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Abstract

In the western United States, water supplies largely originate as snowmelt from for-

ested land. Forests impact the water balance of these headwater streams, yet most

predictive runoff models do not explicitly account for changing snow-vegetation

dynamics. Here, we present a case study showing how warmer temperatures and

changing forests in the Henrys Fork of the Snake River, a seasonally snow-covered

headwater basin in the Greater Yellowstone Ecosystem, have altered the relationship

between April 1st snow water equivalent (SWE) and summer streamflow. Since the

onset and recovery of severe drought in the early 2000s, predictive models based on

pre-drought relationships over-predict summer runoff in all three headwater tribu-

taries of the Henrys Fork, despite minimal changes in precipitation or snow accumu-

lation. Compared with the pre-drought period, late springs and summers (May–

September) are warmer and vegetation is greener with denser forests due to recov-

ery from multiple historical disturbances. Shifts in the alignment of snowmelt and

energy availability due to warmer temperatures may reduce runoff efficiency by

changing the amount of precipitation that goes to evapotranspiration versus runoff

and recharge. To quantify the alignment between snowmelt and energy on a time-

frame needed for predictive models, we propose a new metric, the Vegetation-Water

Alignment Index (VWA), to characterize the synchrony of vegetation greenness and

snowmelt and rain inputs. New predictive models show that in addition to April 1st

SWE, the previous year's VWA and summer reference evapotranspiration are the

most significant predictors of runoff in each watershed and provide more predictive

power than traditionally used metrics. These results suggest that the timing of snow-

melt relative to the start of the growing season affects not only annual partitioning of

streamflow, but can also determine the groundwater storage state that dictates run-

off efficiency the following spring.
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1 | INTRODUCTION

1.1 | Predicting summer streamflow in seasonally
snow-covered headwaters

Across the western United States, over half the water that annually

replenishes rivers and reservoirs originates as snowmelt (Li

et al., 2017). The timing and amount of snowmelt that becomes

streamflow determines how much water will be available for irriga-

tion, hydroelectric power generation and instream fish habitat

(Barnett et al., 2005; Barnhart et al., 2016, 2020). Each year, irrigators

and water managers rely on seasonal streamflow predictions issued in

the spring that forecast summer water availability (Garen, 1992;

Pagano et al., 2004). Many of these regression-based seasonal predic-

tive models are founded on the relationship between April 1st snow

water equivalent (SWE) and summer streamflow. Seasonal streamflow

predictions are notoriously difficult as they are limited by the informa-

tion known at the time of prediction and uncertainty in future condi-

tions (Pagano et al., 2004).

To combat this uncertainty, forecasters should perform cross-

validation, be wary over-fitting, use novel metrics and search for the

optimal combination of predictors (Garen, 1992; Mendoza

et al., 2017). Despite these best practices, studies across the western

United States have shown that summer runoff has become more vari-

able, even in places that have not experienced recent shifts in climate

(He et al., 2016), and that traditional SWE metrics may become less

accurate at predicting seasonal droughts (Livneh & Badger, 2020;

Vano, 2020). Recent work in snow-dominated watersheds has

addressed the declining accuracy of SWE metrics to predict summer

runoff by showing the benefit of adding information about antecedent

moisture conditions. These antecedent metrics can improve estimates

of spring runoff efficiency or how much snow becomes streamflow as

opposed to evapotranspiration (ET) (Castillo et al., 2003; Hammond

et al., 2019; Lapides et al., 2022). Specifically, it has been recom-

mended to use mean January runoff as a regression predictor of

annual streamflow as a way to represent antecedent groundwater

conditions (Brooks et al., 2021) or to use soil moisture data (Harpold

et al., 2017; Koster et al., 2010). However, many areas still do not

have a long enough soil moisture period of record to integrate into

regression-based models; furthermore, ice cover can affect the accu-

racy of winter runoff measurements (Melcher & Walker, 1992). With

the declining efficacy of traditional SWE metrics, it is vital to under-

stand the processes that drive changes in runoff efficiency in season-

ally snow-covered areas and develop mechanistic models and metrics

that represent these processes at a timescale useful for seasonal

predictions.

1.2 | Uncertainty in changing snow dynamics and
runoff efficiency

High-elevation mountainous regions are projected to warm faster

than low-elevation areas (Pepin et al., 2015). With warming, much of

the western United States may experience a transition from snow to

rain (Klos et al., 2014), declining snowpacks (Mote et al., 2018), and

earlier and potentially slower snowmelt (Musselman et al., 2017),

which could have a profound impact on streamflow, and contribute to

the declining ability of April 1st SWE to accurately predict runoff

(Barnett et al., 2005; Goulden & Bales, 2014; Livneh & Badger, 2020).

With changing melt rates, it is unclear how changes in the timing and

rate of snowmelt will affect the amount of melt that goes to

ET. Previous work suggests that lower snow accumulation and earlier

melt may lead to earlier increases in ET and the start of the growing

season (Cooper et al., 2020; Hamlet et al., 2007; Kraft &

McNamara, 2022). If this is the case, more snowmelt may go to ET

and less to groundwater recharge and annual runoff (Barnhart

et al., 2016; Christensen et al., 2021; Goulden & Bales, 2014).

At the same time, other studies have found no change in stream-

flow with earlier melt (Hammond & Kampf, 2020), suggesting that

snowmelt occurring when there is lower evaporative demand offsets

the impact of a transition from snow to rain on runoff efficiency

(Barnhart et al., 2020; Robles et al., 2021). These opposing results sug-

gest that the hydrologic responses of changes in snow accumulation

and melt may be dynamic and vary both regionally and temporally.

Three primary mechanisms have been proposed to explain vari-

able responses of streamflow to changes in snow accumulation and

melt (Gordon et al., 2022). The first mechanism considers the magni-

tude of winter vapour fluxes such as sublimation in reducing how

much water enters the ground; the second emphasizes the impor-

tance of rain and snowmelt input intensity (referred to here as surface

water inputs); and the third is based on snow-energy synchrony,

which controls how much snowmelt goes to ET. Another way to con-

sider the third mechanism is to explicitly consider snow-vegetation

interactions and the synchrony of vegetation greening or ET with

snowmelt.

Previous work in the forested southeastern United States found

that longer growing seasons and changing vegetation dynamics are

driving nonstationary changes in catchment storage and ET (Hwang

et al., 2018). In a global analysis, Knighton et al. (2020) found that the

alignment of climate and vegetation phenology determines how

streamflow responds to forest disturbance. In snow-dominated

regions with seasonal offsets in the timing of water inputs and the

growing season, they found a dampened streamflow response to

changes in forest cover. This period between snowmelt and vegeta-

tion green-up, referred to as the vernal window, plays an important

role in modulating spring runoff and dictating how snowmelt is parti-

tioned into ET (Barnett et al., 2005; Grogan et al., 2020; Stewart

et al., 2005). Many studies have found that vernal windows are

lengthening due to earlier snowmelt outpacing changes in the start of

the growing season (Grogan et al., 2020); however, this asymmetrical

shift largely depends on the climate and vegetative characteristics of a

region. These studies highlight the important role that the timing of

snowmelt and green-up play on runoff generation processes; how-

ever, there is currently no consensus on how to account for these

dynamics in regression-based predictive streamflow models. Most

new metrics of antecedent moisture focus on absolute water deficits
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as opposed to timing, and very few explicitly account for changing

vegetation dynamics.

