Cu,0-2 (2.1 nm) and Cu,0-3
(2.4 nm). Cu,0O-1 and Cu,0O-2 revealed the formation
of nanoparticles (Fig. 2a, b). The nanoparticles were
slightly agglomerated. However, Cu,0O-3 presented
the octahedron morphology (Fig. 2c). The size of the
octahedron consists of 0.5-1.5 um. Furthermore, The
FESEM elemental mapping and spectrum indicated
the uniform distribution of Cu and O elements in the
samples (Fig. S2).
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Figure 1 XRD patterns of samples.
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Figure 2 FESEM images of samples. a Cu,0-1, b Cu,0-2, and ¢ Cu,0O-3. (Scale bar: 0.5 pm).
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Figure 3 A schematic illustration of the formation mechanism
of different sizes/morphologies of samples.

The mechanism related to the controlled synthe-
sis of different morphologies/sizes was presented in
Fig. 3. First, Cu,O crystal nuclei were formed by the
reaction between the salt solution of Cu(NO3),.3H,O
with NaBH, via the nucleation process. In the case of
Cu,0-1, the lower concentration of Cu(NO;),.3H,0
enhances the reduction rate that can generate multiple
single nuclei. Also, the crystal nucleation rate is higher
than the crystal’s growth in Cu,0O-1. Due to this rea-
son, a smaller size of nanoparticles was formed. How-
ever, the slight increase in precursor concentration
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lowers the reduction rate, and few nuclei may be pro-
duced in Cu,O-2. In addition, these nuclei may col-
lide with other nuclei to generate large size of particles
[21]. Furthermore, at high concentrations, the precur-
sor reduces the crystal nucleation rate than the crystal
growth, which can increase the particle size in Cu,O-3.

The detailed structural information of the Cu,O-1
sample was shown by TEM, HRTEM, and high-angle
annular dark-field scanning (HAADF) TEM images
with elemental mapping (Fig. 4). The TEM images
suggested the existence of nanoparticles in Cu,O-1.
The rough surface with several steps and kinks on the
surface would provide a more active site for catalytic
reaction. According to HRTEM image, the interplanar
spacing of crystalline was found to be 0.246 nm, cor-
responding to Cu,O (111) plane (Fig. 4b). The fringe
spacing agreed with Cu,O (JCPDS: 05-0667), revealing
good agreement with XRD patterns (Fig. 1). The uni-
form distribution of copper and oxygen was observed
in TEM imaging (Fig. 4c).

The chemical states and elemental composition
of Cu,0-1, Cu,0-2, and Cu,0-3 were measured via
XPS spectra (Fig. 5). The Cu 2p spectra of samples
were deconvoluted into 2p;, (Cu,O-1: 935.79 eV,
Cu,0-2: 935.37 eV, and Cu,0-3: 934.42 eV), 2p;),
satellite (Cu,O-1: 943.77 eV, Cu,0-2: 943.80 eV, and
Cuy0-3:943.60 eV), 2p; ) (Cu,yO-1:955.61 eV, Cu,0-2:
955.42 eV, and Cu,0-3: 954.12 eV), and 2p, ), satellite
(Cu,0-1: 963.61 eV, Cu,0-2: 963.66 eV, and Cu,0O-3:
962.74 eV). It suggests the existence of Cu” in samples
(Fig. 5a—c) [22-24]. According to Fig. 5d-f, O 1s spectra
demonstrated three distinct fitted peaks which were
lattice oxygen (Cu,O-1: 529.00 eV, Cu,O-2: 528.81 eV,
and Cu,0-3: 529.17 eV), chemisorbed oxygen (Cu,O-1:
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Figure 4 a TEM, b HRTEM and ¢ HAADF-TEM images with EDX mapping of Cu,O-1.

530.07 eV, Cu,0-2: 530.41 eV, and Cu,0O-3: 530.96 eV),
and oxygen vacancies (Cu,0O-1: 532.51 eV, Cu,0-2:
532.04 eV, and Cu,0-3: 532.61 eV) [25, 26]. This result
also provides a higher oxygen vacancy in Cu,O-1 nan-
oparticles. Furthermore, the survey spectra showed
the presence of Cu and O in samples.