1.3 | Underrepresentation of forest processes in
seasonal forecasts

Forests impact the magnitude and timing of streamflow generation,

yet there is a substantial gap in relating forest processes to down-

stream water supplies, particularly in irrigated areas (Barnard et al.,

2023). In seasonally snow-covered areas, forest structure, such as

stem density and canopy cover, affects the amount of precipitation

that is intercepted and sublimated (Montesi et al., 2004; Sexstone

et al., 2018) and the energy balance of the surrounding snowpack

(Kraft et al., 2022; Lawler & Link, 2011; Lundquist et al., 2013;

Musselman et al., 2012). Forests also stabilize soils and provide clean

water, making them crucial for watershed health and function

(Bonan, 2008).

As precipitation regimes change and drought becomes more fre-

quent and severe (Dai, 2013), many regions have started experiencing

widespread forest disturbance due to drought-induced mortality, bee-

tle die-off and wildfire (Abatzoglou & Williams, 2016; Adams

et al., 2012; Seidl et al., 2017). Each of these disturbances may impact

runoff efficiency, though the magnitude and direction of this

impact will depend on local geology, topography, climate and vegeta-

tion successional classes (Goeking & Tarboton, 2020). Even in regions

that have yet to experience large-scale disturbances, changes in local

climate may exacerbate or alter how forest structure impacts local

hydrology. For example, warmer winters and springs may lead to more

canopy interception, early snowmelt and a diminished benefit of can-

opy shading for snow retention (Dickerson-Lange et al., 2021;

Lundquist et al., 2013). Additionally, the amount of forest ET depends

on atmospheric evaporative demand and each tree's physiological

response to increasing water deficits (Martínez-Vilalta & Garcia-

Forner, 2017; Massmann et al., 2019), making it difficult to predict

how forests with diverse vegetation will respond to drought. The

response of vegetation and ET to warmer and drier conditions has

been shown to determine how watersheds and streamflow respond

to and recover from drought (Avanzi et al., 2020; Maurer et al., 2022),

or, in some cases, explain why watersheds experience a hydrologic

regime shift following severe drought (Peterson et al., 2021).

The complex interplay of climate and forest structure, and the

effects of vegetation–climate interactions on the hydrologic cycle,

make it challenging to capture these dynamics in real time, let alone

ahead of time, as needed for seasonal predictions. Thus, few seasonal

models integrate information about forest dynamics. Those rare

exceptions often use a relatively static metric of percent forest cover,

which fails to capture intra-annual changes in vegetation dynamics

(Hernandez et al., 2018; Sun et al., 2014).

Here, we address this knowledge gap by introducing a new met-

ric, the Vegetation-Water Alignment Index (VWA), to investigate

whether a metric that leverages dynamic vegetation behaviour can

improve runoff predictions following a multi-year drought. The VWA

quantifies the alignment between vegetation greenness and water

availability, thereby both capturing changes in forest structure and

providing an inference into water-energy synchrony. Summer runoff

and low flows can retain a memory of the previous year's snowpack

and storage deficits (Brooks et al., 2021; Godsey et al., 2014; Lapides

et al., 2022). Therefore, we hypothesize that when annual snowmelt

and rain inputs are more aligned with seasonal vegetation greenness,

less snowmelt will go to runoff and recharge, which will reduce the

following spring's runoff efficiency. Using a case study from

the Greater Yellowstone Ecosystem, we select and validate new pre-

dictive models and show how including metrics of evaporative

demand and vegetation dynamics improve seasonal predictions of

summer runoff. These results emphasize the importance of explicitly

accounting for vegetation dynamics as the mechanisms and relation-

ships used to predict streamflow change with droughts and declining

snowpacks.

2 | METHODS AND SITE

2.1 | Study site

The Henrys Fork of the Snake River (hereafter referred to as the

Henrys Fork) is a major headwater tributary of the Snake River in

eastern Idaho, USA (Figure 1b,c). The Henrys Fork is located in the

Greater Yellowstone Ecosystem and sourced by three subwatersheds

(from here on referred to as watersheds)—the Upper Henrys Fork, Fall

River and Teton River—that collectively supply !25% of the water

supply in the upper Snake River basin and the nearly $10 billion agri-

cultural economy that exists in the basin (Idaho Water Resource

Board, 2009; Van Kirk et al., 2019). Like many river basins across the

western United States, the Henrys Fork is a seasonally snow-covered,

forested headwater system that supplies water to downstream users

and is expected to see shifts in climate and runoff reliability (Hostetler

et al., 2021). As such, this region serves as a case study to investigate

the effects of changing vegetation, snow and energy alignment on

seasonal runoff predictions and runoff efficiency.

The hydrology of both the upper Snake River basin and the

Henrys Fork reflects the complex volcanic geology of the region that

formed in the wake of the migration of the Yellowstone Hotspot

(Pierce et al., 2007). Due to the unique combination of geology,

topography and hydrology, each watershed exhibits distinct stream-

flow generation processes. As seen in Figure 1a, the Upper Henrys

Fork (HF) has the greatest groundwater contribution with higher win-

ter runoff, lower and earlier spring runoff and higher summer base-

flows. A majority of the groundwater that feeds the Upper Henrys

Fork discharges from a series of springs that emerge at the foot of the

Yellowstone Plateau, a nearly 400-m thick rhyolite tuff from

the recent Lava Creek eruption (!600 Ka; Pierce & Morgan, 1992).

Snowmelt on the plateau recharges the springs' aquifer, which has a

response time of approximately 3 years (Benjamin, 2000). The spring

discharge joins the rest of the Upper Henrys Fork, which flows

through a legacy caldera before descending onto the Eastern Snake

NEWCOMB ET AL. 3 of 19
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River Plain. The Upper Henrys Fork has the lowest average elevation,

followed by Fall River and Teton River, as seen in Figure S1.

In contrast to the strong groundwater influence in the Upper

Henrys, Teton River is strongly snowmelt-dominated, with most of

the water supply coming from snow that falls in the Teton Range.

Figure 1a shows the high spring flows and lower summer baseflows

indicative of snowmelt-driven runoff. The remaining watershed, Fall

River, is sourced by a mix of groundwater springs and snowmelt,

resulting in a more intermediate hydrograph shape (Figure 1a).

The climate of the study area transitions from warm continental

at low elevations to dry-summer subarctic at high elevations (Kottek

et al., 2006). Across all three watersheds, there is a sharp precipitation

gradient with around 300 mm of annual precipitation in the valleys

and up to 2000 mm in the high-elevation mountains, with anywhere

from 50% to 80% falling as snow, depending on elevation. The

Greater Yellowstone Climate Assessment projects that this region will

receive more annual precipitation, but a lower snow fraction, in the

coming decades (Hostetler et al., 2021).

A large portion of each watershed is forested, as seen with the

green shading in Figure 1b. The composition of these forests varies by

elevation and aspect but are largely dominated by lodgepole pine

(Pinus contorta), Engelmann spruce (Picea engelmannii), Douglas-fir

(Pseudotsuga menziesii), whitebark pine (Pinus albicaulis) and subalpine

fir (Abies lasiocarpa). These forests experienced substantial distur-

bance before the 1989 start of this study due to a combination of

extensive timber harvesting and the 1988 Yellowstone Fires (Turner

et al., 2003). Though most of the fire perimeter was outside of the

watershed, with less than 5% of both the Upper Henrys and Fall River

watersheds affected (Figure S2), beetle infestation following the fires

led to additional delayed mortality in the early 1990s (Ryan &

Amman, 1996). While there has been a recent resurgence of beetle

mortality in the eastern Greater Yellowstone Ecosystem, the Henrys

(a)

(b) (c)

Q
Q

F IGURE 1 Overview of the headwater tributaries of Henrys Fork of the Snake River. (a) Dimensionless discharge (average daily streamflow/
annual average daily streamflow) using 1989–2023 averages to show the distribution of flow throughout the water year (October–September)
and highlight the distinct runoff generation processes in each watershed. The colour of each line represents the corresponding watershed, as
labelled on the site map. (b) Watershed map of the three focal subwatersheds, the Upper Henrys Fork (HF), Fall River (FR) and Teton (TR), with
the location and site codes of NRCS SNOTEL sites, USGS stream gages and Reclamation AgriMet sites used in this study. Table S1 gives
description of each SNOTEL site. Green shading indicates land classified as evergreen, mixed or deciduous forests Dewitz, (2023). The colour of
each SNOTEL site indicates the watershed that site is associated with and the shading indicates the relative elevation of the site where a darker
colour indicates a lower elevation. (c) Regional site map of the Henrys Fork, a major headwater tributary in the Columbia-Snake basin.
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Fork has experienced only small-scale disturbances in the past

20 years.

2.2 | Data

2.2.1 | Natural streamflow data

Water resources in the Henrys Fork are highly regulated by irrigation

storage, delivery and return flow (Morrisett et al., 2023). In this study,

we use natural streamflow (Qnat) to refer to unregulated runoff in each

watershed (Van Kirk, 2020), calculated as:

Qnat ¼QregþdiversionsþΔSþEres$ injection ð1Þ

where Qreg is regulated streamflow at the USGS gage, diversions are

surface water diversions recorded daily by Idaho Water District

01, ΔS is change in upstream reservoir storage, Eres is upstream reser-

voir evaporation and injection is input to streamflow upstream of the

gage via delivery of water from other watersheds through canals or

via exchange wells, which pump groundwater directly into rivers (U.S.

Bureau of Reclamation and Idaho Water Resource Board, 2015).

Direct precipitation onto the reservoir is included in the reservoir

evaporation term, making Eres negative when precipitation exceeds

evaporation. As each watershed has different infrastructure, the appli-

cation of Equation (1) varies slightly between each watershed. A full

description of these differences can be found in Supporting Informa-

tion Text S1. The normalized discharge shown in Figure 1a is the

mean daily natural streamflow on any given day of the year divided by

the 1989–2023 annual average daily natural streamflow.

2.2.2 | SNOTEL data

The precipitation, SWE and snow depth data used in this study come

from all of the Natural Resources Conservation (NRCS) Snow Teleme-

try (SNOTEL) sites in and near the study watersheds (Figure 1b). Key

topographic and vegetative characteristics of each site are given in

Table S1. As advised by NRCS, the temperature data were corrected

to resolve a known bias associated with a change in sensor (Atwood

et al., 2023). Since hourly instantaneous data was not available for the

entire period of record for all sites, we applied the correction equation

to daily summary statistics. Over the relevant range of temperatures

for a given day, the correction is nearly linear, indicating that applying

the correction directly to the daily mean summary statistic is close to

the true mean. We performed the analyses outlined below with both

the daily mean and the mid-point of the range in daily minimum and

maximum temperatures. We found no difference, and therefore, pre-

sent the results using mean daily temperatures.

Using the SNOTEL SWE data, we calculated daily melt rates as

the decrease in SWE. We also partitioned daily precipitation into rain

and snow by classifying days with precipitation and an increase in

snow depth or SWE as 'snowy' and days with new precipitation but

no change or a decrease in snow depth or SWE as 'rainy' (Jennings &

Molotch, 2019). Using this melt and rain data, we calculated daily sur-

face water inputs (SWI) as melt plus rain to represent when liquid

water enters the system (Kormos et al., 2014).

To compare sites, we will use the term ‘lower’ to refer to the

SNOTEL stations that have an elevation between 1900 and 2100 m,

‘mid’ to refer to those between 2100 and 2300 m and ‘high’ to refer

to the stations with an elevation greater than 2300 m.

2.2.3 | MODIS NDVI data

The normalized difference vegetation index (NDVI) is a metric of veg-

etation greenness commonly used to describe growing season dynam-

ics (White et al., 2009), leaf area index (Tewari et al., 2012), forest

density and disturbance (Jin & Sader, 2005), and in some areas, NDVI

has been shown to have a strong relationship with ET (Goulden

et al., 2012). As a broad measure of vegetation dynamics, we use the

250-m MODIS (Moderate Resolution Imaging Spectroradiometer)

16-day NDVI data products from both the Terra and Aqua satellites

(MOD13Q1 and MYD13Q1, collectively referenced as M*D13Q1).

Together, these products produce a 20-year time series that are

widely used and publicly accessible through open-source software.

Before release, the 16-day NDVI products are internally processed for

atmospheric correction and cloud cover, with the highest quality

image and highest NDVI value selected for each pixel with the corre-

sponding day of acquisition recorded (Didan et al., 2015). To further

process this data, we used the M*D13Q1 reliability index to filter out

any remaining low-quality pixels associated with cloud cover or inter-

ference other than snow cover. After filtering out low-quality pixels,

we used the NDVI and the day of image acquisition for each pixel to

generate a time series of average watershed NDVI, average water-

shed annual maximum NDVI and time series of NDVI extracted at the

pixel containing each SNOTEL site location.

As a spectral index, NDVI is affected by snow cover extent

(Wang et al., 2013), suggesting that in seasonally snow-covered areas,

winter NDVI values will represent both vegetation greenness and

snow cover. To retain an annual time series and incorporate insight

associated with snow-covered extent and frequency (Hall &

Riggs, 2007), we deliberately retained values flagged as snow-covered

if the image was otherwise high quality. Once processed as described

above, NDVI values show some variability related to early winter

snow accumulation and depth, but are fairly consistent during mid-

winter months (Figure S3).