The electrochemical characterization of morphol-
ogy controlled Cu,O was performed by CV analy-
sis that can determine the oxidation and reduction
behavior of the electrocatalyst. Figure 6a—c represent
the CV curves of Cu,0-1, Cu,0-2, and Cu,0-3 in the
potential range -0.6 to 0.6 V vs Ag/AgCl at the various
scan rates (40 mV/s, 60 mV/s, 80 mV/s, and 100 mV/s),
respectively. Each of the unsymmetrical CV profiles
revealed the anodic (Cu,O-1: 0.11 V, Cu,0-2: 0.084 V,

and Cu,O-3: 0.089) and cathodic peaks (Cu,O-1: -0.37
V, Cu,0-2: -0.39 V, and Cu,0-3: -0.37 V), indicating
the redox reaction of Cu,O. It can be attributed Cu(I)/
Cu(Il) redox reaction [18]. The oxidation and reduc-
tion peaks were shifted towards the positive and nega-
tive potential with increased scan rates, respectively.
It may be associated with internal resistance over the
electrode and charge diffusion polarization in the elec-
trodes [27]. Also, the increase in scan rate promoted
the current response, which suggests the kinetic of the
interfacial oxidation and reduction reactions and the
rapid rate of the ionic/electronic responses [28]. More-
over, Cu,0-2 demonstrated lower current density than
Cu,0-1 and Cu,0-3 (Figs. 6a—c, and S3). It indicates
that nanoparticles and octahedron morphologies may
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Figure 5 XPS analysis of
Cu,O-1 (a Cu 2p, d Ols, and
g survey), Cu,0-2 (b Cu 2p,
e Ols, and h survey), and
Cu,0-3 (¢ Cu 2p, f Ols, and
i survey).

Figure 6 CV (a Cu,0-1,b
Cu,0-2, and ¢ a Cu,0-3) and
EIS plot of samples.

provide more active sites for electrocatalytic CO,RR.
The CV performance Cu-foil was evaluated to elimi-
nate the interference from the substrate (Fig. S4). The

@ Springer
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current density of Cu-foil is observed to be lower than
the Cu,O samples. The electrochemical performance of
catalysts was further explored by EIS measurements;
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the results are presented in Fig. 6d. The catalysts have
a semicircle and straight line in high-frequency and
low-frequency regions. Compared to Cu,0O-2 and
Cu,0-1, Cu,0O-3 revealed a smaller semicircle diam-
eter. In addition, an equivalent circuit model is shown
in Fig. S5. The estimated value of solution resist-
ance, charge transfer resistance, Warburg coefficient,
and electric double-layer capacitance are shown in
Table S1. The results suggest that Cu,0-1 and Cu,0-3
demonstrated lower charge transfer resistance than
Cu,0-2. It suggests the smaller charge-transfer resist-
ance in nanoparticles and octahedrons. The superior
charge transfer efficiency and good conductivity of
these catalysts can enhance the electrocatalytic CO,RR.

To better elucidate the effect of Cu,O morphologies
on the electrocatalytic CO,RR performance, LSV tests
were performed for the Cu,0-1, Cu,0-2, and Cu,0-3
catalysts at a sweep rate of 20 mV/s in CO,-saturated
0.5 M KHCO; (Fig. 7a). As observed, Cu,O-1 exhib-
ited higher current densities and lowest onset poten-
tial than Cu,0-2, and Cu,0O-3 catalysts. The possible
reason may be associated with good electrical con-
ductivity that can accelerate the transfer of electrons
during the electrocatalytic CO,RR. Also, Cu,0-1 has
the smallest current at a voltage of -0.25 V versus
RHE. The possible reason may relate to variation in
the electrochemical reaction rate [29]. To investigate

the reason for the greater CO,RR performance of
the Cu,0-1 electrode than others, Tafel slopes were
evaluated (Fig. 7b). The Tafel slopes of the Cu,0O-1,
Cu,0-2, and Cu,O-3 catalysts revealed 94.62, 117.81,
and 101.83 mV/dec, respectively. It suggests that
Cu,0-1 exhibited the lowest Tafel slope. These results
also indicate that the surface of Cu,O-1 nanoparticles
makes the electrocatalytic CO,RR easier than others
by enhancing the initial transfer rate of electrons to
the CO, molecules.

CO, electroreduction using three catalysts was
conducted in a 0.5 M KHCO; under applied cathode
potential to investigate the catalytic activities towards
the product distribution. The chronoamperometry
measurements of Cu,O samples at —0.3 V versus
RHE for 400 s were shown in Fig. S6. It indicates that
Cu,0-1 nanoparticles revealed higher current density
than others. In addition, the Cu-foil showed lower cur-
rent density than other Cu,O samples (Fig. 57). The
calculation of FEs was provided in supplementary
information and Table S2. FEs of CO (Cu,O-1: 11.90%,
Cu,0-2: 9.76%, and Cu,0-3: 12.1%), CH, (Cu,O-1:
76.61%, Cu,0-2: 65.11%, and Cu,0-3: 74.63%), and
C,Hy (Cu,O-1: 1.87%, Cu,O0-2: 2.39%, and 2.60%)
were obtained during electrocatalytic CO,RR samples
(Fig. 7c). These results suggested that CH, and CO/
C,H; were major and minor products, respectively.
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Based on the hydrocarbon products, the possible
mechanisms have been proposed. At first, the CO,
molecules are adsorbed and activated on the crystal-
line plane of Cu,O (111). Then, it is quickly converted
into *COOH via multiple proton-coupled electron
transfer (PCET) processes. In addition, this process
coupled with *COOH intermediate to produce *CO.
In addition, Cu,O (111) tends to provide stable adsorp-
tion of *CO. The adsorption of *CO shows superior
stability on the catalyst surface, making C1 and C2
products possible. The desorption of *CO from the
active site to form CO [30, 31]. Furthermore, *CO may
convert into *CHO, *CH,0O and *CH;0 intermediates
via PCET to generate CH,. Also, *CHO is converted
into *CHj; via *CH, formation by PCET. Then, dimeri-
zation of CH; produces the C,H, [9, 32, 33].

The high selectivity of Cu,O for CH, may be attrib-
uted to (111) crystalline plane that can provide active
sites. Also, abundant hydroxyl groups tend to tune
the stability of intermediates for CH, formation by
hydrogen bonds [23]. The low selectivity of C,H may
relate to the kinetic barrier for the coupling, which can
effectively influence the degree of the adsorbed CO
hydrogenation. Such type of kinetic barrier decreases

with an increase in the degree of the surface-bound
CO hydrogenation that may favor C,H [34]. Also, the
adsorbed CO is an intermediate state of C1 and C2
products. Due to this reason, low selectivity of Cu,O
for CO was observed [35]. Cu,0-1 demonstrated
higher electrocatalytic CO,RR efficiency compared
to others. It consists of nanosized among all samples.
It consists of more active sites, oxygen vacancy, high
flexibility, and rapid oxygen diffusion along the dense
boundary between the nanoparticles [35]. Also, the
co-existence of Cu" and Cu®" ions can provide active
sites and more favorable free energy for the produc-
tion of *CO intermediates that facilitate the generation
of C—C bonds for C,, formation [36]. Besides produc-
ing CO, CH,, and C,H,, stability is important for elec-
trocatalysts towards CO,RR efficiencies. According
to the stability test of Cu,O-1, there was no decay of
current densities over an 11 h period, indicating sig-
nificant stability (Fig. 7d). Furthermore, the stability of
the catalyst was investigated using XRD and FESEM
analyses. Figure S8 presented the XRD patterns of
Cu,O-1 after electrocatalytic stability after 11 h. It
was observed that the XRD of the used catalyst is
well matched with the fresh catalyst. In addition, the