2.3 | Time trend analysis

To investigate whether predictors of summer runoff in this region

have changed, we used modified time trend analysis. Time trend anal-

ysis can be used to isolate the impacts of changes in climate or vege-

tation on streamflow, such as the effects of forest disturbance on

watershed yield (Goeking & Tarboton, 2022; Manning et al., 2022;

NEWCOMB ET AL. 5 of 19
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Zhao et al., 2010). This is done by fitting a regression model to a pre-

disturbance calibration period and testing whether the difference

between the observed and predicted values for the post-disturbance

period is significantly non-zero. If they are non-zero, this implies that

the predictive relationships have changed between the calibration and

test periods. For example, this method might use annual precipitation

and temperature to predict annual runoff before and after a distur-

bance. Here, we use a modified approach to quantitatively investigate

whether the relationships used to predict summer streamflow during

and after drought differ from pre-drought relationships. In this modi-

fied approach, we use seasonal predictive models of summer runoff

and test whether a multi-year drought changes runoff predictability.

To delineate pre-drought, drought and post-drought periods, we per-

formed linear breakpoint analysis on a time series of the Palmer

Drought Severity Index (PDSI) averaged across all three watersheds

(accessed via ClimateEngine.org; Huntington et al., 2017). We used

the resulting breakpoints to define pre-drought, drought and post-

drought periods and investigate non-stationarity in predictive relation-

ships as detailed below.

For the pre-drought predictive model, we use April 1st SWE and

mean January runoff to predict summer runoff for each watershed, as

given in Equation (2) where log represents the base-e logarithm.

log summer runoffð Þ¼ β0þβ1 log April 1 SWEð Þþβ2 log Jan: runoffð Þ
ð2Þ

Here, runoff refers to area-normalized Qnat (mm). Summer runoff is

total runoff from April 1st–September 30th and Jan. runoff is mean

daily January runoff (mm). April 1st SWE is the average from all SNO-

TEL sites in or near each watershed (Figure 1b). We define summer

runoff as runoff between April and September due to peak irrigation

demand in the region occurring in July and August: this acknowledges

the importance of predicting runoff through the irrigation season (past

the commonly used April–July timeline). We include January runoff as

it has been demonstrated to represent antecedent groundwater con-

ditions and improve streamflow predictions in snow-dominated

watersheds (Brooks et al., 2021). Although other factors inevitably

influence summer runoff, we emphasize that this is a seasonal predic-

tive model, and therefore, we can only include variables known by

April 1st, when seasonal predictions are made. We used the pre-

drought water years of 1989–1998 to calibrate the models using

Equation (2). The Teton River model has a slight modification where

we used April 1 SWE without a log transformation to improve the

normality and leverage of the residuals. The normality of the residuals

was confirmed with a Lilliefors test (Lilliefors, 1967) and the homosce-

dasticity of the residuals with scatterplots of residuals versus summer

runoff and water year.

We then applied the pre-drought model to the drought and post-

drought periods and calculated ΔQnat as observed natural runoff—

predicted natural runoff, so ΔQnat is negative when the model over-

predicts runoff. We used a one-sample t-test to test whether ΔQnat

for the water years in each period is non-zero. If ΔQnat is non-zero,

this suggests the accuracy of summer runoff predictions has changed

due to something other than April 1st SWE and antecedent

groundwater. To facilitate comparison of ΔQnat across watersheds, we

calculated the percent deviation of observed from predicted runoff

using Equation (3).

Percent Deviation %ð Þ¼ Observed$Predictedð Þ
Predicted

'100 ð3Þ

2.4 | Climate and vegetation analysis

Next, we investigated changes in climate and vegetation that may

impact runoff efficiency. To do this, we ran Mann–Kendall trend anal-

ysis on a variety of temperature, precipitation and vegetation metrics.

The nonparametric Mann–Kendall trend test detects monotonic

increasing or decreasing trends over time (Helsel et al., 2020). In this

study, we performed this analysis over the entire period of record

(1989–2023) to detect long-term trends in each watershed. For our

climate analysis, we analysed average annual, winter, early spring, late

spring, summer and fall temperatures. To detect changes in precipita-

tion and snow accumulation, we analysed total annual precipitation,

peak SWE, snow fraction (peak SWE/annual precipitation) and the

day of peak SWE. Each precipitation metric represents the average of

the SNOTEL site data in or near each watershed (Figure 1b).

Similarly, to detect changes in vegetation, we performed Mann–

Kendall trend analysis on watershed-averaged maximum NDVI

(NDVIMAX) and fractional tree cover. Given the changes in data avail-

ability and satellite platforms since 1989, we calculated trends for

NDVIMAX for 1989–2012 using the 1-km resolution Advanced Very-

High-Resolution Radiometer (AVHRR) and for 2001–2023 using

250 m MODIS NDVI data separately. We chose to do this to limit

uncertainty associated with spatial and temporal resampling tech-

niques (Huang et al., 2021; van Leeuwen et al., 2006). If both the

AVHRR and MODIS trends are significant, we can assume that NDVI-

MAX has changed over the period of record. As a second measure of

vegetation dynamics, we used the 30 m resolution National Land

Cover Database's RCMAP fractional tree cover data to calculate

watershed-averaged percent tree cover (Rigge et al., 2021). The frac-

tional data give the proportion of tree canopy per pixel, so a change in

watershed-averaged cover may represent a change in the number of

pixels with tree cover (forest extent) or the percent tree cover in each

pixel (forest density). The time series of fractional tree cover is highly

auto-correlated, so we performed a modified Mann–Kendall that

accounts for the effective sample size. Mann–Kendall analyses were

performed using the Kendall (McLeod, 2022) and modifiedmk

(Patakamuri & O'Brien, 2021) R packages.

2.5 | Vegetation-water alignment

To test whether adding information about vegetation dynamics

improves runoff predictions, we introduce a metric that captures

changes in both vegetation and water availability, or the water-
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(a)

(b)

F IGURE 2 Conceptual diagram providing a visual description of (a) vegetation-water alignment index (VWA) calculations fitting sine curves to
annual surface water inputs (SWI) and normalized difference vegetation index (NDVI) data. (b) Conceptual hypothesis proposing how different
values of VWA and associated SWI-NDVI synchrony affect recharge, antecedent conditions and subsequent runoff efficiency.
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growing season alignment. To characterize alignment, we use a simi-

larity index that quantifies how in-phase calendar year NDVI is with

SWI, which we will refer to as the VWA. As described in Section 2.2.2,

SWI is the combination of snowmelt and rain, which represents when

liquid water enters the ground. As with previous studies that calculate

similarity indices using different climatic variables (Apurv & Cai, 2020;

Hale et al., 2023; Woods, 2009), we first fit a sine curve to calendar

year SWI at each SNOTEL site (Equation 4). For the purpose of cap-

turing key characteristics of the seasonal periods, we assume that a

single sine curve can reasonably fit SWI data, an assumption often

used for precipitation, temperature and ET data, particularly in snow-

covered regions (Apurv & Cai, 2020; Berghuijs & Woods, 2016; Hale

et al., 2023; Milly, 1994; Potter et al., 2005; Woods, 2009). Figure 2a

graphically summarizes Equations (4–6) and their interpretation.

SWI tð Þ¼ SWI 1þδSWI sin
2π t$ sSWIð Þ

365

! "# $
ð4Þ

In Equation (4), SWI is mean annual SWI, δSWI is the dimensionless

amplitude, t is time in days and sSWI is the phase shift in days. Text S2

in the Supporting Information provides an overview of using a sine

function in this context and a discussion of Equations (4 and 5) within

the context of the general sine form.

To integrate the annual variability of vegetation dynamics into

this metric, we also fit a sine curve to calendar year MODIS NDVI

extracted to each SNOTEL site (Equation 5), where δNDVI is the dimen-

sionless amplitude of the sine curve and sNDVI is the phase shift

in days.

NDVI tð Þ¼1
2
NDVIMAX 1þδNDVI sin

2π t$ sNDVIð Þ
365

! "# $
ð5Þ

Here, we account for interannual variability in NDVI by multiplying by

half of NDVIMAX instead of mean annual NDVI. Previous work has

shown that maximum NDVI is a more reliable way of compositing

NDVI given the heavy influence of cloud and atmospheric contamina-

tion on mean NDVI (Holben, 1986; Zhang et al., 2017). Fitting an

annual sine curve requires year-round values of NDVI, further sup-

porting the retention of winter NDVI values as described in

Section 2.2.3. Since the mid-winter values show low variability, winter

NDVI sets the bottom of the annual cycle: changes in phase and

amplitude primarily reflect the timing of snow disappearance and peak

greenness. For both SWI and NDVI, sine functions were fit to annual

data using the iterative, non-linear least-squares function ‘nlsLM’ in
the R package minpack.lm (Elzhov et al., 2023). Figure 2a shows an

example of how sine curves fit annual cycles of SWI and NDVI.

The phase and amplitude of each annual curve can be related

using a similarity index, as given with Equation (6), which is weighted

by the amplitude of NDVI and quantifies whether NDVI is in phase

with SWI (Berghuijs et al., 2014; Woods, 2009). The VWA, or the sim-

ilarity index of SWI and NDVI, ranges from close to $1 to

1, depending on δNDVI. A value closer to $1 indicates that NDVI is

out-of-phase with SWI and +1 that NDVI and SWI are in-phase.

VWA¼ δNDVI sgn δSWIð Þcos 2π sNDVI$ sSWIð Þ
365

! "
ð6Þ

Here, sgn refers to the sign (positive or negative) of δSWI, which is

used to assess whether NDVI and SWI periods exhibit the same sea-

sonality (i.e., if the peaks both fall in the first or second 6months of

the year or not). To capture dynamic changes in vegetation,

Equation (6) scales the distance of the phase shifts by δNDVI. This is

done so that when there is little annual variability in NDVI (a δNDVI

closer to 0), VWA will also be closer to 0. When NDVI shows strong

annual variability, and therefore, has a higher δNDVI, this scaling will

move the value closer to ±1, with the sign dependent on the differ-

ence in phase shifts. Given the seasonal snow cover and energy limita-

tions on the growing season, we do not observe the full range of

possible VWA values in this system. Figure 2b gives an example using

the NDVI and SWI curves associated with the lowest and highest

observed VWA at the Island Park (IP) SNOTEL site. This example dem-

onstrates how a shift in VWA can reflect changes in timing of peak

SWI and greenness as well as the amplitude of NDVI. For a concep-

tual overview of the components of SWI and NDVI sines curves and a

visualization of how shifts in each variable's amplitude and phase shift

affects VWA, see Figures S4 and S5.

Using Equations (4–6), we calculated VWA for each SNOTEL site

in or near the watershed boundaries, except for Crab Creek (CC). We

use the CC SNOTEL site for Upper Henrys meteorologic averages,

but did not calculate VWA for that station as it did not have snow

depth data available for the entire record.

We propose using VWA as a metric that integrates information

about water-growing season alignment, changes in peak NDVI and

changes in the annual distribution of SWI, all of which may influence

annual runoff efficiency in seasonally snow-covered watersheds

(Gordon et al., 2022). Given the memory that many watersheds have

of antecedent moisture conditions (Brooks et al., 2021; Castillo

et al., 2003), we propose that the alignment of NDVI with SWI for a

given calendar year can be used to represent the relative storage state

of the catchment at the end of the year and therefore be used to scale

the following spring's seasonal runoff predictions. Figure 2b shows

our hypothesis that when NDVI and SWI are more aligned, less melt

and rain will go towards runoff and recharge. Instead, when peak SWI

is more closely aligned with the start of the growing season, more of

the snow meltwater entering the soil will be taken up by plants and

lost to ET, creating a storage deficit. This is visualized in Figure 2b

using arrow size to represent the relative flux of SWI, plant water

uptake and runoff and recharge. Following a closely aligned year, we

hypothesize that the memory of this reduced recharge will be carried

over through a storage deficit that leads to lower runoff efficiency for

a given snowpack the following spring. We propose that this lower

runoff efficiency is due to the storage deficit needing to be refilled

before runoff is produced (McDonnell et al., 2021).
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2.6 | New predictive model selection and
validation

2.6.1 | Model selection

To investigate whether VWA, or some other new metric, adds predictive

power compared with traditional snowmelt-based models of streamflow

(e.g., Equation 2) in the post-drought period, we performed statistical

model selection using Akaike's information criterion (AIC) to rank models

and select a new predictive model for the post-drought period in each

watershed. We created models for the post-drought period to ensure

consistent periods of record for all satellite and sensor data and to

ensure the model is trained with years with similar forest cover and veg-

etative state. Here, we refer to the selected regression models as the

‘new’ models and the predictive models fit with April 1 SWE and

January runoff (Equation 2) as the ‘traditional’ models.

To select the best new models for each site, we provided a set of

candidate predictor variables to generate potential models and then

ranked them according to AIC, which measures the variation

explained by each model and the complexity of the model relative to

the other candidate models (Claeskens & Hjort, 2008). All candidate

predictors are listed and defined in Table S2. Given the short post-

drought period of record, we used the small-sample-corrected AIC,

referred to as AICc. Model selection was performed using the MuMIn:

Multi-Model Inference package in R version 4.2.3 (Bartoń, 2023).

2.6.2 | Cross validation

After model selection, we performed leave-one-out cross-validation

to test the predictive performance and bias of the new models. To do

this, we iterated through each predicted year of the post-drought

period (2007–2023), fit a model using all but the selected year, and

then used that model to predict runoff for the year not included in the

model fit. To assess model performance, we calculated Nash–Sutcliffe

efficiency (NSE), model percent bias (PBIAS) and root mean square

error (RMSE) using the observed and predicted values. To facilitate

comparison across watersheds, we scaled RMSE by the standard devi-

ation of observed summer runoff, referred to here as RMSEsd (Moriasi

et al., 2007). To compare the improvement offered by these new

models, we also performed cross-validation on the traditional model

using April 1 SWE and January runoff. By comparing performance

metrics between the models, we can quantify the predictive improve-

ment offered by the new model over the traditional one.

3 | RESULTS

3.1 | Time trend analysis

3.1.1 | Post-drought over-prediction

Breakpoint analysis of PDSI revealed three breakpoints delineating

the pre-drought period as water years (October 1–September 30)

1989–1998, the drought period (including drought development and

recovery) as 1999–2005 and post-drought as 2006-present, as shown

in Figure 3a by the solid lines. Applying the pre-drought models to the

drought period, we see the model significantly over-predicted runoff

in Fall River and Teton River (p < 0.05), but differences between mea-

sured and modelled runoff were insignificant in the Upper Henrys.