Table 1 Comparison of the catalytic performance of synthesized Cu,O with other Cu,0O-based catalysts

Catalyst Synthesis method Electrolyte FEs (%) E versus RHE (V) Stability (h) References
S5-Cu,O Hydrothermal 0.1 M KHCO; HCOO- (66.1%) -1.0 2 [37]
Cu,0/Zn0O Solvothermal 0.1 M KHCO; CO (65.7%) andH, —0.6to—1.4 2 [38]
Cu@Cu,O Solvothermal 0.1 M KHCO; C,H, (44%) —-1.08 6 [39]
Ag—Cu/Cu,O0 Ultrasonic synthetic 1 M KOH C,HsOH (19.2%) - 8 [40]
MOF- Cu@Cu,0 Hydrothermal 0.5 M KHCO; CH;OH (45%) -0.7 10 [41]
Cu-Cu,O/LDH  Electrochemical reduction 0.1 M HCIO, C,H, (36%) -1.1 20 [42]
Cu-Cu,O Electrodeposition 0.1 M KHCO;4 C,H, (51%) -0.76 10 [43]
Cu,O Interface-induce 0.1 M KHCO;4 C,H, (31.1%) —-1.15V 1.6h [44]
Cu,O Chemical reduction and 0.5 M NaOH CH;0H -17V 4h [45]
deposition
Cu,0/Cu0 electrodeposition 0.5 M KHCO:;, CH;OH (6.46%) -13V 2h [24]
10 mM pyridine,
and HCl
Cu,0@Au Galvanic replacement 0.1 M KHCO;, CO (30.1%) -1.0V - [46]
reaction
Cu,0/Cu-PdCl;  Electrodeposition 0.1 M KHCO;4 C,H¢ (30.1%) -10V 1.5h [47]
ZnO@Cu,O Epitaxial growth 0.1 M KHCO;, C,H,(33.5%)and -10V - [48]
C,H,OH (16.3%)

Cu,0/CuS Hydrothermal 0.1 M KHCO; HCOO™ (67.6%) -09V 3h [49]
Cu,O Chemical reduction 0.5 M KHCO; CO (11.9%),CH,, -03V 11h Our work

(76.61%), and
C,H, (1.87%)

@ Springer



FESEM image of the used catalyst was like that of the
unused catalyst (Fig. S9). These characterization tech-
niques suggest the excellent stability of the catalyst for
electrocatalytic CO,RR. Table 1 shows a comparison of
Cu,O with previously reported Cu,O-based electrode
materials. Our results are comparable to those of pre-
vious literature.

Conclusion

In summary, various morphologies/sizes of Cu,O were
synthesized by the chemical reduction method at low
temperatures by changing the concentration of metal
ions. XRD suggested the trace amount of CuO and Cu
phases at low and high concentrations of precursors,
respectively, in the Cu,O catalyst. FESEM provided
evidence of different sizes/morphologies. Elemen-
tal mapping demonstrated the uniform distribution
of Cu and O in samples. The evidence of the Cu,O
(111) plane was proved by the HRTEM image. The
electrochemical characterization (CV, EIS, LSV, Tafel
plot, and chronoamperometry curves) was carried out
for electrochemical CO2RR performance on H-type
cells. Cu,0O nanoparticles revealed higher electro-
catalytic CO,RR efficacy than others (bigger particles
and octahedron). In addition, Cu,O catalysts tend to
provide CH, (major) and minor (CO and C,H;) prod-
ucts at 0.3 V versus RHE. The possible reasons for
the enhancement of electrocatalytic efficiency of Cu,O
nanoparticles are the presence of a greater number of
active sites, oxygen vacancy, good electrical conduc-
tivity, the ability of rapid electron transfer, and a trace
amount of Cu®" phase. In conclusion, tuning Cu,O
morphology using low temperature chemical reduc-
tion method is a great way to make efficient catalysts
for generating CO, CH,, and C,Hj via electrocatalyti-
cally CO,RR.
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