Metrics of the pre-drought traditional model fits are given in Table S3.

Figure 3c,d shows that the time series of percent deviation of

observed from expected runoff is below zero in these two watersheds

for most of the drought period, meaning that observed runoff was

consistently lower than expected in the drought period. Figure 3e

shows the average ΔQnat for each watershed, with significance noted

for periods when ΔQnat was significantly non-zero.

The average ΔQnat improved from the drought to post-drought

period in Fall and Teton Rivers. While the model over-predicted post-

drought runoff, the over-predictions were insignificant. In the Upper

Henrys, we see significant over-predictions and declining post-

drought model performance (p < 0.1). The observed over-prediction

in the drought and post-drought periods suggests that the system has

experienced mechanistic changes affecting runoff efficiency not cap-

tured by the pre-drought relationships between April 1 SWE, January

runoff and summer runoff.

3.1.2 | Changes in climate and vegetation

To investigate other potential drivers affecting the reliability of the his-

toric stream-snowpack relationship, Figure 4 summarizes results from

Mann–Kendall trend analyses on temperature, precipitation and vegeta-

tion metrics in each watershed for the 1989–2023 record. All metrics

represent the average of the SNOTEL sites in or near each watershed

(Figure 1b). The top set of metrics includes average annual and seasonal

temperatures for winter (December, January, and February), early spring

(March and April), late spring (May and June), summer (July, August, and

September) and fall (October and November). Each box is coloured by

the Kendall's tau of the trend where green indicates an increasing trend

and brown indicates decreasing. Significant trends are labelled with

asterisks. This trend analysis reveals that late springs and summers are

now significantly warmer in the Upper Henrys Fork and Teton River

watersheds than at the start of the study period. The Teton River water-

shed is the only watershed that has seen significant annual warming.

Comparison of precipitation metrics, including water year total annual

precipitation, day of peak SWE, annual max SWE and snow fraction

(peak SWE/annual precipitation), reveal no significant trends in any

watershed (Figure 4).

Analysis of vegetation metrics shows that NDVIMAX is signifi-

cantly increasing over both satellite periods of record in the Upper

Henrys Fork. We also see a significant increase over the AVHRR

period of record (1989–2012) in Fall River. Trend analysis of the

1989–2020 fractional tree cover record shows significant increases in

percent tree cover in all watersheds in all three periods. Both frac-

tional tree cover and NDVIMAX suggest that forest greenness and den-

sity have changed over the course of the study period in the Upper

Henrys and Fall River watersheds.
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3.2 | Vegetation-water alignment index

Figure 5 shows the time series of SNOTEL VWA, with the shade of

the line indicating the relative elevation of the site where lower eleva-

tion sites are darker and higher elevation sites lighter. To capture the

spatial variability of precipitation and greenness across each

watershed, we show both a watershed-average VWA using spatially

averaged NDVI and the average of all watershed SNOTEL SWI

(Figure 5 dashed line). In all watersheds, there is no significant trend

since calendar year 2006 in either the SNOTEL point or spatially aver-

aged watershed VWA.

In the Upper Henrys Fork and sometimes in Teton River, the

lower elevation SNOTEL point measurements have a lower (more

negative) VWA than the higher elevation stations (Figure 5a,c). A

more negative VWA signifies that vegetation greenness is more out

of alignment with snowmelt and rain entering the system at lower ele-

vations than higher elevations. This may reflect more mid-winter melt

events and earlier spring melt due to a lower snow fraction and

warmer winter temperatures at lower elevations. This elevational rela-

tionship does not occur in Fall River (Figure 5b); however, it is worth

noting that the lowest elevation SNOTEL site in Fall River is at the

same elevation as the mid-elevation sites in the Upper Henrys Fork

(Figure S1).

The dashed watershed-average VWA is often higher than what is

captured at the SNOTEL sites, reflecting a closer growing season-water

input alignment. However, in each watershed, the spatially averaged

VWA is lower than the SNOTEL VWA in 2007 and 2015. Both of these

are low snow years where contrasting patterns in the amplitude and

phase shift of annual NDVI at the watershed-scale likely reflect early

melt and water-limited phenological responses of other vegetation types

(shrubs, grasses, crops, etc.) that are present throughout the watershed

but not dominant at SNOTEL sites. Underlying all the VWA patterns,

we found that annual SWI is far more variable than NDVI, but in many

areas, peak NDVI is shifting earlier in the year (Figures S6–S8).

(a)

(b)

(c)

(d)

(e)

Q

F IGURE 3 (a) Linear
breakpoint analysis of spatially
averaged Palmer Drought
Severity Index (PDSI) for all three
watersheds. Breakpoints
delineate the 1989–2023 period
of record into pre-drought,
drought and post-drought periods
(solid lines). The dotted line
represents the mid-drought
breakpoint delineating drought
development and recovery. (b–d)
Time series of percent deviation
of observed from expected runoff
using pre-drought calibrated
model applied to drought and
post-drought periods. Negative
percent deviation indicates that
the model over-predicted runoff.
(e) Bar chart of average ΔQnat

(observed—predicted runoff) for
drought and post-drought
periods. Significance of one-
sample t-test test noted by * at
p < 0.05 and ■ at p < 0.1.
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3.3 | Selecting and testing new predictive models

Post-drought AICc model selection shows that VWA is an important

predictor of summer runoff. In Teton River and the Upper Henrys

Fork, we selected the model with the lowest AICc, both with four

fitted parameters. In Fall River, the top three models had similar AICc

and we chose the most parsimonious, with only four parameters.

Figure 6 shows the new predictive models selected for each water-

shed and the z-score standardized estimates of the coefficient of each

predictor. Positive predictors are shown in dark blue and negative in

light red. Across all three watersheds, April 1 SWE is the strongest

predictor of summer runoff. We also see that the best new model for

each watershed includes the previous summer (July–September) aver-

age alfalfa reference ET (ETr) from the average of the two valley Agri-

Met stations (Figure 1b) and a SNOTEL VWA. The same ETr is used

for all three watersheds and represents low-elevation evaporative

demand. Selected models for each watershed are listed in

Tables S4–S6.

Across all three watersheds, VWA is a negative predictor of the

following year's summer runoff, meaning the more aligned NDVI and

SWI are for a given year, the lower the following year's streamflow

response will be for a given snowpack. This supports the conceptual

hypothesis presented in Figure 2b. In the Upper Henrys Fork, the

low-elevation IP SNOTEL site was selected in the best model.

Because Fall River does not have a low-elevation SNOTEL site, we

included IP as a potential predictor, which was also selected in the

best new model. Additionally, the best model in Teton River included

the lowest-elevation Pine Creek station VWA. The best models in

each watershed include the same three predictors, revealing the wide-

spread importance of water-climate-growing season interactions and

their persistent impact on runoff efficiency.

To test the predictive performance of these models, we report

results from leave-one-out cross-validation using the 2007–2023

period of record (Figure 7), highlighting predicted versus observed

runoff for each year using the new and traditional predictive models.

To facilitate comparison across watersheds, we scaled RMSE by the

standard deviation of observed summer runoff, referred to here as

RMSEsd. An RMSEsd of less than 0.5 indicates good model perfor-

mance (Moriasi et al., 2007). The summary metrics are given in

Table 1.

Overall, we see the best improvement and model performance

for each year in the post-drought period in the Upper Henrys with an

NSE of 0.79. We also see improvement in Fall River, with an NSE of

0.70 for the new model compared with 0.56 for the traditional model.

Teton River shows moderate improvements and performance with an

NSE increase from 0.43 to 0.6. In all watersheds, we see low model

F IGURE 4 Table showing
results of Mann–Kendall trend
analysis of temperature,
precipitation and vegetation
metrics for all three watersheds.
Each box is coloured by the
Kendall tau of the trend where a
darker green indicates a stronger
increasing trend, and brown,
decreasing. Black boxes group the
metrics categorically. Significant
trends are labelled with *** at
p < 0.001, ** at p < 0.01, * at
p < 0.05 and variables with
periods of record shorter than the
1989–2023 periods of record are
indicated with a diamond (◊).
Advanced very-high-resolution
radiometer (AVHRR) and MODIS
refer to the corresponding
satellite for each normalized
difference vegetation index
(NDVI) dataset.
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biases with slight model under-prediction with the new models.

Finally, we see improvements in RMSEsd in Fall River and the Upper

Henrys Fork, dropping RMSEsd for both sites close to or under 0.5.

4 | DISCUSSION

4.1 | Non-stationarity of predictive relationships,
climate and vegetation dynamics requires new models

In this study, we investigated whether historic relationships between

April 1 SWE, winter runoff and summer streamflow still accurately

predict summer runoff following the early 2000s severe drought. We

analysed model performance before, during and after drought since it

is well documented that drought reduces runoff efficiency and

decreases the accuracy of seasonal predictive models (Saft

et al., 2015; Tian et al., 2018). Furthermore, recent work looking at

recovery following Australia's Millennium Drought suggests that some

watersheds shift to a new state following severe drought, and that

drought recovery is not just linked to catchment wetness, but also

changes in vegetation that cause more precipitation to go to transpi-

ration (Peterson et al., 2021).

Time trend analysis results show that the pre-drought relation-

ships over-predict summer runoff during the drought (FR and TR) and

post-drought (HF) periods. Before and after the drought, this region

has not experienced any widespread changes in annual precipitation,

snow accumulation or timing of melt (Figure 4), suggesting that the

worsening performance in the Upper Henrys Fork is not due to

changes in water inputs. What has changed is warmer late spring and

summer temperatures (May through September) in the Upper Henrys

Fork and Teton River watersheds as well as vegetation greenness and

fractional tree cover. The latter two vegetation metrics increased the

most in the Upper Henrys Fork and to lesser degrees in Fall River and

Teton River (Figure 4). Our analysis shows that these changes in tem-

perature and vegetation dynamics impact runoff efficiency as all three

new models selected for the post-drought period include a metric of

the previous summer's evaporative demand (ETr) and vegetation

dynamics (VWA).

Collectively, these results affirm that accounting for changing

snow dynamics alone may fail to capture important mechanisms

underlying changes in runoff efficiency and the relationships used to

predict streamflow. These findings also suggest that our understand-

ing of future runoff dynamics hinges on our understanding of climate–

vegetation interactions.

4.2 | VWA improves predictions and provides
mechanistic insights

The VWA proposed here is a metric that integrates information about

changes in annual SWI, snow fraction, snowmelt rate, seasonality of

precipitation, snow cover, timing of vegetation green-up, peak green-

ness, length of growing season and the synchrony of SWI and NDVI.

Many of these elements are predicted to change with warmer temper-

atures and a snow-to-rain transition (Cayan et al., 2001; Klos

et al., 2014) and may impact runoff efficiency across multiple time-

scales (Barnett et al., 2005). Each new model includes a SNOTEL

VWA as a negative predictor of summer runoff, with VWA showing

up in nearly all the top-ranked models (Figure 6 and Tables S4–S6).

The importance of VWA as a negative predictor supports our hypoth-

esis that the more closely aligned NDVI and SWI are for a given calen-

dar year, the lower the following spring's runoff efficiency will be

(Figure 2b). This decreased efficiency may be the result of more of the

following year's snowmelt going towards ET and less going to

recharge groundwater and deep soil moisture storage, leading to drier

conditions going into the following spring and a larger storage deficit

that must be overcome before runoff is produced (Castillo

F IGURE 5 (a–c) Time series of SNOTEL and watershed-averaged
vegetation-water alignment index (VWA). Dashed lines are the
watershed VWA calculated using watershed-average normalized
difference vegetation index (NDVI) and SWI averaged across all
SNOTEL sites within each watershed. Solid lines are VWA calculated
for each SNOTEL station using MODIS NDVI extracted for the station
location and SWI site data. Shade of the solid lines indicate the
relative elevation of that SNOTEL site compared with other sites
within the watershed where a darker shade indicates a lower
elevation site. See Table S1 for the site elevations.
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et al., 2003; Harpold et al., 2017; McDonnell et al., 2021; Milly, 1994).

By considering an extensive set of potential predictors during the new

model selection, we see that when paired with ETr, VWA provided

more predictive power than other commonly used metrics, including a

one-year moving average mass balance deficit metric. Metrics that

track accrued deficits and surpluses of precipitation and ET have been

shown to improve runoff predictions following drought due to their

ability to detect changes in root-zone storage deficits (Lapides

et al., 2022; Wang-Erlandsson et al., 2016). Unlike many deficit met-

rics, the VWA does not require additional choices about temporal

aggregation, and thus provides new insights by quantifying the syn-

chrony of annual water inputs and vegetation greenness to capture

spring snowmelt dynamics as well as dry season changes in NDVI that

reflect vegetative stress that may be missed at coarser resolutions.

The predictive power of mass balance deficit metrics, ETr and VWA,

particularly after dry years, supports a conceptual model where spring

F IGURE 6 Standardized estimates of corrected Akaike's information criterion-selected seasonal predictive model coefficients. Asterisk
following variable name indicates a log-transformed variable. Island Park and Pine Creek vegetation-water alignment (VWA) correspond to the
VWA calculated at specific SNOTEL sites. Detailed description of each predictor is included in Table S1.

F IGURE 7 Predictive performance of new post-drought models from leave-one-out cross validation. Panels (a–c) shows the accuracy and
Nash–Sutcliffe efficiency (NSE) of predicted versus observed runoff from the traditional model (open triangles) and new model (closed circle) for
each watershed. Here, the ‘traditional’ model refers to a model fit with 1 April snow water equivalent and January runoff whereas the ‘new’
model refers to the Akaike's information criterion-selected best model for each watershed that is given in Figure 6.
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runoff occurs after storage deficits is refilled (McDonnell et al., 2021).

The significance of this work goes beyond just a mechanistic under-

standing of streamflow generation; it also guides how we can inte-

grate these processes into regression-based predictive models at the

time scale needed for seasonal predictions.

In the context of the proposed mechanisms driving variable

streamflow response to changes in snowpack, our results support the

importance of capturing changes in energy-water synchrony (Gordon

et al., 2022). While not explicitly modelling energy synchrony, the

VWA indirectly accounts for spring and summer temperatures by

using NDVI, which reflects the timing of snow disappearance, length

of the growing season and provides inferences of ET without any of

the assumptions often used in ET models, all of which reflect energy

changes. Additionally, this metric also captures changes in the timing

and magnitude of SWI inputs related to changes in melt rates, an

important insight given that faster melt rates have been shown to pro-

duce larger streamflow responses (Barnhart et al., 2016, 2020).

4.3 | Variability in model performance between
watersheds

The new models improved streamflow predictions the most in the

Upper Henrys Fork (Figure 7). This improvement may be due to a

combination of factors, including the groundwater-dominated hydro-

logic regime, greater forest regrowth following disturbance, and the

watershed's topography. The Upper Henrys Fork is the only one of

the three watersheds that has experienced both significant warming

and higher NDVIMAX over both satellite periods of record (Figure 4).

This suggests that, as expected, the more change a watershed has

experienced, the greater the need to revise traditional predictive rela-

tionships. Compounding this change in the Upper Henrys Fork is the

memory of past deficits retained in the groundwater system

(Benjamin, 2000).

Groundwater-dominated systems experience a larger absolute

reduction in summer streamflow following changes in snowmelt tim-

ing and warming than their snow-dominated counterparts (Mayer &

Naman, 2011; Tague & Grant, 2009). This is especially true in porous,

young volcanic landscapes (Tague et al., 2008), such as the calderas

and tuffs that underly the Upper Henrys. Not only do deficits accrue

due to the slower drainage rates but also these porous substrates may

have a large subsurface storage capacity. This stored water can modu-

late the hydrologic impacts of climate–ET interactions if this water is

accessible to plants during dry periods (Garcia & Tague, 2015; Klos

et al., 2018). This increased storage allows plants to deplete deeper

water stores during multi-year dry periods, resulting in lower stream-

flow generation and greater deficits (Hahm et al., 2020, 2022).

Improved predictive performance in Fall River, a watershed

underlain by a mix of young volcanic and glacial deposits with a more

mixed groundwater-snowmelt system, also supports the important

role underlying geology and subsurface storage capacity may play in

modulating runoff efficiency. Our analysis shows more moderate

improvements in the snowmelt-dominated Teton River, perhaps indic-

ative of the larger role of real-time melt dynamics in snowmelt-driven

systems. The importance of capturing snowpack evolution and melt in

near-real time has motivated efforts to operationalize physically based

models to provide more accurate short-term forecasts (Meyer

et al., 2023). However, these forecasts have much shorter lead times

and depend on accurate meteorological forecasts, suggesting the

value of also continuing to improve our understanding of snowmelt

runoff efficiency on a seasonal scale.

In each new seasonal runoff model, SNOTEL sites in the low to

intermediate elevation zones (1900–2100 m) were selected as the

best predictors of streamflow (Figure 7). Previous work has shown

that ET and vegetation greenness in intermediate elevation zones are

more responsive to changes in annual precipitation and snowpack

(Christensen et al., 2008; Kraft et al., 2022; Tague & Peng, 2013;

Trujillo et al., 2012). This finding suggests that mid-elevation forests,

which are able to optimally use available water, may exert a larger

influence on storage deficits and runoff efficiency than forests that

are more strongly water- or energy-limited. As warming shifts the tim-

ing between snowmelt and the growing season, annual and interann-

ual hydrologic response will depend on how mid-elevation forests

affect subsurface storage as they transition from energy- to water-

limited growing seasons.

4.4 | Limitations and future work

This study provides a case study and proof of concept for the utility

of the VWA, a new metric that captures changing vegetation dynam-

ics and water-energy synchrony in improving seasonal runoff predic-

tions. To demonstrate its utility, we focused on creating new models

for the modern post-drought period, which extends back to 2006.

This modern period of record allows us to use MODIS data without

introducing additional uncertainty from relying on multiple satellite

platforms and variable spatial and temporal resolutions; however, it

reduces the period of record and does not record pre-drought or

drought VWA values. Future work should look at the impact of tem-

poral frequency and spatial resolution on the fit of the NDVI sine

curves to try to extend the VWA record using AVHRR and

Landsat data.

TABLE 1 Leave-one-out performance metrics of traditional and
new models for the post-drought period by watershed.

Watershed Model NSE PBIAS RMSEsd

Upper Henrys Traditional 0.564 $0.308 0.640

New 0.790 $0.129 0.447

Fall Traditional 0.563 $0.642 0.641

New 0.700 $0.427 0.534

Teton Traditional 0.432 0.268 0.731

New 0.601 $0.298 0.613

Abbreviations: NSE, Nash–Sutcliffe efficiency; PBIAS, percent bias; RMSE,
root mean square error.
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In this region, denser forests combined with warmer springs and

summers set the scene for changing snow–vegetation interactions

and greater evaporative demand to have a noticeable effect on local

hydrology. Follow-up studies should investigate the utility of VWA in

watersheds that have seen more widespread changes in snow

accumulation and melt and/or recent vegetation disturbances. The

similarity index of SWI and NDVI integrates many different aspects of

snow-vegetation dynamics, and it would be valuable to investigate

whether the effects a disturbance such as wildfire has on both SWI

and NDVI translates to a meaningful shift in VWA that corresponds to

a change in runoff efficiency.

5 | CONCLUSION

Here, we present a case study looking at how the relationships used

in seasonal runoff predictive models have changed over the past three

decades in the Henrys Fork of the Snake River, a forested headwater

system located in the Greater Yellowstone Ecosystem. We see that

predictive relationships used prior to a severe drought in the early

2000s over-predict runoff during and after the drought in two of the

three watersheds, and that the remaining watershed shows declining

performance in the post-drought period. Our analysis of climate and

vegetation change over the same period shows that, although this

region has not experienced widespread shifts in precipitation or snow

accumulation since the late 1980s, late springs and summers are gen-

erally warmer and forests are greener with more tree-covered area as

forests recover from multiple disturbances. These results suggest the

changing snowpack–streamflow relationship is affected not just by

changes in snow accumulation and melt, but also by vegetation

dynamics, an aspect of watershed hydrology not historically captured

in regression-based predictive models. To this end, we propose a new

metric, the VWA, that quantifies water availability-growing season

alignment. New predictive models show that this index, along with a

metric of atmospheric demand, are significant predictors of runoff and

can be used to improve the runoff predictions in the post-drought

period. Furthermore, VWA for a given calendar year is a significant

negative predictor of the following year's summer runoff. This sup-

ports the hypothesis that the more synchronized the timing of water

inputs are with the growing season, the lower future runoff efficiency

will be. This finding emphasizes that our understanding of runoff

dynamics and our ability to predict runoff depends not only on our

ability to model snowpack but also on our understanding of and ability

to model how vegetation responds to warming and water stress and

how these stress responses affect groundwater storage and recharge.

The VWA proposed here is a step forward in integrating vegetation

dynamics into seasonal predictive models and further work should be

done to assess the applicability of this metric outside of the case

study presented here.
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